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This study investigates the problem of distributed state
estimation. A distributed Kalman filter algorithm is
proposed, in which sensors exchange their innovations.
A detailed analysis is conducted for the case of two
sensor networks, demonstrating that the proposed al-
gorithm outperforms the case where each sensor runs
a conventional Kalman filter without communication.
The upper bounds of error covariance matrices are
also derived in the case of packet loss. Numerical exam-
ples verify the effectiveness of the proposed algorithm.

Keywords: distributed Kalman filter, packet dropout,
multisensor network

1. Introduction

State estimation is a method used to estimate the inter-
nal states of a dynamic system based on available mea-
surement data. Accurate determination of these states is
crucial for effective feedback control. However, practi-
cal implementations often face challenges leading to in-
accuracies or the inability to obtain internal states. For in-
stance, sensor measurement noise can result in inaccurate
readings, and certain states may not be directly measured
by the sensors. To address these issues, several classical
state-estimation algorithms have been developed, includ-
ing the Kalman filter, �∞ filter, particle filter, and Luen-
berger observer.

However, these state estimation algorithms typically
rely on a single sensor, which limits the amount of in-
formation gathered. Compared to single-sensor filter-
ing, multisensor filtering enables more comprehensive
information acquisition and enhances robustness. With
improvements in computing capabilities, research inter-
est in state estimation using multiple sensors has in-
creased. In 2005, Olfati-Saber and Shamma proposed
consensus filters for multisensor networks [1]. Distributed
Kalman filters incorporating consensus filters have been
proposed in [2, 3], while distributed state observers have
studied discrete-time deterministic systems in [4, 5] and
continuous-time deterministic systems in [6, 7].

In general, sensors exchange information through net-
works. However, challenges such as unreliable networks,
sensor failures, and harsh environmental conditions can

lead to phenomena such as packet dropouts and commu-
nication delays, which can significantly impact sensor net-
work performance. Consequently, extensive research has
been conducted to address these communication issues.
Studies on multisensor Kalman filtering in the presence
of dropouts can be found in [8, 9], and research on multi-
observers with random communication for continuous-
time stochastic systems is discussed in [10]. Furthermore,
[11] investigates the upper bound of the expectation of the
covariance matrix for a distributed Kalman filter exchang-
ing predicted values between sensors in scenarios involv-
ing packet dropouts.

Motivated by the discussion above, we propose a new
distributed Kalman filter that exchanges innovations be-
tween sensors. This approach differs from the conven-
tional settings of existing distributed filters [12–14], which
typically enable sensors to exchange estimated or pre-
dicted values. Each time, a sensor sends its predicted
values and measurements, along with timestamps, to its
neighboring sensors only once. We demonstrate that the
proposed method, which utilizes the exchange of innova-
tions, provides a more precise estimation than the con-
ventional Kalman filter, a single-sensor filtering method,
as well as some existing distributed filtering methods.
Subsequently, we consider the situation in which packet
dropouts occur when the proposed Kalman filter works
and study the performance of the proposed distributed
Kalman filter in this case.

This study makes three contributions. Firstly, we pro-
pose a new distributed Kalman filter and validate its im-
provement in estimation accuracy compared to the con-
ventional Kalman filter through derivation and simula-
tion. Secondly, we demonstrate that the proposed dis-
tributed Kalman filter can achieve consensus between sen-
sors, enabling the sensors to obtain equally accurate mea-
surements. Thirdly, we study situations in which packet
dropouts may occur and derive the upper bounds of the
covariance matrix.

2. Problem Formulation

The topological structure of the sensor network in this
study is represented by� = (+, �), where+ represents all
sensor nodes in the network and � represents all possible
communication channels between any two sensor nodes.
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A communication channel between two sensor nodes indi-
cates that they can exchange information with each other.
Sensor nodes that share communication channels with a
specific sensor node are called neighboring nodes. In this
study, we denote #8 as the sensor node set composed of
all neighboring nodes of sensor node 8 and sensor node 8
itself. For any sensor node 8 ∈ + , we define the number of
sensor nodes in #8 as <8 and all sensor nodes in #8 from
1 to <8 , respectively, ensuring that sensor node 8 is num-
bered as <8 . To express this accurately, we stipulate that
the subscript 8 represents the 8-th sensor node in the sen-
sor network, and the subscripts 8 and 9 represent the 9-th
neighboring sensors of sensor 8.

Consider the following linear, discrete-time stochastic
system:

G(C) = �G(C − 1) + F(C − 1), . . . . . . . (1)

H8 (C − 1) = �8G(C − 1) + E8 (C − 1), . . . . . (2)

where G(C) ∈ R= is the state vector, and H8 (C) ∈ R< is
the measurement vector of sensor node 8. F(C) ∈ R= and
E8 (C) ∈ R< are the dynamic-model noise and sensor node
8’s measurement noise, respectively. � and �8 are = × =
and < × = known constant matrices.

In this paper, all the derivations are based on the follow-
ing assumptions:

Assumption 1: F(C) and E8 (C) are uncorrelated zero-
mean white Gaussian noises. The covariance ma-
trices F(C) and E8 (C) are � [F(C)F(C)>] = & and
� [E8 (C)E8 (C)>] = '8 , respectively.

Assumption 2: The initial state G(0) is uncorrelated with
F(C) and E8 (C).

For system (1), we propose the following distributed
Kalman filter for each sensor node:

Ĝ8 (C |C) = Ĝ8 (C |C − 1) +
∑
;∈#8

:8; [H; (C) − �; Ĝ; (C |C − 1)] (3)

where Ĝ8 (C |C − 1) is the predicted value and Ĝ8 (C |C) is the
estimated value. :8; is the Kalman gain matrix of the
innovation from sensor node ; with appropriate dimen-
sions. For convenience of derivation, we define  8 =

[:81, :82, . . . , :8<8
].

The purpose of this study was to design a distributed
Kalman filter with the structure shown in Eq. (3). In the
following sections, we first show the iterative process of
the proposed distributed Kalman filter and then use deriva-
tion and simulation to confirm its effectiveness.

3. Design of Distributed Kalman Filter

This section presents the iterative process of the pro-
posed distributed Kalman filter with structure (3).

The following lemma will be used to prove our main
results.

Lemma 1— [15]: Some formulas for calculating the

partial derivative of the trace of a matrix are given as
m

m-
tr{�->} = �

m

m-
tr{-�} = �>

m

m-
tr{-�->} = - (� + �>)

where � and - are matrices with appropriate dimensions.
Theorem 1: Given the initial estimated value Ĝ8 (0|0),

initial error covariance matrix %8 (0|0), and initial error
cross-covariance matrix %8; (0|0), the estimate for each it-
eration is obtained as follows:

Prediction:
Ĝ8 (C |C − 1) = �Ĝ8 (C − 1|C − 1) . . . . . . . (4)
%8 (C |C − 1) = �%8 (C − 1|C − 1)�> +& . . . . (5)
%8 9 (C |C − 1) = �%8 9 (C − 1|C − 1)�> +& . . . (6)

Update:

 8 = (8 () + ')−1 . . . . . . . . . . . . (7)
Ĝ8 (C |C) = Ĝ8 (C |C − 1)

+
∑
9∈#8

:8 9
[
H 9 (C) − � 9 Ĝ 9 (C |C − 1)

]
. (8)

%8 (C |C) = %8 (C |C − 1) − (8 () + ')−1(>8 . . . (9)
%8 9 (C |C) = %8 9 (C |C − 1) − (8 () + ')−1(>9 . . (10)

where
(8 =

[
%81(C |C − 1)�>

1 , %82(C |C − 1)�>
2 ,

. . . , %8<8
(C |C − 1)�>

<8

]
) =


�1%11�

>
1 �1%12�

>
2 · · · �1%1<8

�>
<8

�2%21�
>
1 �2%22�

>
2 · · · �2%2<8

�>
<8

...
...

. . .
...

�<8
%<81�

>
1 �<8

%<82�
>
2 · · · �<8

%<8<8
�>
<8


' =


'1 · · · 0
...

. . .
...

0 · · · '<8

 .
Proof: We define the estimation G̃8 (C |C) and predic-

tion errors G̃8 (C |C − 1) of sensor node 8 at time C as:

G̃8 (C |C) = G(C) − Ĝ8 (C |C), . . . . . . . . . (11)

G̃8 (C |C − 1) = G(C) − Ĝ8 (C |C − 1), . . . . . . (12)

where G(C) is the actual value at time C.
Substituting Eqs. (1) and (4) into Eq. (12), we obtain

G̃8 (C |C − 1) = �G̃8 (C − 1|C − 1) + F(C − 1). . . (13)

Under Assumptions 1 and 2, using the definitions %8 (C |C −
1) = � [G̃8 (C |C−1)G̃8 (C |C−1)>] and %8 9 (C |C−1) = � [G̃8 (C |C−
1)G̃ 9 (C |C − 1)>], we can easily obtain Eqs. (5) and (6), re-
spectively.

Substituting Eq. (3) into Eq. (11), we obtain

G̃8 (C |C) = G̃8 (C |C − 1) −
∑
;∈#8

:8; [�; G̃; (C |C − 1) + E;] .(14)
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Under Assumptions 1 and 2, substituting Eq. (14) into def-
inition %8 (C |C) = � [G̃8 (C |C)G̃8 (C |C)>], we have

%8 (C |C) = �
[
G̃8 (C |C)G̃8 (C |C)>

]
= %8 (C |C − 1) −

∑
;∈#8

%8; (C |C − 1)�>
; :

>
8;

−
∑
;∈#8

:8;�;%;8 (C |C − 1)

+
∑
<∈#8

∑
=∈#8

:8<�<%<= (C |C − 1)�>
= :

>
8=

+
∑
;∈#8

:8;';:
>
8;

= %8 (C |C − 1) − (8 >
8 −  8(>8

+ 8) >
8 +  8' >

8 .

Similarly,

%8 9 (C |C) = �
[
G̃8 (C |C)G̃ 9 (C |C)>

]
= %8 9 (C |C − 1) − (8 >

9 −  8(>9
+ 8) >

9 +  8' >
9 .

The optimal Kalman gain for the proposed distributed
Kalman filter is given by the  8 that minimizes tr{%8 (C |C)}.
To achieve this, let m

m 8
tr{%8 (C |C)} = 0, then we obtain the

following equation:

−(8 − (8 +  8 () + )>) +  8 (' + '>) = 0. . . (15)

Because ) and ' are symmetric matrices, we obtain
Eq. (7). Finally, by substituting  8 = (8 () + ')−1 and
 9 = ( 9 () + ')−1 into %8 (C |C) and %8 9 (C |C), Eqs. (9) and
(10) are obtained.

4. Analysis of Distributed Kalman Filter

In this section, we present and prove some properties of
the proposed distributed Kalman filter.

In this paper, the classical Kalman filter, which esti-
mates the states of a plant using the following iterative al-
gorithm [16], is referred to as the “conventional” Kalman
filter:

Prediction:

Ĝ8 (C |C − 1) = �Ĝ8 (C − 1|C − 1) . . . . . . . (16)

%8 (C |C − 1) = �%8 (C − 1|C − 1)�> +& . . . . (17)

Update:

 = %8 (C |C − 1)�>(�%8 (C |C − 1)�> + ')−1 . (18)

Ĝ8 (C |C) = Ĝ8 (C |C − 1) +  (H − �Ĝ8 (C |C − 1)) . . (19)

%8 (C |C) = (� −  �)%8 (C |C − 1) . . . . . . . (20)

The following lemmas will be used for the proof of this
section.

Lemma 2— [17]: Define the modified algebraic Ric-
cati equation for the conventional Kalman filter as follows:

6(-) = �-�> +& − �-�>(�-�> + ')−1�-�>

where � and � are a state matrix and a measurement ma-
trix, respectively; & and ' are covariance matrices of dy-
namic model noise and measurement noise; and - is a co-
variance matrix of predicted values. Then 6(-1) ≤ 6(-2)
if -1 ≤ -2.

Lemma 3— [17]: Consider a sequence %C+1 = 6(%C )
with the initial value %0. For any initial value %0 ≥ 0, the
sequence will always converge, and the limits will be the
same.

The following theorem shows that the proposed dis-
tributed Kalman filter performs better than the conven-
tional Kalman filter under the same initial conditions. For
convenience of derivation, we define %2

8
(C |C) as the error

covariance matrix of the estimated value at time C when a
conventional Kalman filter is used.

Theorem 2: With the same initial error covariance ma-
trices %8 (0|0), we have %8 (C |C) ≤ %2

8
(C |C) for 8 ∈ + .

Proof: When calculating the estimate of sensor 8,
we can combine all innovations received by sensor 8 into
one with the subscript ;8 as follows:

Ĝ8 (C |C) = Ĝ8 (C |C − 1) + :8 [H8 − �8 Ĝ8 (C |C − 1)]
+ ;8

[
.;8 − �;8 -̂;8 (C |C − 1)

]
where

-̂;8 (C |C − 1) =

Ĝ8,1(C |C − 1)

...

Ĝ8,<8−1(C |C − 1)

 ,
.;8 (C) =


H8,1(C)
...

H8,<8−1(C)

 ,
�;8 =


�8,1

. . .

�8,<8−1

 ,
and the error covariance matrix of .;8 (C) is

';8 =


'8,1

. . .

'8,<8−1

 .
We then define

) + ' =

[
�8%8�

>
8
+ '8 �8%8;8�

>
;8

�;8%;88�
>
8

�;8%;8�
>
;8
+ ';8

]
,

=:
[
"88 "8;8
";88 ";8;8

]
,

then by using the Schur complement [18] for () + ')−1,
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we obtain

%8 (C |C)
= %8 (C |C − 1) − (8 () + ')−1(>8
= %8 (C |C − 1) − [%8 (C |C − 1)�>

8 , %8;8 (C |C − 1)�>
;8
]

× () + ')−1 [%8 (C |C − 1)�>
8 , %8;8 (C |C − 1)�>

;8
]>

= %8 − (%8�>
8 "

−1
88 �8%8

+ %8�>
8 "

−1
88 "8;8 (";8;8 − ";88"−1

88 "8;8 )−1";88"
−1
88 �8%8

− %8�>
8 "

−1
88 "8;8 (";8;8 − ";88"−1

88 "8;8 )−1�;8%;88

− %8;8�>
;8
(";8;8 − ";88"−1

88 "8;8 )−1";88"
−1
88 �8%8

+ %8;8�>
;8
(";8;8 − ";88"−1

88 "8;8 )−1�;8%;88)
= %8 − %8�>

8 "
−1
88 �8%8

− (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
) (";8;8 − ";88"−1

88 "8;8 )−1

× (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
)>

= %8 − %8�>
8 (�8%8�>

8 + '8)−1�8%8

− (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
) (";8;8 − ";88"−1

88 "8;8 )−1

× (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
)>.

Conversely, the error covariance matrices of sensor 8 using
the conventional Kalman filter algorithm are given as

%28 (C |C) = %8 − %8�>
8 (�8%8�>

8 + '8)−1�8%8 .

When the estimated error covariance matrices of sensor 8
at time C−1 are the same in the two situations, then we can
get the estimated error covariance matrix of the two cases
at time C with the following relationship:

%28 (C |C) − %8 (C |C)
= (%8�>

8 "
−1
88 "8;8 − %8;8�>

;8
) (";8;8 − ";88"−1

88 "8;8 )−1

× (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
)>.

Now we will show that %2
8
(C |C) − %8 (C |C) is a positive defi-

nite matrix. First, we have

";8;8 − ";88"−1
88 "8;8

= �;8 (%;8 − %;88�>
8 (�8%8�>

8 + '8)−1�8%8;8 )�>
;8
+ ';8 .

Therefore, we only need to prove that %;8 −
%;88�

>
8
(�8%8�>

8
+ '8)−1�8%8;8 is a positive semi-definite

matrix. Note that (�8%8�>
8
+ '8)−1 ≤ (�8%8�>

8
)−1.

Then, we obtain

%;8 − %;88�>
8 (�8%8�>

8 + '8)−1�8%8;8

≥ %;8 − %;88�>
8 (�8%8�>

8 )−1�8%8;8 .

In this case, we only need to prove %;8 −
%;88�

>
8
(�8%8�>

8
)−1�8%8;8 ≥ 0, which is equivalent

to prove[
�8%8�

>
8

�8%8;8
%;88�

>
8

%;8

]
=

[
�8 0
0 �

] [
%8 %8;8
%;88 %;8

] [
�8 0
0 �

]>
≥ 0

where we used the Schur complement. Define the random
vector G̃D = [G̃8 (C |C − 1); G̃;8 (C |C − 1)] ∈ R=<8 , then obvi-

ously[
%8 %8;8
%;88 %;8

]
= �

[
G̃D (C |C − 1)G̃D (C |C − 1)>

]
≥ 0.

Therefore, we can determine that %2
8
(C |C) − %8 (C |C) > 0.

Then, we can further get %8 (C + 1|C) < %2
8
(C + 1|C). For

sensor 8, we have

%8 (C + 1|C + 1)
= %8 (C + 1|C) − %8�>

8 (�8%8�>
8 + '8)−1�8%8

− (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
)

× (";8;8 − ";88"−1
88 "8;8 )−1

× (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
)>

< %28 (C + 1|C) − %28 �>
8 (�8%28 �>

8 + '8)−1�8%
2
8

− (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
)

× (";8;8 − ";88"−1
88 "8;8 )−1

× (%8�>
8 "

−1
88 "8;8 − %8;8�>

;8
)>

< %28 (C + 1|C) − %28 �>
8 (�8%28 �>

8 + '8)−1�8%
2
8

= %28 (C + 1|C + 1)
where Lemma 2 is used. This implies that with the same
initial error covariance matrices %8 (0|0), the proposed dis-
tributed Kalman filter will always perform better.

Remark 1: When packet loss occurs in a sensor network,
each sensor cannot receive any information from the other
sensors. Therefore, each sensor can only perform single-
sensor filtering, that is, using a conventional Kalman fil-
ter for state estimation. When considering packet dropout,
Theorem 2 will still hold. This is because Theorem 2 and
Lemma 2 show that when %8 ≤ %2

8
, this will still be true,

regardless of whether packet dropout occurs at the next
moment.

The following theorem shows the consensus of the pro-
posed distributed Kalman filter.

Theorem 3: Assume that the connectivity graph of the
sensor network is undirected and complete, and no packet
loss occurs. Define the number of sensors in the sensor
network as <. Then, for the error covariance matrices
%8 (C |C) and estimated values Ĝ8 (C |C) given in Eqs. (9) and
(8), respectively, there exists a matrix %̃ and a vector G̃ such
that

lim
C→∞

%1(C |C) = lim
C→∞

%2(C |C) = · · · = lim
C→∞

%<(C |C) = %̃
lim
C→∞

Ĝ1(C |C) = lim
C→∞

Ĝ2(C |C) = · · · = lim
C→∞

Ĝ<(C |C) = G̃
for any initial conditions %8 (0|0) ≥ 0, 8 = 1, 2, . . . , <.

Proof: If all sensors are considered as a whole,
we can combine the algorithms of all sensors in the error
covariance matrix as

Prediction:

%D (C |C − 1) = �D%D (C − 1|C − 1)�D> +&D

Update:

%D (C |C) = %D (C |C − 1) − %D (C |C − 1)�D>

×(�D%D (C |C − 1)�D> + 'D)−1�D%D (C |C − 1)
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where

%D (C |C) =

%1(C |C) · · · %1<(C |C)
...

. . .
...

%<1(C |C) · · · %<(C |C)

 ,
�D =


� · · · 0
...

. . .
...

0 · · · �

 ,
�D =


�1 · · · 0
...

. . .
...

0 · · · �<

 ,
&D =


& · · · &
...

. . .
...

& · · · &

 ,
'D =


'1 · · · 0
...

. . .
...

0 · · · '<

 .
Then we obtain

%D (C + 1|C) = �D%D (C |C − 1)�D> +&D − �D%D (C |C − 1)
×�D>(�D%D (C |C − 1)�D> + 'D)−1

×�D%D (C |C − 1)�D>,
which has the same form as 6(-) in Lemma 2. By using
Lemma 3, we obtain the conclusion that for any %D (1|0),
%D (C + 1|C) always converges to the same limit as C → ∞.

Now let us consider a particular initial condition for
%D (1|0), with %8 (1|0) = % 9 (1|0) = %8 9 (1|0) = % 98 (1|0)
for 8, 9 ∈ + . Using Eqs. (5), (6), (9), and (10), it is easy to
see that %8 (C+1|C) = % 9 (C+1|C) = %8 9 (C+1|C) = % 98 (C+1|C)
for any C. Because the limit of %D (C + 1|C) is the same for
any initial condition %D (1|0), this implies that %D (C + 1|C)
has this property %8 (C + 1|C) = % 9 (C + 1|C) = %8 9 (C + 1|C) =
% 98 (C + 1|C) at its limit regardless of the initial condition.
Then, it is clear that %8 (C |C) = % 9 (C |C) = %8 9 (C |C) =

% 98 (C |C) is satisfied by Eqs. (5) and (6).
We then prove the consensus of Ĝ8 (C |C). We first define

random vector 4̃8 9 (C |C) as

4̃8 9 (C |C) = Ĝ8 (C |C) − Ĝ 9 (C |C)
= (G(C |C) − Ĝ 9 (C |C)) − (G(C |C) − Ĝ8 (C |C))
= G̃ 9 (C |C) − G̃8 (C |C),

for 8, 9 ∈ + . Because the means of G̃ 9 (C |C) and G̃8 (C |C) are
both zero vectors, the mean of 4̃8 9 (C |C) is also a zero vector.
Above, we have proved that %8 (C |C) = % 9 (C |C) = %8 9 (C |C) =
% 98 (C |C) for 8, 9 ∈ + . Therefore, the cross-covariance ma-
trix of 4̃8 9 is a zero matrix, which means 4̃8 9 is a zero vector
for 8, 9 ∈ + . Consequently, it is clear that limC→∞ Ĝ1(C |C) =
limC→∞ Ĝ2(C |C) = · · · = limC→∞ Ĝ<(C |C) = G̃.
Remark 2: When considering packet dropout, Theorem 3
no longer holds because, without communication between
sensors, each sensor will have varying estimation accuracy
based on its individual characteristics.

Fig. 1. Mechanical system.

The following theorem provides an upper bound on the
error covariance matrix of each sensor when using the pro-
posed distributed Kalman filter under packet loss condi-
tions. We assume that when a sensor experiences packet
loss, it can only rely on its own innovation for state esti-
mation.

Theorem 4: If each sensor uses Eqs. (16)–(20) for state
estimation when packet dropout occurs, then for time-
invariant systems (1) and (2), the solution %8 (C + 1|C) of
Eq. (5) is bounded with %8 (C + 1|C) ≤ %1

8
(C + 1|C), where

%18 (C + 1|C)
= �%18 (C |C − 1)�> +& − �%18 (C |C − 1)�>

8

× (�8%18 (C |C − 1)�>
8 + '8)−1�8%

1
8 (C |C − 1)�>.

Proof: Let %0
8
(C + 1|C) represent the actual pre-

dicted error covariance matrix when packet dropout oc-
curs. We assume that packet dropout occurs for the first
time for sensor 8 at time C. According to Theorem 2,
%0
8
(C |C − 1) ≤ %1

8
(C |C − 1). Next, consider the case where

the error covariance matrix is maximized; that is, packet
dropout occurs continuously after time C. Then, based on
Lemma 2, we can always obtain %0

8
< %1

8
after time C.

Therefore, the sequence %1
8

serves as the upper bound on
the error covariance matrix of sensor 8 in the case of a pos-
sible packet dropout.

5. Numerical Simulation

The mechanical system shown in Fig. 1 is used to
demonstrate the effectiveness of the proposed distributed
Kalman filter. In this system, the mass is subjected to fric-
tion with the ground, and the tension of a spring is char-
acterized by coefficients :1 and :2 for viscous friction and
spring constant, respectively. The state of the mass is de-
scribed as G(C) = [?(C), @(C)]>, where ?(C) and @(C) are
the displacement and velocity of the mass, respectively.

By setting < = 1, :1 = 0.6, and :2 = 0.4, and applying
forward Euler discretization, the discrete-time state-space
equation can be given by

G(C) =
[

1 1
−0.5 0.4

]
G(C − 1) + F(C − 1).

Suppose there are two sensors, in which the first sen-
sor measures the displacement of the mass while the sec-
ond sensor measures both the displacement and veloc-
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Fig. 2. True values and estimates of displacements by the
proposed DKF and conventional KF.

ity. Then, the measurement models of the two sensors are
given as

H1(C − 1) =
[
1 0

]
G(C − 1) + E1(C − 1),

H2(C − 1) =
[
1 0
0 1

]
G(C − 1) + E2(C − 1).

The covariance matrices of F(C), E1(C), and E2(C) are

& =

[
0.05 0

0 0.05

]
,

'1 = 0.06,

'2 =

[
0.04 0

0 0.04

]
.

respectively. The initial states and error covariance matri-
ces of two sensors are

G1 = G2 =

[
0.6
0.6

]
,

%1 =

[
0.08 0

0 0.08

]
, %2 =

[
0.05 0

0 0.05

]
.

5.1. Comparisons Between the Proposed DKF and
Conventional KF

In this subsection, we compare the proposed distributed
Kalman filter and conventional Kalman filter based on the
trace of the error covariance matrices. Note that when us-
ing the conventional Kalman filter, each sensor indepen-
dently uses Eqs. (16)–(20) without communicating with
the other sensor.

Figures 2 and 3 show the estimates of displacement and
velocity using the proposed distributed Kalman filter and
conventional Kalman filter, respectively. From Figs. 2 and
3, we can observe that as the state estimation progresses,
the estimated values from the two sensors converge when
using the proposed approach, verifying the consensus of
the estimated values as proposed in Theorem 3. Figs. 4
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Fig. 3. True values and estimates of velocity by the proposed
DKF and conventional KF.
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Fig. 4. Comparison of the proposed distributed Kalman filter
and conventional Kalman filter on sensor 1.

and 5 show the comparison results between the proposed
distributed Kalman filter and the conventional Kalman fil-
ter. From Figs. 4 and 5, we can observe that for both
sensors 1 and 2, the proposed distributed Kalman filter
consistently outperforms the conventional Kalman filter,
which aligns with the findings of Theorem 2.

5.2. Consensus of the Proposed DKF
In this subsection, we present a consensus regarding the

proposed distributed Kalman filter. The numerical simu-
lation results are shown in Fig. 6. As shown in Fig. 6,
although the traces of the error covariance matrices of the
two sensors are initially different, the traces of the error co-
variance matrices of the two sensors converge to the same
value as the state estimation continues. This simulation
result is consistent with the conclusions drawn from The-
orem 3.
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Fig. 5. Comparison of the proposed distributed Kalman filter
and conventional Kalman filter on sensor 2.
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Fig. 6. Traces of error covariance matrices of two sensors
when using the proposed distributed Kalman filter.

5.3. Upper Bound of the Proposed DKF
In this subsection, we demonstrate the upper bounds of

the proposed distributed Kalman filter under the scenario
where both sensors may experience packet losses at any
given moment. Figs. 7 and 8 show the situation with a
packet loss rate of 0.2 for the two sensors, while Figs. 9
and 10 show the situation with a packet loss rate of 0.8.
From Figs. 7–10, we can observe that the proposed upper
bound holds for both sensors, consistent with the findings
of Theorem 4.

5.4. Comparison with Existing Distributed
Filtering

In this subsection, we compare our approach with the
distributed filtering method proposed in [12]. The filter-
ing performance is evaluated based on the average of the
absolute values of the errors across all sensors. Figs. 11
and 12 show the estimates of displacement and velocity
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Fig. 7. Traces of error covariance matrices of sensor 1
when using the proposed distributed Kalman filter in the case
where the dropout rate is 0.2.
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Fig. 8. Traces of error covariance matrices of sensor 2
when using the proposed distributed Kalman filter in the case
where the dropout rate is 0.2.
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Fig. 9. Traces of error covariance matrices of sensor 1
when using the proposed distributed Kalman filter in the case
where the dropout rate is 0.8.
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Fig. 10. Traces of error covariance matrices of sensor 2
when using the proposed distributed Kalman filter in the case
where the dropout rate is 0.8.
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Fig. 11. True values and estimates of displacements by the
proposed DKF and approach proposed in [12].
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Fig. 12. True values and estimates of velocity by the pro-
posed DKF and approach proposed in [12].
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Fig. 13. Comparison of mean squared error of displacement
for the proposed DKF and approach proposed in [12].
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Fig. 14. Comparison of mean squared error of velocity for
the proposed DKF and approach proposed in [12].

using the proposed distributed Kalman filter and the ex-
isting distributed filtering method from [12], respectively.
Additionally, Figs. 13 and 14 show their corresponding
mean squared errors. The results show that, compared to
the approach proposed in [12], the estimation error of the
proposed distributed Kalman filter is smaller, which shows
the advantage of our proposed approach.

6. Conclusion

A distributed Kalman filter, which involves sensors ex-
changing innovations, was proposed for linear discrete-
time systems. A detailed analysis was performed on the
two sensor networks. In particular, it has been shown
that the proposed distributed Kalman filter outperforms
the case where each sensor independently runs the con-
ventional Kalman filter. Additionally, consensus between
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the two sensors was guaranteed. Furthermore, an upper
bound for the error covariance matrix of each sensor was
derived to account for packet dropouts during communi-
cation between the sensors.
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