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Abstract 
 
This study explores the automation of welding inspection processes in shipyards by leveraging deep learning 
technologies to develop a system that aims to improve both efficiency and accuracy. We performed 90 horizontal 
fillet weld tests in a laboratory environment and 96 tests in a field environment on a T-shaped joint specimen, 
obtaining output logs from the welding machine during the welding process. We investigated deep learning 
computational methods and data preprocessing, introducing input data standardization and grid search for 
hyperparameters. As a result, the adjusted coefficient of determination for estimating leg length and undercut 
depth was improved. Next, we examined the frame size and the amount of frame shift for separating the input 
data were investigated, and the optimal values were identified that met practical criteria in a laboratory 
environment.  
In addition, we conducted field tests using a simple welding carriage commonly used in shipyards to validate the 
applicability of our system in real-world environments. The results showed that the adjusted coefficients of 
determination for leg length and undercut depth estimation were 0.69 and 0.45, respectively, demonstrating the 
potential of our approach to improve production efficiency through automated weld quality inspection. 
However, the study also identifies future challenges, including the need for more comprehensive training data, 
the incorporation of environmental data, and improvements in the estimation capabilities for various weld 
appearance features. This research serves as a step towards the automation of welding processes in the 
shipbuilding industry and provides directions for future research.  
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1. Study background 
 
Automatic welding machines such as multi-electrode arc welding have been introduced in major domestic 
shipyards, achieving a certain degree of automation. However, visual inspection of weld appearance remains 
manual, time-consuming, and dependent on trained inspectors. As a result, defects may be missed, leading to 
rework and reduced production efficiency. Therefore, the development of an automated weld inspection system 
to reduce labor costs, ensure weld quality, and improve production efficiency is highly anticipated. 
 
During the welding process at shipbuilding sites, as shown in Figure 1, simple welding carriages, line welders, 
and welding robots are typically operated as automated welding. An automated inspection system would 
maximize their effectiveness. Recently, deep learning has shown promise in estimating welding defects. It 
enhances learning capabilities by connecting neural networks in multiple layers to learn data patterns. While molt 
pool images provided highly accurate estimates [1-8], high camera costs and image stability issues due to welding 
fumes pose challenges. In addition, systems using bead shape images for estimation require images after slag 
removal, making real-time estimation difficult. 
 



The 37th Asian-Pacific Technical Exchnage and Advisory Meeting on Marine Structures, TEAM 2024 Kure, Japan 
25th-28th September 2024 

(a) Welding carriages, (b) line welders and (c) 
welding robots  
Figure 1.  Examples of automatic welding 
machines used in ship construction processes. 

Figure 2.  Inline welding inspection system. 

Figure 3.  Test piece used for the Tee shaped-joint welding. (unit in mm) 

Given these challenges, system suitable for shipbuilding should estimate weld bead appearance using welding 
parameters rather than images. This study aims to develop and test a deep learning model using log data from 
welding power sources and fixed welding conditions as training data, as shown in Figure 2. 
 
The initial focus was on improving the model's estimation accuracy if the model through hyperparameter search 
and frame settings. Field application experiments with a simple welding carriage validated the proposed method. 
The study focuses on "leg length" and "undercut depth", which are critical for joint strength and can be visually 
confirmed, targeting fillet welds joints produced by the single-pass process, commonly used in ship structures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Study method 
 
2.1. Horizontal Fillet Welding Test and Acquisition of Weld Appearance Feature Data 
 
To construct an automated weld defect inspection system, we conducted 90 horizontal fillet welding tests in a 
laboratory and 96 tests in a field environment. We collected output logs from the welding machine (current, 
voltage, wire feed speed) [9] and used a 2D laser displacement sensor (LJ-X8000 [10]) to obtain 3D coordinate 
data of the weld appearance. From these data, we extracted the distribution of leg length and undercut depth 
along the weld line. The horizontal plate in Figure 3 is referred to as “the main plate” and the vertical plate is 
called as it is. 
 
This study focuses on estimating the features on the vertical plate side, where undercut depths greater than 0.5 
mm occur more frequently and require repair. Due to insufficient learning data for the main plate side, we 
limited our estimation to the vertical plate side. 
 
 
 
 
 
 
 
 
2.2. Creation of Frames and Datasets 
 
A frame is defined as "a section of welding machine log data and weld defect feature data segmented at regular 
intervals along the welding direction”. For example, with a weld length of 1,000 mm and frame lengths (FL) of 
10 mm with a frame shift (FS) of 1 mm, 991 frame data points are created. In the lab environment, 90 weld tests 
generated 89,190 frames, with 87,995 valid data points after excluding missing values. 
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Figure 4.  Result of standardized processing in addition to automatic search of neural network parameters. 

 
Welding machine output log data and weld defect feature data from the 90 test specimens were divided into 
training (70%), validation (15%), and test (15%) datasets. The allocation aimed to balance the current, voltage, 
welding speed, and defect feature quantities across the datasets. 
 
2.3. Method for Estimating Leg Length and Undercut Depth Using Welding Machine Output Logs 
and Evaluation of Estimation Accuracy 
 
We used MATLAB's Deep Learning Toolbox [11] to construct a back-propagation neural network (BPNN) to 
estimate for estimating leg length and undercut depth. The network consists of an input layer, hidden layers 
with hyperbolic tangent sigmoid functions, and a linear output layer. We used 12 optimization algorithms [12], 
including Levenberg-Marquardt Backpropagation [13] and Bayesian Regularization Backpropagation [14]. 
 
The input features were 16 statistics from the current, voltage, and wire feed rate of the time series data, for a 
total of 48 statistics and 4 fixed welding conditions to form a 52-dimensional feature vector. We trained the 
network weights with training datasets, adjusted them with validation datasets, and evaluated the accuracy on 
test data using the adjusted coefficient of determination (adjusted R2 [15]). The training, validation, and testing 
process was repeated to optimize the network parameters. When treating the measured values of leg length and 
undercut depth as output values, the average value in each window is used for leg length and the maximum 
value in each window is used for undercut depth. 
 
3. Results 
 
3.1. Optimization of the Deep Learning Model in a Laboratory Environment 
 
In order to improve the estimation accuracy of the deep learning model for practical applications, we 
standardized the feature vectors to a mean of 0 and a standard deviation of 1. This ensured a uniform influence 
of each feature vector on the estimation results. In addition, we performed a grid search to find the optimal 
settings for the hyperparameters: the number of neurons per layer (N), the number of hidden layers (H), and the 
optimization algorithm (A). We varied N from 1 to 10, H from 1 to 10, and selected A from 12 optimization 
algorithms in MATLAB.  
 
Using standardized feature vectors and optimal hyperparameters, we trained the deep learning model. Figures 
4(a) and 4(b) show the comparison between measured and predicted values of the test data for leg length and 
undercut depth, respectively. For leg length, N was set to 4, H was set to 7, and A was set to the Scaled 
Conjugate Gradient method [16]. For undercut depth, N was set to 4, H was set to 4, and A was set to Bayesian 
Regularization. The frame settings were FL = 5 mm and FS = 1 mm. 
 
The adjusted coefficient of determination was approximately 0.68 for leg length and 0.58 for undercut depth. 
Although there was some agreement between the predicted and measured values, further optimization is 
needed. 
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Figure 5.  Adjusted R2 versus frame length in leg 
length prediction and undercut prediction. 

Figure 6.  Adjusted R2 versus frame shift in leg 
length prediction and undercut prediction. 

Figure 7.  Comparison of measured and 
predicted (a) leg length and (b) undercut. 

Figure 8. Comparison of measured and predicted 
(a) leg length and (b) undercut (the horizontal 
axis is the frame number). 

Figure 5 shows the relationship between frame length (FL) and the adjusted coefficient of determination for 
estimating leg length and undercut depth with a fixed FS of 1 mm. For leg length, the adjusted coefficient 
reaches its maximum at FL =100 mm, and for undercut depth, at FL =10 mm. 
 
Figure 6 shows the relationship between frame shift (FS) and the adjusted coefficient of determination with a 
fixed frame length (FL) of 100 mm for weld leg length and 10 mm for undercut depth. The maximum adjusted 
coefficient is obtained at FS =50 mm for leg length and FS =1 mm for undercut depth. However, increasing FS 
reduces the number of training data. At FL =100 mm and FS =1 mm, the number of frames is 81,090, while at FS 
=50 mm, it is reduced to 1710. The adjusted coefficient of determination is about 0.91 at FS =1 mm, indicating 
high generalizability. Thus, the optimal frame shift for estimating the weld leg length is 1 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The optimal values found are FL =100 mm and FS =1 mm for leg length, and FL =10 mm and FS =1 mm for 
undercut depth. Figures 7(a) and 7(b) show the comparison between measured and predicted values at these 
settings. The models showed relatively good agreement. 
 
Figure 8(a) shows the comparison for weld leg length and Figure 8(b) for undercut depth for some frame 
numbers in the test data. The leg length model showed good agreement with the measured values, while the 
undercut depth model had significant discrepancies in some areas. 
 
Upon completion of the deep learning model optimisation in the laboratory environment, we proceed to conduct 
field application experiments. 
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Figure 9.  Welding carriage. Figure 10.  Weld bead appearances for each condition. 

Figure 11.  Comparison of measured and 
predicted weld (a) leg length and (b) undercut 
(the horizontal axis is the frame number). 

Figure 12.  Comparison of measured and predicted 
undercuts under FL = 10, FS = 5 conditions (the 
horizontal axis is the frame number). 

3.2. Application Study in Field Environment 
 
To advance the application study in a field environment, we conducted 96 horizontal fillet welding tests using a 
simple welding carriage, collecting welding machine output logs (current, voltage, wire feed speed, etc.). The 
equipment included a YD-500VR1 [17] (500A) welding power source, a Wel-Handy Multi II [18] welding 
carriage, and a metal-cored FCAW MX-200 [19] (wire diameter 1.4 mm) welding wire. Figure 9 shows the 
simple welding carriage, and the test specimen is the same as in Figure 3. 
 
In Chapter 3, we intentionally induced welding defects by setting abnormal welding conditions. However, in 
this chapter, welding conditions were fixed to normal values to achieve stable welding, based on the assumption 
of practicality in the field. Defects like undercut or uneven welds were induced by external factors such as Zn-
rich primer coating, derailing of the welding carriage, or reduced shielding gas flow. We conducted 96 tests: 24 
with Zn-rich primer, 24 with the welding carriage derailed, 24 with reduced gas flow, and 24 under normal 
conditions. Figure 10 shows examples of weld beads under these conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We applied the hyperparameter search method from Chapter 3, setting the number of neurons per layer (N) 
from 1 to 10, the number of hidden layers (H) from 1 to 10, and selecting the network weight update algorithm 
(A) from 12 optimization algorithms in MATLAB. The input data was standardized, and based on findings from 
Section 3.1, the frame length (FL) and frame shift (FS) were fixed at FL = 100 mm and FS = 1 mm for leg length 
estimation, and FL = 10 mm and FS = 1 mm for undercut depth estimation. 
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Figure 13.  Comparison between prediction and experiment of (a) leg length (b) undercut on 
vertical plate side. 

Figure 11(a) compares the measured and predicted leg length values, and Figure 11(b) compares measured and 
predicted undercut depth values. The optimized model showed partial agreement with leg length variations, but 
for undercut depth, the model failed to follow peaks around the 5400th, 6300th, and 7200th frame numbers. 
 
We further examined undercut depth conditions by setting FL = 10 mm and FS = 5 mm. Figure 12 compares 
measured and predicted undercut depth values under these conditions, showing partial agreement with peaks. 
 
Figure 13(a) compares measured and predicted leg length values, and Figure 13(b) compares measured and 
predicted undercut depth values for all test data. Optimization for leg length used N = 100, H = 1, and A with 
the BFGS Quasi-Newton backpropagation method [20]. For undercut depth, optimization used N = 1, H = 6, 
and A with the Resilient backpropagation method [21]. The adjusted coefficient of determination was 0.69 for 
leg length and 0.45 for undercut depth, indicating lower accuracy compared to the laboratory environment. 
 

 
 
 
 
These results indicate that while the laboratory-optimized model showed some effectiveness, further refinement 
is needed for field application. The next step involves additional experiments and adjustments to improve the 
model's robustness and accuracy in real-world conditions. 
 
4. Discussions 
 
Improving the estimation accuracy for leg length can be achieved by accumulating more training data, enabling 
accurate estimations using only welding conditions. Estimating undercut depth is more challenging due to the 
difficulty in explaining localized features, resulting in lower sensitivity. The primary factors contributing to the 
lower adjusted coefficient of determination are as follows: 
 
First, welding robots execute precise welds with accurate settings, while welding carriages require manual 
adjustments, leading to variability in aiming positions. 
 
Second, uncertainty in external factors such as Zn-rich primer-coated steel, derailing of the welding carriage, 
and reduction in shielding gas flow affect welding defects. Estimation accuracy for undercut depth exceeding 
0.5 mm was low, indicating that assumed external factors might have been insufficient. 
 
Third, two-dimensional laser displacement sensors may struggle to capture reflective surfaces accurately, 
leading to missing values in measurement data. 
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Fourth, the algorithm calculating leg length and undercut depth from laser measurement data sometimes 
misidentifies the weld end, especially when undercut or spatter occurs. Improved identification and robust 
estimation methods for point cloud processing could enhance data quality. 
 
Fifth, a small proportion of data exceeds the undercut depth threshold of 0.5 mm. The lack of defect data can 
lead to the model favoring normal data, reducing accuracy in predicting defects. Training the model with 
sufficient defect data is crucial for a more generalized deep learning model. 
 
Achieving high estimation accuracy under shipyard welding conditions requires addressing the above 
challenges. Incorporating diverse environmental factors into the deep learning model, such as the roughness and 
shape of steel plate edges, the presence of oxidation films or slag, and environmental conditions like 
temperature, humidity, and wind speed, will be necessary for future applications. 
 
5. Conclusions 
 
Aiming to construct an automated welding inspection system applicable to shipyard environments, we 
addressed the following two major challenges. First, we optimized the deep learning model in a laboratory 
environment and determined the optimal values of FL = 100 mm and FS =1 mm for estimating the leg length on 
the vertical plate, and FL = 10 mm and FS =1 mm for estimating the undercut depth on the vertical plate. As a 
result, the adjusted coefficient of determination improved to 0.91 for leg length estimation and 0.72 for 
undercut depth estimation, confirming the potential applicability in the field. 
 
Second, through experiments using a simple welding carriage widely used in shipyards, we estimated the leg 
length and undercut depth of the vertical plate during horizontal fillet welding. The results showed an adjusted 
coefficient of determination of 0.69 for leg length estimation and 0.45 for undercut depth estimation. 
 
Future challenges include enriching the training data, incorporating environmental data, estimating other weld 
appearance features such as overlap and pits, and investigating other types of joints like butt joints and multi-
layer welds. 
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