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Abstract—Demonstrating small error rates by integrating
quantum error correction (QEC) into an architecture of quan-
tum computing is the next milestone towards scalable fault-
tolerant quantum computing (FTQC). Encoding logical qubits
with superconducting qubits and surface codes is considered
a promising candidate for FTQC architectures. In this paper,
we propose an FTQC architecture, which we call Q3DE, that
enhances the tolerance to multi-bit burst errors (MBBEs) by
cosmic rays with moderate changes and overhead. There are
three core components in Q3DE: in-situ anomaly DEtection,
dynamic code DEformation, and optimized error DEcoding.
In this architecture, MBBEs are detected only from syndrome
values for error correction. The effect of MBBEs is immediately
mitigated by dynamically increasing the encoding level of logical
qubits and re-estimating probable recovery operation with the
rollback of the decoding process. We investigate the performance
and overhead of the Q3DE architecture with quantum-error
simulators and demonstrate that Q3DE effectively reduces the
period of MBBEs by 1000 times and halves the size of their
region. Therefore, Q3DE significantly relaxes the requirement of
qubit density and qubit chip size to realize FTQC. Our scheme
is versatile for mitigating MBBEs, i.e., temporal variations of
error properties, on a wide range of physical devices and FTQC
architectures since it relies only on the standard features of
topological stabilizer codes.

Index Terms—quantum computing, quantum error correction,
fault-tolerant quantum computing;

I. INTRODUCTION

Quantum error correction (QEC) [45] is a vital technology
to achieve fault-tolerant quantum computing (FTQC) as quan-
tum bits (qubits) suffer from larger error rates than classical
ones. The dominant errors of qubits stem from their lifetime
and the infidelity of their controls, which appear as spatially
and temporally independent errors. With QEC techniques,
we can reduce the effective error rate of a logical qubit to
an arbitrarily small value by increasing the code distance.
The number of required physical qubits for representing each
logical qubit increases as physical error rates become large and
the required logical error rate becomes small. While the qubit
interactions are typically restricted in nearest neighboring
ones, surface codes [9], [34] enable efficient encoding of
logical qubits with the physical qubits fabricated on a two-

dimensional (2D) grid. Therefore, huge efforts have been paid
to design a scalable FTQC based on surface codes [17], [23]–
[25], [30], [31], [37], [62].

One of the expected difficulties in the development of
scalable FTQCs is temporally and locally dependent errors,
i.e., Multi-Bit Burst Errors (MBBEs). In particular, an ur-
gent example of MBBEs is those induced by cosmic-ray
strikes [32], [40], [42], [43], [46], [57], [59], [61] on super-
conducting qubits [3], [15], [44]. The cosmic-ray-induced bit
upset of the classical memory cells, e.g., static random-access
memory (SRAM) cells, is widely known as soft error [2],
[51]. Since superconducting qubits are more sensitive to the
energy deposit by cosmic rays, cosmic-ray strikes result in
drastic changes of error properties in a vast region. Another
sticky issue is its temporal variation that does not appear in
state-of-the-art classical SRAM cells. Once a cosmic ray hits
the substrate of superconducting qubits, the qubits temporally
remain in a state with a higher error rate. McEwen et al. [43]
experimentally reported that the lifetime of a few qubits
around the incident position decreases by one or two orders
of magnitude, the effect lasts a few tens of milliseconds, and
the frequency of cosmic-ray strikes is once per ten seconds in
a 26-qubit region. As described later in Sec.III, an effective
logical error rate increases by a factor of about 100 on average
compared with the value estimated without considering burst
errors. As explained in Sec. IX, MBBEs are also expected in
a variety of qubit devices and situations. Therefore, there is a
strong demand for an MBBE tolerant FTQC design.

Since current QEC techniques stand on an assumption with
time-independent error probabilities, they cannot handle such
MBBEs efficiently. Straightforward ways to solve this issue are
1) to increase the default code distance to make logical error
rates sufficiently small in the worst case, 2) to suppress cosmic
rays’ effect to a negligible level at a device-level technology, or
3) to mitigate MBBEs by statistical estimation after the execu-
tion. However, the first method is extremely inefficient because
it requires denser qubit integration or a larger chip size, which
leads to more severe MBBE effects. Since the latency of
several instructions is proportional to the code distance, such
a naive solution significantly increases the required encoding
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levels and degrades the instruction throughput on encoded
qubits. The second is still in investigation and uncertain
in its feasibility. Since a large-scale qubit design requires
mediating many trade-offs under constraints, an architecture-
level technique that solves the transient errors while avoiding
complicating the quantum processor design is necessary. The
last method, known as quantum error mitigation [19], [54],
[55], can mitigate errors if they are a few times during a
single-shot run, but the frequency of cosmic-ray strikes and the
state-of-the-art resource estimation [4], [29] imply that these
methods cannot treat the MBBEs.

To tackle this critical problem, we propose an MBBE
tolerant FTQC architecture, called Q3DE, including three key
algorithms, in-situ anomaly DEtection, dynamic code DEfor-
mation, and optimized error DEcoding. The idea behind Q3DE
is to detect MBBEs in terms of position and duration, and to
apply space- and time-domain adaptive techniques to reduce
the error rate. Our detection scheme does not require any
additional action on qubits, i.e., they are detected only from
the statistical changes of syndrome values. The dynamic code
deformation attempts to temporally expand the code distance
based on the duration of MBBE effects. The FTQC ISA is
extended to support such function, i.e., a special instruction
to modify the stabilizer map is dynamically inserted into
an instruction queue. Our error decoding scheme makes it
possible to roll the execution of an error-estimation task just
back to before MBBE occurrence and re-execute to re-estimate
one of the most probable errors by taking the effects of
detected MBBEs into account. Since the two adaptive schemes
are orthogonal, we can combine them to handle the spatial and
temporal features of MBBEs. As far as we know, this is the
first work that proposes an FTQC architecture to mitigate the
effect of MBBEs by cosmic rays with moderate overhead. Our
contributions are as follows.

• We theoretically formulate the problems of existing
FTQC architectures on MBBEs by cosmic rays. Statis-
tical modeling of MBBEs is also presented. Then an
MBBE tolerant FTQC architecture, Q3DE, is introduced
with the detail of the algorithms and light-weight mi-
croarchitectural extensions of FTQC control units.

• The performance and overheads of Q3DE are evaluated
with quantum-error simulators and logic synthesis with
realistic parameters of cosmic rays. The results show
that the dynamic code deformation suppresses the period
exposed to an MBBE by about 103 times, and the re-
executed error decoding halves the size of the burst-error
region.

• Our evaluation also shows that the combination of the
adaptive deformation and decoding may achieve up to ten
times reduction of required qubit count for a logical error
rate below 10−10 and double the instruction throughput,
compared with a naive solution that increases the default
code distances.

• As for the overheads, we have designed the introduced
decoding unit by targeting an FPGA device. The results

TABLE I
NOTATIONS.

Notation Description
p Physical error rate per code cycle
d Code distance of logical qubits
pL Logical error rate per code cycle
pano Physical error rate of anomalous qubits
dano Size of an anomalous region
pL,ano Logical error rate with an anomalous region
cwin Cycle count of anomaly detection window
clat Cycle count of the latency of anomaly detection
dexp Code distance of expanded logical qubits
pL,opt Logical error rate with optimized error decoding

show that the hardware overhead caused by Q3DE is
around 40% in terms of LUT utilization and comparable
hardware throughput, compared with a state-of-the-art
baseline without MBBE consideration.

Although this paper focuses on the MBBEs by cosmic rays
in superconducting qubits, the idea of Q3DE can be applied
to a wide range of FTQC architectures to make the system
tolerant to MBBEs, i.e., temporal variations of error properties.
It is believed that the cosmic rays will incur similar errors
in artificial qubits, such as color centers, quantum dots, and
Majorana fermions [43]. Even for natural qubits (e.g., ions,
neutral atoms, and photons), which would not suffer from
cosmic rays, there are unavoidable temporal variations of error
rates due to calibration drifts, qubit leakage, and so on. Thus,
MBBEs are essentially unavoidable in quantum computing,
and quick detection and adaptive reaction to the temporal
high-error-rate regions can be used as a versatile solution for
ensuring the future scalability of FTQC.

II. BACKGROUND

Our objective is to show that an extension of the FTQC
architecture enables tolerance to MBBEs. Our design is shown
in Fig. 1. In this architecture, the components surrounded by
the red dotted square are those added by our proposal. The
whole architecture without this part constitutes a standard
architecture of FTQC. We overview the elements of standard
FTQC architectures in this section. For a more detailed intro-
duction, see [20], [21]. The notations used in this paper are
summarized in Table I. We denote an addition modulo 2 as ⊕.
We denote a random variable with a hat (̂·) annotation.

A. Quantum error correction

We assume that physical qubits are fabricated on the qubit
plane and allocated on a 2D grid and encoded with quantum
error-correcting codes called surface codes [9], [14], [22],
[34], [49]. Physical qubits in a square grid on the qubit
plane are used for encoding a logical qubit, as shown in the
upper right of Fig. 2. In the figure, black circles indicate data
qubits storing the information of a logical qubit. Ancillary
qubits allocated on red (blue) squares are used to detect
the parity of the number of Pauli-X (-Z) errors acting on
the data qubits at the corners, which is called a stabilizer
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Fig. 1. Design of our Q3DE architecture. Components in the blue region are classical computing units and those in the pink region are quantum computing
units. The yellow region is their interface. Our proposal is to add components and interactions inside the red dotted square. We also modified the procedures
of the units colored in orange.

measurement.1 We can detect any Pauli error acting on less
than d qubits in the allocated region, where d is a code distance
determined by the size of a region. During the computation,
we repetitively perform the stabilizer measurements to detect
errors. The period of the repetition is called a code cycle and
must be sufficiently shorter than the lifetime of qubits. The
code cycle is typically assumed to be about 1 µs in the case
of superconducting qubits [29], [30], [48].

In each code cycle, from each ancillary qubit, the
syndrome extraction unit extracts the parity of the
number of errors on the monitoring data qubits, which is
called a syndrome value. Then, we need to estimate a probable
recovery Pauli operation2 from them. This process is called
error decoding and is performed as shown in the bottom
half of Fig. 2. In each code cycle, we shape the obtained
syndrome values as a layer, take an element-wise XOR for two
consecutive layers, and stack it in a first-in-first-out (FIFO)
syndrome queue. The data in the syndrome queue
can be viewed as a three-dimensional (3D) lattice, where
each node corresponds to the parity of consecutive syndrome
values and is called active when the parity is odd. Each edge
corresponds to temporally and spatially local Pauli errors, and
the occurrence of these errors is rephrased as the bit-flip of the
nodes connected to the corresponding edge. When the errors
are assumed to be nearly local and uncorrelated, the estimation
of a probable recovery Pauli operation is formulated as a
minimum-weight perfect matching (MWPM) problem, i.e., a
task to match every active node to another active node or a
boundary using a small number of edges [14], [22], [58]. We

1Pauli-Y error is considered the combination of Pauli-X and Z.
2While errors are not necessarily Pauli, quantum states can be corrected by

Pauli operations when a code distance is sufficiently large [8], [53].

can suppress the probability of choosing a wrong recovery
operation exponentially to the code distance as long as the
physical error rate during each code cycle is smaller than a
threshold value [11]–[13], [22], [30], [56]. This estimation is
executed by the decoding unit. Since the active node may
be matched to another active node observed in the future,
the syndrome queue is expected to store no less than d
layers, and the latency of the decoding unit is at least
d code cycles. Once all the active nodes in the oldest layer
are matched, we can remove the layer from the syndrome
queue. The estimated recovery Pauli operation is stored in
the Pauli frame [22], [50]. The information of the Pauli
frame is used for correcting the binary outcome of logical
measurements, as explained in the next section.

B. Operations on encoded qubits
A universal set of quantum operations can be fault-tolerantly

performed on logical qubits encoded with surface codes simply
by changing the patterns of stabilizer measurements except
for magic-state injection [20], [39]. While there are a massive
number of variants to execute logical operations, we focus
on the succinct quantum instruction set shown in Table II,
where op_expand is an original instruction for mitigating
the MBBEs. Note that we consider this set to concisely
demonstrate the performance of our proposal. We expect our
proposal to be applied to any instruction set of FTQC as long
as it is built based on topological stabilizer codes.

The instructions are pushed from the host CPU, cached
in a FIFO instruction queue, and committed as soon
as they are ready. All instructions except for read be-
come ready if they commute with all the preceding and
not-executed instructions and if there is an unused space
for executing instructions on the qubit plane. The latter is



TABLE II
A SUCCINCT INSTRUCTION SET FOR FTQC.

Name Effect
init_zero Initialize a logical qubit in |0⟩ states
init_A Initialize a logical qubit in noisy |A⟩ states
init_Y Initialize a logical qubit in noisy |Y ⟩ states
op_H Perform logical Hadamard gate
meas_Z Measure a logical qubit in the Pauli-Z basis
meas_ZZ Measure two logical qubits in the Pauli-ZZ basis

read
Send an error-corrected measurement value
from the classical register to the host CPU

op_expand Expand a code distance for mitigating MBBEs

arbitrated by the stabilizer assignment unit using
the stabilizer map. Note that we can swap the order of
error correction and these logical operations by updating the
Pauli frame [1], [50]. When logical measurement instruc-
tions (meas_*) are executed, the raw output calculated by the
measurement result extraction unit is sent to
the classical register, which is marked as “not-error-
corrected”. When the Pauli frame catches up with the
cycle of logical measurements, the entry of the classical
register is corrected and marked as “error-corrected”. A
read instruction is a special instruction that requests to send
the error-corrected outcome of logical measurements to the
host CPU and does not request any action on the qubit
plane.

Since almost all the logical instruction requires the unused
blocks around the logical qubits or unused paths between
target logical qubits, there is a trade-off relation between
the density of used logical qubits and the throughput of
instructions. Recent qubit-allocation strategies assume there
are vacant blocks between each logical qubits [6], [10]. In
this paper, we use the same qubit allocations to Ref. [6], i.e.,
we assume that blocks in even-indexed rows and columns on
the qubit plane are used for logical operations.

C. Impact of cosmic rays: SRAM vs. Superconducting Qubit

Recent studies have shown that cosmic rays temporally
reduce the lifetime of superconducting qubits drastically, and
the effect has become one of the main obstacles in the
implementation of QEC [40], [43], [57], [59]. With small
probabilities, cosmic rays hit the substrate of the qubit
plane and scatter phonons. Since the energy of phonons is
larger than a superconducting gap, the phonons generate a
lot of quasi-particles in superconductors that can absorb the
energy of qubits. This phenomenon shortens the lifetime of
qubits around the incident position, as shown in the upper left
of Fig. 2. Throughout this paper, we refer to qubits temporally
affected by cosmic rays as anomalous qubits, the region of the
incident as the anomalous region, and the size of an anomalous
region as anomaly size.

The recent development of superconducting qubits has
enabled experimental observation of the burst errors by cos-
mic rays. McEwen et al. [43] experimentally reported that
the lifetime of anomalous qubits is reduced by one or two
magnitudes of order, the anomaly size is about four in the

current integration density, and the frequency of the burst
errors is once in ten seconds on average in a 26-qubit region.
The lifetime of anomalous qubits gradually recovers to the
original lifetime, of which the decay constant is about 25 ms.
This observation implies that cosmic rays incur widespread
high-error-rate regions, which appears as an MBBE.

A similar phenomenon is known as a soft error in the
existing classical memories. In the case of SRAM cells, the
cosmic rays generate charged particles in the substrate. If the
number of charged particles in the sensitive volume exceeds a
critical charge, the classical bit will be flipped. The typical
critical charge and sensitive volume depth of SRAM cells
are evaluated as about 1 fC ∼ 22.5 keV and 0.1 µm order,
respectively [2], [51]. As the density of SRAM cells increases
with the scaling-down of technology, the proportion of mul-
tiple cell upsets (i.e., simultaneous bit-flips in a single event)
becomes larger [33]. Compared to the classical counterpart,
the superconducting gap of aluminum is about 0.36 meV [43],
and the diffusion radius of quasi-particles is about 6 mm [42],
both of which are several orders of magnitude worse than the
classical ones. Thus, while the integration density of qubits
is sparser than the classical ones, effects by cosmic rays
would lose the reliability of FTQC, as in the case of high-
performance computers.

D. Related work

Massive efforts have been made to quantify the MBBEs by
cosmic rays in superconducting qubits [40], [43], [57], [59].
Throughout this paper, we refer to the parameters observed
with Google’s Sycamore chip [43] as a realistic assumption.
Various designs of superconducting qubits tolerant to cos-
mic rays have been discussed and proposed on the basis
of this observation. Martinis [42] investigated cosmic-ray-
tolerant qubit designs with thick films of normal metal or
low-gap superconductor. Pan et al. [46] and Iaia et al. [32]
experimentally reduced the effect of quasi-particles by using
a metallic cover. Strikis et al. [52] investigates the effect
and mitigation of fabrication defects and mentioned that the
QEC techniques for fabrication defects might be used for
mitigating MBBEs. In the field of quantum networks, Xu et
al. [61] proposed a scheme to mitigate MBBE effects by using
distributed quantum error correction on multiple distinct chips
and quantum communications. Compared to these techniques,
the advantage of our proposal is that it can detect MBBEs
non-destructively, can be implemented with modest changes
to the classical post-processing, and can be completed in a
single controller; i.e., it does not require any modification of
the qubit design or quantum networks. It should be noted that
our technique does not conflict with any of the above works,
and the adaptive QEC mechanism can be developed along with
the physical qubit designs and combined with them.

III. MOTIVATION AND OVERVIEW OF Q3DE

A. The effect of multi-bit burst errors on FTQC

We explain that a simple performance evaluation with
realistic parameters indicates that the MBBEs significantly
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Fig. 2. Schematic diagram of d = 4 surface codes and the processing flow of syndrome values. Surface codes are allocated on the qubit plane. Z/X-syndrome
values are extracted and stored in each buffer as 3D lattices in each surface code. Once a cosmic ray strikes the qubit plane, physical error rates of qubits
around the hit position become high.

increase effective logical error rates. We chose the parameters3

observed by McEwen et al. [43]: the frequency of cosmic
rays is fano = 1 Hz, and the effects of MBBEs last for
τano = 25 ms. Assuming that the multiple cosmic rays do
not occur simultaneously on a chip, the effective logical error
rate per cycle is

(1− fanoτano)pL + fanoτanopL,ano (1)

on average, where pL,ano and pL are the logical error rate
per cycle with and without an anomalous region. In this
equation, the second term is the contribution of MBBEs, and
the effective increase ratio by cosmic rays is represented by
fanoτanopL,ano/pL. We numerically evaluated pL and pL,ano
for several code distances with dano = 4 and pano = 0.5. For
the detailed simulation settings and the definition of parame-
ters, see Sec. VII-A. The numerical results are shown in Fig. 3.
We can see that the occurrence of an MBBE significantly
increases the logical error rates. The increase of error rates
becomes significant as the physical error rate becomes lower.

Another important observation is that a single MBBE event
does not change the threshold value of surface codes even
though it incurs significant performance degradation. The
physical error rate at which plots of sufficiently large code
distances cross is called a threshold value, which is a popular
measure to evaluate the error-correction performance [30],
[56]. However, we observed that the threshold value is almost
completely independent of the occurrence of an MBBE. This
result implies that we need to investigate the MBBE effect

3Since several hundred physical qubits are used for a logical qubit in long-
term applications, we multiplied the frequency fano by ten.
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Fig. 3. Logical error rates with and without an MBBE as a function of
physical error rates. Dotted and solid lines indicate those with and without an
MBBE, respectively.

on surface codes and propose reasonable methods to evaluate
the performance degradation. This point is analyzed with the
first-order approximation in Sec. VI-A.

A simple solution to MBBEs is to increase the default code
distance to a sufficiently larger value than the anomaly size.
However, this solution requires more physical qubits as an
overhead, which leads to a decrease in the number of available
logical qubits. Furthermore, to increase the number of physical
qubits, we need denser integration of qubits and a larger
qubit plane, which results in more frequent MBBE events
and a larger anomaly size. According to the recent design of
error-decoding units [11], [12], [30], [56], the available code
distance is also limited by the processing power of classical
peripherals. It is thus too optimistic to assume code distances
can be increased to an arbitrarily large value. Finally, the
increase of code distances means less throughput of logical
operations, since the latency of most of the instructions is
proportional to the code distances. Therefore, the MBBEs by



cosmic rays are one of the main obstacles to achieving a
scalable FTQC in the near future, and they should thus be
mitigated to ensure the scalability of FTQC.

B. Overview of Our Proposal: Q3DE

In this paper, we propose a solution to the problem of
MBBEs by integrating several components and modifications
into the standard design of FTQC. There are three key compo-
nents to our proposal: in-situ anomaly DEtection of MBBEs,
dynamic code DEformation, and optimized error DEcoding,
which we call Q3DE. Q3DE can be integrated by adding the
components surrounded by the red dotted square in Fig. 1. Its
operational flow is shown in Fig. 4.

The intuitive mechanism of Q3DE is as follows. I) A cosmic
ray hits the substrate, and an MBBE occurs, which leads to
high-error-rate physical qubits in an anomalous region. II)
More active syndromes are generated from the region, and we
can estimate the timing and position of MBBEs by checking
their frequencies. We show in Sec. IV that this detection can be
implemented with a modest overhead. After the detection, we
perform two reactions to mitigate the MBBE effect. III-A) We
temporally increase the code distance of the affected logical
qubit, which can be achieved with a small latency by using
code deformation techniques [7], as explained in Sec. V. III-B)
The other action is decoder re-execution, which is explained in
Sec. VI. The degradation of logical error rates can be relaxed
by re-estimating the most probable Pauli errors with the timing
and position of MBBEs. IV) After the anomalous region
vanishes, the code distance is reduced to the default value
by using the code deformation techniques.

IV. DETECTION OF MBBE EVENTS

We first show that MBBEs, i.e., a temporal increase of
physical error rates, can be detected by using the frequency of
active syndrome nodes in the syndrome buffer. We provide
statistical modeling of MBBEs for setting the confidence
intervals of anomaly detection. Then, we present the procedure
of anomaly detection.

We investigated two syndrome-counting strategies. One is
simply counting the active syndromes in the buffer. The
other is counting only for even-numbered cycles. While the
first strategy seems natural, the confidence interval cannot be
analytically derived due to statistical correlations. In contrast,
while the confidence interval of the latter strategy can be
calculated with the help of a central limit theorem (CLT),
this strategy is less efficient since it requires a double-sized
window. Therefore, we derive the confidence interval of the
latter strategy in Sec.IV-A, and implement the procedure of the
anomaly detection unit with the first strategy using
the derived confidence intervals. We demonstrate that this
strategy works with numerical simulation in Sec. VII.

A. Statistical modeling of syndrome sequence

We prove that the CLT is applicable to the time series
of even-cycle syndrome values with small modification if
physical errors on the qubit plane are independent, modeled

as Pauli, acting on a single-qubit, and identical for every
code cycle.4 Let ŝi,t be a binomial random variable obtained
as the outcome of the i-th stabilizer measurement at the t-
th code cycle, and let êi,t be a binomial random variable
that becomes one if a physical Pauli error occurs at the i-th
position and t-th cycle. Since the value of ŝi,t is determined as
the parity of the previous occurrence of Pauli errors, we can
define a set of pairs of the time and position Ei,t such that
ŝi,t =:

⊕
(j,u)∈Ei,t

êj,u. Whether the syndrome node is active
or not is determined by the parity of consecutive measurement
outcomes, i.e., v̂i,t = ŝi,t ⊕ ŝi,t−1 =

⊕
(j,u)∈Fi,t

êj,u, where
Fi,t := (Ei,t ∪Ei,t−1) \ (Ei,t ∩Ei,t−1). From the assumption
of identical distributions over different cycles, the expecta-
tions and standard deviations of v̂i,t are also identical5 since
Fi,t ∩ Fi,u = ∅ for |t − u| ≥ 2. We denote the expectations
and standard deviations of v̂i,t as µ and σ, respectively, which
can be determined in the calibration process in advance.

We denote the number of active syndromes in the even-
numbered cycles of the last 2cwin cycles as V̂i,t,cwin :=∑cwin

j=0 v̂i,t−2j , which is defined for t > 2cwin. Since the
random variable V̂i,t,cwin is identical, we can apply the CLT
to V̂i,t,cwin and obtain

V̂i,t,cwin
∼ N

(
cwinµ, cwinσ

2
)
. (2)

Thus, when the window size cwin is sufficiently large, the
distribution of the count of active syndromes in the window
can be approximated by a normal distribution. Suppose that
the normal distribution approximation introduced in Eq. (2) is
valid. When an MBBE does not occur, we can expect that,
with a confidence level 1− α, the count of active syndromes
V̂i,t,cwin

satisfies V̂i,t,cwin
< V̂th, where

V̂th := cwinµ+
√
2cwinσ2 erf−1(1− α), (3)

and erf−1 is the inverse of the Gauss error function. Con-
versely, an observation of V̂i,t,cwin not satisfying Eq. (3) im-
plies that physical qubits around the position i have dropped
into an anomalous state. Supposing an anomaly size dano,
about d2ano active syndrome counters would be detected as
anomalous states. We detect the occurrence of MBBEs by
comparing the number of counters above the confidence in-
terval and an integer nth. Since it is enough for FTQC to
suppress the rates of false-positive and true-negative anomaly
detection to a value smaller than a logical error rate pL, we
can roughly set a criterion as ln pL

lnα < nth < d2ano−
ln pL

lnα , while
we expect the actual nth should be determined according to
experiments. Note that when there is no nth that satisfies the
inequality with reasonable α, this implies that physical qubits
are already tolerant to MBBEs, and logical error rates are not
significantly degraded.

4Even if these conditions are not met, we may be able to satisfy this
assumption with a modest cost by introducing twirling techniques [27].

5This does not always hold exactly, for example, at the first and last cycle
of surface codes. Thus, this assumption holds except for such unusual cycles.
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B. Procedure of anomaly detection unit
In accordance with the theoretical modeling in the

last section, we describe the procedure of the anomaly
detection unit. Let sampled m-bit nodes obtained in the
t-th code cycle be v⃗t := (v1,t, . . . , vm,t), where the i-th ele-
ment of v⃗t becomes one when the i-th syndrome node becomes
active at the t-th code cycle. The anomaly detection
unit keeps the number of active nodes in the latest cwin-
length window for each position in the active node
counter. In other words, the active node counter
contains a list of integers V⃗t where the i-th element is
V⃗t[i] :=

∑cwin

u=0 v⃗t−u[i]. To update V⃗t+1 from V⃗t, the anomaly
detection unit fetches v⃗t+1 and v⃗t−cwin

and updates as
V⃗t+1 ← V⃗t + v⃗t+1 − v⃗t−cwin

for each element. Thus, we
need a syndrome queue larger than cwin. After updating the
active syndrome counter, the anomaly detection unit
checks the number of positions where the count is larger than
a threshold Vth. Suppose that the number of counts above the
threshold is nano. Then, the anomaly detection unit
determines that there is an MBBE if nano becomes larger than
a threshold count nth. Once we detect MBBEs, their timing
can be estimated from the size of the detection window cwin,
which is numerically evaluated in Sec. VII. We also estimate
the position of the anomalous region as the median of detected
anomalous-qubit positions. Then, we temporally remove the
detected positions around the median from the count of nano

for the lifetime of MBBEs and continue the anomaly detection.
If two MBBE events occur at almost the same cycle, the
second one is detected immediately after the first detection.

V. TEMPORAL CODE EXPANSION

The code distance of logical qubits affected by MBBEs
is dynamically increased immediately after the detection.
We introduce low-overhead implementation of the dynamical
expansion of code distances.

A. Code expansion by code deformation
Code distances can be changed during the computation with

a technique known as code deformation [7]. Figure 5 shows
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Fig. 5. Three steps for op_expand instruction. These figures show a
procedure to expand the code distance of a logical qubit from d to dexp
and shrink it from dexp to d.

its procedure. The code deformation is performed with unused
data qubits indicated by white circles. First, we initialize
unused data qubits to |0⟩ or |+⟩ (step 1). Then, we update
the stabilizer map to perform a new set of stabilizer
measurements as an expanded surface code (step 2) and keep
the expanded code distance until MBBEs finish. To shrink a
code distance, we perform Pauli-X,Z measurements on qubits
used for the expansion (step 3) and update the stabilizer
map again to perform stabilizer measurements of the original
pattern.

Note that there are several other methods to fault-tolerantly
mitigate MBBEs according to the information of them, and the
best choice relies on the policy of qubit allocations. We can
choose several other strategies, e.g., moving affected logical
qubits to another space or expanding code distance by default
and prohibiting the shrink under the existence of anomalous
regions. The comparison between these methods is left as
future work.

B. Procedure of temporal code expansion

When the anomaly detection unit judges that a
logical qubit is affected by MBBEs, it inserts an instruction
op_expand to the expansion queue. This instruction



makes the code distance of an affected logical qubit temporally
increase from d to dexp as soon as possible and keeps it
for a typical lifetime of MBBEs. As analyzed in the next
section, since the effect of MBBEs can be treated as the
effective reduction of code distance by 2dano, it is enough
to set the expanded code distance dexp as a value larger than
d+ 2dano. Since 2dano ≪ d suffices in practice, doubling the
code distance using 2 × 2 surface-code blocks for a logical
qubit is enough for decreasing the logical error rates to an
original value. When op_expand is executed on a region
where it is already expanded, we increase the keeping time at
step 2.

VI. RE-EXECUTION OF ERROR DECODING

The other reaction to the anomaly detection is decoder re-
execution. We provide a concrete 2D-syndrome-layer example
for showing intuitive reasons why the re-execution is effective
in Fig. 6 (a). When qubits in the purple area are anomalous but
the decoder does not know it, the upper matching with five
edges is estimated. If the decoder knows that qubits in the
purple area suffer from large physical error rates, the lower
solution is more probable, although it uses more edges than
the upper one. This means the lower solution can retrieve
the original logical states with a higher probability. This
example clearly shows that the knowledge of MBBEs enables
higher-performance decoding algorithms, which motivates us
to switch the decoding algorithms to suppress logical error
rates adaptively. Moreover, this technique can be applied to
the estimation in the past cycles by rolling back the decoding
process. This is a key advantage since the code-expansion
technique can protect logical qubits after the latency of the
MBBE detection.

In this section, we first provide an approximated analysis
to determine the advantage of decoder re-execution. Next,
we show that an MBBE-aware matching algorithm can be
implemented with modest changes to standard error-decoding
strategies. Finally, we show how to roll back and switch the
decoding process with a modest overhead.

A. First-order analysis of decoder re-execution

We evaluate the performance of surface codes with an
anomalous region and the improvement by decoder re-
execution with a first-order approximation. In this approxima-
tion, we assume that only the paths with the lowest order of
physical error rates of normal qubits p contribute to the logical
error rates. In other words, we count the minimum number of
normal edges that must be flipped to incur a wrong decision of
the decoding unit, as shown in Fig. 6 (b). This approximation
is justified when p is small and d is large, which provides
us with the performance of QEC codes that is difficult to
evaluate with numerical analysis. It also provides insight for
understanding the effect of MBBEs for large code distances
and small physical error rates.

When there is no anomalous region, Pauli errors acting on
more than half of the code distance ⌊d/2⌋+1 are required to
incur a logical error (Case 1). Thus, the logical error rate pL

is known to scale as a function of code distance pL(d) ∝
(p/pth)

⌊d/2⌋+1 [22], where pth is a constant. Meanwhile,
when there exists an anomalous region with size dano, Pauli
errors acting only on (⌊d/2⌋+1−dano) normal qubits are re-
quired (Case 2). This implies that the logical error rate with an
anomalous region scales as pL,ano(d) ∝ (p/pth)

⌊d/2⌋+1−dano ,
which is equal to the reduction of the code distance from d
to d − 2dano. If the decoding unit knows the position of the
anomalous region, we choose the most probable matching that
eliminates the edges in the region. Thus, (⌊(d−dano)/2⌋+1)-
qubit Pauli error on normal qubits is required to induce a
wrong decision of the decoding unit (Case 3), which corre-
sponds to the reduction of code distances from d to d− dano.
This analysis implies that the threshold of surface codes does
not change by MBBEs and decoder re-execution, which agrees
with the results in Fig. 3.

B. Algorithm for weighted matching

In order to take the MBBEs into account in the decoding
process, we need to solve matching problems for non-uniform
weights, where the weight of edges in the anomalous regions
is set as − log pano

1−pano
and that of normal qubits as − log p

1−p .
We can find the most probable Pauli errors on non-uniform
weighted graphs by enumerating the shortest path between
active nodes with the Dijkstra algorithm and by finding an
MWPM with Edmonds’ blossom algorithm [18]. While this
approach provides the exact solution, the procedure takes a
longer time than a 1µs code cycle even in the case of uniform
weights. Fast approximated algorithms have therefore been
investigated [11], [12], [30], [56]. One of the fastest approx-
imated algorithms for uniform-weight graphs is the greedy-
based algorithm [30], [56]. In this algorithm, we set i = 1 and
match active nodes that can be connected with a path shorter
than i in a greedy manner. We iterate this procedure from
i = 1 to d. The length between two nodes can be calculated
as the Manhattan distance. When the non-uniformity is caused
by a single anomalous region, we can extend this algorithm for
weighted graphs with a small modification: namely, we replace
the calculation method of the shortest path between two given
nodes with a method that chooses the shortest path among
candidates, as shown in Fig. 6 (c). Since this diagnosis can be
done in parallel and takes a constant time, this modification
incurs only a small overhead on the throughput, as verified
with logic synthesis in Sec. VIII-D. Note that the physical
error rate inside an anomalous region is actually not uniform,
and it decays according to the elapsed time and the position
from the center. Nevertheless, we can introduce this concept
approximately by letting the inside of the contour for pano be
an anomalous region.

We also note the feasibility of implementing the exist-
ing error-estimation algorithm on the weighted graph. For
the union-find-based strategy [12], [13], Pattison et al. [47]
proposed a low-overhead algorithm to execute the union-find
decoder on weighted graphs. The existing greedy-based strat-
egy [30], [56] is implemented with single-flux-quantum (SFQ)
circuits [30], [56], so introducing non-uniformity to these
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implementations is non-trivial. We anticipate that this concept
can be introduced by switching spike propagation modes
corresponding to normal and anomalous regions, but its im-
plementation is left to future work.

C. Procedure for decoder re-execution

In this subsection, we discuss how to roll back the past
estimation of recovery Pauli operations and switch the de-
coding strategy. Suppose that the anomaly detection
unit detects an anomalous region at the t-th cycle with a
latency of clat cycles. Then, the timing of the occurrence
of the anomalous region is the (t − clat)-th cycle. Thus, the
states of the syndrome queue, decoding unit, Pauli
frame, and classical register should be rolled back
to those at the (t−clat−d)-th cycle. If a read instruction has
already referred to any entry corrected after the (t−clat−d)-th
cycle, the rollback procedure is aborted since it also needs to
roll back the state of the host CPU, which is expected to be
too costly. The most naive implementation of the rollback is to
keep all the snapshots of relevant units for recent clat+d cycles
and load the oldest snapshot. After the rollback, the decoding
unit restarts the procedure with weighted edges. While this
method is simple, it consumes a large amount of memory.
Thus, we show a more efficient method for the rollback. The
rollback of the syndrome queue and decoding unit
can be implemented as follows. We enlarge the window size
of syndrome queue to clat + d cycles and keep them
even if they are matched. When we roll back the units,
we forget the matches of active nodes in recent clat + d
cycles, reset the decoding units, and restart the decoding. Since
all the operations on the Pauli frame and classical
register are reversible, we can revert them by storing the
update operations for them. The output of the decoding

unit required for the rollback of the Pauli frame is
stored in the matching queue. Since the full records of
matching results consume a large memory space, we reduce
the size of matching queue by taking the sum of each cbat
cycle with the information of pairs connecting neighboring
batches. This technique reduces the size of the matching
queue by cbat times but requires additional cbat-layer mem-
ory space for the syndrome queue. We can find that setting
cbat =

√
2cwin will minimize the total amount of buffer

memory. See Sec. VIII-C for the concrete evaluation. Also,
since the Pauli frame must be updated according to the
execution of logical instructions (see Sec. II), its update history
is also stored in the instruction history buffer.
The rollback of the classical register can be achieved
simply by marking the entries measured after the (t−clat−d)-
th cycle as “not-error-corrected”.

VII. NUMERICAL EVALUATION

A. Numerical simulation settings

In this section, we numerically evaluate the detection er-
rors and latency of anomaly detection and the logical error
reduction by the decoder re-execution. To efficiently capture
the performance of QEC strategies, we assume the following
for the noise models; Stochastic Pauli errors occur on data
and ancillary qubit at the beginning of each code cycle. In
each error position, Pauli-X,Y, Z errors occur with probability
p/2 for normal qubits and pano/2 for anomalous qubits. 1)
The settings are as follows. 1) Noise maps are inserted at the
beginning of each code cycle on data and ancillary qubits. 2)
In each noise map, Pauli-X,Y, Z errors occur with probability
p/2 for normal qubits and pano/2 for anomalous qubits. 3)
Logical error rates are evaluated as a logical Pauli-X error
rate per cycle in the procedure of d-cycle idling. 4) Decoding
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Fig. 7. Numerical evaluation of the anomaly detection unit. (Left)
Required window size cwin for 1% detection error rates and detection latency.
(Right) The error of estimated positions of anomalous regions.

units ignore correlations due to Pauli-Y errors and estimate
the occurrence of Pauli-X and Z errors independently. 5) We
evaluate logical error rates using the Monte-Carlo method with
at least 105 samples for each data point.

These are popular methods and assumptions to efficiently
capture the performance of error-correction strategies [17],
[30], [56]. We implemented our own error simulators for
all simulations except the error estimation, for which we
used Kolmogorov’s implementation of Edmonds’ blossom
algorithm [18], [36]. We verified that the results without
considering MBBEs agree with the existing results such as
Ref. [56].

B. Anomaly detection unit

We numerically simulated the behavior of the anomaly
detection units to clarify the desirable settings accord-
ing to experimental parameters. There are three parameters that
determine the performance of the anomaly detection
units: the size of window cwin, the confidence level 1− α,
and the threshold number of anomalous qubits nth. In the
following evaluation, we set 1− α = 0.99. We assume that µ
and σ, i.e., the frequency of active nodes and their variance
of normal qubits, are known in the pre-calibration phase.
Therefore, the main interest of the numerical evaluation is to
determine cwin and nth for realistic parameters. To determine
them, we simulate the anomaly detection process. The results
are shown in Fig. 7, where the blue line in the left graph shows
the minimum cwin required for achieving the probabilities of
the false-positive and true-negative detection of anomalous
qubits being below 1% under p = 10−3 according to the
temporal increase ratio of physical error rates pano/p. With
the selected cwin, we heuristically choose nth = 20 and
evaluate the latency of the anomaly detection and the error
of the estimated positions of anomalous regions for dano = 4
and d = 21, which are plotted as the orange line in the left
and right graphs, respectively. We can see that the timing and
position are estimated accurately. Since the code cycle is about
1 µs and the MBBEs last a few tens of milliseconds, the period
for which logical qubits are exposed to MBBEs without any
reaction becomes about 10−3 times shorter.
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C. Decoder re-execution

We evaluated the improvement of logical error rates by the
decoder re-execution. The top two graphs of Fig. 8 show the
logical error rate per code cycle with and without rollback
techniques for dano = 2 and 4. The solid lines represent logical
error rates without an MBBE. The broken and dotted lines
represent those under an MBBE with and without the rollback,
respectively. We observed that the rollback techniques improve
the logical error rates, and the improvement ratio becomes
significant as physical error rates become small.

Next, we evaluated the effective reduction of code distances
by MBBEs with the following equation.

d− deff =

(
ln

pL,ano(p, d)

pL(p, d)

)/(
1

2
ln

pL(p, d− 2)

pL(p, d)

)
(4)

The reduction of code distances is plotted in the bottom two
graphs of Fig. 8. Since the effective code distances have large
uncertainty, we only plot the data points of which the standard
error is smaller than four, and we used the standard errors
divided by four as error bars for visibility. According to the
first-order analysis in Sec. VI, the reduction converges to 2dano
without rollback and to dano with rollback for sufficiently
small p and large d. While it is difficult to observe clear con-
vergence in the case of dano = 4 due to large standard errors,
we can observe the trend of convergence for dano = 2. The
converged values for dano = 2 seem slightly larger than the
expected values. We expect this discrepancy occurs because
the first-order analysis is not sufficiently justified in a region
of simulated physical error rates and code distances or due to
the coefficient stemming from the number of minimum-weight
paths in the first-order approximation. Note that since smaller
physical error rates and larger code distances than those of
simulations are required to execute long-term applications [4],
[29], [35], e.g., p = 0.001 and d = 21, we expect the first-
order analysis is justified in practical cases.
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to achieve a logical error rate below 10−10 are plotted as a double logarithmic
graph.

VIII. SCALABILITY DISCUSSION

In this section, we discuss the scalability of FTQC with and
without Q3DE and show that Q3DE reduces the difficulties in
the future scaling of FTQC. For the comparison, we utilize an
FTQC architecture that mitigates MBBEs by increasing the
default code distance as the baseline.

A. Qubit count

To achieve a logical error rate with given physical error
rates, we need to increase the number of qubits on the qubit
plane, which means increasing the chip area and qubit density.
Figure 9 shows the required chip area and qubit density per
logical qubit relative to the values of Google’s Sycamore
chip [43] to achieve a logical error rate below 10−10. We
calculated the required qubit density for a given chip area
as follows. We set the physical error probability over the
threshold value p/pth as 0.1 and code cycle as 1 µs. We
choose dano = 4, fano = 0.1, and τano = 25ms as the
baseline, and change each parameter to smaller values to check
the performance of Q3DE in several parameter regimes. When
we swept the chip area and qubit density, we assumed that the
frequency of cosmic rays and the size of anomalous regions
increase linearly to them, respectively. For each parameter
setting, we put anomalous regions at random positions with the
Poisson distribution and remove them after an error duration.
When the smallest number of normal edges in logical Pauli
errors is reduced from d to d−c, we assumed that the effective
code distance becomes d− c with Q3DE and d− 2c without
Q3DE according to the discussion of Sec. VI, and calculate
logical error rates with pL(d) = 0.1(p/pth)

⌊(deff+1)/2⌋. We
simulate this process for 108 code cycles and calculate the
averaged logical error rate. We also assumed that the Q3DE
reduces the period exposed to MBBEs to the latency of
anomaly detection clat = 30 since it expands code distances to
a sufficiently large value. Starting this evaluation from d = 11,
we increase the code distance until the logical error rates
become below 10−1 by increasing the qubit density and find
the minimum required qubit density.

When qubit planes do not suffer from cosmic rays, the
required qubit density is proportional to the inverse of the
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Fig. 10. (Left) An example of two-qubit logical operations on a 7× 7 qubit
plane. (Right) Instruction throughput with and without Q3DE under cosmic
rays.

chip area. On the other hand, when we consider MBBE
effects, the required qubit density becomes large. Comparing
the performance with and without the Q3DE architecture, we
can see that the Q3DE can suppress the MBBE effect without
significantly increasing physical qubits. In particular, when the
qubit density ratio is about ten, the reduction of qubit count is
up to about ten times in the baseline settings. Thus, the Q3DE
is indispensable not only for efficiently using qubit planes but
also when the achievable area and density per logical qubit
are limited.

B. Instruction throughput

The adaptive insertion of op_expand by dynamical code
expansion may block the following operations since it con-
sumes unused qubit space on the qubit plane and blocks the
following instructions such as ZZ_meas (i.e., lattice surgery,
which connects logical qubits using unused blocks). The
baseline method, i.e., the increase of the default code distance,
also reduces the instruction throughput, since the latency of
several instructions is proportional to the code distances.

We compared the instruction throughput by simulating 104

meas_ZZ instructions acting on two randomly chosen logical
qubits. We performed numerical simulation with a qubit plane
consisting of 25 logical qubits allocated on an 11×11 grid. The
average number of completed instructions during d code cycles
is shown in Fig. 10 with a schematic diagram of the logical
operations. In this simulation, we assumed that the MBBEs
on unused blocks are detected via direct measurements of data
qubits and the instruction scheduler avoids using these blocks.
We assumed that an MBBE occur on each block with proba-
bility dτcycfano in each d cycle and lasts for 100d or 1000d
cycles. We also assumed that the code distance is doubled in
the code expansion of Q3DE and in the baseline solution. We
scheduled logical operations with a greedy algorithm. Since an
MBBE frequency per d code cycle is about dτcycfano ∼ 10−5

in realistic parameters [43], the degradation of throughput is
acceptable and better than the baseline. If the frequencies and
period of MBBEs are improved in the future, the throughput
is doubled compared to the baseline.

Decoder re-execution may also degrade instruction through-
put, since it rolls back the processing of the decoding unit in
accordance with MBBEs, the rollback delays the correction
of corresponding classical registers, and the execution of



TABLE III
SUMMARY OF MEMORY OVERHEADS OF Q3DE.

Unit Order Size

syndrome queue 2d2(cwin +
√
2cwin) 623 kbit

active node counter 2d2 log2 cwin 16 kbit
matching queue 2d2

√
cwin/2 24 kbit

inst. hist. buffer negligible –
expansion queue negligible –

the read operation may be blocked. The most pessimistic
scenario is that a read operation is executed just after every
rollback, and all the consecutive instructions are blocked by
this read operation. In that case, all the following instructions
need to wait for the decoding unit to recalculate the matching
of d + clat cycles. Since the instruction needs to wait for
matching d cycles without rollback, the execution cycles of
the read instruction get up to 1 + clat

d times larger, which
is about two or three in realistic parameters. Since such a
pessimistic situation would be rare, we believe this overhead
is negligible in the total computation time.

C. Overhead of syndrome buffer sizes

We list the additional memory space for the decoder re-
execution in Table III. The right-most column shows the mem-
ory sizes per logical qubit with d = 31, p = 10−3, and
cwin = 300. These are sufficient for large-scale applications
and cwin is pessimistically chosen from Fig. 7. The dominant
overhead is the syndrome queue, which is about ten times
larger than the MBBE-free case 2d3 ∼ 58 kbit. If cwin is
comparable to the code distance d, the overhead becomes
almost negligible. Thus, we presume these sizes are acceptable
in current technologies.

D. Overhead of decoding unit

Q3DE imposes an additional task in the post-processing
pipeline that has to satisfy the time constraint identical to
the code cycle (i.e., about 1 µs) on average. Since additional
queues and counters can be updated in parallel with the
decoding unit, and since their updates can be performed with
simple arithmetic operations, these additional processes do not
conflict with the allowable execution time constraint when
MBBEs do not occur. The degradation of matching speed
in the decoding units by introducing the MBBE-aware
matching algorithms may create a bottleneck. To quantify the
overhead, we implemented the greedy-based decoder in QE-
COOL [56] with (Q3DE) and without the modification (BASE)
shown in Sec. VI-B. Instead of the SFQ circuit design in QE-
COOL, we designed FPGA circuits using high-level synthesis
to evaluate the overheads of Q3DE. The high-level (C++)
description of circuits are verified in function-level simulations
using randomly generated test patterns.

In each code cycle, the positions and distances to the
anomaly and boundary are extracted and pushed to the active
nodes queue (ANQ) in the decoding unit. The unit calculates
all-to-all shortest paths between ANQ entries in parallel and
with pipelining, picks the shortest pair, and sends it to the

TABLE IV
FPGA IMPLEMENTATION OF GREEDY-BASED DECODER.

Configuration FF (%) LUT (%) throughput
40 – BASE 8,991 ( 4) 14,679 ( 6) 4.66
40 – Q3DE 13,855 ( 6) 20,279 ( 9) 4.25
80 – BASE 13,211 ( 6) 36,668 (16) 1.81
80 – Q3DE 22,751 (10) 54,638 (24) 1.79

Pauli frame and matching queue. The critical factor in this
implementation is the entry size of ANQ: 1) it must be large
enough that a buffer overflow occurs with less probability
than the logical error rate, and 2) to satisfy the execution
time constraint, the number of path evaluation and comparison
circuits has to increase along with the growth in entry size.
To satisfy the first criterion, 30 entries are estimated to be
enough for p = 10−4, d = 15, pL = 10−15 and 70 entries
for p = 10−3, d = 31, pL = 10−15. Thus, we compared the
post-layout designs for several parameters using Vitis HLS
2021.2. The operating frequency is 400 MHz and the tar-
get device is Zynq Ultrascale+ XCZU7EV-2FFVC1156
MPSoC (ZCU104 evaluation board). The results are listed in
Table IV where configuration denotes “ANQ Entry size –
BASE/Q3DE” and throughput is shown in “match/µs”. The
throughput should be faster than the average number of active
nodes per code cycle. We can see that the slow-down of the
MBBE-aware matching is acceptable. While the frequencies
of active nodes may temporally increase during MBBEs, it is
acceptable if the matching speed of decoding units averaged
with MBBE-free cycles is sufficiently fast.

The gap in resource utilization mainly comes from the
difference in the bit-width in the calculations. Designs employ
8-bit and 16-bit unsigned integers for path length evaluations
in BASE and Q3DE, respectively. Another reason is the
increase of paths taken into account to consider anomalous
regions. However, the area overhead of Q3DE is low enough
to fit an embedded system class FPGA.

IX. APPLICABLE SCOPE OF Q3DE

In previous sections, we have discussed the application
of Q3DE to cosmic-ray-induced MBBEs based on the state-
of-art superconducting quantum chip. However, the property
of MBBEs varies with the qubit technique advancing, e.g.,
device-level improvement or development of novel quantum
devices. We will verify the following basic assumptions in the
Q3DE in the technology trend: 1) There are non-negligible
MBBE events that incur high-error-rate qubits. 2) Logical
qubits are encoded with topological stabilizer codes that
support the temporal expansion of code distances. 3) There
are vacant blocks around logical qubits for operations. The
assumptions 2) and 3) are also assumed in a wide range of
FTQC proposals [17], [23]–[25], [30]. To show that assump-
tion 1) is reasonable in the future, in this section, we discuss
the futuristic parameters of MBBEs and other factors inducing
MBBEs, and show that the idea of Q3DE can be used as a
versatile method to reduce the effect of MBBE events.



A. Cosmic-ray induced MBBEs

While this paper focuses on the parameters observed by
McEwen et al. [43], parameter regions of anomaly size, period,
and frequencies of cosmic-ray strikes may change in the
future. For example, they may be reduced by device-level
improvement [32], [42], [46]. While solid-state qubits on the
substrates, such as silicon dots, color centers, and Majorana
fermions, are expected to suffer from cosmic-ray strikes in
a similar mechanism [43] and we can use the Q3DE for
them, their parameter regions would be different from the
superconducting qubits. According to the results in Fig. 9,
the Q3DE can reduce even if these parameters are improved
in the future. Therefore, the Q3DE can reduce the hardware
requirement in a variable region of parameters.

Trapped ions and neutral atoms are also promising can-
didates for scalable quantum devices. They use two stable
states of atoms trapped in a vacuum by lasers as computational
spaces. Since they do not reside on the substrate, the effect of
cosmic rays would be negligible, but they are also expected
to suffer from MBBEs caused by other factors, as shown in
the next subsection.

B. Other factors inducing MBBEs

So far, we have focused on the MBBE events by cosmic
rays because cosmic-ray-induced MBBEs are the dominant
factor and are intensively studied. On the other hand, other
promising devices, e.g., trapped ions and neutral atoms, are
also expected to suffer from MBBEs induced by other factors.
In this section, we introduce three potential MBBEs of them
and discuss how Q3DE can be applied to them.

First, trapped atoms may leak from traps due to fluctuations.
The error probabilities of leaked atoms are effectively 50%
until they are reloaded. This event can be considered a single-
bit burst error for neutral atoms. In the case of trapped
ions, since they constitute a Coulomb crystal, all the ions
in the crystal would be scrambled and become unavailable.
Therefore, the effect for ions would be considered an MBBE
event. In either case, our anomaly detection and decoder
re-execution scheme would work for this case. Since we
need actively reload atoms, we should move a logical qubit
to another place instead of the code expansion. While the
frequency of this event is once per two weeks in the state-
of-the-art settings [16], stable controls sacrifice the control
speeds and qubit integration. Therefore, the Q3DE enables an
aggressive choice of parameters to speed up the computation
as far as the MBBE frequencies are acceptable. Note that
if several burst errors occur on surface codes, the overhead
of weighted matching may not be negligible. Nevertheless, it
would not become a bottleneck since the lifetime of atoms is a
few orders of magnitudes longer than superconducting qubits.
Second, atoms may transit to the stable states out of the qubit
space. Once this event happens, the effective error rates of
qubits become 50% until they are re-pumped to the qubit
space. According to the state-of-the-art controls of trapped
ions [26], the contribution of such leakage is about or below
10−5 per gate, which would be not negligible in the future

since the current state-of-the-art applications require a few
hours with 103 logical qubits [4], [5], [35], [38]. This error
can also be considered a single-bit burst error and treated
with the Q3DE. The last MBBE is caused by a calibration
drift of controls. In particular, the stray field of electrodes is
reported as a non-negligible error in trapped ions [28], [41],
[60]. When the status of electrodes changes, the pre-calibrated
trap controls cannot cool the atoms, which increases the error
rates of trapped ions. This event can also be considered an
MBBE. In this case, we need to move logical qubits to another
space to perform the re-calibration.

In conclusion, we expect that the MBBE events exist in
other candidates of qubits, and the Q3DE can be applied to
them with small changes. For a more concrete estimation,
further studies of parameter regimes with scaled devices is
required, which we leave as future work.

X. CONCLUSION

In this paper, we proposed an FTQC architecture that is
tolerant to MBBEs by cosmic rays, which are expected to be
a severe barrier in the development of quantum computing.
The proposed architecture can adaptively switch the QEC
methods by three key processes: anomaly detection of MBBEs,
dynamical code expansion, and re-execution of the error
decoding process. We provided low-overhead algorithms and
procedures for these components with theories of statistical
modeling of the syndrome sequences and first-order analysis
on the MBBE effect. The numerical results show that the
proposed architecture can mitigate MBBEs with only a modest
overhead. Thus, we believe that the Q3DE is a vital ingredient
towards the attainment of a scalable FTQC and will open up
the field of architecture design and compiler optimization for
efficiently mitigating temporal error variations.
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APPENDIX A
ARTIFACT APPENDIX

A. Abstract

In this paper, we utilized several numerical simulations to
evaluate the performance of the FTQC architecture with and
without Q3DE. Also, we evaluated the performance of the
decoding units with high-level synthesis, as shown in Table 4.
In this appendix, we explain how to regenerate the figures and
tables used in the paper.

B. Artifact check-list (meta-information)

• Program: Numerical simulation codes, high-level description
of circuits, and scripts to aggregate generated data and plot the
figures.

• Compilation: GCC 9.4.0
• Run-time environment: Windows 11 for running Vitis HLS.

Ubuntu 20.04 LTS on Windows Subsystem Linux for the other
calculations.

• Output: All the figures and parameters on tables in the main
text.

• How much disk space required (approximately)?: About
40 GB for intermediate output files. About 200 GB for the
installation, mainly for Vitis HLS.

• How much time is needed to complete experiments (approx-
imately)?: About 6 days with 8 thread parallelization.

• Publicly available?: Yes. All the source codes are uploaded to
Zenodo.

• Code licenses (if publicly available)?: Several codes are
distributed with an original license. See license.docx in
the published repository.

• Archived (provide DOI)?: Yes. The assigned DOI is
10.5281/zenodo.7016156.

C. Description

The codes are uploaded to Zenodo
(DOI: 10.5281/zenodo.7016156). We use a C++
compiler to build simulation codes. We verified that our
code can be compiled with g++ 9.4.0 on Windows Linux
Subsystem and Microsoft Visual Studio C++
2019 on Windows 11.

For the environment-independent build, we use CMake. The
codes for generating figure 3,8 and figure 7 requires Edmonds’
Blossom algorithms. We used Kolmogorov’s implementation
of the Blossom algorithm [36]. Since the license of this soft-
ware does not allow public redistribution, please download the
software from https://pub.ist.ac.at/∼vnk/software.html. Please
see the workflow in the unzipped folder for how to allocate
downloaded codes. We use Xilinx Vitis HLS for the
evaluation of the decoding unit. We used version 2021.2.1.

D. Installation

The programs are installed by downloading the zip file
from the specified location and unzipping it. After that, we
need to put the Blossom V to an appropriate directory, and
need to install Vitis HLS with Ultrascale+ devices. See
README.md in the published code repository.

E. Experiment workflow

The artifact consists of five folders, each of which can
regenerate a figure or table. Figures 3 and 8, i.e., plots of
logical errors, are generated from the same program with
different configurations.

All the experiments except for the high-level synthesis
are performed by running a few shell and Python scripts.
Commands are listed in the markdown document in each
folder. The step-by-step workflow for regenerating parameters
of high-level synthesis is also shown in the document in the
corresponding folder.

F. Evaluation and expected results

As the result of the workflow, each folder generates a figure
or parameters. These should be similar to the ones in the main
text enough to result in the same conclusion.

Note that the figure would not be exactly the same since
all the numerical simulation relies on the Monte-Carlo sam-
pling for the evaluation, and there is a statistical fluctuation
according to the number of sampling.

The regeneration of Table 4 requires several steps with
Vitis HLS 2021.2.1. Please follow the instructions in
the corresponding folder. The parameters of Table 4 also
fluctuate according to the chosen random seed in HLS.

https://pub.ist.ac.at/~vnk/software.html
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[27] J. M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson,
J. A. Smolin, J. M. Chow, C. A. Ryan, C. Rigetti, S. Poletto,
T. A. Ohki, M. B. Ketchen, and M. Steffen, “Characterization of
addressability by simultaneous randomized benchmarking,” Physical
Review Letters, vol. 109, no. 24, Dec. 2012. [Online]. Available:
https://doi.org/10.1103/physrevlett.109.240504

[28] M. Ghadimi, A. Zappacosta, J. Scarabel, K. Shimizu, E. W. Streed,
and M. Lobino, “Dynamic compensation of stray electric fields
in an ion trap using machine learning and adaptive algorithm,”
Scientific Reports, vol. 12, no. 1, Apr. 2022. [Online]. Available:
https://doi.org/10.1038/s41598-022-11142-7
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