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Abstract 
Background.  Telomerase reverse transcriptase promoter (TERTp) mutations are a biological marker of glioblas-
toma; however, the prognostic significance of TERTp mutational status is controversial. We evaluated this impact 
by retrospectively analyzing the outcomes of patients with isocitrate dehydrogenase (IDH)- and TERTp-wild-type 
glioblastomas.
Methods.  Using custom next-generation sequencing, we analyzed 208 glioblastoma samples harboring wild-type 
IDH.
Results.  TERTp mutations were detected in 143 samples (68.8%). The remaining 65 (31.2%) were TERTp-wild-type. 
Among the TERTp-wild-type glioblastoma samples, we observed a significant difference in median progression-
free survival (18.6 and 11.4 months, respectively) and overall survival (not reached and 15.7 months, respectively) 
in patients with and without phosphatase and tensin homolog (PTEN) loss and/or mutation. Patients with TERTp-
wild-type glioblastomas with PTEN loss and/or mutation were younger and had higher Karnofsky Performance 
Status scores than those without PTEN loss and/or mutation. We divided the patients with TERTp-wild-type into 
3 clusters using unsupervised hierarchical clustering: Good (PTEN and TP53 alterations; lack of CDKN2A/B ho-
mozygous deletion and platelet-derived growth factor receptor alpha (PDGFRA) alterations), intermediate (PTEN 
alterations, CDKN2A/B homozygous deletion, lack of PDGFRA, and TP53 alterations), and poor (PDGFRA and TP53 
alterations, CDKN2A/B homozygous deletion, and lack of PTEN alterations) outcomes. Kaplan–Meier survival anal-
ysis indicated that these clusters significantly correlated with the overall survival of TERTp-wild-type glioblastoma 
patients.
Conclusions.  Here, we report that PTEN loss and/or mutation is the most useful marker for predicting favorable 
outcomes in patients with IDH- and TERTp-wild-type glioblastomas. The combination of 4 genes, PTEN, TP53, 
CDKN2A/B, and PDGFRA, is important for the molecular classification and individual prognosis of patients with 
IDH- and TERTp-wild-type glioblastomas.
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Key Points

- Median OS varies in isocitrate dehydrogenase (IDH)- and TERTp-wild-type GBM 
with and without PTEN loss/mutation.

- PTEN, TP53, CDKN2A/B, and PDGFRA are important in the molecular classification 
of IDH- and TERTp-wild-type GBM.

Glioblastoma (GBM) is the most common primary malig-
nant brain tumor in adults and is classified as grade 4 by 
the World Health Organization (WHO). GBM’s relapse rate 
is very high, and median survival is typically only 10 to 11 
months, even with multimodal treatment encompassing 
surgery, radiation, and chemotherapy.1 GBM is hetero-
geneous with a wide mutational spectrum.2–4 To obtain 
insights into the biology of this tumor and subsequently 
improve its diagnosis and treatment, the molecular classi-
fication of GBM has been intensifying.

TERT promoter (TERTp) mutations are collectively one 
of the biological and diagnostic markers for GBM.5–7 TERT 
is a reverse transcriptase catalytic subunit of telomerase 
that maintains telomere lengths.8 Telomere maintenance 
is essential for the unlimited proliferation of tumor cells 
and occurs in many cancer types via the reactivation of 
telomerase.9–11 TERTp mutations lead to increased TERT 
expression and telomerase activation.12 TERTp mutations 
are frequently observed in GBM. Recent studies indicated 
that 70%–90% of GBM genomes harbor TERTp muta-
tions.13–15 In contrast, low frequencies of TERTp mutations 
were reported in Japanese groups.16–20 Thus, the frequen-
cies of TERTp-wild-type GBM are higher in Japanese pa-
tients than in patients from other countries. Diplas et al. 
found that a subset of isocitrate dehydrogenase (IDH)- and 
TERTp-wild-type GBM utilized distinct genetic mechanisms 
of telomere maintenance driven by alternative lengthening 
in telomerase-positive cells displaying alterations in ATRX 
or SMARCAL1 and TERT structural rearrangements.21 
However, for TERTp-wild-type GBM, there is relatively 
less information, and the mechanism of telomere main-
tenance remains unknown. To the best of our knowledge, 
there have been only 3 publications dedicated to IDH- and 
TERTp-wild-type GBMs.21–23

In this study, we examined a cohort of IDH- and TERTp-
wild-type GBMs with next-generation sequencing (NGS) 
using a custom gene panel that we recently reported.16 This 
study aimed to examine the clinical characteristics of pa-
tients with IDH- and TERTp-wild-type GBMs and provide a 
better understanding of the molecular profiles of IDH- and 
TERTp-wild-type GBMs.

Materials and Methods

The current study adhered to the reporting recommenda-
tions for tumor marker prognostic studies (REMARK) 
guidelines. The completed checklist is provided in 
Supplementary Appendix 1.

GBM Samples

Two hundred and eight formalin-fixed paraffin-embedded 
(FFPE) tumor tissue samples were collected from 
Kagoshima University, Kyushu University, and University 
of Occupational and Environmental Health. The study was 
approved by the Institutional Review Board of Kagoshima 
University (approval number: 180104) and complied with 
the tenets of the Declaration of Helsinki. Informed consent 
was obtained from all patients. Resected tumors were fixed 
with 10% phosphate-buffered formalin within 24 hours of 
sampling and routinely processed for paraffin embedding, 
followed by sections for hematoxylin and eosin staining. 
All tumors were originally classified according to the WHO 
2021 classification. All tissues were histologically evalu-
ated by board-certified pathologists (M.K. and A.T.) to en-
sure an estimated tumor cell content of ≥ 30%.

Importance of the study

Biological markers for glioblastoma include TERT pro-
moter (TERTp) mutations. As the frequency of TERTp 
mutations in glioblastoma is approximately 70%–90%, 
the relatively small number of TERTp-wild-type glio-
blastoma cases has limited the study of its molecular 
characteristics and prognostic factors. Here, we report 
that PTEN alterations are associated with favorable 
outcomes in patients with TERTp-wild-type glioblast-
omas. Using hierarchical molecular classification, we 
revealed 3 distinct clusters of TERTp-wild-type glio-
blastoma prognosis groups: good (alterations in PTEN 

and TP53, and lack of CDKN2A/B homozygous de-
letion and PDGFRA alterations), intermediate (alter-
ations in PTEN, CDKN2A/B homozygous deletion, and 
lack of alterations in PDGFRA and TP53), and poor 
(alterations in PDGFRA and TP53, homozygous dele-
tion of CDKN2A/B, and lack of alterations in PTEN). 
A combination of 4 genes (PTEN, TP53, CDKN2A/B, 
and PDGFRA) is important for the molecular classifi-
cation and prognosis of patients with IDH- and TERTp-
wild-type glioblastomas.
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Treatments

This was a retrospective study that included 208 patients 
with IDH-wild-type GBM with available molecular data 
between 2014 and 2022. We removed ≥90% of the tumor 
in 94 patients (45.2%) and < 90% of the tumor in 114 pa-
tients (54.8%). Additionally, 194 GBM patients were treated 
with temozolomide during radiotherapy, followed by 
temozolomide maintenance treatments. However, 14 pa-
tients were not treated because of poor clinical status at-
tributed to factors such as advanced age or low Karnofsky 
Performance Status (KPS) scores.

DNA Extraction and Quantification

For DNA preparation from FFPE samples, we used 
the Maxwell 16 FFPE Tissue LEV DNA Purification Kit 
(Promega, Madison, WI, USA, Cat#AS1130) according 
to the manufacturer’s instructions. Thereafter, DNA con-
centration was measured using a Qubit 3.0 Fluorometer 
dsDNA BR Assay Kit (Life Technologies, Grand Island, 
NY, USA, Cat#Q32850), and DNA quality was moni-
tored using the QIAseq DNA QuantiMIZE Kit (QIAGEN, 
Reston, VA, USA, Cat#333414). The extracted DNA was 
diluted to 5–10  ng/μL as a template, and PCR was per-
formed using the QIAseq DNA QuantiMIZE Kit (QIAGEN,  
Cat#333414).

NGS

NGS was performed using the QIAseq Targeted DNA 
Custom Panel (QIAGEN, Cat#333525), as described previ-
ously.16 Amplicon sequences were aligned to the human 
reference genome GRCh37 (hg19) in the target region of 
the sequence. Data were analyzed using the QIAGEN Web 
Portal service (https://www.qiagen.com/).

Data Analysis

We used OncoPrinter (cbioportal.org/oncoprinter), which 
is a tool in the cBioPortal for Cancer Genomics software 
system, to visualize and analyze our data.24,25 We analyzed 
the data using EZR (Easy R) (Saitama Medical Center, 
Jichi Medical University, Saitama, Japan), a graphical 
user interface of the R software (The R Foundation for 
Statistical Computing, Vienna, Austria). We compared 
the risk groups and patient characteristics using the chi-
square (χ2) and Kaplan–Meier log-rank tests, respectively. 
We also performed univariate and multivariate Cox re-
gression analyses. A P-value of <.05 was considered 
statistically significant. Additionally, unsupervised av-
erage linkage hierarchical clustering was applied to the 
NGS data obtained from the tumors based on Jaccard’s 
matching coefficient to calculate distances. This analysis 
was performed using the R open-source statistical com-
puting language (v3.5.3), integrated development en-
vironment RStudio (v0.99.484), and the R packages nmf 
(v0.20.6), mass (v7.3–51.5), and stats (v3.2.2). Cluster anal-
ysis was performed using Euclidean distance and Ward.
D2 linkage.

Results

Clinical and Genetic Factors Associated With 
TERTp Mutation Status

We identified 208 patients with IDH-wild-type GBM with 
available molecular data between 2014 and 2022. Within 
this cohort, TERTp mutations were detected in 143 tumors 
(68.8%). The remaining 65 (31.2%) were TERTp-wild-type. 
Clinical factors, including sex, average patient age, KPS 
score, extent of resection (EOR), and chemoradiotherapy, 
were not significantly different between TERTp-wild-type 
and TERTp-mutant GBMs (Table 1). Moreover, progression-
free survival (PFS) and overall survival (OS) were not 
significantly different between TERTp-wild-type and 
TERTp-mutant GBMs (P = .481 and P = .449, respectively; 
Supplementary Figure 1A, 1B). Importantly, PDGFRA am-
plification and/or mutation and TP53 loss and/or muta-
tion were more common in patients with TERTp-wild-type 
GBMs than in those with TERTp-mutant GBMs (Table 1). 
Conversely, epidermal growth factor receptor (EGFR) am-
plification and/or mutation, and PTEN loss and/or muta-
tion were more commonly observed in TERTp-mutant 
GBMs than in TERTp-wild-type GBMs (Table 1). There was 
no difference in the frequencies of ATRX, SMARCA4, and 
ARID1A mutations between patients with TERTp-wild-type 
and TERTp-mutant GBMs (Table 1).

Clinical and Genetic Factors Influencing 
Prognosis in TERTp-Wild-Type GBMs

In TERTp-wild-type GBMs, the most commonly altered 
genes were TP53 (57%), PDGFRA (45%), CDKN2A/B 
(43%), RB1 (43%), and PTEN (40%) (Supplementary 
Figure 2). First, we analyzed whether the identified ge-
netic markers were prognostic markers in TERTp-wild-
type GBM. Four clinical features, including sex, age, 
KPS score, and EOR, were reduced dimensionally via 
principal component analysis; one optimal feature set, 
named “clinical information” was subsequently created. 
Thereafter, we adjusted for covariates, including “clinical 
information,” in the multivariate Cox proportional haz-
ards model. Notably, CDKN2A/B homozygous deletion 
and PDGFRA amplification and/or mutation were signif-
icant indicators of poor prognosis, as determined by our 
univariate analysis (hazard ratio [HR]: 2.16 [1.05–4.43], 
P = .036; and HR: 3.13 [1.48–6.63], P = .003, respectively; 
Table 2), but were not significant indicators of prognosis 
in our multivariate analyses. PTEN loss and/or mutation 
was a significant indicator of favorable prognosis, as de-
termined by our univariate analysis (HR: 0.20 [0.08–0.46], 
P < .001; Table 2). In our multivariate analyses, PTEN 
loss and/or mutation was only an independent signifi-
cant indicator of favorable prognosis in TERTp-wild-type 
GBM (HR: 0.25 [0.08–0.79], P = .018; Table 2). In contrast, 
PDGFRA amplification and/or mutation was a significant 
indicator of poor prognosis, as determined by our uni-
variate (HR: 2.11 [1.03–4.31], P = .041) and multivariate 
(HR: 2.26 [1.04–4.91], P = .039) analyses in TERTp-mutant 
GBM (Supplementary Table 1).
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Second, we identified the clinical prognostic factors, 
which included analysis of the genetic markers for PTEN 
loss and/or mutation in TERTp-wild-type GBM. Our uni-
variate analysis revealed that age (HR: 2.88 [1.38–6.00], 
P = .005), EOR (HR: 2.24 [1.06–4.73], P = .035), and PTEN 
loss and/or mutation (HR: 0.20 [0.08–0.46], P < .001) 
were significantly associated with prognosis (Table 3). 

Thereafter, we adjusted for covariates, including sex, age, 
KPS score, and EOR, in the multivariate Cox proportional 
hazards model. This analysis corroborated the finding that 
age and PTEN loss and/or mutation were independent 
prognostic markers of OS in patients with TERTp-wild-type 
GBM (HR: 2.69 [1.19–6.10], P = .018; and HR: 0.29 [0.11–
0.76], P = .001, respectively; Table 3).

Table 1. Background of Patients With and Without TERTp Mutation 

Prognostic Factor All (n = 208) TERTp Mu-
tation
(n = 143) 

TERTp 
Wild
(n = 65) 

P-value 

Sex male 123 (59.1%) 87 (60.8%) 36 (55.4%) .543

female 85 (40.9%) 56 (39.2%) 29 (44.6%)

Age 70 years> 125 (60.1%) 91 (63.6%) 34 (52.3%) .130

70 years≤ 83 (39.9%) 52 (36.4%) 31 (47.7%)

KPS score 80 points≤ 103 (49.5%) 75 (52.4%) 28 (43.1%) .233

80 points> 105 (50.5%) 68 (47.6%) 37 (56.9%)

Resection 90 %≤ 94 (45.2%) 67 (46.9%) 27 (41.5%) .548

90 %> 114 (54.8%) 76 (53.1%) 38 (58.5%)

Chemoradiotherapy Yes 194 (93.3%) 134 (93.7%) 60 (92.3%) .768

No 14 (6.7%) 9 (6.3%) 5 (7.7%)

CDKN2A/B homdel 94 (45.2%) 66 (46.2%) 28 (43.1%) .764

NF1 loss and/or mut 49 (23.6%) 38 (26.6%) 11 (16.9%) .159

PTEN loss and/or mut 134 (64.4%) 108 (75.5%) 26 (40.0%) <.001*

RB1 loss and/or mut 89 (42.8%) 61 (42.7%) 28 (43.1%) 1.000

PDGFRA amp and/or mut 43 (20.7%) 14 (9.8%) 29 (44.6%) <.001*

TP53 loss and/or mut 86 (41.3%) 49 (34.3%) 37 (56.9%) .003*

EGFR amp and/or mut 69 (33.2%) 62 (43.4%) 7 (10.8%) <.001*

ATRX loss and/or mut 48 (23.1%) 35 (24.5%) 13 (20.0%) .595

ARID1A mut 6 (2.9%) 5 (3.5%) 1 (1.5%) .668

SMARCA4 mut 4 (1.9%) 2 (1.4%) 2 (3.1%) .591

KPS, Karnofsky Performance Status; mut, mutation; amp, amplification; homdel, homozygous deletion.
*indicates statistical significance.

 

Table 2. Genetic Prognostic Factors in TERTp Wild-Type GBM

 Univariate Analysis Multivariate Analysis

Prognostic marker HR (95% CI) P-value HR (95% CI) P-value 

Clinical information 0.99 (0.98–1.01) .298 0.99 (0.97–1.01) .404

CDKN2A/B homdel 2.16 (1.05–4.43) .036* 0.68 (0.25–1.90) .464

NF1 loss and/or mut 0.40 (0.12–1.31) .130 0.70 (0.20–2.53) .590

RB1 loss and/or mut 0.83 (0.41–1.71) .619 0.95 (0.42–2.14) .907

EGFR amp and/or mut 0.19 (0.03–1.40) .103 0.30 (0.04–2.48) .266

PDGFRA amp and/or mut 3.13 (1.48–6.63) .003* 1.65 (0.68–4.02) .267

TP53 loss and/or mut 1.55 (0.75–3.19) .235 1.85 (0.83–4.10) .130

PTEN loss and/or mut 0.20 (0.08–0.46) <.001* 0.24 (0.08–0.77) .016*

mut, mutation; homdel, homozygous deletion; amp, amplification.
*indicates statistical significance.
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PTEN Loss and/or Mutation is Associated With 
Favorable Prognoses in Patients With TERTp-
Wild-Type GBM

Supplementary Table 2 compares the genetic and clinical 
factors of the patients with TERTp-wild-type GBM based on 
their PTEN status. Patients with TERTp-wild-type GBM with 
PTEN loss and/or mutation were younger (P = .011) and had 
higher KPS scores (P = .005) than those without PTEN loss 
and/or mutation. We discovered that alterations in RB1 and 
EGFR in TERTp-wild-type GBMs were more common with 
PTEN loss and/or mutation than without PTEN loss and/or 
mutation (P = .021 and P = .014 for RB1 and EGFR, respec-
tively). Conversely, in TERTp-wild-type GBMs, CDKN2A/B 
homozygous deletion and PDGFRA amplification and/
or mutation were more common without PTEN loss and/
or mutation than with PTEN loss and/or mutation (P = .011 
and P = .005, respectively). We observed a significant dif-
ference in the median PFS (18.6 and 11.4 months, respec-
tively; P = .003; Figure 1A) and OS (not reached and 15.7 
months, respectively; P < .001; Figure 1B) in patients with 
and without PTEN loss and/or mutation in TERTp-wild-type 
GBM. We classified patients with PTEN homozygous de-
letion or PTEN mutation + loss as PTEN 2-hit, those with 
either PTEN heterozygous deletion or PTEN mutation as 
PTEN 1-hit, and those with wild-type PTEN as PTEN retain. 
The PFS and OS were significantly longer for PTEN 2-hit 
than for PTEN 1-hit and PTEN retain (P = .004 and P < .001 
for PFS and OS, respectively; Figure 2A, 2B). However, the 
median PFS (8.5 and 15.4 months, respectively; P = .300; 
Figure 1C) and OS (17.8 and 23.5 months, respectively; 
P = .393; Figure 1D) were not significantly different when 
we compared TERTp-mutant GBMs with and without PTEN 
loss and/or mutation. These results indicate that PTEN loss 
and/or mutation is a good prognostic factor that depends 
on TERTp status.

Unsupervised Hierarchical Cluster Analysis of 
TERTp-Wild-Type GBM

We performed an unsupervised hierarchical cluster anal-
ysis on the 65 TERTp-wild-type GBMs, which revealed 3 
major distinct groups. One major cluster (cluster 1) was 
characterized by alterations in PTEN and TP53 and lack of 
CDKN2A/B homozygous deletion and PDGFRA alterations 

(Figure 3A). The second major cluster (cluster 2) was char-
acterized by lack of alterations in PDGFRA and TP53 (Figure 
3A). The third major cluster (cluster 3) was characterized 
by alterations in PDGFRA and TP53, homozygous dele-
tion of CDKN2A/B, and lack of alterations in PTEN (Figure 
3A). Additionally, we compared the clinical features among 
clusters 1, 2, and 3. The average age in cluster 1 was 57.18 
years, and these patients were significantly younger 
than those in clusters 2 and 3 (P = .002) (Supplementary 
Table 3). However, we did not detect any differences 
in clinical factors, including sex, KPS score, EOR, and 
chemoradiotherapy, among the clusters (Supplementary 
Table 3). However, the OS was significantly longer for 
cluster 1 than for clusters 2 and 3 (P = .002; Figure 3B).

Discussion

GBM is the most frequent and deadly primary brain tumor; 
it is heterogeneous with a wide mutational spectrum.2–4 In 
an effort to better classify IDH- and TERTp-wild-type GBMs, 
we used a custom gene panel to genotype these neo-
plasms. Herein, we demonstrated the impact of PTEN loss 
and/or mutation as a favorable prognostic marker of IDH- 
and TERTp-wild-type GBM. Additionally, we revealed the 
molecular genetic profile in Japanese patients with IDH- 
and TERTp-wild-type GBM and 3 major distinct groups of 
IDH- and TERTp-wild-type GBMs.

In the current study, no distinct difference in survival 
was observed for patients with TERTp-wild-type GBMs or 
TERTp-mutant GBMs. Similar findings of a lack of prog-
nostic significance of TERTp mutations among IDH-wild-
type GBMs were previously reported.21,26 Another report 
showed that PDGFRA amplification and TP53 loss were 
more common in TERTp-wild-type GBMs than in TERTp-
mutant GBMs, while EGFR amplification and PTEN loss 
were more commonly observed in TERTp-mutant GBMs 
than in TERTp-wild-type GBMs.19 These findings are con-
sistent with our results. Recently, Williams et al. reported 
that TERTp-wild-type GBMs showed frequent muta-
tions in the PI3K pathway and BAF complex gene family 
(ATRX, SMARCA4, SMARCB1, and ARID1A),22 while our 
results showed no differences in the frequencies of ATRX, 
SMARCA4, and ARID1A mutations between TERTp-
wild-type and TERTp-mutant GBMs. Unfortunately, our 

Table 3. Clinical and Genetic Prognostic Factors in TERTp Wild-Type GBM

 Univariate Analysis Multivariate Analysis

Prognostic factor HR (95% CI) P-value HR (95% CI) P-value 

Sex (male) 2.00 (0.96–4.18) .065 2.12 (0.98–4.61) .058

Age (>70 years) 2.88 (1.38–6.00) .005* 2.69 (1.19–6.10) .018*

KPS score (≤80 points) 1.96 (0.92–4.18) .082 0.93 (0.40–2.16) .862

Resection (90%>) 2.24 (1.06–4.73) .035* 2.05 (0.92–4.58) .079

PTEN loss and/or mut 0.20 (0.08–0.46) <.001* 0.29 (0.11–0.76) .012*

KPS, Karnofsky Performance Status; mut, mutation.
*indicates statistical significance.
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study did not include an analysis of mutations in the PI3K 
pathway. Diplas et al. identified novel molecular subgroups 
of TERTp-wild-type GBMs, including a telomerase-positive 
subgroup driven by TERT structural rearrangements, and 
an alternative lengthening of telomeres-positive subgroup 
with mutations in ATRX or SMARCAL1.21 Collectively, 
these data suggest that TERTp-wild-type GBMs are geneti-
cally distinct from TERTp-mutant GBMs.

Moreover, the frequencies of TERTp-wild-type GBM were 
higher in the Japanese group than in groups from other 
countries. Thus, we hypothesized that IDH- and TERTp-
wild-type GBMs in our cohort have distinct molecular pro-
files and clinical characteristics. Herein, the frequencies 
of altered genes within IDH- and TERTp-wild-type GBMs 
were TP53: 57%, PDGFRA: 45%, CDKN2A/B: 43%, RB1: 
43%, PTEN: 40%, and EGFR:11%. Recently, 2 US reports 
showed that the frequencies of altered genes in IDH- and 
TERTp- wild-type GBMs were TP53: 24%–69%, PDGFRA: 
8%, CDKN2A/B: 12%–19%, RB1: 4%, PTEN: 13%–16%, and 
EGFR: 28%–31%,21,22 which were different from the fre-
quencies observed in our study. These discrepancies may 

be caused by racial differences. Interestingly, in our study, 
when we excluded cluster 3, which was characterized by al-
terations in PDGFRA and TP53, the homozygous deletion 
of CDKN2A/B, and lack of PTEN alterations, the frequen-
cies of altered PDGFRA and CDKN2A/B genes were similar 
to those of previous reports.21,22 Therefore, cluster 3 might 
include a specific subgroup of Japanese patients. For IDH- 
and TERTp-wild-type GBMs, CDKN2A/B homozygous de-
letion and PDGFRA amplification and/or mutation were 
associated with worse OS, while PTEN loss and/or muta-
tion was a significant predictor of favorable outcomes. Only 
PTEN loss and/or mutation was an independent prognostic 
indicator in the multivariate analyses. Surprisingly, when 
examined according to Knudson’s “two-hit” hypothesis,27 
patients with PTEN 2-hit such as PTEN homozygous dele-
tion or PTEN mutation + loss had a better prognosis than 
patients with PTEN 1-hit and PTEN retain. Liu et al. showed 
that CDKN2A/B homozygous deletion is a poor prognostic 
marker for IDH- and TERTp-wild-type GBMs, which is con-
sistent with our findings.23 To date, the prognostic value 
of PTEN alterations in GBM remains controversial. While 
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Figure 1. Unadjusted progression-free survival (PFS) and overall survival (OS) analyses of patients with IDH-wild-type glioblastoma according 
to TERTp and PTEN status. (A) Unadjusted PFS analysis of patients with and without PTEN loss and/or mutation in IDH- and TERTp-wild-type 
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several studies have reported the poor prognostic impact 
of PTEN alterations in GBM,28,29 other studies have reported 
favorable prognostic impact.30–33 PTEN is a lipid phospha-
tase with a canonical role in dampening the PI3K/Akt-1 
signaling pathway; hence, loss of PTEN driven by genetic 

alterations or epigenetic silencing has oncogenic conse-
quences during gliomagenesis.34 In contrast, recent reports 
have shown that PTEN loss can be associated with a more 
favorable prognosis, since it leads to a better response to 
chemotherapy or radiotherapy.35,36 Moreover, in this study, 
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patients with TERTp-wild-type GBM with PTEN loss and/
or mutation were younger and had higher KPS scores than 
those without PTEN loss and/or mutation. Previous reports 
indicated that young age and high KPS scores are favor-
able prognostic factors.37,38 These findings would explain 
why PTEN alterations predict favorable outcomes in GBM. 
Interestingly, for TERTp-mutant GBMs, PTEN loss and/or 
mutation was not a predictor of OS in our study. Because 
TERTp-wild-type GBMs are genetically distinct from TERTp-
mutant GBMs, the prognostic impact of PTEN may depend 
on TERTp status. To the best of our knowledge, the prog-
nostic impact of PTEN loss and/or mutation in IDH- and 
TERTp-wild-type GBMs has not been documented.

Using hierarchical molecular classification of IDH- and 
TERTp-wild-type GBMs, we revealed 3 distinct groups. 
One major cluster (cluster 1) was characterized by loss and/
or mutation in PTEN and TP53, and lack of CDKN2A/B ho-
mozygous deletion and PDGFRA amplification and/or mu-
tation. Interestingly, cluster 1 was significantly associated 
with younger age and favorable prognosis. Previous reports 
showed that TP53 mutations can be associated with favorable 
prognosis.39–41 Thus, our finding that cluster 1, with PTEN loss 
and/or mutation and TP53 mutations, had a favorable prog-
nosis is reasonable. Interestingly, evidence points toward 
an interplay between PTEN and TP53 in which they regulate 
each other at the transcriptional and protein levels.42,43 Our 
most striking finding was that PTEN, TP53, CDKN2A/B, and 
PDGFRA are important driver genes in the molecular classi-
fication of IDH- and TERTp-wild-type GBM. Furthermore, the 
combination of these 4 genes predicts individual outcomes in 
patients with IDH- and TERTp-wild-type GBM.

This study had some limitations. First, this was a retro-
spective study susceptible to selection biases. Second, epi-
genetic silencing of the PTEN promoter has been identified 
as an alternative method for gene inactivation.43 However, 
our study did not include an epigenetic analysis of PTEN.

Conclusions

We report that TERTp-wild-type GBMs are genetically dis-
tinct from TERTp-mutant GBMs, and PTEN loss and/or 
mutation is a good prognostic indicator in IDH- and TERTp-
wild-type GBM. We recommend the incorporation of 4 
combined genes (PTEN, TP53, CDKN2A/B, and PDGFRA) 
in the molecular stratification of IDH- and TERTp-wild-type 
GBMs. Such stratification will likely provide precise in-
formation to patients and help influence bedside decisions.
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Supplementary material is available online at Neuro-
Oncology Advances online.
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