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Abstract 

 

In the battle against infectious diseases, effective intervention comes through two essential approaches 

aimed at reducing both human suffering and economic impact. Firstly, non-pharmaceutical measures 

such as social distancing, mask-wearing, and lockdowns play a pivotal role. While authorities may 

enforce these measures, their success largely hinges on voluntary adherence from individuals. On the 

other hand, pharmaceutical interventions like vaccination and treatment offer a direct means of disease 

control but can face challenges in availability, particularly during the initial stages of a pandemic such 

as COVID-19. With the scarcity of pharmaceutical options in the early phases, the effectiveness of 

disease control heavily relies on the widespread adoption of non-pharmaceutical measures. However, 

accurately gauging the efficacy of these interventions demands a deep understanding of individual 

behaviors within diverse circumstances. In our research, we delve into epidemic models alongside 

behavior models to discern how individuals respond to interventions across varying scenarios. 

Moreover, the successful implementation of interventions by authorities is paramount to their impact. 

To gauge the societal repercussions of interventions, we introduce the concept of the social efficiency 

deficit (SED). This entails comparing an individual’s payoff factoring in intervention and disease costs 

to the payoff in an ideal social scenario. By doing so, we pinpoint instances of social dilemmas. Initially, 

we adopt traditional methodologies to calculate the social optimum, but we later propose an approach 

rooted in optimal control theory. This enables us to dynamically optimize interventions in response to 

evolving epidemic dynamics. Through the amalgamation of behavior modeling and optimal control 

theory, our analysis yields valuable insights into how individuals react to interventions within different 

epidemic contexts. By comprehending the intricacies of individual decision-making and fine-tuning 

intervention strategies accordingly, we aim to inform more effective epidemic management practices. 
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Preface 

 

The thesis delves into various aspects of epidemic modeling, integrating insights from behavior 

modeling and optimal control theory. Its primary focus is on devising decision-making policies aimed 

at preventing epidemics across diverse scenarios. Chapters 2-5 have already been published, and 

Chapter 6, where I serve as the primary author, is currently undergoing peer review in esteemed journals. 

Each chapter is structured to present a thorough exploration of specific research topics, following a 

format conducive to publication. 

 

Chapter 2 is published as: 

M.M.-U.-R. Khan, M.R. Arefin, J. Tanimoto, Investigating the trade-off between self-quarantine 

and forced quarantine provisions to control an epidemic: An evolutionary approach, Appl. Math. 

Comput. 432 (2022) 127365. https://doi.org/10.1016/j.amc.2022.127365 . 

 

 Chapter 3 is published as: 

M.M.-U.-R. Khan, M.R. Arefin, J. Tanimoto, Time delay of the appearance of a new strain can affect 

vaccination behavior and disease dynamics: An evolutionary explanation, Infect. Dis. Model. 8 (2023)  

656 - 671. https://doi.org/10.1016/j.idm.2023.06.001 . 

 

Chapter 4 is published as: 

M.M.-U.-R. Khan, J. Tanimoto, Investigating the social dilemma of an epidemic model with 

provaccination and antivaccination groups : An evolutionary approach, Alexandria Eng. J. 75 (2023) 

341–349. https://doi.org/10.1016/j.aej.2023.05.091.  

 

Chapter 5 is published as: 

M.M.-U.-R. Khan, J. Tanimoto, Influence of Waning Immunity on Vaccination Decision-making: A 

Multi-Strain Epidemic Model with an Evolutionary Approach Analyzing Cost and Efficacy, Infect. Dis. 

Model. 9 (2024) 657 - 672. https://doi.org/10.1016/j.idm.2024.03.004 . 

 

https://doi.org/10.1016/j.amc.2022.127365
https://doi.org/10.1016/j.idm.2023.06.001
https://doi.org/10.1016/j.aej.2023.05.091
https://doi.org/10.1016/j.idm.2024.03.004


iii 

 

 

Table of Contents 

 

         Abstract i 

         Preface ii 

         Table of Contents iii 

         Acknowledgments  vii 

  

Chapter 1 Introduction and Thesis Structure 1 

   

1.1 Background 1 

1.2 SIR Model 2 

1.3 Behavior Model 3 

1.4 Optimal Control Theory (Pontryagin’s Maximum Principle) 4 

1.5 Thesis Structure 6 

 References 8 

   

Chapter 2 Investigating the trade-off between self-quarantine and forced quarantine 

provisions to control an epidemic: an evolutionary approach 

11 

   

 Abstract 11 

2.1 Introduction 11 

2.2 Model Description 13 

2.2.1 Epidemiological model 13 

2.2.2 Behavior model 14 

2.2.3 Basic Reproduction Number 15 

2.2.4 Final Epidemic size, critical point, average social payoff, and social efficiency 

deficit 

16 

2.3 Result and Discussion 17 

2.3.1 Standard (Basic) case 17 

2.3.2 Self- versus forced quarantine 19 

2.3.3 Varying the governmental total budget   20 

2.3.4 Final epidemic size, time accumulated self-quarantine, time accumulated forced 

quarantine 

20 

2.3.5 ΔFES and critical points 23 



iv 

 

2.3.6 ASP and SED 25 

2.4 Conclusion 27 

 References 28 

   

Chapter 3 Time delay of the appearance of a new strain can affect vaccination behavior and 

disease dynamics: An evolutionary explanation 

34 

   

 Abstract 34 

3.1 Introduction 34 

3.2 Model Formulation 36 

3.2.1 Epidemic Model 36 

3.2.2 Behavior Model 37 

3.2.3 Primary Reproduction Number 39 

3.2.4 Final Epidemic Size (FES), Average Social Payoff (ASP), and Social Efficiency 

Deficit (SED)  

39 

3.3 Results and Discussions 41 

3.3.1 Standard (Basic) Case 41 

3.3.2 Time Delay Effect on Primary Reproduction Number, 𝑅𝑜 42 

3.3.3 Time Delay Effect on Infection and Vaccination 43 

3.3.4 Time Delay and Inertial Effects on Vaccination 44 

3.3.5 Time Delay and Severity Effects on Vaccination 46 

3.3.6 Time Delay Effect on ASP and SED 47 

3.4 Conclusion 52 

 References 53 

   

Chapter 4 Investigating the social dilemma of an epidemic model with provaccination and 

antivaccination groups: an evolutionary approach 

60 

   

 Abstract 60 

4.1 Introduction 60 

4.2 Model Depiction 61 

4.2.1 Epidemic Model 61 

4.2.2 Behavior Model 62 

4.2.3 Basic Reproduction Number, Total infection, Average Social payoff (ASP), 

SED 

64 

4.3 Results and Discussion 64 



v 

 

4.3.1 Timeseries depiction 64 

4.3.2 ASP and SED in Terms of Vaccination and Waning Immunity 66 

4.3.3 ASP and SED in Terms of Individual Payoff 68 

4.3.4 ASP and SED in Terms of Transmission Rate 69 

4.4 Conclusion 70 

 References 71 

   

Chapter 5 Influence of Waning Immunity on Vaccination Decision-making: A Multi-

Strain Epidemic Model with an Evolutionary Approach Analyzing Cost and 

Efficacy 

77 

   

 Abstract 77 

5.1 Introduction 77 

5.2 Model Depiction 79 

5.2.1 Epidemic Model 79 

5.2.2 Behavior Model 80 

5.2.3 Basic Reproduction Number, Vaccine Equilibrium, Fraction of vaccinated 

individuals, Total vaccination, Total infection, Average Social payoff (ASP), 

Social efficiency Deficit (SED) 

81 

5.3 Result and Discussion 83 

5.3.1 Impact of Waning Immunity 𝜔 on Vaccination Choice 83 

5.3.2 Comparison between the fraction of vaccinated individuals at equilibrium 87 

5.3.3 Analysis of Average Social Payoff (ASP) and Social Efficiency Deficit (SED) 91 

5.4 Conclusion 95 

 References 96 

   

Chapter 6 A New Concept of optimal control for epidemic spreading by Vaccination: 

Technique for Assessing social optimum employing Pontryagin’s Maximum 

Principle  

102 

   

 Abstract 102 

6.1 Introduction 102 

6.2 Model Depiction 103 

6.2.1 Epidemic model with behavior dynamics  103 

6.2.2 Epidemic model with optimal control 105 



vi 

 

6.2.3 Primary Reproduction Number, Cumulative infection, Cumulative vaccination, 

Average Social payoff (ASP), Social efficiency deficit (SED) 

107 

6.3 The Findings and Discussion 107 

6.3.1 Illustration from timeseries (with typical values) 107 

6.3.2 Timeseries comparison based on wanning immunity, 𝜔 110 

6.3.3 Time series comparison based on vaccination cost, 𝑐𝑣 111 

6.3.4 Timeseries comparison based on vaccine efficiency, 𝜂 112 

6.3.5 ASP and SED 114 

6.4 Conclusion 118 

 References 119 

   

Chapter 7 Summary and Conclusion 126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Acknowledgments 

 

This thesis comprises several research projects completed during my PhD journey. Professor Jun 

Tanimoto, my supervisor, encouraged me to publish my work promptly upon completion. Consequently, 

assembling all my projects for the thesis was not a daunting task. However, writing each manuscript, 

submitting them to journals, and responding to the comments of reviewers and editors proved to be 

quite challenging. Engaging in these tasks significantly enhanced my understanding of the entire project 

process, from inception to publication. Moreover, it equipped me with the skills to undertake future 

projects independently and effectively supervise students. To conclude this journey, I am grateful to 

many individuals who directly or indirectly supported me in my PhD endeavors. 

First and foremost, all praise goes to the almighty Allah for blessing me with good health and enabling 

me to complete my PhD study, especially during the COVID-19 pandemic. I am grateful to the Japanese 

government (Monbukagakusho: MEXT) scholarship for providing financial support for my PhD in 

Japan. Although I received the scholarship in 2020, due to COVID-19, I was permitted to commence 

my PhD six months later, and MEXT graciously extended the scholarship until the completion of my 

PhD studies. The most influential person in my PhD journey is my supervisor, Professor Jun Tanimoto. 

Without his guidance, I would not have reached this stage in the initial phase of my PhD. He consistently 

supports my research endeavors, offers valuable suggestions for each project, and ensures my well-

being during my time in Japan. I have learned from him the dedication a supervisor demonstrates in 

guiding their students through every stage of their studies and nurturing them to achieve their best. I am 

also indebted to two other professors, Prof. Aya Hagishima and Prof. Naoki Ikegaya, who have shown 

immense kindness and support to all students, especially foreign students, in adapting to the laboratory 

environment and life in Japan. When I encountered a difficulty with a course-related issue, Hagishima 

sensei promptly resolved that within a day. 

Most of the work in this thesis was conducted by me under the guidance of my supervisor. However, 

when I embarked on my first project, Dr. Md. Rajib Arefin, a former PhD student in our lab, provided 

invaluable assistance in understanding the process from inception to publication. He co-authored two 

projects with me. Following his graduation, I endeavored to complete the remaining projects with the 

support of my supervisor. Subsequently, I collaborated on two projects with another PhD student, 

Khadija, which are yet to be published. I must also acknowledge another former PhD student of our lab, 

Dr. K. M. Ariful Kabir, who provided me with valuable insights into the research conducted in this lab 

before I arrived in Japan. I hope to engage in collaborative projects with both of them soon upon my 

return to my home country. I must also mention the names of individuals who have been instrumental 

in assisting me during my time in this lab: Lab secretary Yoshizuru-san, Dr. Anowar, Tatsukawa-san, 

Utsumi-san, Ikeo-san, Masaka-san, Okita-san, and Nishimura-san. They have provided invaluable 



viii 

 

support with various issues I encountered upon joining this lab. Additionally, I am grateful to Gopal-

san, another International PhD student, who has been exceptionally helpful to international students like 

myself. He provided valuable guidance on navigating living arrangements in Japan, particularly in 

situations where knowledge of the Japanese language is essential. I am also thankful to the other 

international and Japanese students for making the lab very cooperative.  

On a personal note, I am grateful to all my family members, including my parents, my wife Ankhi, my 

sister Jhuma, my daughter Manha, and my son Marwan. Despite the distance between us, my parents 

always keep me in their prayers. My wife joined me in Japan six months after my arrival, bringing our 

daughter with her, and later our son was born during the final year of my PhD. They have provided 

unwavering support throughout this journey. Leaving behind a two-month-old baby during the peak of 

the COVID-19 pandemic in my home country was a difficult decision, but my wife took care of her and 

later traveled to Japan alone with our eight-month-old baby during another critical phase of the 

pandemic. Their sacrifices and support have been invaluable. My sister, who is also pursuing a PhD at 

my university, has been a constant source of assistance and encouragement throughout this journey. 

Together, they have made my life joyful and fulfilling in Japan. I must also mention Dr. Rajib, along 

with his wife Dr. Toosty, and their daughter Rayat, for their assistance during the first six months of my 

stay in Japan. Their presence made me feel welcomed and supported, and I never felt alone because of 

them. 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 

Introduction and Thesis Structure 

 

1.1 Background 

Mathematical epidemiology, employing mathematical and computational techniques, is pivotal in 

understanding and managing infectious diseases within populations. Emerging from the imperative to 

predict and comprehend epidemic dynamics, the field informs public health policies and devises 

effective disease control strategies. Its roots can be traced back to the 18th century, with mathematicians 

like Daniel Bernoulli pioneering mathematical models to elucidate disease spread, notably smallpox. 

However, it wasn't until the 20th century that the field truly burgeoned. A seminal contribution was 

made by Ronald Ross, a British mathematician and Nobel laureate, who developed mathematical 

models to probe malaria transmission, laying the groundwork for subsequent epidemiological modeling 

endeavors. Over the 20th and 21st centuries, mathematical epidemiology has undergone transformative 

growth, driven by technological advancements and the escalating complexity of infectious disease 

challenges. In the 20th century, the formalization of compartmental epidemic models, exemplified by 

the SIR model by Kermack and McKendrick, established a foundational understanding of disease 

dynamics. With the advent of computers, computational capabilities burgeoned, facilitating the 

development of stochastic models and the exploration of intricate epidemic scenarios. In the 21st 

century, the field has surged to prominence amid the emergence of infectious diseases like SARS, 

H1N1, Ebola, and COVID-19. Integration with data science has revolutionized epidemic modeling, 

enabling real-time analysis and informed decision-making. Agent-based modeling has furnished 

insights into the social and spatial dynamics of disease transmission, while decision support tools have 

assisted policymakers in optimizing intervention strategies. Overall, mathematical epidemiology has 

played a pivotal role in advancing our comprehension of infectious diseases and augmenting our 

capacity to control and prevent outbreaks in the contemporary era [1-5]. 

Interventions and decision-making assume pivotal roles in controlling and mitigating the spread of 

infectious diseases within epidemic modeling. By simulating various intervention strategies, decision-

makers can evaluate their efficacy in reducing disease transmission, minimizing morbidity and 

mortality, and mitigating socio-economic impacts. These interventions span non-pharmaceutical 

measures like social distancing and mask-wearing to pharmaceutical interventions such as vaccination 

campaigns and treatment allocation. Decision-making in epidemic modeling necessitates optimizing 

resource allocation, prioritizing interventions based on their anticipated impact, and adapting strategies 

in response to evolving epidemic dynamics and emerging evidence. By amalgamating epidemiological 

data, population demographics, healthcare capacity, and societal preferences, decision-makers can 
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devise evidence-based strategies for epidemic control that balance public health objectives with ethical 

considerations and practical constraints [6-8]. 

Epidemic modeling often illuminates the presence of social dilemmas, wherein individual actions may 

diverge from collective epidemic control goals. These dilemmas stem from the inherent tension between 

individual behaviors and societal well-being. For instance, individuals may prioritize personal freedom 

over adherence to preventive measures, jeopardizing population-wide health outcomes. Epidemic 

models quantify the impact of such behaviors on disease transmission dynamics, underscoring the need 

for collective action and coordination to surmount social dilemmas. By integrating insights from 

behavioral science and game theory, researchers can identify strategies to incentivize cooperation and 

promote pro-social behaviors, ultimately bolstering epidemic control efforts and curtailing the societal 

costs of infectious disease outbreaks [9-10]. 

Epidemic modeling coupled with optimal control theory furnishes a potent framework for designing 

and optimizing intervention strategies to curb infectious disease spread within populations. By 

amalgamating mathematical models of disease transmission with optimization techniques, optimal 

control theory empowers decision-makers to discern the most effective and efficient intervention 

strategies. These interventions, spanning vaccination campaigns, quarantine measures, treatment 

allocation, and social distancing policies, are dynamically adjusted over time in response to changing 

epidemic conditions, thereby maximizing control efforts and minimizing societal costs. Through the 

synergistic application of epidemic modeling and optimal control theory, researchers can inform 

evidence-based decision-making, fortify epidemic preparedness and response, and ultimately mitigate 

the impact of infectious disease outbreaks on public health and society [5-10]. 

1.2 SIR Model 

The SIR model is a compartmental model used to study the spread of infectious diseases within a 

population. It divides the population into three compartments: Susceptible (𝑆), Infected (𝐼), and 

Recovered (𝑅). The model tracks the flow of individuals between these compartments over time using 

a set of differential equations [11-17]. 

The basic flow diagram and equations of the SIR model are as follows: 

 

Figure 1.1: Flow diagram of SIR Model 

 

1. Rate of change of Susceptible individuals (
𝑑𝑆

𝑑𝑡
):  
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𝑑𝑆

𝑑𝑡
= −𝛽 𝑆 𝐼 

Here, 𝑆 represents the number of susceptible individuals, 𝐼 represents the number of infected 

individuals, and β is the transmission rate, which represents the average number of contacts per person 

per time multiplied by the probability of disease transmission per contact. 

2. Rate of change of Infected individuals (
𝑑𝐼

𝑑𝑡
):  

𝑑𝐼

𝑑𝑡
= 𝛽 𝑆 𝐼 − 𝛾 𝐼 

The first term on the right side of the equation represents the rate at which susceptible individuals 

become infected, while the second term represents the rate at which infected individuals recover or 

leave the infected compartment. γ is the recovery rate, representing the inverse of the average duration 

of infectiousness. 

3. Rate of change of Recovered individuals (
𝑑𝑅

𝑑𝑡
):  

𝑑𝑅

𝑑𝑡
= 𝛾 𝐼 

This equation describes the rate at which individuals recover from the infection and move into the 

recovered compartment. The total population in this model is considered as 1. 

In summary, the SIR model describes how the number of susceptible individuals decreases as they 

become infected, how the number of infected individuals changes over time due to new infections and 

recoveries, and how the number of recovered individuals increases as infections are resolved. These 

differential equations provide a mathematical framework for simulating the dynamics of infectious 

disease spread within a population. 

1.3 Behavior Model 

Incorporating any interventions such as vaccination dynamics into the SIR model involves modifying 

the equations to include terms representing the vaccination rate and the proportion of vaccinated 

individuals [18-19]. The logistic equation can then describe how the vaccination coverage evolves, 

considering factors such as vaccine availability, hesitancy, cost, and the capacity for vaccine 

distribution. Here's the logistic equation for behavior change (vaccination) within the SIR model: 

Let 𝑉 represent the proportion of the population that is vaccinated. 

The logistic equation for vaccination within the SIR model can be expressed as follows: 

𝑑𝑉

𝑑𝑡
= 𝑚 𝑉 (1 − 𝑉) (𝑐 𝐼 − 𝑘 𝑐𝑣) 
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Where: 

• 𝑉 represents the proportion of the population that is vaccinated. 

• 𝑡 represents time. 

• 𝑚 is the inertial effect of the rate of vaccination. 

• 𝑐 is disease cost. 

• 𝑐𝑣 is the vaccination cost. 

• 𝐼 represents the number of infected individuals at time t.  

• 𝑘 is the sensitivity constant due to vaccination cost. 

The last term in the open bracket on the right side of the equation has two terms both are positive and 

must have the same unit. If 𝑐 𝐼 > 𝑘 𝑐𝑣, vaccination flow will increase, and if  𝑐 𝐼 < 𝑘 𝑐𝑣, then the 

vaccination flow will decrease. The term 𝑉 (1 − 𝑉) keeps the rate between 0 to 1. By incorporating the 

logistic equation for vaccination into the SIR model, it is easy to simulate how vaccination coverage 

evolves in response to the dynamics of the infectious disease outbreak and the vaccination campaign. 

This allows for the assessment of the impact of vaccination coverage on disease transmission and the 

effectiveness of vaccination strategies in controlling the spread of the disease within the population. 

1.4 Optimal Control Theory (Pontryagin’s Maximum Principle) 

 

Let us consider a simple example where Pontryagin’s Maximum Principle is applied to an epidemic 

model with vaccination as the control variable [20-28]. We’ll consider the basic SIR (Susceptible-

Infectious-Recovered) model mentioned in the previous section and introduce a control variable 

representing the vaccination rate. The objective is to minimize the total number of infections over a 

fixed time horizon. 

Here are the flow diagram and equations and the setup of the example: 

 

Figure 1.2: Flow diagram of SIR Model with vaccination where vaccination rate needs to be optimized 

 

1. Epidemic Model (SIR Model): 

𝑑𝑆

𝑑𝑡
= −𝛽 𝑆 𝐼 
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𝑑𝐼

𝑑𝑡
= 𝛽 𝑆 𝐼 − 𝛾 𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾 𝐼 

2. Control Variable (Vaccination Rate): 

We introduce a control variable 𝑢(𝑡) representing the vaccination rate at time 𝑡. The vaccination rate 

represents the proportion of susceptible individuals that are vaccinated per unit of time. 

3. Objective Function: 

We define the objective function 𝐽 as the integral of the number of infections over a fixed time horizon: 

𝐽 = ∫ 𝐼(𝑡)

𝑇

0

𝑑𝑡 

4. Constraints: 

We consider constraints on the vaccination rate 𝑢(𝑡) to ensure that it remains within feasible bounds 

(e.g., availability of vaccines, vaccination capacity, vaccination cost). 

5. Pontryagin’s Maximum Principle: 

We apply Pontryagin’s Maximum Principle to derive the optimal control strategy 𝑢(𝑡) that minimizes 

the objective function while satisfying the dynamics of the epidemic model and the constraints on the 

control variable. 

The optimal control problem can be formulated as follows: 

• Objective: Minimize the integral of the number of infections 𝐼(𝑡) over a fixed time horizon 𝑡. 

• Dynamics: Governed by the SIR model equations. 

• Control Variable: Vaccination rate 𝑢(𝑡). 

• Constraints: Constraints on the vaccination rate 𝑢(𝑡). 

• Optimization: Apply Pontryagin’s Maximum Principle to find the optimal vaccination strategy 

𝑢(𝑡) that minimizes the objective function while satisfying the system dynamics and constraints. 

Solving this optimal control problem using Pontryagin’s Maximum Principle yields the optimal 

vaccination strategy that minimizes the total number of infections over the specified time horizon, 

taking into account the dynamics of the epidemic and the constraints on vaccination. 
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1.5 Thesis Structure 

Each chapter of this thesis delves into distinct yet interconnected topics, with many having already 

undergone peer review and publication. Within each chapter, readers will find a comprehensive 

structure comprising a self-contained abstract, introduction, model description, results and discussion, 

conclusion, and reference list. This delineation underscores the autonomy of each section while also 

highlighting their interconnectedness. Chapters 2-5 primarily explore epidemic models intertwined with 

behavior models, while Chapter 6 shifts focus to epidemic models coupled with optimal control theory. 

Despite these thematic distinctions, the inherent connections among all chapters will be elucidated in 

the concluding section, offering a cohesive synthesis of the thesis's overarching themes and findings. 

 

Figure 1.3: Flow chart of the thesis. Chapters 2-5 are concerned with the epidemic model coupled with 

the behavior model and Chapter 6 is concerned with the inclusion of optimal control theory along with 

the epidemic model.   

Chapter 2 introduces an epidemiological model based on SEIR dynamics, integrating two interventions: 

self-quarantine and forced quarantine driven by human behavior dynamics. We explore disease spread 

within a population where individuals can choose self-quarantine by bearing costs for safety, while 

others behave normally until symptomatic, triggering government-imposed forced quarantine. The 

government covers forced quarantine costs within a budget limit. Each intervention, derived from the 

behavior model, is governed by a dynamic equation balancing costs, budget constraints, and infection 

risk. Our findings underscore the necessity of proactive enforcement to reduce infection peaks. 
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Additionally, comparative analysis highlights forced quarantine's superior efficacy in reducing disease 

prevalence and minimizing the social efficiency deficit, measuring the gap between social optimum and 

equilibrium payoff. 

Chapter 3 presents a two-strain epidemic model with a delayed appearance of the new strain. We explore 

two vaccination strategies—pre-infection and post-infection vaccinations—guided by human behavior 

dynamics. Individuals can choose vaccination before contracting the first strain or opt for post-recovery 

vaccination to mitigate the second strain. Both vaccinated and unvaccinated individuals remain 

susceptible to the second strain. The time delay allows additional vaccination opportunities and 

protection against the second strain. Our analysis, considering vaccine cost, severity of the new strain, 

and effectiveness, shows that delaying the second strain reduces the peak size of infections. Moreover, 

we find a decrease in the social dilemma associated with immunization as the arrival of the second 

strain is delayed. 

Chapter 4 introduces an epidemiological model with provaccination and antivaccination susceptible 

groups, examining the inherent social dilemma. Amidst pandemics like COVID-19, individuals face 

the decision between provaccination and antivaccination strategies, influenced by factors like infection 

rates and associated payoffs. Our model allows individuals to gain immunity through vaccination or 

natural infection, with waning immunity impacting strategy choices. Using the behavior model, we 

analyze how individuals choose between strategies based on infection rates. Those already infected 

weigh the cost of disease versus vaccination. Our findings show that at Nash equilibrium, both groups 

exhibit similar behavior. Increasing vaccination rates alleviate the social dilemma, while higher waning 

immunity exacerbates it. 

Chapter 5 presents a comprehensive epidemiological model incorporating multiple strains of an 

infectious disease and two vaccination options. While vaccination remains the most effective preventive 

measure, the presence of diverse vaccines, each with its costs and effectiveness, complicates individual 

decision-making. Additionally, waning immunity post-vaccination significantly influences these 

choices. Employing a behavioral model, we analyze how individuals decide amidst multiple strains and 

waning immunity. Factors such as the total number of infected individuals and vaccine cost-

effectiveness guide vaccination choices. Our findings show that with increasing waning immunity, 

individuals prioritize vaccines with higher costs and greater efficacy. Furthermore, in the presence of 

more contagious strains, equilibrium in vaccine adoption is reached more swiftly. Finally, we explore 

the social dilemma by quantifying the social efficiency deficit (SED) across various parameter 

combinations. 

Chapter 6 introduces a novel methodology utilizing optimal control theory (OCT) to assess the Social 

Optimum (SO) of a vaccination game, addressing complexities such as cost, availability, and 
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distribution policies. Using an SIRS/V epidemic model enhanced with a behavior model, we analyze 

individual vaccination strategies. Our unique optimal control framework, focusing on vaccination costs, 

differs significantly from previous approaches. Results affirm the efficacy and practicality of this 

method in managing vaccination strategies. Additionally, we investigate the social dilemma underlying 

the vaccination game by examining key parameters. By computing the Nash equilibrium (NE) using 

the behavior model and determining the SO via our method, we quantify the Social Efficiency Deficit 

(SED), measuring the total cost disparity between the NE and SO. Findings indicate that a higher 

waning immunity rate exacerbates the social dilemma, although increasing vaccination costs somewhat 

alleviates it. This research provides valuable insights into optimizing vaccination strategies amidst 

complex societal dynamics. 
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Chapter 2 

 
Investigating the trade-off between self-quarantine and forced quarantine provisions to 

control an epidemic: an evolutionary approach 

 

Abstract 

 

During a pandemic event like the present COVID-19, self-quarantine, mask-wearing, hygiene 

maintenance, isolation, forced quarantine, and social distancing are the most effective 

nonpharmaceutical measures to control the epidemic when vaccination and proper treatments are 

absent. In this study, we proposed an epidemiological model based on the SEIR dynamics along with 

the two interventions defined as self-quarantine and forced quarantine by human behavior dynamics. 

We consider a disease spreading through a population where some people can choose the self-quarantine 

option of paying some costs and be safer than the remaining ones. The remaining ones act normally and 

are sent to forced quarantine by the government if they get infected and symptomatic. The government 

pays the forced quarantine costs for individuals, and the government has a budget limit to treat the 

infected ones. Each intervention derived from the so-called behavior model has a dynamical equation 

that accounts for a proper balance between the costs for each case, the total budget, and the risk of 

infection. We show that the infection peak cannot be reduced if the authority does not enforce a 

proactive (quantified by a higher sensitivity parameter) intervention. While comparing the impact of 

both self- and forced quarantine provisions, our results demonstrate that the latter is more influential in 

reducing the disease prevalence and the social efficiency deficit (a gap between social optimum payoff 

and equilibrium payoff).  

2.1 Introduction 

Quarantine, lockdowns, and other distancing restrictions may be the only way to stop a pandemic from 

spreading, especially if there are no vaccinations or proper medications available to treat the symptoms 

of infection [1-15]. Epidemiologists and other professionals usually define these social principles but 

putting them into practice can be very difficult [9, 16]. Despite evidence of prospective concerns, the 

current COVID-19 situation reveals how certain people are more prone to self-isolation under voluntary 

quarantine than others. Individuals who refuse to accept any type of limitation put themselves and their 

communities at risk. In these situations, knowing how to encourage and maintain prosocial behavior is 

crucial [9]. 

In this study, we examine the impact of individual quarantine preferences and government-imposed 

quarantine on epidemic dynamics. We model an individual’s decision to commit to self-quarantine 

based on the overall scenario, including the number of infected people, self-quarantine cost, and self-

quarantine effort, as well as the government’s decision to maintain the forced quarantine based on the 



12 

 

forced quarantine cost, total budget, and number of infected peoples, using evolutionary game theory 

(EGT) [17-19]. 

Currently, sustaining self-quarantine by individuals and compulsory quarantine by the government are 

the two most powerful control strategies against the transmission of SARS-CoV2 during this COVID-

19 epidemic [20–23]. There are substantial disagreements among people in various locations about 

maintaining self-quarantine, particularly in low-income countries where everyone cannot pay the cost 

of self-quarantine because of economic constraints. However, in many nations, the government has 

funding constraints, space constraints, healthcare personnel, and instrumentation constraints when 

caring for diseased people. These behavioral treatments have already demonstrated their value in 

studying the interaction between illnesses and human decision-making in the context of social dilemmas 

[24–30]. 

Compartmental models, a common tool in epidemiology and current health management systems, are 

widely used to investigate a pandemic or epidemic process [1, 6, 7, 9, 11, 15, 18, 26, 29–37]. One of 

the most widely used epidemiological models is the SIR model [32, 38, 39]. It shows how illness spreads 

in agents from the susceptible compartment, S, to the infectious compartment, I, and finally to the 

recovered (or eliminated) compartment R, imparting immunity against re-infection [9]. It has been 

widely used to retrieve relevant parts of epidemic processes that have the SIR structure despite its 

simplicity [9, 34, 38–41]. Since its creation by Kermack and McKendrick, the model has been 

thoroughly explored and expanded to meet a variety of hypotheses and situations [9]. Some epidemics, 

for example, may demand the addition of additional compartments, such as those harboring exposed, 

asymptomatic agents, Quarantined agents, and Hospitalized agents (known as SEIR, SEAIR, SEIAQR, 

SEIAQHR models respectively) [9, 42–45]. Other applications for compartmental models in 

epidemiology include the investigation of control and mitigation techniques such as vaccination, the 

modeling of vector-borne diseases, and the effects of birth and death dynamics [9, 39]. Even the 

propagation of misinformation and corruption has found a natural home in the SIR model [9]. However, 

most of these models focus solely on illness progression, with agents doing no conscious activities 

concerning the condition [9]. Meanwhile, many infectious disease control techniques rely on individual 

decision-making. In this setting, the new discipline of behavioral epidemiology [9, 39, 42, 46, 47], 

which applies psychology, and game theory approaches to epidemiology, has attracted significant 

attention. Behavioral epidemiology considers dynamic behavior changes instead of static roles for 

agents. This is ideal ground for the new field of social dynamics or sociophysics, which combines 

statistical physics tools with evolutionary game theory (and other approaches) to better understand 

human behavior [9,17]. For example, Bauch used a unique way to examine vaccination decision 

dynamics by including a SIR model into an EGT framework [46, 47]. Agents adjust their vaccination 

strategy dynamically because of based on their perceptions of the vaccine’s advantages and costs. This 

was eventually developed into the framework of “vaccination games” [24, 46, 48–51]. As a result of 
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this technique, several intriguing observations and predictions in vaccination procedures have been 

made. Unfortunately, vaccination is not always an option, and social isolation may be the only method 

to keep the disease from spreading further. This was true during the Spanish flu, the SARS epidemic of 

2002–2003, and most recently, the COVID-19 pandemic [9, 52–53]. 

We modeled the epidemic formulation using the epidemic technique, where the population is initially 

divided into two divisions: committing self-quarantine and acting normally. From a game-theoretical 

perspective, individuals can go from the normal active state to the self-quarantine state based on their 

choices. Similarly, the government can send symptomatic sick people to a forced quarantine condition. 

EGT provides a framework for describing individual behavior in situations where people’s preferred 

options are committing self-quarantine or not, as well as being sent to coercive quarantine or not. We 

also used the cost of individuals’ self-quarantine, the cost of individuals’ forced quarantine, and overall 

government expenditure in this study. Finally, to get the social dilemma in EGT, the model introduces 

the concept of social efficiency deficit (SED), which is the difference between Nash equilibrium (NE) 

and social optimum (SO) [1, 8, 24, 29–30]. 

2.2 Model Description 

2.2.1 Epidemiological model 

We propose an epidemiological model based on the SEIR dynamics. We also introduce two behaviors 

known as self-quarantine by individuals and forced quarantine by the government. Figure 1 shows the 

schematic of the proposed model, and the formulation is given as follows: 

 

Figure 1: Schematic of the proposed model. 

𝑑𝑆𝑁(𝑡)

𝑑𝑡
= −𝑆𝑁 ∙ (𝛽𝑁 ∙ (𝜀𝐼 ∙ 𝐼𝐴(𝑡) + 𝐼𝑆(𝑡) + 𝜀𝑄 ∙ 𝑄(𝑡))) − 𝑥(𝑡) .  𝑆𝑁(𝑡)                               (1.1), 

𝑑𝑆𝑄(𝑡)

𝑑𝑡
= −𝑆𝑄 ∙ (𝛽𝑄 ∙ (𝜀𝐼 ∙ 𝐼𝐴(𝑡) + 𝐼𝑆(𝑡) + 𝜀𝑄 ∙ 𝑄(𝑡))) + 𝑥(𝑡) .  𝑆𝑁(𝑡)                  (1.2), 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝑆𝑁 ∙ (𝛽𝑁 ∙ (𝜀𝐼 ∙ 𝐼𝐴(𝑡) + 𝐼𝑆(𝑡) + 𝜀𝑄 ∙ 𝑄(𝑡))) + 𝑆𝑄 ∙ (𝛽𝑄 ∙ (𝜀𝐼 ∙ 𝐼𝐴(𝑡) + 𝐼𝑆(𝑡) + 𝜀𝑄 ∙ 𝑄(𝑡))) − 𝜎 ∙ 𝐸(𝑡) (1.3), 
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𝑑𝐼𝐴(𝑡)

𝑑𝑡
= 𝜉 ∙ 𝜎 ∙ 𝐸(𝑡) − 𝛾 ∙ 𝐼𝐴(𝑡)                      (1.4), 

𝑑𝐼𝑆(𝑡)

𝑑𝑡
= (1 − 𝜉) ∙ 𝜎 ∙ 𝐸(𝑡) − 𝛾 ∙ 𝐼𝑆(𝑡) − 𝑦(𝑡) ∙ 𝐼𝑆(𝑡)                       (1.5), 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝑦(𝑡) ∙ 𝐼𝑆(𝑡) − 𝛾 ∙ 𝑄(𝑡)                       (1.6), 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾 ∙ (𝐼𝐴(𝑡) + 𝐼𝑆(𝑡) + 𝑄(𝑡))                       (1.7), 

𝑆𝑁(𝑡) + 𝑆𝑄(𝑡) + 𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝑆(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) = 1                    (1.8), 

where, 𝑆𝑁, 𝑆𝑄 , 𝐸, 𝐼𝐴, 𝐼𝑆, 𝑄, and 𝑅 are the fractions of susceptible acting normal, susceptible self-

quarantine, exposed (i.e., infected but not infectious), asymptomatic infected, symptomatic infected, 

forced quarantine, and recovered individuals, respectively. Susceptible normal people get exposed at a 

rate of 𝛽𝑁, and susceptible people commit self-quarantine getting exposed at a rate of  𝛽𝑄. Clearly, 𝛽𝑁 >

𝛽𝑄. At a rate 𝜉, the exposed people go to the asymptomatic infected state. In our model, we choose the 

asymptomatic infected people quite low than the symptomatic infected people. 𝛾 is the recovered rate 

for all people. 𝜎 is the rate of progression from 𝐸 to 𝐼𝐴 or 𝐼𝑆. 𝜀𝐼 and 𝜀𝑄 are the contact discount factors 

for the asymptomatic infected people and forced quarantined people, respectively. Obviously, 𝜀𝐼 >

𝜀𝑄 ≈ 0, because people get infected by having contact with the asymptomatic people while people are 

not getting a chance to contact the forced quarantined people due to the quarantine policy.   The contact 

discount factor for the symptomatic infected people is set at 1 because people always get infected by 

having contact with symptomatic people.   

2.2.2 Behavior model 

We introduce the concept of behavior model [46, 47, 54] which accounts for the time-varying flux from 

normal acting susceptible (𝑆𝑁) to self-quarantine susceptible (𝑆𝑄) denoted by 𝑥, which we call the 

individual control, and from the symptomatic infected (𝐼𝑆) to forced quarantine (𝑄) denoted by 𝑦, which 

we call the government control. We define the following two dynamical equations: 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝜏𝑥 ∙ 𝑥(𝑡) ∙ (1 − 𝑥(𝑡)) ∙ [(𝐼𝑆 + 𝑄) ∙ 𝐶𝐼 −𝑤.  ∆𝑄]                              (1.9), 

𝑑𝑦(𝑡)

𝑑𝑡
= 𝜏𝑦 ∙ 𝑦(𝑡) ∙ (1 − 𝑦(𝑡)) ∙ [𝐴𝑝 − (𝛿𝐼𝑆+𝑄) ∙ ∫ 𝑦(𝜏)

𝑡

0
𝑑𝜏]               (1.10),  

where 𝜏𝑥 and 𝜏𝑦 are the effort rate by individuals and government, respectively. (𝐼𝑆 + 𝑄) is the total 

number of visible infected people, 𝐶𝐼 is the disease cost which is set as 1.0 throughout the study. 

Parameter 𝑤 is the relative sensitivity resulting from taking self-quarantine to reduce self-quarantine 

due to its cost Δ𝑄 [54]. 𝛿𝐼𝑆+𝑄 is the cost for an individual to treat the forced quarantine people. 𝐴𝑃 is 

the government total budget for the treatment of the forced quarantine people. All the model parameters 

and their description are shown in Table 1.  
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Table 1: List of parameters and their description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also investigated the possibility of susceptible self-quarantined people returning to their susceptible 

normal behaving state [31], but the results were similar using both directions with one direction. We 

only investigated the one-way direction from susceptible normal to susceptible self-quarantine.  

 

2.2.3 Basic Reproduction Number 

To obtain the basic reproduction number (𝑅0), we use the next-generation matrix approach  [31, 38, 39, 

42, 55, 56]. Using the infected class equations (1.3–1.5), we obtain 

ℱ = (
(𝑆𝑁𝛽𝑁𝜀𝐼 + 𝑆𝑄𝛽𝑄𝜀𝐼)𝐼𝐴 + (𝑆𝑁𝛽𝑁 + 𝑆𝑄𝛽𝑄)𝐼𝑆 + (𝑆𝑁𝛽𝑁𝜀𝑄 + 𝑆𝑄𝛽𝑄𝜀𝑄)𝑄

𝜉𝜎𝐸
(1 − 𝜉)𝜎𝐸

),   𝜈 = (

𝜎𝐸
𝛾𝐼𝐴

(𝛾 + 𝑦)𝐼𝑆

). 

At disease-free equilibrium (DFE), we have 

Parameters Description 

𝛽𝑁 Disease Transmission rate from 𝑆𝑁  

𝛽𝑄 Disease Transmission rate from 𝑆𝑄  

𝜎 Rate of progression from E to 𝐼𝐴 or 𝐼𝑆 

𝜉 Asymptomatic infection rate 

𝛾 Recovery rate 

𝜏𝑥 Self-quarantine effort rate 

𝜏𝑦 Forced quarantine effort rate  

∆𝑄 Self-quarantine cost for individual 

𝜀𝐼 Contact discount factor for asymptomatic people 

𝜀𝑄 Contact discount factor for forced quarantine people 

𝐴𝑝 Government total budget (resource) 

𝛿𝐼𝑆+𝑄 Forced quarantine cost for individual 

𝑤 Relative sensitivity due to individual’s self-quarantine cost  
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𝐹 = (

0 (𝑆𝑁0𝛽𝑁𝜀𝐼 + 𝑆𝑄0𝛽𝑄𝜀𝐼) (𝑆𝑁0𝛽𝑁 + 𝑆𝑄𝑜𝛽𝑄)

𝜉𝜎 0 0
𝜎(1 − 𝜉) 0 0

),               𝑉 = (
𝜎 0 0
0 𝛾 0
0 0 𝛾 + 𝑦

). 

Next-generation matrix, 𝑀 = 𝐹𝑉−1 = (
0

(𝑆𝑁0𝛽𝑁𝜀𝐼+𝑆𝑄0𝛽𝑄𝜀𝐼)

𝛾

(𝑆𝑁0𝛽𝑁+𝑆𝑄𝑜𝛽𝑄)

𝛾+𝑦

𝜉 0 0
(1 − 𝜉) 0 0

). 

Thus, we obtain the basic reproduction number as follows:  

𝑅0 = √
𝑆𝑁0𝛽𝑁+𝑆𝑄0𝛽𝑄

𝛾+𝑦
(1 − 𝜉) + 𝜉

𝑆𝑁0𝛽𝑁𝜀𝐼+𝑆𝑄0𝛽𝑄𝜀𝐼

𝛾
                         (1.11), 

at DFE = (𝑆𝑁0 , 𝑆𝑄0 , 0,0,0,0,0). 

The basic reproduction number in our model decreases monotonically with an increase in 𝑦 because it 

depends on the factors and government control flux 𝑦 (Figure 2). 

 

Figure 2: Basic reproduction Number (1.11) in terms of forced quarantine rate 𝑦. Here, 𝑆𝑁0 =

0.9887, 𝛽𝑁 = 1.0, 𝑆𝑄0 = 0.01, 𝛽𝑄 = 0.5, 𝛾 = 0.1, 𝜀𝐼 = 0.6, 𝜉 = 0.1. With the increasing 𝑦 from 0 to 

1, 𝑅0 reduces to 2.82 to 1.85. 

2.2.4 Final Epidemic size, critical point, average social payoff, and social efficiency deficit 

In the present model, final epidemic size (FES) [42, 54] is defined as  

𝐹𝐸𝑆 = 𝑅(∞)                   (1.12),  

where the argument ∞ denotes a state of equilibrium (let us call it as, NE) at 𝑡 = ∞ [54]. 

We also define the difference in FES between with and without interventions: 

∆𝐹𝐸𝑆 = FES(No intervention) − FES(with both interventions)             (1.13). 
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∆𝐹𝐸𝑆 is mainly controlled by ∆𝑄 and 𝛿𝐼𝑆+𝑄. One interesting exploration is the analysis of critical points 

(∆𝑄 , 𝛿𝐼𝑆+𝑄) such that the reduced cost by both interventions, i.e., exactly quantified by ∆𝐹𝐸𝑆, is 

stringently equal to the sum of the total self-quarantine cost and total forced quarantine cost, i.e., 

∆𝐹𝐸𝑆 = Total self − quarantine cost (at t = ∞) + Total forced quarantine cost (at t = ∞)   (1.14). 

The average social payoff, ASPNE, in the model, can be defined as follows [54]: 

𝐴𝑆𝑃𝑁𝐸 = (−∆𝑄) ∙ ∫ 𝑥(𝑡) ∙  𝑆𝑁(𝑡) 𝑑𝑡
∞

0
+ (−𝛿𝐼𝑆+𝑄) ∙ ∫ 𝑦(𝑡) ∙  𝐼𝑆(𝑡)

∞

0
 𝑑𝑡 − 𝐶𝐼 ∙  𝑅(∞)           (1.15). 

where the first term on the right-hand side indicates the total cost of committing self-quarantine, the 

second term indicates the total cost of the implementation of forced quarantine, and the third term 

indicates the individual’s disease cost (𝐶𝐼 = 1.0) who should be called as a failed free rider [54]. 

Since the rates of self- and forced quarantine provisions change over time according to the behavior 

dynamics (Eq. (1.9-1.10)), the overall social gain estimated at the equilibrium (i.e., 𝐴𝑆𝑃𝑁𝐸 in Eq. (1.15)) 

may not reach the expected social optimum (say, ASPSO). In other words, there might be a gap between 

the overall payoffs at social optimum and equilibrium. Such a gap is formally called social efficiency 

deficit (SED) [29], which helps us understand the existence of social dilemmas as well as the control 

parameters to improve the system towards social optimum. SED demonstrates how to improve the 

system's ASP from an evolutionary final state (NE) to a social ideal situation to achieve the maximum 

ASPSO that could be realized if both the evolutionary processes for 𝑥 and 𝑦 are optimally controlled 

[54]. SED is mathematically defined as follows: 

𝑆𝐸𝐷 = 𝐴𝑆𝑃𝑆𝑂 − 𝐴𝑆𝑃𝑁𝐸                  (1.16).  

The social optimal state can be defined as a time-constant vector (𝑥𝑓𝑜𝑟 𝑆𝑂 , 𝑦𝑓𝑜𝑟 𝑆𝑂), both elements 

ranging from [0,1]. So, 

𝑺𝑶 = argmax [𝐴𝑆𝑃(𝑥𝑓𝑜𝑟 𝑆𝑂, 𝑦𝑓𝑜𝑟 𝑆𝑂)]                 (1.17). 

There is no dilemma when NE is consistent with SO, meaning that SED implies zero. However, when 

a positive nonzero SED occurs, a certain amount of social dilemma exists [54]. 

2.3 Result and Discussion 

2.3.1 Standard (Basic) case: Figure 3 shows the time-series graph using the standard (basic) set of 

parameters for the proposed model. Table 2 shows the standard values of the parameters. 
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Table 2: Parameters and their values (Standard case) 

Parameter Value Parameter Value 

𝛽𝑁 1.0 𝜏𝑦 1.0 

𝛽𝑄 0.5 ∆𝑄, 𝛿𝐼𝑆+𝑄 0.01 

𝜎 0.9 𝜀𝐼 0.6 

𝜉 0.1 𝜀𝑄 0.0 

𝛾 0.1 𝐴𝑝 1.0 

𝜏𝑥 1.0 𝑤 0.1 

 

Additionally, the initial values for the compartments are considered as: 𝑆𝑁[0] = 0.9887, 𝑆𝑄[0] =

0.01, 𝐸[0] = 0.0001, 𝐼𝐴[0] = 0.001, 𝐼𝑆[0] = 0.0001,𝑄[0] = 0.0001, 𝑅[0] = 0.0, 𝑥[0] =

0.0001, 𝑦[0] = 0.0001. 

Figure 3 confirms the present model fairly shows plausible dynamics accounting for all the aspects built 

into our model. 

 

Figure 3: Time series for all compartments. The blue curve depicts susceptible people acting normally; 

the orange curve depicts susceptible people who have self-quarantined themselves; and the brown curve 

depicts people who have been infected and forced quarantined by the government at time 𝑡. The final 

epidemic size is determined by the pink curve. The green, red, and violet curves represent the exposed, 

asymptomatic infected, and symptomatic infected patients, respectively. Here, all the parameters are 

taken as the standard one from Table 2. 
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2.3.2 Self- versus forced quarantine 

Figure 4 shows the trade-off between self- and forced quarantine in diminishing the epidemic size. We 

set the self-quarantine effort rate to 1 (100%) in the first column but varied the forced quarantine rate 

to 30%, 50%, and 70%. The results illustrate that as the forced quarantine effort rate increases, the 

ultimate epidemic size decreases steadily, and it reduces to its smallest when the effort rate is 100%. 

The forced quarantine, in contrast to the self-provision, also reduces the peak epidemic size (see the 

first column in Fig. 4). In the second column, we varied the self-quarantine effort while keeping the 

maximum forced quarantine rate at 1. It is worth noting that as the self-quarantine effort was increased, 

more people moved from the 𝑆𝑁 stage to the 𝑆𝑄 stage, meaning that people’s awareness is growing 

aiding the epidemic management. 

 

Figure 4: The entire population’s time series is depicted in this graph by adjusting the self-quarantine 

and forced quarantine effort rates. The other parameters and initial values are left at their default settings 

(Figure 3). In the three graphs of the first column, 𝜏𝑥 is fixed as 1, and 𝜏𝑦varies with 0.3, 0.5, and 0.7, 

respectively. Similarly, in the second column, 𝜏𝑦 is fixed as 1, but 𝜏𝑥 varies with 0.3, 0.5, and 0.7, 

respectively. In the first column, we can see that increasing the governmental effort can reduce the 

infection peak, whereas in the second column a proactive intervention by the government (𝜏𝑦 = 1.0) 

indirectly influences people to adhere to voluntary self-provision (orange colored line in the second 
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column). Also, a higher sensitivity (i.e., higher 𝜏𝑥) increases the proportion of self-quarantined 

individuals. 

2.3.3 Varying the Governmental Total Budget   

Figure 5 shows the time evolution of the symptomatic infected, self-quarantined, and forced quarantined 

individuals. We demonstrate the results by varying the governmental budget. In the first graph, we see 

that increasing the budget reduces the peak size of symptomatic infected people. If the budget is kept 

at a minimum level meaning that if there is no governmental intervention, the peak of infected people 

occurs around 0.6, i.e., 60% of the total population can be infected. Increasing the budget can 

successively reduce the peak of infected people because the government can provide more facilities.  In 

the second graph, increasing the total budget also increases the number of self-quarantine people as 

people are motivated by the government to increase themselves for committing self-quarantine. In the 

third graph, we can see that increasing the budget also increases the number of people in forced 

quarantine but, as self-quarantine increases there is less necessity to make people forced quarantined 

because the infected people are reduced due to conforming self-quarantine. Thus, forced quarantine is 

reduced by increasing the budget to the maximum level.   

 

Figure 5: Time series of symptomatic infected people (𝐼𝑠), self-quarantine people (𝑆𝑄) and forced 

quarantine people (𝑄) are shown by varying the government's total budget 𝐴𝑝 from 0 to 1 where all the 

remaining parameters are taken as standard cases. 

2.3.4 Final epidemic size, time accumulated self-quarantine, time accumulated forced quarantine: 

In this section, we show some heatmaps (Figures 6, 7, and 8) of FES, time-integrated self-quarantine, 

and time-integrated forced quarantine when the parameters that primarily contribute to the basic 

reproduction number are varied. We also justify our parameter assumptions. We modify two parameters 

in each graph, while the remaining values are fixed according to our standard assumption. 

As shown in Figure 6, row (1), we can see that raising 𝜏𝑦 reduces FES while increasing 𝜏𝑥 does not 

affect FES. We can also observe that increasing 𝜏𝑥 and 𝜏𝑦 sends more people into self-quarantine 

conditions. Increasing 𝜏𝑦 also causes more people to be forced into quarantine.  
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In row (2), the disease transmission rate from normal-acting people, 𝛽𝑁, must be close to 1 to notice 

any influence on FES, whereas the disease transmission rate from the self-quarantined people, 𝛽𝑄, can 

be set anywhere from 0 to 1.  

In row (3), the asymptomatic infection rate, 𝜉, should be lower to keep people in the self-quarantine and 

forced quarantine states. Increasing 𝜉 makes the FES larger.  

 

Figure 6: Heatmaps of FES,∑ SQ , ∑Q. Three different types of heatmaps are shown in each of the three 

rows. In the first column, FES is represented by a color bar ranging from 0 to 1. In the second and third 

columns, time-integrated self-quarantined and time-integrated forced-quarantined people are 

represented by a color bar ranging from 0 to 0.6. In the first row, the panels are displayed by varying 𝜏𝑥 

and 𝜏𝑦 from 0 to 1. The remaining parameters are set fixed with the standard ones. Similarly, in rows 2 

and 3, the panels are displayed by varying 𝛽𝑄  and 𝛽𝑁, 𝜉 and 𝛽𝑁 from 0 to 1. Apparently, 𝜏𝑦 plays a 

pivotal role in reducing FES. Also, the fraction of self-conscious individuals (𝑆𝑞) increases with 𝛽𝑁 

(second heatmap in the second row) although it does not improve the epidemic scenario as the self-

provision is not perfect (first heatmap in the second row).  
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In rows (1–3) of Figure 7, increasing the contact discount factor for asymptomatic people 𝜀𝐼 increases 

the FES. Like the previous panels of Figure 5, the setting 𝛽𝑄 from 0 to 1 does not have any significant 

impact on the FES. Increasing of  𝜉 can increase FES which is also observed in the previous panels of 

Figure 6. 

 

Figure 7: Heatmaps of FES,∑ SQ , ∑Q. In each of the three rows, three different kinds of heatmaps are 

displayed. A color bar ranging from 0 to 1 represents FES in the first column. A color bar ranging from 

0 to 0.6 is used in the second and third columns to represent time-integrated self-quarantined and time-

integrated forced-quarantined people. In the first row, the panels are displayed by varying 𝜀𝐼 and 𝛽𝑁 

from 0 to 1. The remaining parameters are set fixed with the standard ones. Similarly, from rows 2 to 

3, the panels are displayed by varying 𝜀𝐼 and 𝛽𝑄 , 𝜉 and 𝛽𝑄 , respectively, from 0 to 1.  

In row 1 of Figure 8, increasing the self-quarantine cost for an individual from 0 to 0.1 does not have 

an impact on the reduction of FES but increasing the individual cost for forced quarantine greater than 

0.03 significantly increases the value of FES. Additionally, the government’s total budget needs to be 

set greater or equal to 1 (rows 2 and 3) to reduce the FES. 

These results, Figs. 6–8 confirm the sensitivities from major model parameters on FES and the total 

amount of quarantine individuals, which seems quite plausible.  
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Figure 8: Heatmaps of FES,∑ SQ , ∑Q. Each of the three rows contains three different types of 

heatmaps. A color bar ranging from 0 to 1 represents FES. A color bar ranging from 0 to 0.6 represents 

time-integrated self-quarantined and time-integrated forced-quarantined people in the second and third 

columns, respectively. In the first row, the panels are displayed by varying ∆𝑄  and 𝛿𝐼𝑆+𝑄 from 0 to 0.1. 

The remaining parameters are set fixed with the standard ones. Similarly, from rows 2 to 3, the panels 

are displayed by varying    ∆𝑄  and 𝐴𝑃,  𝛿𝐼𝑆+𝑄 and 𝐴𝑃 where ∆𝑄 and 𝛿𝐼𝑆+𝑄  vary from 0 to 0.1 and 𝐴𝑃 

varies from 0 to 1.     

2.3.5 𝚫𝐅𝐄𝐒 and critical points 

In this section, we show (Figure 9) the previously defined critical points and their consecutive lines, as 

well as the ∆𝐹𝐸𝑆 in terms of the two cost parameters. In the region below the critical line, the total cost 

for self-quarantine and forced quarantine is less than the reduction of disease cost, indicating a favorable 

situation for cost-effective epidemic control by the two quarantine policies. When we reduce the self-
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quarantine effort (𝜏𝑥) by half (second panel of the first row), ∆𝐹𝐸𝑆 decreases, implying less extent of 

reduction on FES by both interventions. Needless to say, it is a worse scenario than the standard settings. 

If we reduce the forced quarantine effort (𝜏𝑦) (third panel of the first row), the situation deteriorates 

even more than in the previous two cases. Increasing (first panel of the second row) and decreasing 

(second panel of the second row) 𝛽𝑄 results in a worse and better scenario than the standard case that 

is conceivable. As the rate of asymptomatic infection (𝜉) rises (third panel of the second row), the 

situation worsens. 

   

Figure 9: Δ𝐹𝐸𝑆 and critical lines are presented to observe the reduced cost margin using both 

interventions. In this figure, all panels represent the difference between FES with no intervention and 

FES with both interventions with a color bar ranging from 0 to 0.4 in terms of the individual cost 

parameters ∆𝑄  𝑎𝑛𝑑 𝛿𝐼𝑆+𝑄. All critical points are linked to form a line where the total cost of the 

epidemic equals the difference of two FES. With the standard set of parameters, Δ𝐹𝐸𝑆 is represented in 

the first panel (upper leftmost) by green, yellow, and red zones, with moving from green to red 

indicating an increase in FES. Keeping the value of 𝛿𝐼𝑆+𝑄 less than 0.03, is the best option to make the 

government intervention more successful. The critical line marked the maximum value of cost 

combining the two total costs that can be used to control the epidemic. It was observed that, for the first 

panel when the self-quarantine cost for individual ∆𝑄 is zero the forced quarantine cost for individual 

𝛿𝐼𝑆+𝑄  must be less than 0.087, and if ∆𝑄= 0.1, the maximum in our consideration, 𝛿𝐼𝑆+𝑄 must be less 
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than 0.067. The remaining panels are presented by changing the other focal parameters 

(𝜏𝑥 , 𝜏𝑦, 𝛽𝑄  𝑎𝑛𝑑 𝜉) of the model and observed the different values for ∆𝑄 𝑎𝑛𝑑 𝛿𝐼𝑆+𝑄 to control the 

epidemic.      

2.3.6 ASP and SED 

Figure 10 shows the heatmaps of FES, time-integrated 𝑆𝑄, and time-integrated 𝑄 along the cost 

parameters for NE (row 1) and SO (row 2). In row 3, ASPNE and ASPSO are presented along with the 

SED for the standard set of parameters. Here, we observe that increasing the value of 𝛿𝐼𝑆+𝑄brings higher 

FES (because of less incentive to quarantine), while increasing the value of Δ𝑄 has less effect on FES 

in NE. In SO, we can observe less FES because the maximum flux of 𝑥 = 1.0 and 𝑦 = 1.0 brings the 

minimum FES, and most people are moving to the 𝑆𝑄 state. Consequently, the ASPSO is very close to 

zero. Thus, SED is similar to ASPNE. We observe that increasing the value of 𝛿𝐼𝑆+𝑄 brings more positive 

value to SED; thus, the social dilemma increases.  

Note that the SED is featured with a larger sensitivity in 𝛿𝐼𝑆+𝑄 direction than that in ∆𝑄 direction. It is 

paraphrased by the allegation that the government could solve a more severe social dilemma than that 

imposed on each individual around whether he/she is committing self-quarantine by increasing the 

government’s effort to let more infected individuals be forcefully quarantined. Thus, the social dilemma 

acting on the government level (through the provision of forced quarantine) is more severe than another 

social dilemma acting on an individual level (around self-quarantine). This is because governmental 

intervention through forced quarantine is more effective in preventing disease from spreading. This fact 

might be conceivable because self-quarantine works in an ‘ex-post’ way where infected people who 

quarantine never get infected again (they must stay at 𝑄; see Figure 1). However, self-quarantine only 

works as pre-emptive; an individual once self-quarantined may (may not) get infected sooner or later.  
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Figure 10: FES,∑ SQ , ∑Q, ASP at NE, SO, and SED to observe the social dilemma. In this figure, the 

FES, time-integrated 𝑆𝑄, and time-integrated 𝑄 are represented in the first two rows for the case of Nash 

equilibrium and social optimum in terms of the cost parameters ∆𝑄  𝑎𝑛𝑑 𝛿𝐼𝑆+𝑄. FES panels are displayed 

with a color bar ranging from 0 to 1, whereas 𝑆𝑄 and 𝑄 panels are displayed with a color bar ranging 

from 0 to 0.7. In the third row, ASP at NE and SO are displayed with a color bar ranging from −1.2 to 

0.0, and SED is displayed with a color bar ranging from 0.0 to 1.2. The governmental intervention cost 

seems more influential in reducing the disease prevalence and social efficiency deficit.  

Figure 11 shows some other combinations for ASPNE and corresponding SED. For the first case (1st and 

3rd panels of row 1), if 𝜏𝑥 = 0.5, i.e., the effort rate of self-quarantine is reduced, then ASPNE and SED 

almost behave the same as the standard case, meaning that increasing the forced quarantine costs for 

individuals increases the social dilemma. However, if 𝜏𝑦 is reduced (2nd and 4th panels of row 1), ASPNE 

is getting lower bringing SED higher; thus, the social dilemma increases more than the standard case, 

which is not an ideal situation to control the epidemic. If the transmission rate 𝛽𝑄 reduces (1st and 3rd 

panels of row 2), more people stay in the 𝑆𝑄  state, resulting in a dilemma that reduces more than the 

standard case. Similarly increasing 𝛽𝑄 (2nd and 4th panels of row 2) increases the value of FES, and 
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more people are going to be infected; thus, reducing reduces the dilemma more than the standard case. 

If the asymptomatic infection rate (𝜉) increased (row 3), FES also increased, and the value of SED gets 

closer to zero, meaning that there is no dilemma when most of the people are asymptomatic.    

 

Figure 11: ASP at NE and corresponding SED to observe the social dilemma. In this figure, different 

ASPs at NE are displayed along with the corresponding SED with a color bar ranging from −1.2 to 0.0 

and 0.0 to 1.2, respectively. All panels are drawn in terms of the cost parameters ∆𝑄 𝑎𝑛𝑑 𝛿𝐼𝑆+𝑄.  

2.4 Conclusion 

In this study, we developed an epidemiological model based on SEIR dynamics that considers dynamic 

human behavior for individuals and governments regarding self-quarantine and forced quarantine, 

respectively. The aim was to observe the interplay between both provisions towards controlling disease 

spreading. In general, imposing compulsory quarantine by the government seems more effective in 

containing the disease than self-quarantine. We also demonstrated that increasing the government’s 

compulsory quarantine rate can considerably reduce the value of the basic reproduction number. 

Additionally, we observed that a proactive authoritative measure (quantified by a higher sensitivity to 

forced quarantine) upsurges the fraction of self-quarantine (Fig. 4), which intuitively indicates that the 

government’s increased effort made people more aware of the importance of self-quarantine. In terms 
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of cost parameters, we observed that the government must keep the cost of forced quarantine under 

control, whereas the cost of self-quarantine does not need to be regulated.  

We further demonstrated the impact of both provisions in reducing the social efficiency deficit, which 

is quantified by the gap between the overall payoff at the social optimum and equilibrium. Our results 

suggest that authoritative intervention (i.e., forced quarantine) is more effective in reducing such deficit. 

The analysis of SED reveals that there are rich and complex dynamics depending on the cost of forced 

quarantine for individuals, but not so much on the cost of self-quarantine for individuals. Also, by 

observing the features at NE with the prediction of our behavior model, human decisions have an inertial 

influence which allows humans to take certain preventive measures to slow the disease from spreading.  

We intend to expand our models in the future. We might add a vaccine compartment, where people can 

choose their immunization to limit the danger of a pandemic. The government should focus on overall 

vaccination coverage to lower the death rate. We are also looking into how the inclusion of multi-strain 

epidemic models affects social behavior, such as self-quarantine or vaccination. 
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Chapter 3 

Time delay of the appearance of a new strain can affect vaccination behavior and disease 

dynamics: An evolutionary explanation 

 

Abstract 

 

The emergence of a novel strain during a pandemic, like the current COVID-19, is a major concern to 

the healthcare system. The most effective strategy to control this type of pandemic is vaccination. Many 

previous studies suggest that the existing vaccine may not be fully effective against the new strain. 

Additionally, the new strain’s late arrival has a significant impact on the disease dynamics and vaccine 

coverage. Focusing on these issues, this study presents a two-strain epidemic model in which the new 

strain appears with a time delay. We considered two vaccination provisions, namely preinfection and 

postinfection vaccinations, which are governed by human behavioral dynamics. In such a framework, 

individuals have the option to commit vaccination before being infected with the first strain. 

Additionally, people who forgo vaccination and become infected with the first train have the chance to 

be vaccinated (after recovery) in an attempt to avoid infection from the second strain. However, a second 

strain can infect vaccinated and unvaccinated individuals. People may have additional opportunities to 

be vaccinated and to protect themselves from the second strain due to the time delay. Considering the 

cost of the vaccine, the severity of the new strain, and the vaccine’s effectiveness, our results indicated 

that delaying the second strain decreases the peak size of the infected individuals. Finally, by estimating 

the social efficiency deficit, we discovered that the social dilemma for receiving immunization 

decreases with the delay in the arrival of the second strain. 

3.1 Introduction 

Multistrain infection models are essential tools for studying and predicting infection dynamics in the 

presence of many active strains. Many illnesses, including human immunodeficiency virus (HIV), 

dengue fever, tuberculosis (TB), and even the current COVID-19, can arise when two or more strains 

coexist. For example, H1N1 flu virus infection is considered a seasonal influenza mutation, whereas 

COVID-19 is categorized as a novel SARS-CoV-1 strain. This mutation process can result in the 

emergence of new strains, especially if an effective medication has yet to be developed [1–3]. In the 

epidemic’s propagation phase, the time it takes for a new strain to arise also plays a crucial role [4–6]. 

In the meantime, the cost of immunization and the vaccine’s efficiency against the new strain 

significantly influence worldwide epidemic dynamics [7–12].  
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Most compartmental models, which are a negotiable instrument in the study of disease transmission 

and well-being administration frameworks, are as often as possible utilized to look at any epidemic 

process or pandemic. The SIR model, designed by Kermack and Mckendrick, is the most extensively 

used epidemiological model [13]. It has been altogether investigated and extended to see an assortment 

of speculations and circumstances. Simply put, this show portrays how ailment voyages in individuals 

from the susceptible compartment (S) to the infected compartment (I) and after that to the recovered 

compartment (R), where individuals construct insusceptibility to reinfection. Exposed (E), quarantine 

(Q), hospitalized (H), and asymptomatic (A) compartments can be used in some epidemics to 

adequately examine disease dynamics [4–6,8,14–31]. Examination of supervision and moderation 

measures, like immunization, establishing of vector-borne maladies, and the impact of birthing and 

passing elements is an extra application of compartmental models in the study of disease transmission 

[8–11, 15,17,30,32–39]. Misinformation dissemination, corruption, and resource misuse are factors that 

might be examined in SIR dynamics. However, most of these models focus on the evolution of the 

illness instead of the individual’s behavioral response to the situation. However, numerous irresistible 

infection control approaches depend on human and organizational decision-making [9–12,17,30,34,40]. 

In, this context, the new field of behavioral epidemiology that incorporates psychology and game theory 

into epidemiology attracted significant attention [29,33,36,41–45]. Individual behavior, rather than a 

static role, is considered in behavioral epidemiology. Sociophysics, a cutting-edge discipline that 

combines statistical physics with evolutionary game theory (EGT) to better explain human behavior, is 

the ideal discipline for this situation [39,41–43]. Bauch combined the SIR model with EGT to study the 

vaccine decision-making dynamics in a novel approach [34,46,47]. Any individual can choose their 

immunization based on disease dynamics, vaccination cost, and vaccine effectiveness [7,9–

11,15,30,32,34,38,48]. This later evolved into the “vaccination game” concept 

[7,9,10,16,33,37,38,41,43,44,49]. As a result of this technique, several observations and predictions in 

vaccination operations have been made. However, compared to investigations of the dynamical 

behaviors of multistrain epidemic models with vaccination and time delays, early studies have received 

little attention. The dynamics of a two-strain epidemic model were studied in [9,15,18–20,22–25,38,50–

54]. Epidemic models with time delay were studied in [4,5,20,21,26,35,50,55,56]. Multistrain models 

with vaccination behaviors were studied in [9,12,15,18,34,37,38,56]. Stability analysis of multistrain 

models was found in [19–21,23,38,52,53,56,57]. 

Here, we propose an epidemic model with two strains in which the first strain is active from the start of 

the disease and the second strain emerges after a while. People can be vaccinated in one of two ways: 

before they become infected with strain 1 or after recovering from it. The new strain can infect 

vaccinated and unvaccinated individuals. When people’s preferred alternatives are to take a vaccination 

or not, as well as when to take a vaccine, the behavior model gives a framework for describing 

individual behavior. We also demonstrated the impact of the new strain’s introduction on disease 
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dynamics and individual vaccination behavior, as well as the total vaccine coverage considering the 

time delay. The concept of social efficiency deficit (SED), which is the difference between Nash 

equilibrium (NE) and the social optimum, is incorporated into our model (SO), to generate a social 

dilemma, taking into account the vaccine’s efficacy and cost [7,17,39,41–43,58-62]. 

3.2 Model Formulation 

3.2.1 Epidemic Model  

Here we suggest a nine-compartmental two-strain epidemiological model based on the SVIR 

(susceptible, vaccination, infectious, recovered) dynamics. We also introduce two behaviors: 

preinfection and postinfection vaccinations of individuals. Depiction of the proposed model is shown 

in Figure 1. The formulation of the model is given as follows: 

 

Figure 1: Depiction of the proposed model. 

Ṡ = −xS − β1S(I1 + I1
V) − β2SI2H,            (1) 

V1̇ = xS − β1(1 − e1)(I1 + I1
V)V1 − β2(1 − e2)I2HV1,          (2) 

V2̇ = yR1 − β2(1 − e2)I2HV2,             (3) 

I1̇ = β1S(I1 + I1
V)-γ1I1-ε1HI1,             (4) 

I1
V̇ = β1(1 − e1)(I1 + I1

V)V1 − γ1I1
V − ε2HI1

V,          (5) 

I2̇ = β2SI2H + β2(1 − e2)I2HV1 + β2(1 − e2)I2HV2 + ε1I1 + ε2I1
V + β2R1I2H + β2(1 − e2)R1

VI2H − γ2I2H,    (6) 

R1̇ = γ1I1 − yR1 − β2R1I2H,            (7) 

R1
V̇ = γ1I1

V-β2(1-e2)R1
VI2H,            (8) 

R2̇ = γ2I2H,                               (9) 

H(t-T) = {
0, t < T
1, t ≥ T

 ,   T = time delay of the appearance of strain 2,                      (10) 
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S(t) + V1(t) + V2(t) + I1(t) + I1
V(t) + I2(t) + R1(t) +  R1

V(t) + R2(t) = 1,      (11) 

where S, V1, V2, I1, I1
V, I2, R1, R1

V, and R2 are the fractions of individuals of susceptible, preinfected 

vaccinated, postinfected vaccinated, nonvaccinated and infected with strain 1, vaccinated and infected 

with strain 1, infected with strain 2, nonvaccinated and recovered from strain 1, vaccinated and 

recovered from strain 1, and recovered from strain 2, respectively. The total population is normalized 

to 1. Initially, every person is considered as susceptible. Individuals can choose vaccination and can 

move to the compartment V1. Both the susceptible and vaccinated people can be infected with strain 1 

since strain 1 is effective from the initial time of disease spreading. Those people who are not vaccinated 

at the first stage but got infected can take the vaccination after recovery from the strain 1 infection and 

can move to the V2 compartment. In our study, we have considered a single type of vaccine whose 

efficiency is already known against the first strain but different for the second strain. All the vaccinated 

and nonvaccinated individuals can be infected by strain 2 when it appears. The Heaviside function 

H(t-T) is used to control the time delay of the appearance of strain 2. β
1
 and β

2
 are the transmission 

rates of strain 1 and strain 2 respectively. We consider β1 < β2 because the new strain is highly 

transmissible [20, 23]. We also demonstrate the dynamics for the opposite scenario. γ1 and γ2 are the 

recovery rates from strain 1 and strain 2 respectively. Additionally, we consider γ1 > γ2, i.e., the 

recovery time for strain 2 is higher [20, 23]. e1 and e2 are the vaccine efficacy values for strain 1 and 

strain 2, respectively. We have taken into account the fixed efficacy of the vaccine for strain 1, but we 

vary the efficacy for the new strain to demonstrate the vaccination behavior and the social dilemma. ε1 

and ε2 are the mutation rates from nonvaccinated strain 1 and vaccinated strain 1 to strain 2, 

respectively. We have considered a very low mutation rate from strain 1 to strain 2. T represents the 

time delay of the emergence of strain 2. We didn’t consider any co-infection of strain 1 and strain 2 in 

our work [9, 23, 38, 53].  Table 1 presents all parameters and their meaning.  

3.2.2 Behavior Model 

We discuss the idea of the behavior model, which explains the flux changing throughout time from 

susceptible (S) to preinfection vaccination (V1) denoted by x and from the infected but recovered from 

strain 1 (R1) to postinfected vaccination (V2) denoted by y [34, 46, 47]. We illustrate the following two 

dynamical equations: 

�̇� = 𝑡𝑥  𝑥 (1 − 𝑥){𝑐𝑖  (𝑚1𝐼1 +𝑚1𝐼1
𝑉 +𝑚2𝐼2𝐻) − 𝑘 𝑐},        (12) 

ẏ = ty y (1 − y){ci m2I2H − k c},             (13) 

where tx and ty are the inertial effects for the rate of the vaccinations; ci and c are the disease cost and 

vaccination cost, respectively; m1and m2 are the severity effects of strains 1 and 2, respectively; and k  

is the relative sensitivity to taking the vaccination due to its cost. We have considered ci = 1.0 
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throughout our study. Most earlier models included the total number of infected people at any given 

time, the cost of the disease, and the cost of vaccination when calculating the dynamics of vaccines 

[17,39]. The severity effect m1,m2 of the strains is considered in our study with the other parameters. 

The new strain frequently appears to be more severe and highly transmissible in most cases, such as the 

current COVID-19. To assess the dynamics of vaccination, the severity effect is also a crucial parameter. 

For the preinfection vaccination, we considered all infected individuals at any given time in equation 

(12). However, for the postinfection vaccination, we only take into account the total population of 

individuals infected with strain 2 in equation (13). This is because individuals who did not receive the 

vaccine the first time may be persuaded to do so by the emergence of a highly contagious and more 

severe strain. 

Table 1: Model parameters and their description 

Parameters Description 

β1 Rate of strain 1’s disease transmission 

β2 Rate of strain 2’s disease transmission 

e1 Efficacy of the vaccine to strain 1  

e2 Efficacy of the vaccine to strain 2  

γ1 Recovery proportion for strain 1 

γ2 Recovery proportion for strain 2 

ε1 Mutation rate from strain 1 to strain 2 for nonvaccinated  

ε2 Mutation rate from strain 1 to strain 2 for vaccinated  

tx Inertial effect on preinfection vaccination 

ty Inertial effect on postinfection vaccination 

m1 Severity effect of strain 1  

m2 Severity effect of strain 2 

ci Disease cost  

c Vaccination cost 

k Relative sensitivity due to the cost of vaccination 
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3.2.3 Primary Reproduction Number 

We calculated the primary reproduction numbers for both strains using the next-generation matrix 

approach [24, 63–65]. For this, by considering the infection equations (4–6), we have  

F = (

β1SI1 + β1SI1
V

β1V1(1-e1)I1 + β1V1(1-e1)I1
V

(ε1I1 + ε2I1
V + (β2S + β2(1-e2)V2 + β2R1 + β2(1-e2)R1

V + β2(1-e2)V1)I2)H

), 

ν = (

(γ1 + ε1H)I1
(γ1 + ε2H)I1

V

γ2I2H

),  

Then, from F and ν, we calculate the matrices as follows: 

Ϝ = (

β1S β1S 0

β1V1(1-e1) β1V1(1-e1) 0

ε1H ε2H (β2S + β2(1-e2)V2 + β2R1 + β2(1-e2)R1
V + β2(1-e2)V1)H

), 

V = (

γ1 + ε1H 0 0
0 γ1 + ε2H 0
0 0 γ2H

),   

V-1 =

(

 
 

1

γ1+ε1H
0 0

0
1

γ1+ε2H
0

0 0
1

γ2H)

 
 

. 

Then, the next-generation matrix becomes, 

M = ϜV-1 =

(

  
 

β1S

γ1+ε1H

β1S

γ1+ε2H
0

β1V1(1-e1)

γ1+ε1H

β1V1(1-e1)

γ1+ε2H
0

ε1H

γ1+ε1H

ε2H

γ1+ε2H

(β2S+β2(1-e2)V2+β2R1+β2(1-e2)R1
V+β2(1-e2)V1)H

γ2H )

  
 

. 

Finally, by calculating the eigenvalues of the matrix M, we have the following expressions for the primary 

reproduction number of strains 1 and 2. 

Ro1 =
β1S

γ1+ε1H
+
β1V1(1-e1)

γ1+ε2H
,           (14) 

Ro2 =
(β2S+β2(1-e2)V2+β2R1+β2(1-e2)R1

V+β2(1-e2)V1)

γ2
,         (15) 

3.2.4 Final Epidemic Size (FES), Average Social Payoff (ASP), and Social Efficiency Deficit (SED)  

In this study, we calculated the FES in three ways [56]: FES of only strain 1 (FESOS1), FES of only 

strain 2 (FESOS2), and FES of both strains (FESBoth). The expressions for the FESs are defined as 

follows: 
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𝐹𝐸𝑆𝑂𝑆1 = 𝑅1(∞) + 𝑉2(∞),                     (16) 

𝐹𝐸𝑆𝑂𝑆2 = ∫ (𝛽2𝑆𝐼2𝐻 + 𝛽2(1 − 𝑒2)𝑉1𝐼2𝐻)
∞

𝑡=0
 𝑑𝑡,                    (17) 

𝐹𝐸𝑆𝐵𝑜𝑡ℎ = ∫ (𝛽2𝑅1𝐼2𝐻 + 𝛽2(1 − 𝑒2)𝑉2𝐼2𝐻 + 𝛽2(1 − 𝑒2)𝑅1
𝑉𝐼2𝐻

∞

𝑡=0
+ 𝜀1𝐼1𝐻 + 𝜀2𝐼1

𝑉𝐻) 𝑑𝑡,             (18) 

where the symbol ∞ denotes a state of equilibrium (let's name it NE) at t = ∞. 

The vaccination coverages preinfected vx and postinfected vy and the total vaccination coverage vc are 

defined as 

vx = ∫ xS
∞

t=0
 dt,                       (19) 

vy = ∫ yR1
∞

t=0
 dt,                       (20) 

Then, 

 vc = vx + vy.                       (21) 

The average social payoff (ASPNE) in the model can be defined as follows: 

𝐴𝑆𝑃𝑁𝐸 = 𝑐𝑖 (𝐹𝐸𝑆𝑂𝑆1 +  𝐹𝐸𝑆𝑂𝑆2 +  2 𝐹𝐸𝑆𝐵𝑜𝑡ℎ) − 𝑐 𝑣𝑐,                  (22) 

where the first item on the right-hand side represents the overall disease cost when combining the 

affected individuals with either one strain or both strains, and the second term represents the entire 

vaccine cost. Individuals’ disease cost for each strain ci is taken as 1.0 in this study. Those afflicted with 

both strains must pay twice the disease cost. 

By referring to the original SED idea [58], which evaluates the discrepancy between ASP at NE and 

ASP at SO to determine whether a social dilemma underlies the current social-dynamical system or not. 

If the x and y evolutionary processes are properly controlled, SED demonstrates how to increase the 

system's ASP from an evolutionary final state (NE) to a hypothetical perfect society to attain the highest 

ASPSO imaginable. It is defined as follows: 

SED = ASPSO-ASPNE,                       (23) 

The social optimal state is a time-constant vector (x (for SO), y (for SO)), with both elements in the 

range [0,1]. Thus, we have 

𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑎𝑥 [𝐴𝑆𝑃(𝑥 (𝑓𝑜𝑟 𝑆𝑂), 𝑦 (𝑓𝑜𝑟 𝑆𝑂))].        (24)

           

When NE agrees with SO, SED implies zero. Meanwhile, when SED is positive but not zero, there is a 

social dilemma. 
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3.3 Results and Discussions 

3.3.1 Standard (Basic) Case: 

The time series graph for the proposed model employing the common (basic) parameters set is shown 

in Figure 2(a). The initial value for the compartments and vaccination rates, as well as the common 

values for the parameters, are shown in Tables 2 and 3 respectively. We considered that the transmission 

rate of strain 1  (β1) is lower than the transmission rate of strain 2 (β2). We also considered the efficacy 

of the vaccine for strain 1 (e1) is higher than the efficacy of the vaccine for strain 2 (e2). The mutation 

rates ε1, ε2 from strain 1 to strain 2 were taken quite low. In the standard case, we considered the 

appearance of strain 2 after T = 60 days after the appearance of strain 1. Figure 2(b) shows that the 

transmission rate of strain 2 is lower than that of strain 1 (reversing the values of β1 and β2), with all 

the remaining parameters, kept the same.   

 

Figure 2: Time series of the compartments for a common case. Here, the blue line indicates the 

susceptible people; the orange and green lines indicate the vaccinated people before and after being 

infected with strain 1, respectively; red, violet, and brown indicate the infected people with strain 1 

(nonvaccinated and vaccinated, respectively) and strain 2; pink and gray indicate the recovered people 

infected with strain 1 (nonvaccinated and vaccinated, respectively); and yellow indicates the recovered 

people infected with strain 2. In Figure 2(a), the peak infection for strain 1 is approximately 0.15 and 

the peak infection for strain 2 is approximately 0.3. However, in Figure 2(b), the peak infection for 

strain 1 is approximately 0.3 whereas the peak infection for strain 2 is approximately 0.15. In Figure 

2(a), almost 90% of the people are infected with strain 2 because the transmission rate of strain 2 is 

higher. However, in Figure 2(b), nearly 80% of the people are infected with strain 2 because the 

transmission rate of strain 2 is lower.   
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Table 2: Values of the parameters (common case) 

Parameter Value Parameter Value 

β1 0.7 ε1, ε2 0.0001 

β2 1.0 tx, ty 1.0 

e1 0.7 m1, m2 1.0 

e2 0.5 ci 1.0 

γ1 0.33 c 0.1 

γ2 0.25 k 0.1 

 

Table 3: Initial values for the compartments and vaccination rate 

State At t = 0 State/Rate At t = 0 

S 0.997 I2 0.00 

V1 0.001 R1 0.00 

V2 0.00 R1
V 0.00 

I1 0.001 R2 0.00 

I1
V 0.001 x, y 0.01 

 

3.3.2 Time Delay Effect on Primary Reproduction Number, Ro 

Figure 3 shows the time delay effect on Primary reproduction numbers Ro1 and Ro2. We considered 

four cases. The appearance of strain 2 happens after T = 1, 60, 120, and 240 days. For strain 1, the 

primary reproduction number always starts from the same point, approximately 2.2, and decreases with 

time. However, for strain 2, the starting point for the primary reproduction number decreases with time. 

Thus, if strain 2 appears at T = 1 days, i.e., almost simultaneous with strain 1, the initial value of the 

primary reproduction number starts from approximately 4.0 because strain 2 has a larger transmission 

rate. If the time delay for strain 2 is 60 days, the initial value of the primary reproduction number is 

approximately 3.1. Similarly, for T = 120, 240, the initial value of the primary reproduction number 

starts from 2.9 and 2.8 and decreases with the spent time.  
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Figure 3: Time series of primary reproduction numbers with different time delays of the appearance of 

strain 2. The values of the parameters are the same as those for the standard case. For strain 1, the 

starting points of Ro1is the same with different T values and they decrease with the spent time. However, 

the starting points of Ro2 decrease with the delayed appearance of strain 2 and decrease with time.  

3.3.3 Time Delay Effect on Infection and Vaccination: 

Figure 4 shows the infection and vaccination time series using four distinct time delays of strain 2 

emergence. The total infection for strain 1 (vaccinated and nonvaccinated) is shown in panel (a). We 

can see that the total infection of strain 1 is unaffected because of the time delay in the appearance of 

strain 2. The total infection peak is the same for T = 1,60,120,240 (approximately 0.15). Infection for 

strain 2 is displayed in panel (b) showing that the infection peak decreases when the arrival of strain 2 

is delayed. When T = 1 day, i.e., both strains are active practically concurrently from the start, the 

infection peak for strain 2 is the highest (approximately 0.35). However, when T = 60,120,240, the 

infection peaks for strain 2 are 0.28, 0.25, and 0.23, respectively. Panel (c) is made up of panels (a) and 

(b). As shown in these panels, the delay in the appearance of strain 2 does not affect the infection of 

strain 1 but it does diminish the peak size of strain 2, implying that strain 2 becomes weaker as time 

passes. 

Preinfection, postinfection, and entire vaccination time series are illustrated in panels (d), (e), and (f). 

If T = 1, there is less time for vaccination instead of infection in panel (d). If T = 60,120,240 persons 

have time to be vaccinated, approximately 30% of them (vaccination peak always occurs at 

approximately 0.3) received their vaccination before becoming sick with any strain. In panel (e), the 

vaccination peak increases as the arrival of strain 2 is delayed. After being infected with strain 1 for 

T = 240, over 35% of persons (peaking at approximately 0.35) can be vaccinated. The entire 

vaccination time series is presented in panel (f). We can see that delaying the appearance of strain 2 

increases the possibility of postinfection vaccination and hence overall vaccination, lowering the risk 

of infection with strain 2, which is complementary to panels (a)-(c). 
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Figure 4: Time series of infection and vaccination with a time delay of the appearance of strain 2. Panel 

(a) shows the total infection (I1T) due to strain 1, and panel (b) shows the total infection due to strain 2 

(I2). Both (a) and (b) show the four different time delays of the appearance of strain 2. Panel (c) is the 

combination of (a) and (b). Panel (d)-(f) represent the time series of preinfected vaccinated (V1), 

postinfected vaccinated (V2), and total vaccinated (VT), respectively. Here, time delay T is taken as 

1,60,120,240 days, and all parameters and initial values are kept the same as those of the standard case. 

We can observe from the panels that the time delay of the appearance can give people more chances to 

be vaccinated and can reduce the risk of infection from strain 2.  

3.3.4 Time Delay and Inertial Effects on Vaccination 

Figure 5 shows the inertial and time delay effects on vaccination. Here, we considered three-time delays 

T = 60, 120, 240, and three sets of inertial effects (tx, ty) = (0.1,0.1), (0.5,0.5), (1.0,1.0) on 

vaccination. For T = 60, panels (a)-(c) show the time series of preinfection vaccination, postinfection 

vaccination, and total vaccination. In panel (a), we can observe that preinfection vaccination is less with 

the less inertial effect and it is high with maximum inertial effect. This is obvious when the high inertial 

effect is active, i.e., people giving maximum effort, the preinfected vaccinees is maximum. However, 

the behavior of postinfection vaccination is the opposite. We can see from panel (b), that a less inertial 

effect gives maximum vaccines whereas a high inertial effect gives fewer vaccines. This is because, 

with a high inertial effect, most people take the vaccine before they are infected with strain 1 and fewer 

people who can take the vaccine after being infected with strain 1 remain. Meanwhile, if fewer people 

take the vaccine earlier (when the less inertial effect has been considered), there will be more people 

remaining, who can be infected with strain 1 and can take the vaccine to become safe from strain 2. A 

combination of (a) and (b) shows in panel (c), that the total vaccination looks similar, but for the less 

inertial effect the peak of the total vaccination seems higher.  
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For T = 120, panels (d)-(f) are displayed. In panel (d), we can see similar behavior in preinfection 

vaccination time series like panel (a) which means that less inertial effect implies fewer people choose 

vaccination before being infected with strain 1. In panel (e), similar behavior is observed in panel (b), 

less inertial effect implies more people take the vaccine after being infected with strain 1. However, the 

infection peaks in all three cases in panel (e) are much higher than the corresponding peaks in panel (b). 

Consequently, the combination of panels (d) and (e) i.e., panel (f), shows that the total vaccination peaks 

are also much higher than those in panel (c). This is because the time delay of the appearance of strain 

2 gives much time to the people who are not vaccinated before being infected with strain 1. These 

people can take a vaccine when strain 2 emerges or is present.  

For T = 240, panels (g)-(i) look almost similar to the corresponding panels (d)-(f). However, peaks in 

panels (h) and(i) are higher than the corresponding peaks of panels (e) and (f) because of the time delay 

of the appearance of strain 2. Thus, we can see that the time delay of the appearance of strain 2 can 

increase the chance of taking a vaccine, which can reduce the risk of infection. Additionally, a less 

inertial effect may help to get more people vaccinated.  

 

Figure 5: Time series of preinfected vaccinated (V1), postinfected vaccinated (V2), and total vaccinated 

(VT) People are presented with three sets of inertial effect (tx, ty) = (0.1,0.1), (0.5,0.5), (1.0,1.0) along 

with T = 60,120,240 days. The remaining parameters are taken as standard ones. These figures show 
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that the time delay of the emergence of the second strain can help people be vaccinated more and less 

inertial effect can increase the total number of vaccinated people as a whole.       

3.3.5 Time Delay and Severity Effects on Vaccination 

Figure 6 shows the severity and time delay effects of vaccination. Here, we considered three-time delays 

T = 60, 120, 240, and three sets of severity effect (m1,m2) = (0.1,0.1), (0.5,0.5), (1.0,1.0) on 

vaccination. For T = 60, panels (a)-(c) show the time series of preinfected vaccination, postinfected 

vaccination, and total vaccination. In panel (a), we observed that the vaccination peak is highest when 

the severity effect is maximum. This is obvious because if the severity is higher for any strain, people 

must go for the vaccination as early as it is available. In panel (b), we observed almost a similar behavior 

with different severity effects because after being infected with strain 1, every person tries to take the 

vaccination to remain safer from strain 2. Panel (c) is the combination of panels (a) and (b), which 

reflects that more severity implies more vaccination. 

For T = 120, panels (d)-(f) have similar behavior corresponding to panels (a)-(c). In panel (d), the 

peaks of the vaccination compared to panel (a) are similar, but in panel (e), peaks are much higher than 

those in panel (b). This is because the time delay of the appearance of strain 2 gives more time for 

people to be vaccinated. Consequently, panel (f) shows that the peak of the total vaccinated people is 

higher than that in panel (c).  

For T = 240, panels (g)-(i) also behave similarly compared to panels (d)-(f). However, the postinfection 

vaccination peak is a little higher in panels (h) and (i) than in panels (e) and (f) because of the time 

delay of the appearance of strain 2. Therefore these panels show that more severe diseases can increase 

the chance of vaccination and more time delay increases the chance of vaccination, which can reduce 

the risk of infection.      
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Figure 6: Time series of preinfected vaccinated (V1), postinfected vaccinated (V2), and total vaccinated 

(VT) People are presented with three sets of severity effects (m1,m2) = (0.1,0.1), (0.5,0.5), (1.0,1.0) 

along with T = 60,120,240 days. The remaining parameters are taken as standard ones. These figures, 

show that the time delay of the emergence of a second strain can help people be vaccinated more and a 

higher severity effect can also increase the total number of vaccinated people.        

3.3.6 Time Delay Effect on ASP and SED 

In this subsection, We investigate the impact of the time delay on the ASP and SED to observe the social 

dilemma of the proposed model. We also considered four distinct time delay effects: T = 1,60,120,240. 

Heatmaps were created using the vaccine’s cost c as the x-axis and its effectiveness e2 to strain 2 as the 

y-axis. 

Figure 7.1 shows the heatmaps of the final epidemic sizes for only strain 1, only strain 2, both strains, 

vaccination coverage, and the average social payoff for NE and SO cases, as well as the SED for the 

time delay T = 1, i.e., both strains almost effective for the entire time. The situation for NE is depicted 

in panels (a)-(e), whereas the case for SO is depicted in panels (f)-(j). SED is depicted in panel (k) with 

the difference between (j) and (e). To explain the general context of the case, we divided the SED region 

into two different regions (panel (k)). 
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When the efficacy is high and the cost of vaccination is low, we may see a light red corner in the left 

upper region in panel (a) in the NE case. The remaining region is dark red, indicating that when the 

efficacy is high and the cost is low, only a small percentage of the population will remain infected with 

only strain 1. When the efficacy is high and the cost is low, a dark red region appears in the left upper 

region in panel (b), indicating that only a small percentage of people will be infected with only strain 

2. When the time delay for strain 2 is 1 day, panel (c) shows that more than 50% of people will be 

infected with both strains. Panel (d) shows very little vaccination coverage for this case. Panel (e) 

illustrates the average social reward for the NE case when all of these panels ((a)-(d)) are combined. 

We can see that the average social payoff is low when the vaccination cost is low and the efficacy is 

high. We can also observe that in the SO situation, there are nearly no persons (panel (f)) who become 

infected with only strain 1, and vaccine coverage is at its highest (panel (i)). Additionally, there is a 

critical line between the value e2 = 0.75 (panel (g)). No one will be infected with solely strain 2 beyond 

this critical line, and people will be infected with strain 2 below the line because of the vaccines’ reduced 

efficiency against strain 2. Furthermore, the SO predicted that no one would be infected by both strains 

(panel (h)). Consequently, in the SO, the average social payoff produces two zones separated by the 

critical line. SED is shown in panel (k) with the difference between panels (j) and (e). The critical line 

separates regions (1) and (2) in the context of SED. We found a monotonic decline in the value of SED 

along the direction of vaccination cost in the region (1) (green to yellow). As the cost of vaccination 

increases, people will opt out. Similar behavior can be seen in Region 2. However, the monotonic 

reduction occurs (light red to dark red) in the diagonal direction, implying that when vaccine efficacy 

is poor and vaccination costs are high, no one will be vaccinated. Thus, raising the price of less effective 

vaccines does not create a broader social dilemma. 

 

Figure 7.1: This graph shows the FESs, vaccination coverage, ASP, and SED. For NE cases (panels 

(a)-(e)), the final epidemic sizes for only strain 1, only strain 2, both strains, vaccination coverage, and 

average social payoff are shown in the first row, whereas the instances for SO are shown in the second 

row (panels (f)-(j). SED is depicted in panel (k). The cost of the vaccination c is plotted on the x-axis, 

whereas the efficacy of the vaccine e2 against strain 2 is plotted on the y-axis, both ranging from 0 to 

1. Except for these two, all other settings are set to their default values. The ranges of the FESs and 
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vaccine coverage are taken from 0 to 1. The ASP panel range is taken from -2.0 to 0.0 and the SED 

panel is depicted with a range from 0.0 to 2.0. At approximately e2 = 0.75, a critical line is detected 

for the SO case, dividing the SED region into two sections. The arrival of strain 2 is given a time delay 

of T = 1 day. 

Figure 7.2 shows the case when the time delay, T = 60 days. Similar to the panels in Figure 7.1, all 

panels are depicted with the same values of the parameters. Here, we can see that a triangular (green 

and yellow) region occurs in the upper left corner in panel (a), representing the FES of only strain 1. 

This means that with the high efficacy of strain 2, the low cost of the vaccine, and delayed appearance, 

some people have the chance not to be infected with strain 2. The dark red region of panels (b) and (c) 

compliments the scenario of the panel (a). In panel (d), with low cost and high efficacy, we see that 

most people go for vaccination because they also have 60 days to become vaccinated. As a combination 

of panels (a)-(d), panel (e) presented the ASP for the NE case where the ASP is lower in the left upper 

triangular region, i.e., people will take a vaccine rather than be infected with strain 2. In SO (panels 

(f)-(j)), similar behaviors are observed in Figure 7.2, like in Figure 7.1. SO suggested maximum 

vaccination, which also shows that no person will remain infected with only strain 1. We also observed 

a triangular region in SED (panel (k)) due to the triangular region occurring in the ASP at the NE. 

Therefore we divide the SED region into three parts using the observed critical line (panel (j)). Region 

1 is light red because when the efficacy is high and the cost is low, most people will go for the 

vaccination and there will be a very less social dilemma. In Region 2, increasing the cost of the 

vaccination decreases the social dilemma monotonically because as the price increases, people will not 

go for the vaccination. In region 3, the monotonic decreasing behavior is observed diagonally, as shown 

in Figure 7.1. This implies that with low efficacy and high cost, people will lose interest in taking the 

vaccine and the social dilemma also decreases monotonically.    

 

Figure 7.2: This graph shows the FESs, vaccination coverage, ASP, and SED. For the NE case (panels 

(a)-(e)), the first row shows the final epidemic sizes for only strain 1, only strain 2, both strains, 

vaccination coverage, and average social payoff whereas, the second row (panels (f)-(j) shows the 

instances of SO. The SED was depicted in panel (k). The cost of the vaccination c is plotted on the x-
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axis, whereas the efficacy of the vaccine e2 against strain 2 is plotted on the y-axis both ranging from 

0 to 1. Except for these two, all other settings are set to their default values. The ranges of the FESs and 

vaccine coverage are taken from 0 to 1. The ASP panels range is taken from -2.0 to 0.0 and the SED 

panel is depicted with a range from 0.0 to 2.0. At approximately  e2 = 0.75, a critical line is detected 

for the SO case and combined with the triangular region in the NE case, dividing the SED region into 

three sections. The arrival of strain 2 is given a time delay of T = 60 days. 

Figure 7.3 depicts the situation where the time delay, T = 120 days. All panels are depicted with 

identical parameter values as those of the panels in Figures 7.1 and 7.2. In panel (a), we can also see a 

triangle (green and yellow) zone in the left upper corner. This represents the FES of only strain 1, 

implying that owing to the vaccine’s great efficiency against strain 2, low cost, and delayed appearance, 

some people may avoid becoming infected with strain 2. The triangular region of panel (a) in Figure 

7.3 is slightly larger than that of the panel (a) in Figure 7.2, indicating that with an additional 60-day 

time delay, reduced efficacy, and a higher cost may be appropriate to avoid infection with strain 2. 

Panels (b) and (c) have a dark red section that matches the scene in panel (a). Additionally, vaccine 

coverage in panel (d) of Figure 7.3 is higher than that of panel (d) in Figure 7.2, indicating that an extra 

60 days can vaccinate more people. Panel (e), which contains a similar triangular green region when 

the vaccination cost is low and efficacy is high, is the average social payoff for the NE when panels 

(a)-(d) are combined. Figure 7.3 shows comparable features to Figures 7.1 and 7.2 in the SO (panels 

(f)-(j)). The SO for the maximum vaccination has been proposed, demonstrating that no one will remain 

infected with only strain 1. The critical line is also visible, indicating that if the vaccine efficiency is 

greater than 0.75, no one will be infected with strain 2. We have seen triangular and trapezium-shaped 

regions in SED (panel (k)) above the critical line because of the triangular region in the ASP at the NE 

and the critical line in the SO (panel (j)). Consequently, we partition the SED region into three regions 

using the observed critical line. Region 1 is light red because when vaccination efficiency is high and 

the cost is low, most people will opt for it and there will be a less social dilemma. In Region 2, increasing 

the cost of vaccination reduces the social problem monotonically because people will not be vaccinated 

as the price rises. In Region 3, as shown in Figures 7.1 and 7.2, the monotonic declining behavior is 

exhibited diagonally, indicating that with low efficacy and high cost, people will lose interest in taking 

the vaccine and the social dilemma will also diminish monotonically. 
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Figure 7.3: This graph shows the FESs, vaccination coverage, ASP, and SED. The final epidemic sizes 

for only strain 1, only strain 2, both strains, vaccination coverage, and average social payoff are shown 

in the first row for NE (panels (a)-(e)), whereas the examples for SO are shown in the second row 

(panels (f)-(j)). The SED was depicted in panel (k). The cost of vaccination c is plotted, on the x-axis, 

whereas the efficacy of vaccine e2 against strain 2 is plotted on the y-axis, both ranging from 0 to 1. All 

other parameters, except for these two, are left at their default values. FESs and vaccination coverage 

are measured on a scale of 0 to 1. The ASP panels range from -2.0 to 0.0, whereas the SED panels range 

from 0.0 to 2.0. For the  SO case, a critical line is discovered at approximately e2 = 0.75, dividing the 

SED region into three halves with the triangular region in NE. The arrival of strain 2 is given a time 

delay of T = 120 days. 

Figure 7.4 shows the time delay T = 240 days. All of these panels are depicted with identical parameter 

values to the panels in Figures 7.1-7.3. A triangle (green and yellow) zone in the left upper corner of 

the panel (a) indicates the FES of only strain 1, indicating that some people may escape becoming 

infected with strain 2 due to the vaccine’s high efficacy against strain 2, low cost, and delayed 

appearance. The triangular region of panel (a) in Figure 7.4 is much larger than that of panel (a) in 

Figure 7.3, showing that avoiding infection with strain 2 may be possible with an extra 120-day time 

delay but at a higher cost. A dark red portion appears in panels (b) and (c), corresponding to the scene 

in panel (a). Vaccine coverage in panel (d) of Figure 7.4 is greater than that in panel (d) of Figure 7.3, 

showing that an extra 120 days can vaccinate more people. It also exhibits a monotonically declining 

vaccine coverage with increasing vaccination costs, but less sensitivity with increasing vaccine efficacy. 

When panels (a)-(d) are merged, the average social payoff for the NE is panel (e), which has a 

comparable triangular green zone when the vaccine cost is low and efficacy is high. Figure 7.4 in SO 

(panels (f)-(j)) has aspects that are similar to figures 7.1-7.3 in SO. It has been proposed that the SO for 

maximum vaccination is established, proving that no one will remain infected with only strain 1. The 

critical line, which indicates that no one will be infected with strain 2 if the vaccine efficacy is greater 

than 0.7, is also apparent. Because of the triangular region in the ASP at the NE and the critical line in 

SO, there are two trapezium-shaped regions in SED (panel (k)) above the critical line and one triangular 

and one trapezium-shaped region below the critical line. Consequently, we use the critical line to divide 
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the SED region into four portions. When vaccine efficiency is high and the cost is cheap, most people 

will choose it and there will be fewer social dilemmas. In Region 2, increasing the cost of vaccination 

lessens the social problem over time because people will refuse to be vaccinated as the cost increases. 

A dark red triangular section appears in Region 3, indicating almost no dilemma issue. Using a T =

240-days time delay, some people may need to be vaccinated with a vaccine that is less expensive and 

has a lower efficiency (approximately 0.5). The monotonic falling behavior is displayed diagonally in 

Region 4, as illustrated in Figures 7.1-7.3, which means that with low efficacy and high cost, people 

will lose interest in taking the vaccine, and the social dilemma will also reduce monotonically. 

 

Figure 7.4: This graph shows the FESs, vaccination coverage, ASP, and SED. In the first row for NE 

(panels (a)-(e)), the final epidemic sizes for only strain 1, only strain 2, both strains, vaccination 

coverage, and average social payoff are provided, whereas the examples for SO are shown in the second 

row (panels (f)-(j)). Panel (k) depicts the SED. The cost of vaccination c is plotted on the x-axis, whereas 

the efficacy of the vaccine e2 against strain 2 is plotted on the y-axis, with both values ranging from 0 

to 1. Except for these two, all other parameters are left at their default levels. FESs and vaccination 

coverage are rated on a scale of 0 to 1. The ASP panels range from -2.0 to 0.0, while the SED panels 

range from 0.0 to 2.0. For the SO case, a critical line is discovered at approximately e2 = 0.75, dividing 

the SED region into four parts, with the triangular region in NE. The arrival of strain 2 is given a time 

delay of T = 240 days. 

3.4 Conclusion 

The emergence of new strains creates a new challenge to the healthcare system. However, the time lag 

between the appearances of the resident and new strains can be substantially influential in determining 

the disease dynamics, especially for the second strain. Although vaccine efficacy against the new strain 

may be reduced, its late appearance increases the possibility of higher vaccination coverage, inevitably 

reducing the infection peak (as well as epidemic size) concerning the new strain. This study investigated 

such a context by employing a two-strain epidemic model with preinfection and postinfection 

vaccinations. More precisely, individuals who forgo vaccination and are infected with the resident strain 

have the chance to be vaccinated after recovery. As vaccination is mostly voluntary, we consider 
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behavioral dynamics to model individuals’ vaccination behavior.  The decision to be vaccinated is 

influenced by the timing of the emergence of the new strain, its severity, transmission rate, and the cost 

and effectiveness of the vaccine. Most previous studies concerning two-strain or multi-strain epidemic 

models focused on stability analysis with non-monotone incidence rates, complex network with latency, 

general incidence rate, age structure and mutation [19,50,53,56], competitive coexistence with periodic 

infection rate [54], optimal control with general incidence function and time delay, imperfect 

vaccination, covid-19 application [5,48,65], vaccination behavior with imitation dynamic approach, 

social distance effect, covid-19 modeling, awareness decay [10,11,15,30], and disease dynamics with 

cross-immunity, in patchy environments, generic approach [14,22,25,51], etc.  

Our primary concern was to observe the effect of vaccination and the time delay of the emergence of a 

new strain on controlling disease spreading. We have considered four-time delays of the appearance of 

new strains which has a huge impact on global disease dynamics and vaccination behavior which is not 

discussed in any other prior studies. Generally, vaccination is effective in reducing the disease 

spreading. We also demonstrated that the time delay of the advent of a new strain could considerably 

reduce the corresponding basic reproduction number. Our results further suggest that the larger the time 

delay is, the higher the vaccination coverage, reducing the peak and the final epidemic size of the new 

strain. In terms of the cost and efficacy of the vaccine, we observed that higher efficacy and a lower 

cost increase vaccination uptake, which is quite comprehensible.  

Later, we presented the SED analysis of our model which showed how the social dilemma situation acts 

with the emergence of new strain along with time delay. We found that SED, measured by the difference 

between the average payoff at the SO and equilibrium, can be reduced by vaccination and the increase 

in time delay. Our findings imply that vaccination and time delay are substantial in reducing SED. The 

lesser SED demonstrates that the evolutionary outcomes are closer to the SO. Also, as the time delay 

rises, we can see from figures (7.1–7.4) that the SED regions can be separated into additional sections 

to describe the social dilemma with various costs and levels of efficacy, which is a little bit intriguing. 

In our model, we merely used a straightforward ODE model (mean-field approximation) technique to 

study the dynamics of vaccination behavior and social dilemma, and the social context lends credibility 

to our data. In future studies, we will investigate the result multiagent simulation approach. We will also 

include a single vaccination in our model with varying efficacy for the different strains. Furthermore, 

we will strive to expand our approach to include different vaccinations at various price points in addition 

to multidose vaccination. We considered the constant time delay of the appearance of a new strain in 

our work. Next, we will focus on how a time-variant time delay can affect disease dynamics, vaccination 

behavior, and social dilemmas in our future study.  

References 

[1] A.E. Gorbalenya, S.C. Baker, R.S. Baric, R.J. de Groot, C. Drosten, A.A. Gulyaeva, B.L. 



54 

 

Haagmans, C. Lauber, A.M. Leontovich, B.W. Neuman, D. Penzar, S. Perlman, L.L.M. Poon, 

D. V. Samborskiy, I.A. Sidorov, I. Sola, J. Ziebuhr, The species severe acute respiratory 

syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2, Nat. 

Microbiol. 5 (2020) 536–544. https://doi.org/10.1038/s41564-020-0695-z. 

[2] S.M. Halstead, Dengue and dengue hemorrhagic fever, Handb. Zoonoses, Second Ed. Sect. B 

Viral Zoonoses. 11 (2017) 89–99. https://doi.org/10.1201/9780203752463. 

[3] J.M. Brenchley, D.A. Price, T.W. Schacker, T.E. Asher, G. Silvestri, S. Rao, Z. Kazzaz, E. 

Bornstein, O. Lambotte, D. Altmann, B.R. Blazar, B. Rodriguez, L. Teixeira-Johnson, A. 

Landay, J.N. Martin, F.M. Hecht, L.J. Picker, M.M. Lederman, S.G. Deeks, D.C. Douek, 

Microbial translocation is a cause of systemic immune activation in chronic HIV infection, Nat. 

Med. 12 (2006) 1365–1371. https://doi.org/10.1038/nm1511. 

[4] W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence of a SIR epidemic model with distributed 

time delays, Tohoku Math. J. 54 (2002) 581–591. https://doi.org/10.2748/tmj/1113247650. 

[5] M. Barro, A. Guiro, D. Ouedraogo, Optimal control of a SIR epidemic model with general 

incidence function and time delays, Cubo. 20 (2018) 53–66. https://doi.org/10.4067/s0719-

06462018000200053. 

[6] W. Xia, S. Kundu, S. Maitra, Dynamics of a delayed SEIQ epidemic model, Adv. Differ. 

Equations. 2018 (2018). https://doi.org/10.1186/s13662-018-1791-8. 

[7] K.M. Ariful Kabir, J. Tanimoto, Modelling and analyzing the coexistence of dual dilemmas in 

the proactive vaccination game and retroactive treatment game in epidemic viral dynamics, Proc. 

R. Soc. A Math. Phys. Eng. Sci. 475 (2019). https://doi.org/10.1098/rspa.2019.0484. 

[8] J.M. Epstein, E. Hatna, J. Crodelle, Triple contagion: A two-fears epidemic model, J. R. Soc. 

Interface. 18 (2021). https://doi.org/10.1098/rsif.2021.0186. 

[9] M. Rajib Arefin, T. Masaki, K.M. Ariful Kabir, J. Tanimoto, Interplay between cost and 

effectiveness in influenza vaccine uptake: A vaccination game approach, Proc. R. Soc. A Math. 

Phys. Eng. Sci. 475 (2019). https://doi.org/10.1098/rspa.2019.0608. 

[10] A. Deka, S. Bhattacharyya, The effect of human vaccination behavior on strain competition in 

an infectious disease: An imitation dynamic approach, Theor. Popul. Biol. 143 (2022) 62–76. 

https://doi.org/10.1016/j.tpb.2021.12.001. 

[11] M. Dashtbali, M. Mirzaie, A compartmental model that predicts the effect of social distancing 

and vaccination on controlling COVID-19, Sci. Rep. 11 (2021) 1–11. 

https://doi.org/10.1038/s41598-021-86873-0. 



55 

 

[12] C. Zuo, F. Zhu, Z. Meng, Y. Ling, Y. Zheng, X. Zhao, Analyzing the COVID-19 vaccination 

behavior based on an epidemic model with awareness-information, Infect. Genet. Evol. 98 

(2022) 105218. https://doi.org/10.1016/j.meegid.2022.105218. 

[13] William Ogilvy Kermack and A. G. McKendrick, A contribution to the mathematical theory of 

epidemics, Proc. R. Soc. A Math. Phys. Eng. Sci. 115 (1927) 700–721. 

https://doi.org/https://doi.org/10.1098/rspa.1927.0118. 

[14] J. Amador, D. Armesto, A. Gómez-Corral, Extreme values in SIR epidemic models with two 

strains and cross-immunity, Math. Biosci. Eng. 16 (2019) 1992–2022. 

https://doi.org/10.3934/mbe.2019098. 

[15] U.A.P. de León, E. Avila-Vales, K. Lin Huang, Modeling COVID-19 dynamic using a two-strain 

model with vaccination, Chaos, Solitons and Fractals. 157 (2022) 111927. 

https://doi.org/10.1016/j.chaos.2022.111927. 

[16] M.A. Amaral, M.M. d. Oliveira, M.A. Javarone, An epidemiological model with voluntary 

quarantine strategies governed by evolutionary game dynamics, Chaos, Solitons and Fractals. 

143 (2021) 110616. https://doi.org/10.1016/j.chaos.2020.110616. 

[17] K.M.A. Kabir, T. Risa, J. Tanimoto, Prosocial behavior of wearing a mask during an epidemic: 

an evolutionary explanation, Sci. Rep. 11 (2021) 1–14. https://doi.org/10.1038/s41598-021-

92094-2. 

[18] M.M. and C.C.-C. M. Nuño, Z. Feng, Dynamics of Two-Strain Influenza with Isolation and 

Partial Cross-Immunity, SIAM J. Appl. Math. 65 (2005) 964–982. 

https://doi.org/10.1137/S003613990. 

[19] A. Meskaf, O. Khyar, J. Danane, K. Allali, Global stability analysis of a two-strain epidemic 

model with non-monotone incidence rates, Chaos, Solitons and Fractals. 133 (2020) 109647. 

https://doi.org/10.1016/j.chaos.2020.109647. 

[20] E.M. Farah, S. Amine, K. Allali, Dynamics of a time-delayed two-strain epidemic model with 

general incidence rates, Chaos, Solitons and Fractals. 153 (2021) 111527. 

https://doi.org/10.1016/j.chaos.2021.111527. 

[21] J. Dong, T. Li, C. Wan, X. Liu, The analysis of a SEIRS epidemic model with time delay on 

complex networks, OALib. 04 (2017) 1–10. https://doi.org/10.4236/oalib.1103901. 

[22] C. Li, J. Wang, J. Xu, Y. Rong, The Global dynamics of a SIR model considering competitions 

among multiple strains in patchy environments, Math. Biosci. Eng. 19 (2022) 4690–4702. 

https://doi.org/10.3934/mbe.2022218. 



56 

 

[23] O. Khyar, K. Allali, Global dynamics of a multi-strain SEIR epidemic model with general 

incidence rates: application to COVID-19 pandemic, Nonlinear Dyn. 102 (2020) 489–509. 

https://doi.org/10.1007/s11071-020-05929-4. 

[24] X.Z. Li, J.X. Liu, M. Martcheva, An age-structured two-strain epidemic model with super-

infection, Math. Biosci. Eng. 7 (2010) 123–147. https://doi.org/10.3934/mbe.2010.7.123. 

[25] T. Lazebnik, S. Bunimovich-Mendrazitsky, Generic approach for a mathematical model of 

multi-strain pandemics, PLoS One. 17 (2022) 1–20. 

https://doi.org/10.1371/journal.pone.0260683. 

[26] E. Beretta, D. Breda, An SEIR epidemic model with constant latency time and infectious period, 

Math. Biosci. Eng. 8 (2011) 931–952. https://doi.org/10.3934/mbe.2011.8.931. 

[27] F.A. Rihan, H.J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for 

COVID-19, Adv. Differ. Equations. 2020 (2020). https://doi.org/10.1186/s13662-020-02964-8. 

[28] A. Khan, R. Ikram, A. Din, U.W. Humphries, A. Akgul, Stochastic COVID-19 SEIQ epidemic 

model with time-delay, Results Phys. 30 (2021) 104775. 

https://doi.org/10.1016/j.rinp.2021.104775. 

[29] D. Niño-Torres, A. Ríos-Gutiérrez, V. Arunachalam, C. Ohajunwa, P. Seshaiyer, Stochastic 

modeling, analysis, and simulation of the COVID-19 pandemic with explicit behavioral changes 

in Bogotá: A case study, Infect. Dis. Model. 7 (2022) 199–211. 

https://doi.org/10.1016/j.idm.2021.12.008. 

[30] C. Zuo, F. Zhu, Y. Ling, Analyzing COVID-19 vaccination behavior using a SEIRM/V epidemic 

model with awareness decay, Front. Public Heal. 10 (2022) 1–12. 

https://doi.org/10.3389/fpubh.2022.817749. 

[31] M. Li, X. Liu, An SIR epidemic model with time delay and general nonlinear incidence rate, 

Abstr. Appl. Anal. 2014 (2014). https://doi.org/10.1155/2014/131257. 

[32] D. Helbing, D. Brockmann, T. Chadefaux, K. Donnay, U. Blanke, O. Woolley-Meza, M. 

Moussaid, A. Johansson, J. Krause, S. Schutte, M. Perc, Saving human lives: What complexity 

science and information systems can contribute, 2015. https://doi.org/10.1007/s10955-014-

1024-9. 

[33] M. Jusup, P. Holme, K. Kanazawa, M. Takayasu, I. Romić, Z. Wang, S. Geček, T. Lipić, B. 

Podobnik, L. Wang, W. Luo, T. Klanjšček, J. Fan, S. Boccaletti, M. Perc, Social physics, Phys. 

Rep. 948 (2022) 1–148. https://doi.org/10.1016/j.physrep.2021.10.005. 

[34] Q. Yin, Z. Wang, C. Xia, C.T. Bauch, Impact of co-evolution of negative vaccine-related 



57 

 

information, vaccination behavior and epidemic spreading in multilayer networks, Commun. 

Nonlinear Sci. Numer. Simul. 109 (2022) 106312. https://doi.org/10.1016/j.cnsns.2022.106312. 

[35] Y. Nakata, R. Omori, Delay equation formulation for an epidemic model with waning immunity: 

An application to mycoplasma pneumoniae, IFAC-PapersOnLine. 28 (2015) 132–135. 

https://doi.org/10.1016/j.ifacol.2015.11.024. 

[36] G. Lobinska, A. Pauzner, A. Traulsen, Y. Pilpel, M.A. Nowak, Evolution of resistance to 

COVID-19 vaccination with dynamic social distancing, Nat. Hum. Behav. 6 (2022) 193–206. 

https://doi.org/10.1038/s41562-021-01281-8. 

[37] D. Han, X. Li, On Evolutionary vaccination game in activity-driven networks, IEEE Trans. 

Comput. Soc. Syst. (2022) 1–11. https://doi.org/10.1109/TCSS.2021.3137724. 

[38] S. Tchoumi, J.M. Tchuenche, Dynamic of a two-strain COVID-19 model with vaccination 

vaccination, Res. Sq. (2021) 1–15. https://doi.org/https://doi.org/10.21203/rs.3.rs-553546/v1. 

[39] R. Tori, J. Tanimoto, A study on prosocial behavior of wearing a mask and self-quarantining to 

prevent the spread of diseases underpinned by evolutionary game theory, Chaos, Solitons and 

Fractals. 158 (2022) 112030. https://doi.org/10.1016/j.chaos.2022.112030. 

[40] P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, S. Merler, Spontaneous behavioral changes in 

response to epidemics, J. Theor. Biol. 260 (2009) 31–40. 

https://doi.org/10.1016/j.jtbi.2009.04.029. 

[41] J. Tanimoto, Evolutionary games with sociophysics: Analysis of traffic flow and epidemics, 

Springer (Tokyo), 2019. 

[42] J. Tanimoto, Fundamentals of evolutionary game theory and its applications, Springer (Tokyo), 

2015. 

[43] J. Tanimoto, Sociophysics approach to epidemics, Springer (Tokyo), 2021. 

[44] K.M.A. Kabir, How evolutionary game could solve the human vaccine dilemma, Chaos, Solitons 

and Fractals. 152 (2021) 111459. https://doi.org/10.1016/j.chaos.2021.111459. 

[45] F.B. Agusto, I. V. Erovenko, A. Fulk, Q. Abu-Saymeh, D. Romero-Alvarez, J. Ponce, S. Sindi, 

O. Ortega, J.M. Saint Onge, A.T. Peterson, To isolate or not to isolate: the impact of changing 

behavior on COVID-19 transmission, BMC Public Health. 22 (2022) 1–20. 

https://doi.org/10.1186/s12889-021-12275-6. 

[46] C.T. Bauch, Imitation dynamics predict vaccinating behavior, Proc. R. Soc. B Biol. Sci. 272 

(2005) 1669–1675. https://doi.org/10.1098/rspb.2005.3153. 



58 

 

[47] C.T. Bauch, S. Bhattacharyya, Evolutionary game theory and social learning can determine how 

vaccine scares unfold, PLoS Comput. Biol. 8 (2012). 

https://doi.org/10.1371/journal.pcbi.1002452. 

[48] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect 

vaccination, Chaos, Solitons and Fractals. 156 (2022). 

https://doi.org/10.1016/j.chaos.2022.111825. 

[49] A. Szolnoki, M. Perc, Conformity enhances network reciprocity in evolutionary social 

dilemmas, J. R. Soc. Interface. 12 (2015) 2–9. https://doi.org/10.1098/rsif.2014.1299. 

[50] J. Yang, Y. Chen, J. Liu, Stability analysis of a two-strain epidemic model on complex networks 

with latency, Discret. Contin. Dyn. Syst. - Ser. B. 21 (2016) 2851–2866. 

https://doi.org/10.3934/dcdsb.2016076. 

[51] P. Theprungsimankul, S. Junsank, A. Abdulloh, W. Chinviriyasit, The effect of cross-immunity 

in a multi-strain epidemic model, Kasetsart J. - Nat. Sci. 45 (2011) 563–570. 

[52] A. Khatua, D. Pal, T. K. Kar, Global dynamics of an epidemic model with a non-monotonic 

incidence rate, Iran J Sci Technol Trans Sci. 10 (2014) 71–77. https://doi.org/10.9790/5728-

10277177. 

[53] S. Allali, A. Amine, Stability analysis of a fractional-order two-strain epidemic model with 

general incidence rates, Commun. Math. Biol. Neurosci. 43 (2022). 

https://doi.org/https://doi.org/10.28919/cmbn/7297. 

[54] C. Li, Y. Zhang, Y. Zhou, Competitive coexistence in a two-strain epidemic model with a 

periodic infection rate, Discret. Dyn. Nat. Soc. 2020 (2020). 

https://doi.org/10.1155/2020/7541861. 

[55] G. Nastasi, C. Perrone, S. Taffara, G. Vitanza, A time-delayed deterministic model for the spread 

of COVID-19 with calibration on a real dataset, Mathematics. 10 (2022) 1–14. 

https://doi.org/10.3390/math10040661. 

[56] J. Yang, F. Zhang, Stability of a two-strain epidemic model with an age structure, J. Appl. Math. 

Informatics. 30 (2012) 183–200. 

[57] P.K. Tiwari, R.K. Rai, S. Khajanchi, R.K. Gupta, A.K. Misra, Dynamics of coronavirus 

pandemic: effects of community awareness and global information campaigns, Eur. Phys. J. 

Plus. 136 (2021). https://doi.org/10.1140/epjp/s13360-021-01997-6. 

[58] M.R. Arefin, K.M.A. Kabir, M. Jusup, H. Ito, J. Tanimoto, Social efficiency deficit deciphers 

social dilemmas, Sci. Rep. 10 (2020) 1–9. https://doi.org/10.1038/s41598-020-72971-y. 



59 

 

[59]     J. Huang, J. Wang, C. Xia, Role of vaccine efficacy in the vaccination behavior under myopic 

update rule on complex networks, Chaos, Solitons and Fractals. 130 (2020). 

https://doi.org/10.1016/j.chaos.2019.109425. 

[60]     Z. wang, C. Xia, Co-evolution spreading of multiple information and epidemics on two-layered 

networks under the influence of mass media. Nonlinear Dynamics, 2020, 102: 3039-3051, 

https://doi.org/10.1007/s11071-020-06021-7. 

[61] M.M.U.R. Khan, M.R. Arefin, J. Tanimoto, Investigating the trade-off between self-quarantine 

and forced quarantine provisions to control an epidemic: An evolutionary approach, Appl. Math. 

Comput. 432 (2022) 127365, https://doi.org/10.1016/j.amc.2022.127365. 

[62]     M.M.U.R. Khan, M.R. Arefin, J. Tanimoto, Investigating vaccination behavior and disease 

dynamics of a time-delayed two-strain epidemic model : An evolutionary approach, Proc. Int. 

Exch. Innov. Conf. Eng. Sci. 8 (2022) 147–154. 

[63] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer International 

Publishing, 2013. 

[64] M. Martcheva, A non-autonomous multi-strain SIS epidemic model, J. Biol. Dyn. 3 (2009) 235–

251. https://doi.org/10.1080/17513750802638712. 

[65] E.F. Arruda, S.S. Das, C.M. Dias, D.H. Pastore, Modelling and optimal control of multi-strain 

epidemics, with application to COVID-19, PLoS One. 16 (2021) 1–18. 

https://doi.org/10.1371/journal.pone.0257512.   

 

 

 

 

 

 

 

 

 

 

 



60 

 

Chapter 4 

Investigating the social dilemma of an epidemic model with provaccination and 

antivaccination groups: an evolutionary approach 

 

Abstract 

 

In this study, an epidemiological model with the provaccination and antivaccination susceptible groups 

is proposed, and the social dilemma of the model is analyzed. During a pandemic, such as the current 

COVID-19, many individuals get confused about choosing the option of adopting a provaccination or 

antivaccination strategy based on the number of infected people and the payoff of being infected. In the 

proposed model, people can obtain immunity either through vaccination or by getting infected with the 

disease which is known as natural immunity. In addition, increasing the waning immunity influences 

the choice of adopting the provaccination or antivaccination strategy. We used the behavior model to 

analyze the choice of the two strategies, where any individual can choose a strategy based on the number 

of infected individuals from each group. Moreover, individuals who are already infected can choose 

their strategy based on the payoff of their disease cost or vaccination cost. Our results show that, at 

Nash equilibrium, individuals in both groups behave the same. Further, from our numerical results, 

increasing the number of vaccinations can reduce the social dilemma whereas an increase in the waning 

immunity rate increases the social dilemma.  

4.1 Introduction 

The best method for preventing any infectious disease is vaccination. However, people do not always 

choose to get vaccinated. Some people develop immunity to infectious diseases after contracting them 

or develop a natural herd immunity. Some people would rather receive the vaccination after each season, 

such as influenza. Moreover, the current COVID-19 seems to resemble seasonal influenza, where 

people may require vaccination because of the decreasing effects of protection after a specific amount 

of time [1–7]. Thus, the entire human population can be split into two groups when vaccination becomes 

voluntary provaccination and antivaccination groups−meaning getting vaccinated and not getting 

vaccinated respectively. The decisions of individuals toward vaccination are influenced by the overall 

number of infected people in each group and the total payoff of both groups’ illnesses[8–12]. 

In analyzing infectious disease models, compartmental models are the most useful tool for scientists 

and healthcare management authorities. The most extensively used model is the SIR model, which was 

developed by Kermach and Mckendrick [13] and is regarded as a pioneer in this field. This model 

depicts the path that disease takes in humans as it moves from the susceptible compartment (S) to the 

infected compartment (I) and then to the recovered compartment (R), where people develop resistance 

to reinfection. However, in certain instances, the recovered individual relapses, a condition known as 
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the waning of immunity. Exposed (E), quarantine (Q), hospitalized (H), and asymptomatic (A) 

compartments can be used in some epidemics to adequately examine disease dynamics [2, 4, 5, 11, 14–

36]. An additional application of compartmental models in the research of disease transmission is the 

examination of supervision and moderation methods, such as immunization, and the impact of birthing 

and passing factors. SIR dynamics may analyze elements such as resource exploitation, corruption, and 

the spread of false information. However, most models emphasize more on how the illness develops 

than how a person behaves in a given circumstance. Nevertheless, various irresistible infection control 

strategies rely on organizational and human decision-making [8, 10, 15, 23, 24, 37–48]. The emerging 

discipline of behavioral epidemiology, which integrates game theory and psychology with 

epidemiology, has garnered considerable attention in this setting. Behavioral epidemiology considers 

individual behavior as opposed to a fixed role. The best discipline for this situation is sociophysics, a 

cutting-edge field that uses “Evolutionary Game Theory” (EGT) and statistical physics to better 

understand the behavior of humans. In a unique method, Bauch studied the dynamics of vaccine 

decision-making by combining the SIR model with EGT. Based on the disease dynamics, the total 

number of infected people, infection cost, vaccination cost, and vaccine efficacy, anybody can obtain 

their vaccination. Later, this developed into the idea of the “vaccination game.” This method has led to 

several findings and predictions regarding vaccination campaigns [14, 49–55]. 

In this study, we propose a behavior epidemic model based on SIRS dynamics with two susceptible 

population groups: provaccination and antivaccination groups. Any individual can choose the strategy 

of committing provaccination or antivaccination based on the total number of infected individuals in 

each group before they got infected. However, any individual can choose their strategy based on the 

total payoff during each time step after being infected and recovering. We used the behavior model to 

analyze how people choose their strategies before infection and after recovery. Finally, for analyzing 

the social dilemma of the model based on transmission rate, vaccination rate, waning rate against 

immunity, and individual cost of vaccination or infection, we calculated the Social Efficiency Deficit 

(SED), which is the difference between the payoffs at the Nash Equilibrium (NE) and Social Optimum 

(SO).     

4.2 Model Depiction 

4.2.1 Epidemic Model 

We suggested a 6-compartmental epidemic model based on the SIRS process. In the model, the entire 

population is split into two susceptible groups: the provaccination group 𝑃 and the antivaccination 

group 𝐴. Individuals of 𝑃 are willing to take part in the vaccination or prefer the provaccination strategy 

with some payoff. Meanwhile, the antivaccination group 𝐴 includes individuals who are not willing to 

take part in the vaccination or prefer the antivaccination strategy. 𝐼𝑃 and 𝐼𝐴 denote the infected 

compartments of individuals who are infected from the provaccination and antivaccination groups, 
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respectively. Similarly, 𝑅𝑃 and 𝑅𝐴 denote the recovered individuals from the provaccination and 

antivaccination groups, respectively. Figure 1 depicts the flow diagram of the proposed model; the 

model formation is as follows: 

 

Figure 1: The compartments and their transition of the proposed model. 

�̇� = −𝛽𝑃𝑃(𝐼𝐴 + 𝐼𝑃) + 𝑏𝐴 + 𝛿(1 − 𝑦)𝑅𝑃 + 𝛿𝑥𝑅𝐴 − 𝑎𝑃 − 𝑣𝑃         (1) 

�̇� = −𝛽𝐴𝐴(𝐼𝐴 + 𝐼𝑃) − 𝑏𝐴 + 𝛿(1 − 𝑥)𝑅𝐴 + 𝛿𝑦𝑅𝑃 + 𝑎𝑃         (2) 

𝐼�̇� = 𝛽𝑃𝑃(𝐼𝐴 + 𝐼𝑃) − 𝛾𝑃𝐼𝑃                            (3) 

𝐼�̇� = 𝛽𝐴𝐴(𝐼𝐴 + 𝐼𝑃) − 𝛾𝐴𝐼𝐴              (4) 

𝑅�̇� = 𝛾𝑃𝐼𝑃  − 𝛿(1 − 𝑦)𝑅𝑃 − 𝛿𝑦𝑅𝑃 + 𝑣𝑃          (5) 

𝑅�̇� = 𝛾𝐴𝐼𝐴 − 𝛿(1 − 𝑥)𝑅𝐴 − 𝛿𝑥𝑅𝐴           (6) 

𝑃(𝑡) + 𝐴(𝑡) + 𝐼𝑃(𝑡) + 𝐼𝐴(𝑡) + 𝑅𝑃(𝑡) + 𝑅𝐴(𝑡) = 1                       (7) 

where, 𝛽𝑃 and 𝛽𝐴 denote the transmission rate of susceptible individuals in the provaccination and 

antivaccination groups, respectively. We consider  𝛽𝑃 < 𝛽𝐴 because individuals in the provaccination 

group always have less risk of infection in the global context. 𝛾𝑃 and 𝛾𝐴 denote the recovery rate from 

provaccination and antivaccination infected groups, respectively. We consider 𝛾𝑃 < 𝛾𝐴, i.e., the 

recovery time for individuals in the provaccination group is lower, to keep the basic reproduction 

number fixed for the proposed model. Table 1 shows all parameters with their meanings. 𝛿 denotes the 

waning rate against immunity, and 𝑣 denotes the vaccination rate. To keep the model simple we have 

neglected the parameters which involve the birth and death issues [5, 11, 15, 16, 17, 22, 40, 55].   

4.2.2 Behavior Model 

We present the idea of the behavior model, which counts for the time-dependent flux from the 

susceptible provaccination group (𝑃) to the susceptible antivaccination group (𝐴) by 𝑎, the susceptible 

antivaccination group (𝐴) to the susceptible provaccination group (𝑃) by 𝑏, recovered from the 
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provaccination group (𝑅𝑃) to the susceptible antivaccination group (𝐴) by 𝑦 and recovered from the 

antivaccination group (𝑅𝐴) to the susceptible provaccination group (𝑃) by 𝑥 [53]. We define the 

following four dynamic equations: 

�̇� = 𝑡𝑎 𝑎 (1 − 𝑎){𝐼𝑃 − 𝐼𝐴}                            (8) 

�̇� = 𝑡𝑏 𝑏 (1 − 𝑏){𝐼𝐴 − 𝐼𝑃}                 (9) 

�̇� = 𝑡𝑥  𝑥 (1 − 𝑥){𝑐𝑎𝑅𝐴 − 𝑐𝑝𝑅𝑃}             (10) 

�̇� = 𝑡𝑦 𝑦 (1 − 𝑦){𝑐𝑝𝑅𝑃 − 𝑐𝑎𝑅𝐴}              (11) 

where, 𝑡𝑎 , 𝑡𝑏 , 𝑡𝑥, and 𝑡𝑦 are the inertial effects of the migration rate; 𝑐𝑎 denotes the individual cost of 

committing an antivaccination strategy, i.e., the cost of infection from the antivaccination group; 𝑐𝑝 

denotes the individual cost of committing to a provaccination strategy, i.e., the cost of either vaccination 

or infection from a provaccination strategy. We consider 𝑐𝑎 > 𝑐𝑝. Individuals can choose their strategy 

twice: before infection and after recovery. Before infection, individuals will consider the total number 

of infected individuals from both susceptible groups. If the infection from 𝑃, i.e., 𝐼𝑃 increases, 

individuals will prefer to commit 𝐴, whereas if the infection from 𝐴, i.e., 𝐼𝐴 increases, the individual 

will prefer 𝑃. After recovery, individuals choose their strategy based on the payoff during their infection 

period and the total number of recovered people from the provaccination and antivaccination groups. 

The total payoff at each time interval is calculated with the product of individual costs and recovered 

people. If the payoff from the antivaccination group increases, individuals will prefer the provaccination 

strategy, whereas if the payoff from the provaccination group increases individuals will prefer the 

antivaccination strategy.   

Table 1: Description of the model parameters  

Parameter symbol Parameter Description 

𝛽𝑃 Disease Transference rate of provaccination group 

𝛽𝐴 Disease Transference rate of antivaccination group 

𝛾𝑃 The recovery rate from the provaccination group 

𝛾𝐴 The recovery rate from the antivaccination group 

𝑡𝑎 Inertial effect on migration from 𝑃 to 𝐴 

𝑡𝑏 Inertial effect on migration from 𝐴 to 𝑃 

𝑡𝑥 Inertial effect on migration from 𝑅𝐴 to 𝑃 

𝑡𝑦 Inertial effect on migration from 𝑅𝑃 to 𝐴 

𝑐𝑝 Individual cost due to choice of provaccination strategy  

𝑐𝑎 Individual cost due to choice of antivaccination strategy 

𝛿 Waning rate against immunity 

𝑣 Vaccination rate 
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4.2.3 Basic Reproduction Number, Total infection, Average Social payoff (ASP), SED 

In this model, we considered the basic reproduction number, 𝑅0 =
𝛽𝑃

𝛾𝑃
=

𝛽𝐴

𝛾𝐴
= 2.5 [5, 11, 15, 40]. 

The total numbers of infected individuals from the provaccination and antivaccination groups are, 

respectively, defined as follows: 

𝐼𝑃𝑇 = ∫ 𝛽
𝑃
𝑃(𝐼𝐴 + 𝐼𝑃) 𝑑𝑡

∞

0
                     (12) 

𝐼𝐴𝑇 = ∫ 𝛽
𝐴
𝐴(𝐼𝐴 + 𝐼𝑃) 𝑑𝑡

∞

0
                      (13) 

where 𝑡 = ∞ denotes a state of equilibrium (we say it, NE). 

The ASP at NE is defined as follows: 

𝐴𝑆𝑃𝑁𝐸 = −𝐼𝑃𝑇 ∗ 𝑐𝑝 − 𝐼𝐴𝑇 ∗ 𝑐𝑎                     (14) 

where the first and second terms on the right-hand side indicate the total payoffs of the individuals who 

commit the provaccination and antivaccination strategies, respectively.  

By referring to the original definition of SED, we evaluate the discrepancy between ASP at NE and ASP 

at SO to determine whether a social dilemma underlies the current social-dynamical system (𝐴𝑆𝑃𝑆𝑂). It 

illustrates the way to increase the system’s ASP from an evolutionary closing state (NE) to a 

theoretically optimal society to fulfill the highest 𝐴𝑆𝑃𝑆𝑂 plausible if all 𝑎, 𝑏, 𝑥, and 𝑦 evolutionary 

processes are properly controlled [25, 56]. It is defined as follows: 

𝑆𝐸𝐷 = 𝐴𝑆𝑃𝑆𝑂 − 𝐴𝑆𝑃𝑁𝐸                      (15) 

The SO state is a time-constant vector (𝑎(𝑓𝑜𝑟 𝑆𝑂), 𝑏(𝑓𝑜𝑟 𝑆𝑂), 𝑥 (𝑓𝑜𝑟 𝑆𝑂), 𝑦 (𝑓𝑜𝑟 𝑆𝑂)), with 

𝑎, 𝑏 ranging in [0.0,0.5] and 𝑥, 𝑦 ranging in [0.0,1.0]. Thus, 

𝑺𝑶 = argmax [𝐴𝑆𝑃(𝑎(𝑓𝑜𝑟 𝑆𝑂), 𝑏(𝑓𝑜𝑟 𝑆𝑂), 𝑥 (𝑓𝑜𝑟 𝑆𝑂), 𝑦 (𝑓𝑜𝑟 𝑆𝑂))]                (16).          

When NE equals SO, SED implies zero. However, when the SED is positive but not zero, there is a 

social dilemma. 

4.3 Results and Discussion 

4.3.1 Timeseries depiction: 

Figure 2(a) shows the timeseries of all compartments taking the standard (basic) parameter values. Table 

2 represents the parameters’ standard values. Table 3 represents the initial values of the compartments 

and migration rates. We used the explicit finite difference method to solve the model [Equations 

(1)−(11)] numerically. Time step 𝑑𝑡 is taken as 1.0 in Figure 2. We have also checked the numerical 

simulation by using different time steps, where we observed that taking larger time steps (such as 𝑑𝑡 =
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2.0)  brings the NE faster whereas taking small time steps (such as 𝑑𝑡 = 0.5) brings NE slower. Because 

of this reason, we have used 𝑑𝑡 = 1.0 throughout the study. We assume the disease transmission rate 

𝛽𝑃 from the provaccination group is lower than the disease transmission rate 𝛽𝐴 from the antivaccination 

group. In addition, we assume the recovery rate 𝛾𝑃 from the provaccination group is lower than the 

recovery rate 𝛾𝐴 from the antivaccination group to keep the basic reproduction number fixed at 𝑅0 =

2.5. From Figure 2(a), at NE, graphs of both provaccination and antivaccination compartments (blue 

and orange, respectively) coincide with each other. Thus, we can say that the provaccination and 

antivaccination groups behave similarly at NE. Further, the NE graphs of the infected compartments 

from both the provaccination and antivaccination groups (red and green, respectively) coincide with 

each other. The number of people remaining in the recovered compartment from the provaccination 

group 𝑅𝑃 (violet graph) is much higher than the people remaining in the recovered compartment from 

the antivaccination group 𝑅𝐴 (brown graph). Figures 2(b) and 2(c) show the rates from the 

compartments that are proposed by the behavior model. In Figure 2(b), at NE, 𝑏 is approximately 0.17, 

whereas 𝑎 is close to zero. This is because, during the oscillating period, infection from the 

antivaccination group is mostly higher than the infection from the provaccination group; thus, most 

people will prefer to go to the provaccination state before infection. In Figure 2(c), rate 𝑦 is almost close 

to 1.0 and 𝑥 is almost close to 0.0 at NE. This is because, during the oscillating period, people staying 

in the recovered compartment from the provaccination group is always higher than the people staying 

in the recovered compartment from the antivaccination group; thus, most people will prefer to migrate 

to 𝐴 as the total payoff 𝑐𝑝𝑅𝑃 is always higher than the total payoff 𝑐𝑎𝑅𝐴.       
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Figure 2: Timeseries of the compartments and rates for the standard case. In 2(a), the blue and orange 

lines depict the people of provaccination and antivaccination compartments, respectively; the green and 

red lines represent the infection compartments from provaccination and antivaccination groups, 

respectively; the violet and brown lines depict the recovered people from provaccination and 

antivaccination groups, respectively. Migration rates are depicted in 2(b) and 2(c). From 2(b), the 

moving rate from 𝐴 to 𝑃 is much lower than the moving rate from 𝑃 to 𝐴. In 2(c), the moving rate from 

𝑅𝑃 to 𝐴 is much higher than the moving rate from 𝑅𝐴 to 𝑃. From the graph, the provaccination and 

antivaccination compartments coincide with each other at NE. In addition, their infection graphs 

coincide. The number of recovered from the provaccination group remains higher than that of those 

recovering from the antivaccination group at NE.     

Table 2: Standard values of the parameters [11, 15, 16, 17, 40] 

Parameter Value Parameter Value 

𝛽𝑃 0.7 𝑡𝑥, 𝑡𝑦 1.0 

𝛽𝐴 1.0 𝑐𝑝 0.7 

𝛾𝑃 0.28 𝑐𝑎 1.0 

𝛾𝐴 0.40 𝑣 0.1 

𝑡𝑎, 𝑡𝑏 1.0 𝛿 0.1 

 

Table 3: Initial values for the compartments and migration rates [11, 15, 16, 17, 40] 

State At 𝒕 = 𝟎 State/Rate At 𝒕 = 𝟎 

𝑃 0.49 𝑅𝐴 0.00 

𝐴 0.49 𝑎 0.01 

𝐼𝑃 0.01 𝑏 0.01 

𝐼𝐴 0.01 𝑥 0.01 

𝑅𝑃 0.00 𝑦 0.01 

 

4.3.2 ASP and SED in Terms of Vaccination and Waning Immunity 

The first row of Figure 3 shows the total number of infected people from the provaccination and 

antivaccination groups at the equilibrium state and the ASP for the NE state. The second row shows the 

total number of infected people from both the provaccination and antivaccination groups, ASP for the 

SO state, and the SED.  All panels are drawn in terms of the waning immunity rate (𝛿) along the 𝑥 −axis 

and vaccination rate (𝑣) along the 𝑦 −axis, both ranging from 0 to 0.5. From panel (a), if the waning 

immunity rate increases, the total number of infected people increases (yellow to blue). In addition, if 

the vaccination rate increases, the total number of infected people decreases (blue to yellow). Similar 

phenomena occur in panel (b). However, the total number of infected people is less than in panel (a) 
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because people will prefer the provaccination strategy to the antivaccination strategy during the total 

period to reach NE. Panel (c) shows the total payoff at NE, which is the combination of panels (a) and 

(b) multiplied by their payoffs. In panel (d), the total number of infected people is quite low for all 

combinations of vaccination rate and waning immunity rate. Meanwhile, in panel (e), a high vaccination 

rate gives low infection, whereas higher waning immunity gives higher infection, which is similar to 

panels (a) and (b). This is because as the provaccination strategy has a lower payoff than the 

antivaccination strategy, SO will go for the minimum cost, i.e., most people will prefer the 

provaccination strategy, and the flow into the provaccination group will be maximum. Thus most 

infections will be from the provaccination group. Therefore, we can say that most infections will come 

from the provaccination group at SO. Panel (f) presents the total payoff for the SO case, and the payoff 

is less than the payoff for the NE case. Considering the difference between the SO and NE states, we 

show the SED in panel (g). From the SED, we can observe that increasing the vaccination rate causes 

fewer social dilemmas, i.e., the payoff in the NE and SO states are very close to each other. However, 

if the waning rate increases, the social dilemma will also increase because most people will get confused 

in choosing their strategy if the immunity through vaccination or infection is not high. If both the waning 

immunity and vaccination are maximum, the social dilemma will be maximum.       

 

Figure 3: Total number of infected people from the provaccination and antivaccination groups, ASP, 

and SED. Panels (a) −(c) are for the NE case, and panels (d) − (f) are for the SO case. Panel (g) 

represents the SED, which is the difference between panels (f) and (c). All the panels are drawn 

concerning vaccination rate (𝑣) along the 𝑦 −axis and waning immunity rate (𝛿) along the 𝑥 −axis, 

both ranging from 0 to 0.5. The range of the total number of infected people is set from 0 to 50. The 

ASPs range from −80 to 0 and the SED range is set from 0 to 40. The remaining parameters are the 

same as in the standard case. From the figure, we can see if the wanning rate and vaccination rate are 

the maximum social dilemma will also be maximum.   
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4.3.3 ASP and SED in Terms of Individual Payoff 

The first row of Figure 4 shows the total number of infected people from the provaccination and 

antivaccination groups in the NE state and also the ASP for the NE state. The second row shows the 

total number of infected people from both the provaccination and antivaccination groups, ASP for the 

SO state, and the SED.  Each panel has been drawn in terms of the individual cost due to committing 

an antivaccination strategy (𝑐𝑎) along the 𝑥 −axis ranging from 0 to 1, and individual cost due to 

committing a provaccination strategy (𝑐𝑝) along the 𝑦 −axis ranging from 0 to 𝑐𝑎. In panel (a), the total 

number of infected people will be high if 𝑐𝑎 and as 𝑐𝑝 are high. In panel (b), a similar attitude is 

observed, but the total number of infected people is lower than in panel (a). Thus, the total number of 

infections will be greater in the antivaccination group than in the provaccination group. However, in the 

SO case, there are fewer infected people from the antivaccination group than from the provaccination 

group. Because the SO case is based on the total minimum payoff, the provaccination strategy is 

preferred due to its low payoff. Panels (c) and (f) represent the total average payoff of the provaccination 

and antivaccination groups, respectively, and from their difference, we can observe the SED in panel 

(g). In the NE case, increasing both costs increases the total payoff. In panel (f), the same phenomena 

are observed. As a result, the SED panel shows that increasing the price raises the value of SED, creating 

a social dilemma. The social dilemma will be maximum if both costs are at the maximum level.  

 

Figure 4: Total number of infected people from provaccination and antivaccination groups, ASP, and 

SED. Panels (a) − (c) are for the NE case, and panels (d) − (f) are for the SO case. Panel (g) represents 

the SED, which is the difference between panels (f) and (c). All the panels are drawn in terms of the 

individual cost due to committing an antivaccination strategy (𝑐𝑎) along the 𝑥 −axis ranging from 0 to 

1 and individual cost due to committing a provaccination strategy (𝑐𝑝) along the 𝑦 −  axis ranging from 

0 to 𝑐𝑎. The total number of infected people is depicted with a range from 0 to 20, the ASPs are depicted 

with a range from −25 to 0, and the SED is depicted with a range from 0 to 20. The other parameters 
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are the same as in the basic case. From the figures, the social dilemma will be maximum if both the 

costs are at maximum level.  

4.3.4 ASP and SED in Terms of Transmission Rate 

The first row of Figure 5 shows the total number of infected people from the provaccination and 

antivaccination groups in the NE state and the ASP for the NE state. The second row shows the total 

number of infected people from both groups, the ASP for the SO state, and the SED.  Each panel has 

been drawn in terms of the transmission rate from the antivaccination group (𝛽𝑎) along the 𝑥 −axis 

ranging from 0 to 1 and the transmission rate from the provaccination group (𝛽𝑝) along the 𝑦 −  axis 

ranging from 0 to 𝛽𝑎. In panel (a), the total number of infected people will be high if 𝛽𝑎 and 𝛽𝑝 are 

high. In panel (b), a similar attitude is observed, but the total number of infected people is higher than 

in panel (a). Thus, the total number of infections will be larger in the provaccination group than in the 

antivaccination group. Because the transmission rate is the same for both groups, more people will 

choose the strategy of provaccination because of less payoff. For the SO case, there is a very low number 

of infected people from the antivaccination group but a high number of infected people from the 

provaccination group. Because the SO case is based on the total minimum payoff, the provaccination 

strategy is preferred due to its low payoff. Panels (c) and (f) represent the total average payoffs of the 

provaccination and antivaccination groups, respectively; from their difference, we can see the SED in 

panel (g). In the NE case in panel (c), increasing of transmission rate increases the total payoff. In panel 

(f), the same phenomena are observed. Thus, from the SED panel, when 𝛽𝑎 is high (greater than 0.5), 

increasing 𝛽𝑃 increases the dilemma and there is a peak dilemma (dark blue) approximately at 𝛽𝑃 =

0.7. Afterward, the peak dilemma decreases because, if 𝛽𝑃 is more than 0.7, and infection from both 

groups becomes the same. Therefore, there will be fewer social dilemmas when the two transmission 

rates are the same. 
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Figure 5: The total number of infected people from provaccination and antivaccination groups, ASP, 

and SED. Panels (a) − (c) are for the NE case and panels (d) − (f) are for the SO case. Panel (g) 

represents the SED, which is the difference between panels (f) and (c). All the panels are drawn in terms 

of the transmission rate from the antivaccination group (𝛽𝑎) along the  𝑥 −axis ranging from 0 to 1 and 

the transmission rate from the antivaccination group (𝛽𝑝) along the 𝑦 −  axis both ranging from 0 to 𝛽𝑎. 

The total number of infected people is depicted with a range from 0 to 20, the ASPs are depicted with 

a range from −25 to 0, and the SED is depicted with a range from 0 to 20. The other parameters are the 

same as in the basic case. From the figures, we see that the social dilemma reached a peak level with 

the increasing transmission rate of the provaccination group and then started to decrease.  

4.4 Conclusion 

Any infectious disease dynamics are always influenced by how people behave. People determine their 

approach to maintaining protection to fend off infectious diseases based on available therapy, 

vaccinations, and other preventative measures. In a model of an epidemic where all susceptible people 

are split into provaccination and antivaccination groups, we consider disease dynamics. Decisions are 

examined in light of dynamic human behavior. Depending on the total number of infections from each 

group, any individual can take a provaccination or antivaccination strategy before infection. However, 

once infected, individuals can adopt a strategy by considering the benefits accrued throughout the 

infection phase and the overall number of recovered members of each group. Some analytic and 

numerical results of an epidemic model containing the pro- and anti-vaccine groups were presented in 

[12]. Group behavior towards the provaccination or antivaccination groups was analyzed in [8]. The 

vaccination behavior of humans and the waning immunity effect in epidemic models were also analyzed 

in [4, 6, 10, 18].  

The proposed model’s disease dynamics were our focus. We considered whether behavior equations 

suggested an NE state while maintaining the fundamental reproduction number at a fixed value. 
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According to our findings, the overall number of people using the two strategies and the total number 

of diseases originating from each group were equal at NE. Thus, we can conclude that both groups 

behave similarly when the situation is balanced. Our next issue is to examine the social dilemma of the 

model using suggested key elements. When considering vaccination rates and the waning immunity 

effect, we find that increasing the vaccination rates decreases the payoff gap between the NE state and 

the SO state, thereby alleviating the social dilemma of adopting the provaccination strategy. In addition, 

reducing the waning immunity rate lessens the social pressure to adopt the provaccination strategy. 

Social dilemma grows as the payoffs for adopting the two strategies increase from an individual 

perspective. In terms of the transmission rate for both groups, the social dilemma increases 

monotonically as the transmission rate from the provaccination group increases and reaches a peak 

value. Following the peak, the social dilemma declines are monotonic with the increase in the 

provaccination group’s transmission rate.  

The disease dynamics and social dilemma were studied in our model using a simple ordinary differential 

equation model (mean-field approximation) technique, and the social context gives our data credibility. 

We will use a multiagent simulation approach to analyze the results in further investigations. 
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Chapter 5 

Influence of Waning Immunity on Vaccination Decision-making: A Multi-Strain Epidemic Model 

with an Evolutionary Approach Analyzing Cost and Efficacy 

 

Abstract 

 

In this research, we introduce a comprehensive epidemiological model that accounts for multiple strains 

of an infectious disease and two distinct vaccination options. Vaccination stands out as the most 

effective means to prevent and manage infectious diseases. However, when there are various vaccines 

available, each with its costs and effectiveness, the decision-making process for individuals becomes 

paramount. Furthermore, the factor of waning immunity following vaccination also plays a significant 

role in influencing these choices. To understand how individuals make decisions in the context of 

multiple strains and waning immunity, we employ a behavioral model, allowing an epidemiological 

model to be coupled with the dynamics of a decision-making process. Individuals base their choice of 

vaccination on factors such as the total number of infected individuals and the cost-effectiveness of the 

vaccine. Our findings indicate that as waning immunity increases, people tend to prioritize vaccines 

with higher costs and greater efficacy. Moreover, when more contagious strains are present, the 

equilibrium in vaccine adoption is reached more rapidly. Finally, we delve into the social dilemma 

inherent in our model by quantifying the social efficiency deficit (SED) under various parameter 

combinations. 

5.1 Introduction 

Vaccination stands as the foremost strategy for preventing infectious diseases. However, the 

proliferation of diverse vaccines has introduced a conundrum among individuals, creating confusion in 

the selection process [1–4]. This dilemma is exacerbated in the context of diseases with multiple strains, 

accentuating the critical nature of informed vaccine selection [3,4]. The pivotal determinants in this 

decision-making process revolve around the economic considerations associated with vaccination cost 

and the efficacy of the chosen vaccine [5–10]. Despite the established efficacy of vaccination, not all 

individuals opt for this preventive measure. Some individuals acquire immunity through natural 

exposure to infectious agents or contribute to the development of natural herd immunity. In specific 

cases, individuals may favor periodic vaccinations, as exemplified by the seasonal administration of 

influenza vaccines [5,11,12]. Notably, the ongoing COVID-19 pandemic shares resemblances with 

seasonal influenza, warranting recurrent vaccinations due to the diminishing protective effects over time 

[2,13–17]. Individual choices regarding vaccination are further molded by prevailing infection rates and 

the financial implications of vaccine acquisition. 
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In the examination of infectious disease models, compartmental models emerge as the preeminent tool 

for scientific and healthcare management authorities. The foremost among these models is the SIR 

model, pioneered by Kermack and McKendrick, delineating the progression of disease in humans 

through sequential transitions from the susceptible compartment (S) to the infected compartment (I) 

and ultimately to the recovered compartment (R), where immunity to reinfection develops [18]. The 

phenomenon of waning immunity, manifesting as relapses in recovered individuals, introduces a 

nuanced consideration. 

Certain epidemics necessitate the incorporation of additional compartments, such as Exposed (E), 

Quarantine (Q), Hospitalized (H), and Asymptomatic (A), to comprehensively investigate disease 

dynamics [1,19,28–30,20–27]. Furthermore, compartmental models find applicability in exploring 

disease transmission interventions, including the scrutiny of supervision and moderation methods like 

immunization, as well as the impact of demographic factors. 

While SIR dynamics afford analysis of various elements such as resource exploitation, corruption, and 

the dissemination of misinformation, it is noteworthy that most models tend to emphasize the 

pathogenesis of the illness rather than individual behavior within specific circumstances. However, it is 

pivotal to acknowledge that numerous infectious disease control strategies hinge on organizational and 

human decision-making processes [1,3,14,27,31,32]. 

The nascent field of behavioral epidemiology, an amalgamation of game theory and psychology with 

epidemiology, has gained significant attention in addressing this gap. Behavioral epidemiology diverges 

from fixed role paradigms, focusing on individual behavior as a key determinant. In this context, 

sociophysics emerges as a cutting-edge discipline utilizing Evolutionary Game Theory (EGT) and 

statistical physics to enhance the understanding of human behavior [3,4,6,7,12,32−35]. 

An innovative approach, as exemplified by Bauch [36], involves the integration of the SIR model with 

EGT to scrutinize the dynamics of vaccine decision-making. By considering disease dynamics, total 

infected individuals, infection cost, vaccination cost, and vaccine efficacy, this approach facilitates 

personalized vaccination decisions, culminating in the concept of the “vaccination game”. The 

application of this method has yielded numerous insights and predictions pertinent to vaccination 

campaigns[5,12,30,31,37].  

Aside from the standpoint of epidemiological modeling, the question of how people adopt a vaccine; 

whether willing to commit or to avoid it, and which vaccine is favored amid several alternatives, is 

important. It should be said still a difficult problem to reproduce in a mathematical model, although 

some field survey studies were explored (e.g. [38] ). 

In this investigation, we present a comprehensive behavioral epidemic model featuring multiple strains, 

built upon the SIRS/V dynamics and incorporating two distinct vaccination options. Our model allows 
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individuals to make vaccination choices based on key factors such as the total number of infected 

individuals, vaccination costs, and the efficacy of available vaccines with the presence of wanning 

immunity [11,37,39–42]. The multistrain context enables an exploration of how these behavioral 

dynamics influence the dominance or coexistence of the two vaccination options over time [3–5]. 

Through the selection of critical parameters within our proposed model, we have computed the fractions 

of vaccinated individuals at equilibrium, providing insights into the emergence of vaccine dominance. 

The behavioral model serves as a framework for guiding individual vaccination strategies. 

To delve into the societal implications of our model, particularly addressing the social dilemma, we 

utilize essential metrics such as the basic reproduction number, waning rate of immunity, vaccination 

cost, inertial effect of vaccination rate, and the sensitivity of vaccination choice to cost. Specifically, we 

quantify the Social Efficiency Deficit (SED), representing the disparity between payoffs at the Nash 

Equilibrium (NE) and the Social Optimum (SO). This analysis sheds light on the societal consequences 

of individual vaccination decisions, offering a nuanced understanding of the interplay between 

individual choices and collective outcomes [3,7,8,9,12,17,22,27,31,32,43–45]. 

5.2 Model Depiction 

5.2.1 Epidemic Model 

We considered an epidemiological model that consists of two vaccination compartments and 𝑛 infected 

compartments with the presence of 𝑛 strain. All the people are considered Susceptible and initially 

belong to compartment 𝑆. Vaccination compartment 𝑉1 contains those individuals who choose vaccine 

1 which has a high cost and high efficacy while 𝑉2 contains those individuals who choose vaccine 2 

which is less costly and less efficacy. All the individuals will recover from strain and move to the 

recovered or removed compartment 𝑅. Recovered individuals can be susceptible again with the loss of 

immunity. The transmission rate from the susceptible compartment is 𝛽𝑖(𝛽𝑖 < 𝛽𝑖+1), where 𝑖 starts from 

1 to 𝑛. We consider both vaccinations imperfect so both individuals from the compartment 𝑉1and 𝑉2 

can be infected with any strain. 𝑒1𝑖and 𝑒2𝑖 are vaccine efficacy of vaccines 1 and 2. Here, the efficacy 

obeys the concept of effectiveness [46]. So the discounted transmission rates from vaccine 1 and vaccine 

2 compartments will be (1 − 𝑒1𝑖)𝛽𝑖 and (1 − 𝑒2𝑖)𝛽𝑖 respectively. We define the efficacy ratio 𝑒𝑟 =
𝑒1𝑖

𝑒2𝑖
  

for the two vaccines for 𝑛 strains to analyze the dynamics of vaccination. The recovery rates for 𝑛 

strains are 𝛾𝑖. In addition, we considered 𝛾𝑖 < 𝛾𝑖+1 to keep the basic reproduction number at a fixed 

value which makes the model simpler. With the rate 𝜔, individuals become susceptible again which we 

call the waning immunity. The schematic diagram of the proposed model is shown in Figure 1 and the 

set of Ordinary differential equations is as follows: 
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Figure 1: The compartments and their transition of the proposed model. 

�̇� = −𝑥𝑆 − 𝑦𝑆 − ∑ 𝛽𝑖𝑆𝐼𝑖
𝑛
𝑖=1 +𝜔𝑅,          (1) 

𝑉1̇ = 𝑥𝑆 − ∑ (1 − 𝑒1𝑖)𝛽𝑖𝑉1𝐼𝑖
𝑛
𝑖=1 ,          (2) 

𝑉2̇ = 𝑦𝑆 − ∑ (1 − 𝑒2𝑖)𝛽𝑖𝑉2𝐼𝑖
𝑛
𝑖=1 ,                      (3) 

 

𝐼1̇ = (1 − 𝑒11)𝛽1𝑉1𝐼1 + 𝛽1𝑆𝐼1 + (1 − 𝑒21)𝛽1𝑉2𝐼1 − 𝛾1𝐼1,                                

𝐼2̇ = (1 − 𝑒12)𝛽2𝑉1𝐼2 + 𝛽2𝑆𝐼2 + (1 − 𝑒22)𝛽2𝑉2𝐼2 − 𝛾2𝐼2,        

                  (4) 

… … …  

𝐼𝑛 =̇ (1 − 𝑒1𝑛)𝛽𝑛𝑉1𝐼𝑛 + 𝛽𝑛𝑆𝐼𝑛 + (1 − 𝑒2𝑛)𝛽𝑛𝑉2𝐼𝑛 − 𝛾𝑛𝐼𝑛,                     

�̇� = ∑ 𝛾𝑖𝐼𝑖
𝑛
𝑖=1 −𝜔𝑅,                       (5) 

𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + ∑ 𝐼𝑖
𝑛
𝑖=1 (𝑡) + 𝑅(𝑡) = 1,                                    (6) 

5.2.2 Behavior Model 

For the vaccination flux from the susceptible to vaccination compartments, we considered the famous 

behavior model originated by Bauch [36]. At rates 𝑥 and 𝑦 susceptible individuals can choose their 

vaccine 1 and vaccine 2 respectively. We define the dynamical equations: 
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�̇� = 𝑚 𝑥 (1 − 𝑥){𝑐 ∑ 𝐼𝑖
𝑛
𝑖=1 − 𝑘𝑐𝑣1},             (7) 

�̇� = 𝑚 𝑦 (1 − 𝑦){𝑐 ∑ 𝐼𝑖
𝑛
𝑖=1 − 𝑘𝑐𝑣2},                                                 (8) 

where 𝑚 is the inertial effect constant and 𝑘 is the relative sensitivity to the vaccination cost. We 

considered the values of 𝑚 and 𝑘 will be equal to keep the general tendency for two vaccinations equal. 

𝑐𝑣1 and 𝑐𝑣2 are the vaccination cost of vaccines 1 and 2 respectively where we consider that the cost of 

vaccine 1 is up to 1 and always greater or equal to the cost of vaccine 2 (i. e. , 0 ≤ 𝑐𝑣1 ≤ 1 and 0 ≤

𝑐𝑣2 ≤ 𝑐𝑣1). 𝑐 is the cost of disease that should be paid by every infected individual and we consider that 

the value of 𝑐 is 1 throughout our work (i. e. , 𝑐 = 1). With the increase in the value of the summation 

i.e., the total number of infected individuals at any time 𝑡 with all strains the above equations always 

increase the values of 𝑥 and 𝑦 i.e., the vaccination uptake while increasing the cost of the vaccinations 

always reduces the vaccination uptake.   

Table 1: Description of the model parameters  

Parameter symbol Parameter Description 

𝛽𝑖 Disease Transference rate due to strain 𝑖 

𝛾𝑖 The recovery rate from strain 𝑖 

𝑒1𝑖 The efficacy of the vaccine 1 to strain 𝑖 

𝑒2𝑖 The efficacy of the vaccine 2 to strain 𝑖 

𝑒𝑟 Efficacy ratio  

𝑚 Inertial effect on migration from 𝑆 to 𝑉1 and 𝑆 to 𝑉2 

𝑘 Sensitivity to vaccination due to cost 

𝑐 Disease cost 

𝑐𝑣1 Cost of the vaccine 1 

𝑐𝑣2 Cost of the vaccine 2 

𝜔 Waning rate against immunity 

 

5.2.3 Basic Reproduction Number, Vaccine Equilibrium, Fraction of vaccinated individuals, Total 

vaccination, Total infection, Average Social payoff (ASP), Social efficiency Deficit (SED) 

In this model, we considered the standard value of the basic reproduction number, 𝑅0 =
𝛽𝑖

𝛾𝑖
= 2.5 [36]. 

However, in the latter segment of the discussion of the results, we also examined the interplay between 

vaccination behavior and disease dynamics across various values of the basic reproduction number.  

To get the vaccine equilibrium we need to set equations (7) and (8) equal to zero. i.e., 

�̇� = 𝑚 𝑥 (1 − 𝑥){𝑐 ∑ 𝐼𝑖
𝑛
𝑖=1 − 𝑘𝑐𝑣1} = 0  
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�̇� = 𝑚 𝑦 (1 − 𝑦){𝑐 ∑ 𝐼𝑖
𝑛
𝑖=1 − 𝑘𝑐𝑣2} = 0  

Since, 𝑚, 𝑥, 𝑐 ∑ 𝐼𝑖
𝑛
𝑖=1 − 𝑘𝑐𝑣1 cannot be zero because 𝑚 = 0 or 𝑥 = 0 implies constant or no vaccination 

flow and 𝑐 ∑ 𝐼𝑖
𝑛
𝑖=1  is also nonzero, the only possibility is (1 − 𝑥) = 0 which implies 𝑥 = 1. 

Similarly, we can get 𝑦 = 1. 

So the equilibrium point for the vaccination is (𝑥, 𝑦) = (1,1). This is assuming 𝐼𝑖 are nonzero, 𝑘 is 

positive and the conditions between 𝑐𝑣1 and 𝑐𝑣2 (0 ≤ 𝑐𝑣1 ≤ 1 and 0 ≤ 𝑐𝑣2 ≤ 𝑐𝑣1) are satisfied.   

The fractions of vaccinated individuals for both vaccinations are defined as follows: 

𝑉1𝑅 =
𝑉1(∞)

𝑉1(∞)+𝑉2(∞)
,            (9) 

𝑉2𝑅 =
𝑉2(∞)

𝑉1(∞)+𝑉2(∞)
,                      (10)            

where 𝑡 = ∞ denotes a state of equilibrium or steady state (we say it, Nash equilibrium NE). 

The total number of vaccinated individuals from vaccination 1, and vaccination 2 are defined as follows: 

𝑉1𝑇 = ∫ (𝑥𝑆) 𝑑𝑡
∞

0
,                                  (11) 

𝑉2𝑇 = ∫ (𝑦𝑆) 𝑑𝑡
∞

0
,                       (12) 

𝑉𝑇 = 𝑉1𝑇 + 𝑉2𝑇,                       (13) 

The total number of infected individuals from vaccination 1, vaccination 2, and susceptible are defined 

as: 

𝐼𝑉1𝑇 = ∫ (∑ 𝛽𝑖(1 − 𝑒1𝑖)𝐼𝑖𝑉1
𝑛
𝑖=1 ) 𝑑𝑡

∞

0
,                               (14) 

𝐼𝑉2𝑇 = ∫ (∑ 𝛽𝑖(1 − 𝑒2𝑖)𝐼𝑖𝑉2
𝑛
𝑖=1 ) 𝑑𝑡

∞

0
,                    (15) 

𝐼𝑆𝑇 = ∫ (∑ 𝛽𝑖𝐼𝑖𝑆
𝑛
𝑖=1 ) 𝑑𝑡

∞

0
,                          (16) 

𝐼𝑇 = 𝐼𝑉1𝑇 + 𝐼𝑉2𝑇 + 𝐼𝑆𝑇,                      (17) 

where 𝑡 = ∞ denotes a state of equilibrium or steady state (we say it, Nash equilibrium NE). 

The ASP at NE is defined as follows: 

𝐴𝑆𝑃𝑁𝐸 = −𝐼𝑇 ∗ 𝑐 − 𝑉1𝑇 ∗ 𝑐𝑣1 − 𝑉2𝑇 ∗ 𝑐𝑣2,                    (18) 

where the first term on the right-hand side indicates the total payoff due to infection and the second and 

third terms indicate the payoffs of the individuals who commit vaccination 1 and vaccination 2 

respectively.  
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By referencing the original definition of the Social Efficiency Deficit (SED), we assess the disparity 

between the Average System Payoff (ASP) at the Nash Equilibrium (NE) and the ASP at the Social 

Optimum (SO), thereby discerning the potential existence of a social dilemma within the present social-

dynamical system (𝐴𝑆𝑃𝑆𝑂). This analysis elucidates the means to enhance the system’s ASP, 

transitioning from an evolutionarily stable state (NE) to a theoretically optimal societal state, 

maximizing the attainable 𝐴𝑆𝑃𝑆𝑂 when all evolutionary processes represented by variables 𝑥 and 𝑦 are 

effectively managed [44]. 

It is defined as follows: 

𝑆𝐸𝐷 = 𝐴𝑆𝑃𝑆𝑂 − 𝐴𝑆𝑃𝑁𝐸,                      (19) 

The SO state is a time-constant vector (𝑥 (𝑓𝑜𝑟 𝑆𝑂), 𝑦 (𝑓𝑜𝑟 𝑆𝑂)), with 𝑥, 𝑦 ranging in [0,1]. Thus, 

𝑺𝑶 = argmax [𝐴𝑆𝑃(𝑥 (𝑓𝑜𝑟 𝑆𝑂), 𝑦 (𝑓𝑜𝑟 𝑆𝑂))].                            (20)          

When NE equals SO, SED implies zero. However, when the SED is positive but not zero, there is a 

social dilemma. 

5.3 Results and Discussion 

5.3.1 Impact of waning immunity 𝝎 on vaccination choice: 

In this section, we present time series data for compartments 𝑉1 and 𝑉2, with a focus on analyzing the 

impact of waning immunity in the context of vaccination choices. The figures herein are generated using 

the established set of parameter values outlined in Table 2. Furthermore, Table 3 provides the initial 

values for each compartment and the associated flow rates. Within this framework, we examine various 

scenarios denoted by the parameter "𝑛" which can take on values of 2, 3, and 4, corresponding to models 

featuring two, three, and four viral strains, respectively. As previously noted, these newer strains are 

characterized by higher transmission rates in comparison to their predecessors. In Figures 2 (a)−(c), we 

illustrate the vaccination compartments under the assumption of waning immunity (𝜔 = 0.05) for two, 

three, and four strains, respectively. The time series spans 3000 days. Across all cases in Figures 

2(a)−(c), it is evident that individuals consistently favor the second vaccine option, characterized by 

lower cost and reduced efficacy. Figures 2(d)−(f) provide insights into the flow rates from susceptible 

individuals to vaccinated compartments, serving as a complementary visual representation to Figures 

2(a)−(c). These figures reveal that the transition to compartment 𝑉2 occurs more rapidly, approaching 

equilibrium and reaching values close to 1 before the transition to 𝑉1. This suggests that susceptible 

individuals are more inclined to choose a vaccine 𝑉2 over vaccine 𝑉1. 
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Figure 2: In the temporal evolution of the vaccination dynamics concerning two, three, and four strains 

with a specified value of 𝜔 = 0.05, the standard parameters remain unchanged. Panels (a)−(c) illustrate 

timeseries data for the number of vaccinated individuals at time 𝑡, with the red curves denoting those 

who opted for vaccine 2 and the green curves representing individuals who selected vaccine 1. Across 

all scenarios, it is evident that Vaccine 2 consistently dominates throughout the entire temporal span. 

Moving on to panels (d)−(f), the focus shifts to the vaccination rates. Here, the observation reveals a 

consistent dominance of 𝑦 (Vaccine 2) until the mentioned period (𝑇 = 3000 days). Throughout this 

period, 𝑦 maintains superiority in the vaccination rates over other options. In summary, the visual 

representation of the timeseries data underscores the persistent dominance of Vaccine 2 in terms of both 

the number of vaccinated individuals and the vaccination rates, irrespective of the varying number of 

strains considered, with 𝜔 held constant at 0.05. 

Figures 3(g)−(h) present time series data for compartments 𝑉1 and 𝑉2, considering two, three, and four 

strains, all under the assumption of waning immunity with a parameter value of 𝜔 = 0.1. Within each 

panel, we observe a noteworthy phenomenon where Vaccine 1 eventually supersedes Vaccine 2 over 

time. Furthermore, the increasing number of strains characterized by higher transmission rates leads to 

an earlier preference for Vaccine 1 among individuals. Figures 3(j)−(l) display a comparative analysis 

of flow rates. In each case, the rates eventually converge to an equilibrium state (𝑥 = 1, 𝑦 = 1), with 

the number of strains showing a positive correlation with the speed at which equilibrium is reached. 
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Figure 3: In the context of a specified value of 𝜔 = 0.1, and with the standard parameters remaining 

unchanged, we examine the timeseries of vaccination compartments and rates for two, three, and four 

strains. Panels (g)−(i) display the number of vaccinated individuals at time 𝑡, with the red curves 

indicating those who opted for vaccine 2 and the green curves representing individuals who chose 

vaccine 1. Notably, in each scenario, a discernible shift occurs, and after a certain duration, Vaccine 1 

emerges as the dominant choice. This shift in dominance is particularly pronounced in the presence of 

highly transmissible multiple strains, resulting in an earlier attainment of vaccine equilibrium. Turning 

attention to panels (j)−(l), which illustrate the vaccination rates, it is observed that both 𝑥 and 𝑦 reach 

equilibrium point 1 after a certain duration. This indicates that, despite initial variations, both vaccines 

eventually stabilize at the same equilibrium point over time. In summary, the timeseries analysis 

underscores the dynamic nature of vaccine dominance, with Vaccine 1 emerging as the dominant choice 

after a certain period. Additionally, the impact of highly transmissible multiple strains is evident in the 

accelerated arrival of the vaccine equilibrium. In terms of vaccination rates, both 𝑥 and 𝑦 eventually 

converge to equilibrium point 1, demonstrating a stabilization of the system over time. 

Figures 4(m)−(n) provide a detailed analysis of time series data for compartments 𝑉1 and 𝑉2, taking 

into account two, three, and four viral strains while incorporating a waning immunity parameter of 𝜔 =

0.2. In each of these panels, a consistent trend emerges where Vaccine 1 eventually surpasses Vaccine 

2, underscoring the temporal dynamics. Furthermore, as the number of strains increases, each 

characterized by higher transmission rates, Vaccine 1 establishes its preference among individuals at an 
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earlier stage. Figures 4(p)−(r) present a comparative examination of flow rates. In each scenario, these 

rates gradually approach equilibrium (𝑥 = 1, 𝑦 = 1), and once again, we observe that the introduction 

of a greater number of strains leads to an accelerated attainment of equilibrium, mirroring the pattern 

observed in the previous case. 

 

 

Figure 4: Temporal profiles of vaccination compartments and rates are examined for two, three, and 

four strains with 𝜔 held constant at 0.2, while the remaining parameters adhere to the standard 

configuration. In panels (m)−(o), the red curves delineate the count of individuals vaccinated at time t 

who selected vaccine 2, while the green curves represent those who chose vaccine 1. Notably, in each 

scenario, there is a discernible temporal pattern where Vaccine 1 attains dominance after a specific 

duration. The concurrent presence of highly transmissible multiple strains expedites the establishment 

of vaccine equilibrium. Turning attention to panels (p)−(r), which depict vaccination rates, it is 

observed that both 𝑥 and 𝑦 converge to equilibrium point 1 after a certain duration. In contrast to the 

findings in Figure 3, a notable observation is the earlier dominance of vaccine 1 in every scenario. In 

summary, the analysis of the timeseries data underscores the temporal dynamics of vaccine dominance 

and equilibrium, particularly accentuated by the presence of highly transmissible multiple strains. The 

acceleration of the dominance of vaccine 1 is a notable departure from the observations in Figure 3. 
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Table 2: Standard values of the parameters [3,4,28,47,48]  

Parameter Value Parameter Value Parameter Value Parameter Value 

𝛽1 0.4 𝛾1 0.16 𝑒11 0.9 𝑒21 0.6 

𝛽2 0.6 𝛾2 0.24 𝑒12 0.6 𝑒22 0.4 

𝛽3 0.8 𝛾3 0.32 𝑒13 0.3 𝑒23 0.2 

𝛽4 1.0 𝛾4 0.4 𝑒14 0.2 𝑒24 0.13 

𝑚 1.0 𝑘 0.1 𝑒𝑟 2/3 𝑐 1.0 

𝑐𝑣1 0.5 𝑐𝑣2 0.25 𝜔 0.1   

 

Table 3: Initial values for the compartments and migration rates [3,4,28,47,48] 

State At 𝒕 = 𝟎 State/Rate At 𝒕 = 𝟎 

𝑆 0.994 𝑅 0.00 

𝑉1 0.001 𝑥 0.01 

𝑉2 0.001 𝑦 0.01 

𝐼𝑖 (𝑖 = 1,4̅̅ ̅̅ ) 0.001   

 

5.3.2 Comparison between the fraction of vaccinated individuals at equilibrium 

In the preceding section, we presented outcomes based on the consideration of 2, 3, and 4 strains. 

Remarkably, our findings indicated a consistent trend when utilizing more than two strains. 

Consequently, for the subsequent sections of the results, we exclusively employed a 4−strain 

configuration to conduct a comprehensive analysis of the remaining outcomes. 

In this section, we delve into an examination of the equilibrium fractions of vaccinated individuals, as 

described by equations (9) and (10), while varying key parameters. Figure 5 visually represents the 

proportion of individuals at equilibrium who have chosen vaccine 1. In panels (a)−(d), we construct 

heatmaps by varying the values of 𝑅0 (ranging from 0.1 to 5.1) along the 𝑦 −axis and 𝜔 (ranging from 

0.0 to 0.5) along the 𝑥 −axis. Additionally, we introduce four distinct values of the efficacy ratio 𝑒𝑟  

(specifically, 
1

5
,
1

3
,
2

3
, and 1) to analyze the dominance dynamics between vaccine 1 and vaccine 2. All 

other parameters are maintained at their standard values as outlined in Table 1. 

Across every panel (a)−(d), we discern three distinct regions. The upper right region gradually 

transitions from red to white as 𝑒𝑟 increases. According to the definition in EGT, these regions indicate 

predominance by vaccine 1, except for panel (d), where light red hues suggest that the value of 𝑉1𝑅 is 

slightly more than 0.5. In panel (d), we can infer that when 𝑒𝑟 is close to 1, both vaccines hold an equal 

priority (coexistence) among individuals due to their identical efficacy. In cases where 𝑅0 and 𝜔 are 
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substantial, the choice of vaccination is not significantly affected, provided the efficacies of the vaccines 

remain equal. 

Conversely, the bottom light blue regions and the dark blue regions in the middle signify predominance 

and dominance by vaccine 2 respectively. When 𝑅0 falls below 1, it indicates that the disease is unlikely 

to spread extensively, leading individuals to opt for the more cost-effective vaccine. Efficacy holds little 

sway over vaccination behavior when the disease’s transmission is limited. However, as 𝑅0 surpasses 1 

and 𝜔 increases, individuals tend to select the less expensive vaccine until a certain threshold is reached. 

Beyond this point, individuals opt for the vaccine with higher efficacy, despite the higher cost. 

 

Figure 5: Heatmaps are employed as a visual tool to illustrate the proportion of individuals who have 

selected vaccine 1 at equilibrium. Panels (a)−(d) showcase four distinct heatmaps, each corresponding 

to different efficacy ratio values (𝑒𝑟) of 
1

5
,
1

3
,
2

3
, and 1. The spatial orientation is delineated by the waning 

immunity rate (𝜔) along the 𝑥-axis, ranging from 0 to 0.5, and the basic reproduction number (𝑅0) along 

the 𝑦-axis, ranging from 0.1 to 5.1. The color gradient on the heatmap scale varies from 0 to 1, with 

blue denoting the prevalence of vaccine 2, red indicating the dominance of vaccine 1, and white 

representing the co-existence of both vaccines.  

Figure 6 presents a depiction of the equilibrium fractions of individuals who have opted for vaccine 1. 

In panels (a)−(d), we construct heatmaps by varying the cost of vaccine 1 (𝑐𝑣1) within the range of 0.0 

to 1.0 along the 𝑦 −axis and the cost of vaccine 2 (𝑐𝑣2) within the range of 0.0 to 𝑐𝑣1 along the 𝑥 −axis. 

Moreover, we consider four distinct values of the efficacy ratio (𝑒𝑟) - specifically, 
1

5
,
1

3
,
2

3
, and 1 to 
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analyze the dominance dynamics between vaccine 1 and vaccine 2. All other parameters are maintained 

at their standard values as specified in Table 1. 

Across each panel (a)−(d), we observe two primary regions. The upper region gradually transitions 

from light to dark blue as 𝑒𝑟 increases, predominance of vaccine 2 becomes dominant. When 𝑒𝑟 is close 

to 1, individuals tend to opt for vaccine 2, which is the more cost-effective choice. 

Conversely, the lower light red regions in every panel, except for panel (d), indicate the predominance 

of vaccine 1. In panel (d), these regions become white, signifying a coexistence of the two vaccines. 

Hence, when the cost of vaccine 1 becomes significantly higher, approaching the cost of managing the 

disease (𝑐), individuals tend to prefer vaccine 2, regardless of whether the efficacies of the vaccines are 

equal or unequal. 

 

 

Figure 6: Heatmaps are utilized to visualize the proportion of individuals who have opted for vaccine 

1 at equilibrium. Panels (a)−(d) present four distinct heatmaps corresponding to efficacy ratio values 

(𝑒𝑟) of 
1

5
,
1

3
,
2

3
, and 1. All the panels are drawn in terms of the cost of vaccine 1 (𝑐𝑣1) along the  𝑦-axis 

ranging from 0 to 1 and the cost of vaccine 2 (𝑐𝑣2) along the 𝑥- axis both ranging from 0 to 𝑐𝑣1. The 

color gradient on the heatmap scale ranges from 0 to 1, where blue indicates the dominance of vaccine 

2, red signifies the dominance of vaccine 1, and white denotes the co-existence of both vaccines. Note 
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that there is almost no sensitivity from 𝑐𝑣2. It is conceivable just because vaccines 1 or 2 give 

predominant results from the ratio of those two vaccine costs, not absolute values.  

Figure 7 presents an analysis of the equilibrium fractions of individuals who have chosen vaccine 1. In 

panels (a)−(d), we construct heatmaps by varying the parameter 𝑚 within the range of 0.0 to 1.0 along 

the 𝑦 −axis and the parameter 𝑘 within the range of 0.0 to 1.0 along the 𝑥 −axis. Additionally, we 

consider four distinct values of the efficacy ratio (𝑒𝑟),  specifically, 
1

5
,
1

3
,
2

3
, and 1 to examine the 

dynamics of dominance between vaccine 1 and vaccine 2. All other parameters remain set at their 

standard values as specified in Table 1. 

Across every panel (a)−(d), we observe three distinct regions. In panels (a)−(c), the left region is 

predominated by vaccine 1, while in panel (d), the left region becomes coexistent. As the efficacy ratio 

increases, there is a transition from vaccine 1 dominance to coexistence. This shift occurs because, in 

scenarios characterized by low sensitivity and a high level of inertial effect, individuals tend to prefer 

the vaccine with a higher cost. Conversely, higher relative sensitivity leads to the emergence of dark 

blue regions in every panel, where vaccine 2 becomes the dominant choice. In essence, high sensitivity 

implies a preference for the less expensive vaccination option. 

Of particular interest are the regions in panels (a)−(c) and the third region, which disappears in panel 

(d), located in the upper right corner with dark red hues. In this region, vaccine 1 dominates, primarily 

due to the substantial increase in the inertial effect, leading to a heightened flow of vaccination, 

particularly with a high cost. However, this region diminishes as the efficacy ratio increases. In other 

words, when efficacy becomes equal, cost takes precedence in the choice of vaccination, favoring 

vaccine 2. 
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Figure 7: Heatmaps serve as a visual aid to depict the proportion of individuals choosing vaccine 1 at 

equilibrium. Panels (a)−(d) present four distinct heatmaps, each corresponding to various efficacy ratio 

values (𝑒𝑟) of 
1

5
,
1

3
,
2

3
, and 1. The spatial arrangement is determined by the impact of sensitivity to 

vaccination cost (𝑘) along the x-axis, ranging from 0 to 1.0, and the influence of the inertial effect of 

vaccination rate (𝑚) along the y-axis, ranging from 0.0 to 1.0. The color spectrum on the heatmap scale 

ranges from 0 to 1, where blue indicates the predominance of vaccine 2, red signals the dominance of 

vaccine 1, and white signifies the co-existence of both vaccines. 

5.3.3 Analysis of Average Social Payoff (ASP) and Social Efficiency Deficit (SED) 

The top row of  Figure 8 provides an overview of key metrics for the NE state, including the total 

number of vaccinated individuals, the total number of infected individuals, and the Average Social 

Payoff (ASP). The second row focuses on the SO state, featuring the total number of vaccinated 

individuals, the total number of infected individuals, the ASP, and the Social Efficiency Deficit (SED). 

All panels are presented in terms of the waning immunity rate (𝜔) along the 𝑥 −axis (ranging from 0.0 

to 0.5) and the Basic Reproduction Number (𝑅0) along the 𝑦 −axis (ranging from 0.1 to 5.1). 

In panel (a), when 𝑅0 is less than 1, the number of vaccinated individuals remains very low. Similarly, 

in panel (b), if 𝑅0 is less than 1, the number of infected individuals is minimal. Combining these factors 

and considering their associated costs in panel (c), the ASP is also low when 𝑅0 is less than 1. This 

aligns with the understanding that an 𝑅0 less than 1 implies limited disease spread, resulting in low 

vaccination and infection rates, consequently yielding a low ASP. 
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As 𝑅0 surpasses 1, all panels (a)−(c) demonstrate a monotonic increase in the number of vaccinated 

and infected individuals as both 𝑅0 and 𝜔 increase. Consequently, the ASP exhibits a corresponding 

monotonic increase. 

Panels (d)−(f) illustrate the social optimum cases, showcasing a similar trend to panels (a)−(c) but with 

relatively lower values. Panel (g), depicting the Social Efficiency Deficit (SED), highlights distinctive 

regions. When the basic reproduction number (𝑅0) is below 1 (indicated by the dark purple region), and 

the disease does not propagate significantly, resulting in an absence of an actual social dilemma 

regarding vaccination. Subsequently, a yellow region emerges with an elevation in 𝑅0, signifying the 

onset of disease spread. This phase represents a transient state from a disease-free condition to a 

diseased state. In the presence of multiple vaccines, individuals face heightened uncertainty regarding 

the decision to undergo vaccination and the selection of the most beneficial vaccine. Following this 

transitional phase, a conventional scenario unfolds when 𝑅0 surpasses 1. In this case, the disease 

becomes established, prompting individuals to opt for vaccination and reducing the social dilemma, as 

indicated by the purple region. Moreover, as both 𝑅0 and the waning immunity rate (𝜔) increases, the 

social dilemma exhibits a monotonic escalation, transitioning from purple to yellow regions. The social 

dilemma attains its maximum magnitude when both 𝑅0 and 𝜔 reach their peak values. 

 

Figure 8: The total number of vaccinated people, the total number of infected people, ASP, and SED. 

Panels (a) − (c) are for the NE case and panels (d) − (f) are for the SO case. Panel (g) represents the 

SED, which is the difference between panels (f) and (c). All the panels are drawn in terms of the waning 

immunity rate (𝜔) along the  𝑥 −axis ranging from 0 to 0.5 and the basic reproduction number (𝑅0) 

along the 𝑦 −  axis both ranging from 0.1 to  5.1 The total number of vaccinated people is depicted with 

a range from 0 to 310, the total number of infected people is depicted with a range from 0 to 360, the 

ASPs are depicted with a range from −470 to 0 and the SED is depicted with a range from 0 to 110. 

The other parameters are the same as in the basic case. From the figures, we see that the social dilemma 
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appears just after 𝑅0  crosses 1 and decreases for a while and then again monotonically increasing with 

the increase in both waning immunity rate and basic reproduction number. The dilemma will be 

maximum if both 𝑅0 and 𝜔 is maximum.  

The top row of Figure 9 provides a comprehensive overview of crucial metrics for the NE state, 

including the total number of vaccinated individuals, the total number of infected individuals, and the 

Average Social Payoff (ASP). The second row focuses on the SO state, featuring the total number of 

vaccinated individuals, the total number of infected individuals, the ASP, and the SED. Each panel is 

delineated by the cost of vaccine 1 (𝑐𝑣1) along the 𝑦 −axis (ranging from 0 to 1) and the cost of vaccine 

2 (𝑐𝑣2) along the 𝑥 −axis (ranging from 0 to 𝑐𝑣1).  

In panel (a), the total number of vaccinated individuals reaches a minimum when both vaccine costs are 

maximized, a scenario that aligns with expectations. As the cost of vaccine 1 increases significantly, 

panel (b) illustrates a corresponding increase in the total number of infected individuals. 

Panel (c) depicts the ASP, considering the total number of infected and vaccinated individuals multiplied 

by their associated costs. Notably, an increase in vaccination costs leads to a rise in the total average 

social payoff. 

In the social optimum (SO) panels (d)−(f), the suggested strategy is to maximize the number of 

vaccinated individuals, minimize the number of infected individuals, and consequently, minimize the 

ASP respectively. The difference between panel (f) and panel (c) is represented in panel (g), illustrating 

the SED. In the SED panel, it is evident that an increase in both vaccine costs exacerbates the social 

dilemma, reaching its maximum when both costs are at their highest levels. 

 

Figure 9: The total number of vaccinated people, the total number of infected people, ASP, and SED. 

Panels (a) − (c) are for the NE case and panels (d) − (f) are for the SO case. Panel (g) represents the 

SED, which is the difference between panels (f) and (c). All the panels are drawn in terms of the cost 



94 

 

of vaccine 1 (𝑐𝑣1) along the  𝑦 −axis ranging from 0 to 1 and the cost of vaccine 2 (𝑐𝑣2) along the 𝑥 −

 axis both ranging from 0 to 𝑐𝑣1. The total number of vaccinated people is depicted with a range from 

0 to 130, the total number of infected people is depicted with a range from 0 to 140, the ASPs are 

depicted with a range from −220 to −120 and the SED is depicted with a range from 0 to 80. The other 

parameters are the same as in the basic case. From the figures, we see that the social dilemma is 

maximum when both the cost is maximum. 

A detailed analysis of the most important metrics for the NE state is shown in the upper row of Figure 

10. These metrics include the total number of vaccinated persons, the total number of infected 

individuals, and the Average Social Payoff (ASP). The second row focuses on the SO state, featuring 

the total number of vaccinated individuals, the total number of infected individuals, the ASP, and the 

SED. Each panel is delineated by the inertial effect of vaccination (𝑚) along the 𝑦 −axis (ranging from 

0 to 1) and the sensitivity parameter (𝑘) along the 𝑥 −axis (ranging from 0 to 1). 

In panels (a)−(b), an observable trend emerges, indicating that an increase in the inertial effect (𝑚) and 

a decrease in the sensitivity parameter (𝑘) correspond to an increase in vaccination uptake and a 

decrease in the number of infected individuals. This alignment is plausible, as a higher inertial effect 

tends to boost vaccination uptake, while lower sensitivity to cost reduces vaccination uptake. The 

impact on infected individuals follows a similar pattern. 

Panel (c) presents the Average Social Payoff (ASP), combining the outcomes from panels (a) and (b) 

with their associated costs. The ASP is depicted as not being particularly sensitive to the parameters 𝑚 

and 𝑘. 

In the social optimum panels (d)−(e), vaccination remains at a maximum level, and infection remains 

at a minimum level. Given that the parameters 𝑚 and 𝑘 are not present in the equations for vaccination 

flow, the social optimum suggests that both vaccination and infection should incur minimum costs. 

Panel (f), representing the average social payoff, also exhibits low sensitivity to the parameters 𝑚 and 

𝑘. 

The difference between panel (f) and panel (c) is represented in panel (g), depicting the Social SED. In 

the SED panel, a monotonic increase in the dilemma is observed with an increase in the inertial effect 

(𝑚) and a decrease in the sensitivity parameter (𝑘). This illustrates that a higher inertial effect and lower 

sensitivity lead to an escalation of the social dilemma. 
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Figure 10: The total number of vaccinated people, the total number of infected people, ASP, and SED. 

Panels (a) − (c) are for the NE case and panels (d) − (f) are for the SO case. Panel (g) represents the 

SED, which is the difference between panels (f) and (c). All the panels are drawn in terms of the relative 

sensitivity due to vaccination cost (𝑘) along the  𝑥 − axis ranging from 0 to 1 and the inertial effect of 

vaccination rate (𝑚) along the 𝑦 −  axis both ranging from 0 to 1. The total number of vaccinated people 

is depicted with a range from 0 to 130, the total number of infected people is depicted with a range from 

0 to 150, the ASPs are depicted with a range from −180 to −130 and the SED is depicted with a range 

from 0 to 30. The other parameters are the same as in the basic case. From the figures, we see that the 

social dilemma is monotonically increasing with the increase of 𝑚 and decrease of 𝑘. 

5.4 Conclusion 

The dynamics of infectious diseases and the vaccination process are invariably shaped by individual 

behaviors. In the context of multistrain infectious diseases such as seasonal influenza and COVID-19, 

the decision-making process is predominantly contingent upon factors such as the cost and efficacy of 

available vaccinations. Furthermore, the rate of waning immunity constitutes a crucial determinant in 

the selection of vaccinations. 

In the context of epidemic models, each individual is initially regarded as susceptible and possesses the 

freedom to opt for any available vaccination. The initial selection is contingent upon factors such as the 

overall count of infected individuals, as well as the cost and efficacy of the vaccinations. Typically, 

individuals tend to opt for vaccinations with lower costs. Given the inherent imperfections in 

vaccinations, individuals experience a gradual decline in immunity over time. Consequently, the 

phenomenon of waning immunity also exerts a notable influence on the selection of vaccinations, 

particularly in consideration of their long-term efficacy. 
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Some previous studies also studied these kinds of models. Epidemic models with multiple vaccination 

options considering cost and efficacy were mentioned in [5]. The vaccination behavior of humans and 

the waning immunity effect in epidemic models were also analyzed in [1–4,12,16,49]. Some analytic 

and numerical simulations concerning the multistrain epidemic model were presented in [3–5]. Human 

behavior towards vaccination involving cost and efficacy was studied in [3,5,6,8]. However, no other 

studies were conducted concerning a multi-strain epidemic model considering two vaccination options 

in the presence of waning immunity and the cost-effectiveness of vaccinations.   

In our current study, we employed behavior equations to scrutinize vaccination choices, considering the 

presence of multistrain dynamics. Through numerical simulations, we observed an initial preference 

among individuals for vaccines with lower costs and reduced efficacy. However, as the waning rate 

increased, there was a shift towards favoring vaccines with higher costs and efficacy. Notably, the 

presence of multistrain dynamics led to an earlier attainment of vaccine equilibrium. 

Our subsequent investigation focused on vaccine dominance, revealing scenarios where both vaccines 

could dominate within specific parameter ranges. Additionally, we identified instances of co-existence, 

where both vaccines were chosen equally. The analysis of equilibrium highlighted that increasing the 

efficacy ratio between two vaccines diminished certain dominance patterns. 

Furthermore, our examination delved into the social dilemma inherent in the model. We computed 

average social payoffs at equilibrium, encompassing costs associated with infection and vaccination. A 

comparison was made with socially optimum average social payoffs, determined by considering a time-

constant vaccination rate for both vaccines. Discrepancies between these two payoffs elucidated the 

social efficiency deficit, explaining the social dilemma inherent in the model. Our findings indicated 

that escalating waning immunity rates and transmission rates heightened the social dilemma. Regarding 

vaccination costs, the dilemma reached its maximum when both vaccination costs were at their peak. 

Moreover, the social dilemma was exacerbated when the sensitivity constant related to vaccination cost 

was minimized, and the inertial effect of vaccination rate was maximized. 

Our exploration of vaccination behavior, vaccine dominance, and the social dilemma was conducted 

using a simple ordinary differential equation model (mean-field approximation). The inclusion of a 

social context in our data lends credibility to our results. In future investigations, we plan to employ a 

multiagent simulation approach to further analyze and validate these findings. 
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Chapter 6 

A New Concept of optimal control for epidemic spreading by Vaccination: Technique for 

Assessing social optimum employing Pontryagin’s Maximum Principle  

 

Abstract 

 

This research introduces a new approach utilizing optimal control theory (OCT) to assess the Social 

Optimum (SO) of a vaccination game, navigating the intricate considerations of cost, availability, and 

distribution policies. By integrating an SIRS/V epidemic model with a behavior model, the study 

analyzes individual vaccination strategies. A unique optimal control framework, centered on 

vaccination costs, is proposed, diverging significantly from previous methods. Our findings confirm the 

effectiveness and feasibility of this approach in managing vaccination strategies. Moreover, we examine 

the underlying social dilemma of the vaccination game, investigating key parameters. By calculating 

the Nash equilibrium (NE) through the behavior model and determining the SO using our approach, we 

measure the Social Efficiency Deficit (SED), quantifying the overall cost gap between the NE and SO. 

Results indicate that an increased waning immunity rate exacerbates the social dilemma, although 

higher vaccination costs partially mitigate it. This research provides valuable insights into optimizing 

vaccination strategies amidst complex societal dynamics. 

 

6.1 Introduction 

Vaccination is key in managing infectious diseases, yet initial shortages occur in pandemics like 

COVID-19. The availability of vaccines becomes vital once developed. However, during COVID-19, 

only wealthier nations could offer widespread vaccination, leaving low-income countries grappling with 

distribution challenges. Cost also impacts coverage significantly; lower costs allow authorities to 

provide subsidies or free distribution [1–3]. High costs present obstacles in widespread vaccine 

distribution, impacting individuals’ decisions to participate in vaccination programs, influenced by 

factors like infection rates, vaccine effectiveness, and cost. Meanwhile, authorities tasked with vaccine 

provision aim to develop cost-efficient distribution strategies [3–6]. 

To implement any intervention, such as vaccination, treatment, quarantine, or isolation, in an epidemic 

model, it is essential to examine the model from two perspectives: the situation without the intervention 

and the changes that occur when the intervention is introduced [7–11]. Numerous studies have been 

conducted during the COVID-19 pandemic, employing various interventions in epidemic models. Many 

of these studies utilized an epidemic model based on the Susceptible, Infected, Recovered (SIR) 

framework, augmented with additional compartments such as Exposed (E), Hospitalized (H), Aware 
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(A), Unaware (U), Treatment (T), Quarantine (Q), Protected (P), Death (D), and others [5–9,11–37]. 

These investigations aimed to analyze the impact of interventions on disease spread. Many studies 

utilized Pontryagin’s Maximum Principle, an optimal control theory approach, to minimize an objective 

function. However, they overlooked vaccination costs, assuming the objective function only comprised 

infection prevalence and intervention rates squared, which doesn't reflect total social costs. To truly 

minimize social costs, including disease and intervention costs, a new framework must be established. 

This study aims to address this gap. 

Furthermore, when analyzing the social dilemma within an epidemic model, it is essential to consider 

the costs associated with infection and vaccination [38]. Calculating the social optimum is another 

significant aspect of such analysis [4,38–46]. Some previous studies have employed time-constant 

vaccination rates to determine the social optimum, which can sometimes be impractical for authorities 

as it may suggest vaccinating 100% of individuals at the outset, which is nearly impossible in real-world 

scenarios [2–4,39,40,47–56]. Furthermore, the waning rate of immunity added more urgency to the 

situation. In this regard, optimal control theory provides a more suitable and mathematically acceptable 

approach to calculating the socially optimal vaccination level at any given time. 

Our study focuses on a simplified SIRS/V epidemic model, examining how individuals respond to 

vaccination costs. We determine the optimal vaccination level using optimal control theory, integrating 

vaccination costs. Our novel objective function, aligning with Pontryagin’s maximum principle, 

combines vaccination and infection costs. Individuals decide on vaccination based on observed 

infection rates and vaccination costs. Social optimum is chosen to minimize the total social cost, 

including infection and vaccination costs. We compare the payoff disparities between models to 

illustrate the Social Efficiency Deficit (SED), revealing the social dilemma within our proposed model 

[3,39,47,50,52]. 

6.2 Model Depiction 

6.2.1 Epidemic model with behavior dynamics 

This addresses the novelty of our concept for building the objective function for an optimal control 

problem; we presume a relatively simple vaccination game where a simple compartment model is 

coupled with a behavior model.  

Our research utilized an epidemic model with four compartments based on the dynamics of SIRS/V 

populations. The total population is initially categorized as the susceptible group (𝑆), consisting of 

individuals who are susceptible to the infection. These individuals can contract the infection disease 

determined by the transmission rate (𝛽) and transition to the infected compartment (𝐼). Subsequently, 

infected individuals recover from the infection at a rate of (𝛾) and move to the recovered compartment. 

To incorporate vaccination into the model, we introduced a separate compartment for vaccinated 
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individuals (𝑉). This compartment represents individuals who have received the vaccine. The 

individuals’ transition from the susceptible compartment to the vaccination compartment is denoted as 

𝑥(𝑡). This rate is determined using the behavior model [57−61], which considers factors such as the 

number of infected individuals in different states and the cost associated with vaccination. It is worth 

noting that we consider vaccination to be regarded, where we represent the vaccine's efficacy as 𝜂. 

Therefore, individuals in the vaccination compartment can still contract the infection at a rate of (1 −

𝜂)𝛽. Additionally, we accounted for the waning rate of immunity, represented by 𝜔, which captures the 

gradual decrease in immunity over time. The flow diagram and formulation of the proposed model are 

as follows:  

 

Figure 1: Model Flowchart (including behavioral dynamics). In this diagram, susceptible individuals 

may become infected at a transmission rate, 𝛽, transitioning from compartment 𝑆 to compartment 𝐼. 

Infected individuals can recover at a rate of 𝛾, moving to the recovered compartment 𝑅. Susceptible 

individuals can transition to the vaccinated compartment 𝑉 at a rate determined by behavior dynamics, 

denoted by 𝑥. Vaccinated individuals can be infected with a discounted transmission rate (1 − 𝜂)𝛽  and 

move to the infected compartment. Recovered individuals may become susceptible again at a rate of 

waning immunity, represented by 𝜔. 

�̇� = −𝛽𝑆𝐼 − 𝑥𝑆 + 𝜔𝑅,                             (1) 

�̇� = 𝑥𝑆 − (1 − 𝜂)𝛽𝑉𝐼,              (2) 

𝐼̇ = 𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼 − 𝛾𝐼,                           (3) 

�̇� = 𝛾𝐼 − 𝜔𝑅,                                         (4) 

𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1,             (5) 

�̇� = 𝑚𝑥(1 − 𝑥)(𝑐𝐼 − 𝑘𝑐𝑉),             (6) 

where 𝑚 is the inertial effect of the vaccination, 𝑐 is the disease cost due to infection, 𝑐𝑣 is the 

vaccination cost, and 𝑘 is the relative sensitivity due to the cost of vaccination.   
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6.2.2 Epidemic model with optimal control 

In this section, we extend the epidemic model discussed earlier by introducing a control variable (𝑢) 

that represents the flux of vaccination from the susceptible compartment to the vaccination 

compartment. We utilize optimal control theory to find the optimal value 𝑢, specifically applying 

Pontryagin’s maximum principle. This principle helps us determine the optimal control strategy that 

minimizes the objective function, considering the dynamics of the epidemic model and the constraints 

imposed by the system. By employing this approach, we can identify the most effective vaccination 

strategy to combat the spread of the disease and maximize the desired outcomes. All the model 

parameters and their description are shown in Table 1. The schematic diagram and formulation of the 

model can be summarized as follows:  

 

 

Figure 2: Model Flowchart (incorporating optimal control). This diagram illustrates the progression of 

individuals within the model. Susceptible individuals may contract the infection at a transmission rate, 

𝛽, moving from compartment 𝑆 to compartment 𝐼. Infected individuals can recover at a rate of 𝛾, 

transitioning to the recovered compartment 𝑅. Susceptible individuals may opt for vaccination, 

transitioning to compartment 𝑉 at a rate determined by optimal control, denoted by 𝑢. Vaccinated 

individuals may still become infected at a discounted transmission rate (1 − 𝜂)𝛽, moving to the infected 

compartment. Recovered individuals may lose immunity over time, potentially becoming susceptible 

again at a rate of waning immunity represented by 𝜔. 

Table 1: Description of the model parameters  

Parameter symbol Parameter Description 

𝛽 Disease Transmission rate 

𝛾 The recovery rate  

𝑚 Effect of inertia when switching from 𝑆 to 𝑉 

𝑐 Cost of infection 

𝑘 Relative sensitivity due to vaccine’s cost  

𝑐𝑣 Cost of vaccination 

𝜔 Waning rate against immunity     
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�̇� = −𝛽𝑆𝐼 − 𝑢𝑆 + 𝜔𝑅,                             (7) 

�̇� = 𝑢𝑆 − (1 − 𝜂)𝛽𝑉𝐼,                          (8) 

𝐼̇ = 𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼 − 𝛾𝐼,               (9) 

�̇� = 𝛾𝐼 − 𝜔𝑅,                                           (10) 

𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1,            (11) 

where 𝑢(𝑡) is the vaccination control that needs to be optimized at any time 𝑡.  

According to Pontryagin’s maximum principle, we define the objective function for the above model as 

𝐽 = min∫ (𝑐𝐼 + 𝑐𝑣𝑢𝑆)
2𝑑𝑡

𝑇

0
,                     (12) 

where 𝑐 and 𝑐𝑣 are the disease cost due to infection and the vaccination cost respectively. Note that 𝑐 ∙

𝐼(𝑡) indicates the disease cost, socially accumulated, at time 𝑡 and 𝑐𝑣 ∙ 𝑢(𝑡) ∙ 𝑆(𝑡) means the socially 

accumulated vaccination cost at time 𝑡. To make sure the following mathematical process obeys 

Pontryagin’s maximum principle heathy, we impose a square operator to this instead of the simple 

accumulated cost, which is quite analogous to the concept of the Least Square Method (LSM). The 

square ensures the convexity of the function defined in the objective function according to Pontryagin’s 

maximum principle.  

Next, we define the Hamiltonian as follows: 

𝐻 = (𝑐𝐼 + 𝑐𝑣𝑢𝑆)
2 + 𝜆1�̇� + 𝜆2�̇� + 𝜆3𝐼̇ + 𝜆4(𝛾𝐼 − 𝑤𝑟𝑅),       (13) 

where 

𝜆1̇ = −
𝜕𝐻

𝜕𝑆
= 2(𝑐𝐼 + 𝑐𝑣𝑢𝑆)𝑐𝑣𝑢 + 𝜆1(−𝛽𝐼 − 𝑢) + 𝜆2𝛽𝐼 + 𝜆3𝑢,       (14) 

�̇�2 = −
𝜕𝐻

𝜕𝐼
= 2(𝑐𝐼 + 𝑐𝑣𝑢𝑆)𝑐 + 𝜆2(𝛽𝑆 − 𝛾 + (1 − 𝜂)𝛽𝑉) + 𝜆3(1 − 𝜂)𝛽𝑉,    (15) 

𝜆3̇ = −
𝜕𝐻

𝜕𝑉
= 𝜆2(1 − 𝜂)𝛽𝐼 − 𝜆3(−(1 − 𝜂)𝛽𝐼),        (16) 

𝜆4̇ = −
𝜕𝐻

𝜕𝑅
= 𝜆1𝜔 − 𝜆4𝜔,           (17) 

𝜆𝑖(𝑇) = 0, (Transversality condition)         (18) 

Thus the optimality condition is, 

 
𝜕𝐻

𝜕𝑢
= 2(𝑐𝐼 + 𝑐𝑣𝑢𝑆)𝑐𝑣𝑢 − 𝜆1𝑆 + 𝜆3𝑆 = 0,  at 𝑢∗              (19) 

which implies, 𝑢∗ =
1

𝐶𝑣𝑆
(
𝜆1−𝜆3

2
− 𝑐𝐼), given that 𝜆1 − 𝜆3 ≥ 2𝑐𝐼, and 𝑐𝑣 ≠ 0.    (20) 
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Thus, the optimal control will be 

𝑢∗ = min {max {0,
1

𝐶𝑣𝑆
(
𝜆1−𝜆3

2𝑐𝑣
− 𝑐𝐼)} , 𝑢𝑚𝑎𝑥},        (21) 

𝑢𝑚𝑎𝑥 is the maximum rate of control that can be applied.  

6.2.3 Primary Reproduction Number, Cumulative infection, Cumulative vaccination, Average 

Social payoff (ASP), Social efficiency deficit (SED) 

In this study, we considered the primary reproduction number, 𝑅0 =
𝛽

𝛾
= 2.5 [4,47,48,58]. 

The cumulative number of infected individuals is:  

𝐼𝑇 = ∫ (𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼) 𝑑𝑡
∞

0
,                     (22) 

The cumulative number of vaccinated individuals is:  

𝑉𝑇 = ∫ 𝑥𝑆 𝑑𝑡
∞

0
,  [∫ 𝑢𝑆 𝑑𝑡

∞

0
 for the optimal control]                                  (23) 

Where 𝑡 = ∞ indicates a state of equilibrium (we say it, Nash equilibrium, NE). 

The Average social payoff (ASP) at NE is described as follows.: 

𝐴𝑆𝑃𝑁𝐸 = −𝐼𝑇 ∗ 𝐶 − 𝑉𝑇 ∗ 𝑐𝑣,   [𝑥 is the vaccination rate]                             (24) 

The first and second terms on the right show the total rewards for the infected and immunized 

individuals, respectively.  

The ASP at Social Optimum is defined as follows: 

𝐴𝑆𝑃𝑆𝑂 = −𝐼𝑇 ∗ 𝐶 − 𝑉𝑇 ∗ 𝑐𝑣,   [𝑢 is the vaccination rate]                 (25) 

In the model, the first expression on the right-hand side represents the sum of people’s payoff who 

become infected. In contrast, the second term represents the total payoffs of vaccinated individuals. The 

SED is defined as follows: 

𝑆𝐸𝐷 = 𝐴𝑆𝑃𝑆𝑂 − 𝐴𝑆𝑃𝑁𝐸.                      (26) 

6.3 The Findings and Discussion 

6.3.1 Illustration from timeseries (with typical values): 

In this section, we provide the time series data for the compartments and vaccination rates in the 

behavior and optimal control models using values of the common parameters. The initial values for the 

compartments and rates are shown in Table 3, whereas the standard parameter values are shown in Table 

2. To solve equations (1)−(6) in the behavior model, we employed the explicit finite difference method 
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with a time step size of 𝑑𝑡 = 0.1. We solved equations (7)−(21) for the optimal control model using the 

forward-backward sweep method and fourth-order Runge-Kutta method, with a time step size of 0.1. 

In the behavior model, we set the initial vaccination rate to 0.1, while in the optimal control model, we 

assumed that a maximum control rate of vaccination, 𝑢𝑚𝑎𝑥, could be applied up to 0.1. This value is 

considered reasonable and feasible by any authority.  

Figure 3(a) presents the compartments’ time series using the behavior model’s dynamics with standard 

parameter values. The susceptible (𝑆), infected (𝐼), recovered (𝑅), and vaccinated (𝑉) compartments are 

depicted over time. Similarly, in Figure 3(b), we display the corresponding vaccination rate using the 

same parameter settings. Moving on to Figures 3(c) and 3(d), we showcase the time series of the model 

compartments and the optimal control vaccine flow, respectively, using the suggested optimal control 

concept. The optimal control approach notably leads to a more stabilized vaccination rate than the 

behavior model dynamics. Even though the susceptible population continues to increase, the 

vaccination rate reaches a steady 400 days. Contrastingly, Figures 3(a) and 3(b) demonstrate that 

without the optimal control approach, the number of vaccinated and susceptible individuals gradually 

increases, necessitating a prolonged vaccination campaign. Furthermore, the peak of the vaccination 

flow approaches 12%. Therefore, based on the same parameter combination, utilizing the optimal 

control idea proves more advantageous to society in regulating vaccination strategies and achieving 

desired outcomes. 
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(𝑎)  (𝑏)  

  

(𝑐)  (𝑑)  

  

Figure 3: In panels (a) and (b) of the figure, the time series representation of the compartments and 

vaccination rate is provided for the behavior model. The blue line corresponds to the susceptible 

individuals, the green line represents the infected individuals, the orange line represents the immunized 

individuals, and the red line corresponds to the recovered individuals.  In panel (b), the line depicts the 

vaccination rate. Similarly, panels (c) and (d) illustrate the compartments and vaccination rate for the 

optimal control model. The blue, green, orange, and red lines in panel (c) represent the susceptible, 

infected, vaccinated, and recovered individuals, respectively. Panel (d) shows the vaccination rate. By 

comparing the behavior model with the optimal control model, using the same parameter settings, we 

observe that the vaccination equilibrium reaches sooner in the optimal control model. So the optimal 

control strategy facilitates the achievement of a stable vaccination rate in a shorter duration compared 

to the behavior model. 
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Table 2: Standard values of the parameters [38,47,50,52] 

Parameter Value Parameter Value 

𝛽 0.833 𝜔 1/90 

𝛾 0.333 𝑘 0.1 

𝑚 1.0 𝑐𝑣 0.5 

𝑐 1.0 𝑢𝑚𝑎𝑥 0.1 

Table 3: Initial values for the compartments and vaccination rates  

State At 𝒕 = 𝟎 State/Rate At 𝒕 = 𝟎 

𝑆 0.98 𝑅 0.00 

𝑉, 𝐼 0.01 𝑥 0.1 

 

6.3.2 Timeseries comparison based on wanning immunity, 𝝎: 

In this section, we will examine the impact of the immunity-waning rate on both the behavior model 

and the optimal control model. Figure 4 displays the time series of the compartments to observe the 

effect. We consider four different values for the waning rate of immunity (𝜔 = 0.0,
1

90
,
1

60
, and

1

30
 

𝑑𝑎𝑦−1). In panels (a) to (d), the time series of the susceptible, vaccinated, infected, and vaccination 

rates are shown for the behavior model with varying values of the immunity-waning rate. 

Correspondingly, panels (e) to (h) illustrate the identical diagrams for the optimal control model. When 

we observe panels (a) and (e), we notice that the behavior of the susceptible cases remains almost the 

same across different values of 𝜔. The patterns in the susceptible compartment are similar irrespective 

of the waning rate of immunity. Some significant characteristics are evident in panels (b) and (f), which 

represent the vaccinated individuals. In the case of the behavior model, the vaccination peak is 

significantly higher than the optimal control model. Additionally, the optimal control model’s 

equilibrium point occurs earlier than the behavior model’s. This trend holds for all values of 𝜔. Panels 

(c) and (d), representing the infected individuals, exhibit essentially the same patterns in both models. 

Despite variations in the level of immunity, the peaks of infection remain unchanged in both the 

behavior and optimal control models. Finally, panels (d) and (h) depict the vaccination rates. Between 

the two models, noticeable differences were observed. The optimal control model ensures that 

vaccination is not continued until close to the end of the season, resulting in greater cost-effectiveness 

for the authorities and better overall outcomes. Considering all these observations, we can conclude that 

increasing the waning immunity rate encourages more individuals to get vaccinated, which aligns with 

our expectations. 
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(𝑎)  (𝑏)  (𝑐)  (𝑑)  

    

(𝑒)  (𝑓)  (𝑔)  (ℎ)  

    

Figure 4: In panels (a) to (c), the time series of the susceptible, vaccinated, and infected compartments 

are displayed. The curves in blue, orange, green, and red correspond to the waning rates of 

0.0,
1

90
,
1

60
, 𝑎𝑛𝑑

1

30
 𝑑𝑎𝑦−1, respectively. These panels provide insights into the behavior model. 

Similarly, panels (e) to (g) show the time series of the susceptible, vaccinated, and infected 

compartments for the optimal control model. The same color scheme (blue, orange, green, and red) 

represents the waning rates. Panel (d) shows the vaccination rate for the behavior model, while panel 

(h) shows the vaccination rate for the optimal control model. The panels mentioned above show that 

increasing the waning immunity rate leads to more vaccinations. Additionally, we can see that the 

optimal control model achieves equilibrium more quickly than the behavior model. So the optimal 

control model effectively regulates the vaccination strategy and stabilizes the system at a faster pace. 

In summary, raising the waning rate of immunity encourages more individuals to get vaccinated, and 

the optimal control model outperforms the behavior model by achieving equilibrium more rapidly. 

6.3.3 Time series comparison based on vaccination cost, 𝒄𝒗: 

In this section, we will examine how the cost of vaccination impacts both the behavior and optimal 

control models. Figure 5 provides the time series of the compartments for both models to observe the 

effect. We consider three different values for the vaccination cost (𝑐𝑣  =  0.2, 0.5, and 0.9). In panels 

(a) to (d), the time series of the susceptible, vaccinated, infected, and vaccination rates are displayed for 

the behavior model with varying vaccination costs. Similarly, panels (e) to (h) illustrate the same 

diagrams for the optimal control model. Examining panels (a) and (e) for the susceptible cases, we 

observe that in the behavior model, higher vaccination costs result in a larger portion of the population 

remaining susceptible for a longer period. In contrast, the optimal control model shows minimal impact 

on the susceptible individuals as vaccination costs increase. We observe similar trends in panels (b) and 

(f), which represent the vaccinated individuals. Lower vaccination costs lead to higher vaccination rates 

in both the behavior and optimal control models. However, the optimal control model achieves 
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equilibrium sooner than the behavior model. Panels (c) and (g) depict the infection level. In the behavior 

model, when the cost of vaccination increases, it leads to a rise in the infection peak. On the other hand, 

the optimal control model maintains a relatively steady level of infection despite variations in 

vaccination costs. Finally, panels (d) and (h) display the vaccination rates. Significantly different 

patterns emerge between the behavior model and the optimal control model. In the optimal control 

model, an increase in vaccination cost allows for a shorter duration of control, which is more favorable 

for the healthcare authority. Conversely, the behavior model exhibits a significant increase in 

vaccination with a decrease in vaccination cost, but this process continues until the end of the season, 

which can burden the healthcare authority. Considering all aspects, we can conclude that the optimal 

control model is more suitable for limiting the threat of the epidemic. Higher vaccination costs tend to 

decrease the vaccination rate, while lower costs increase the vaccination rate. 

(𝑎)  (𝑏)  (𝑐)  (𝑑)  

    

(𝑒)  (𝑓)  (𝑔)  (ℎ)  

    

Figure 5: The time series of the susceptible, vaccinated, and infected compartments are depicted in 

panels (a) to (c) in the behavior model, respectively. Panel (d) displays the vaccination rate in the 

behavior models, with the blue, orange, and green curves representing vaccine costs of 0.2, 0.5, and 0.9, 

respectively. In panels (e) to (g), the time series of the susceptible, vaccinated, and infected 

compartments are presented for the optimal control model, while panel (h) shows the vaccination rate. 

We use the same color scheme to represent the vaccine costs. Considering the overall situation, we can 

conclude that optimal control is more suitable for reducing the threat of the epidemic. Higher vaccine 

costs lead to reduced vaccination rates, while lower costs result in increased vaccination rates. This 

conclusion is highly plausible and aligns with our understanding. 

6.3.4 Timeseries comparison based on vaccine efficiency, 𝜼: 

In Figure 6, we examine how the effectiveness of vaccination impacts the models. The time series of 

the compartments for the behavior model and the optimal control model is displayed to observe the 

effect. We consider three vaccination efficiency values: 𝜂 = 0.4, 0.7, and 0.9. Panels (a) to (d) illustrate 
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the time series of the susceptible, vaccinated, infected, and vaccination rates, respectively, with 

variations in vaccine effectiveness and the behavior model. Panels (f) to (h) present the same diagrams 

for the optimal control problem. Comparing panels (a) and (e) for the susceptible cases, we observe 

similar trends in both models, indicating a decrease in the number of susceptible individuals over time 

as vaccine effectiveness increases. The panels for vaccinated individuals (b) and (f) also exhibit similar 

patterns. Lower vaccine effectiveness leads to lower vaccination rates, but the optimal control model 

reaches equilibrium faster than the behavior model. The infection peak patterns are identical for both 

the behavior and optimal control models, as shown in panels (c) and (g). The vaccination rate panels 

(d) and (h) demonstrate noteworthy differences. With improved vaccine effectiveness, the optimal 

control model can apply control for a shorter duration, which is generally advantageous for the 

healthcare authority. In contrast, according to the behavior model, vaccination rates increase 

significantly as vaccine efficacy declines, and this process continues until the end of the season, placing 

a burden on the healthcare authority. Considering the complete picture, we can conclude that optimal 

control is more effective in reducing the threat, and higher vaccine efficiency results in fewer overall 

vaccinations, while lower efficiency leads to more overall vaccinations. 

(𝑎)  (𝑏)  (𝑐)  (𝑑)  

    

(𝑒)  (𝑓)  (𝑔)  (ℎ)  

    

Figure 6: In panels (a)−(c) of the behavior model, the blue, orange, and green curves represent the time 

series of the susceptible, vaccinated, and infected compartments, respectively, for different values of 

vaccine efficacy (𝜂 = 0.4, 0.7, and 0.9). We can observe that as the vaccine efficacy increases, the 

number of susceptible individuals decreases over time. Similarly, in panels (e)−(g) of the optimal 

control model, the blue, orange, and green curves represent the time series of the susceptible, 

vaccinated, and infected compartments, respectively, with different values of vaccine efficacy. The 

trends are consistent with the behavior model, indicating that higher vaccine efficacy leads to fewer 

susceptible individuals. Panel (d) of the behavior model shows the rate of vaccination. We can see that 

as the vaccine efficacy increases, the vaccination rate decreases. This suggests that higher vaccine 

efficacy leads to a decreased requirement for vaccination. Panel (h) of the optimal control model 
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displays the vaccination rate. Similar to the behavior model, the vaccination rate decreases as the 

vaccine efficacy increases. This implies that higher vaccine efficacy leads to a decrease in the optimal 

control’s recommendation for vaccination. Considering the overall situation, We can conclude that 

optimal control is more appropriate for mitigating the threat of the epidemic. Additionally, higher 

vaccine efficacy is associated with a decrease in overall vaccination rates, while lower efficacy 

promotes vaccination. This conclusion aligns with the expected behavior, as higher-efficacy vaccines 

would provide better protection and reduce the need for vaccination. 

6.3.5 ASP and SED: 

In Figure 7.1, the first row of panels (a) through (c) represents the total number of infected, vaccinated, 

and asymptomatic individuals at the equilibrium state using the behavior model (Nash equilibrium, 

NE). The second row of panels (d) through (f) represents the same quantities using the optimal control 

problem (Social optimum, SO). Panel (g) depicts the SED, which distinguishes the two total social 

payoffs in panels (f) and (c). In panel (a), which corresponds to the behavior model, the total number of 

infected individuals shows a monotonic increase as the transmission rate (𝛽) increases. This indicates 

that higher transmission rates lead to higher infection rates in the behavior model. 

Similarly, panel (d) shows that high infection rates can result from high transmission rates and low 

vaccine efficiency in the optimal control model. Panel (b) demonstrates that the behavior model 

consistently recommends vaccination throughout the season, regardless of the transmission rate. On the 

other hand, panel (e) shows that the optimal control model advises more vaccination as the transmission 

rate increases. This suggests that the optimal control model acknowledges the necessity of increasing 

vaccination rates in response to higher transmission rates. In panels (c) and (f), the ASPs are depicted 

for the behavior and optimal control models, respectively. The behavior model maintains a high level 

of social payoff across the entire parameter space, indicating that it is less sensitive to changes in vaccine 

efficiency compared to the optimal control model. The optimal control model, on the other hand, 

achieves higher social payoffs by balancing the trade-off between vaccination and infection. Panel (g) 

displays the SED, representing the difference between the optimal control model’s social payoff and the 

behavior model’s. Three regions are observed in the SED panel. The lower blue zone represents a low 

dilemma, where the transmission rate remains low, and both models achieve relatively high social 

payoffs. The dark blue area in the middle indicates almost no dilemma, as the optimal control model 

maintains higher vaccination rates and lower infection rates than the behavior model. However, as the 

transmission rate and vaccine efficiency increase, the light blue zone emerges, representing the most 

challenging region. In this region, the behavior model’s social payoff is significantly higher than that of 

the optimal control model, as the behavior model is less sensitive to vaccine efficiency. 

In conclusion, the optimal control model demonstrates a better balance between vaccination and 

infection rates, leading to higher social payoffs. While consistently recommending vaccination, the 
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behavior model may result in higher infection costs compared to the optimal control model. The SED 

analysis highlights the regions where challenges and dilemmas arise, with the behavior model showing 

higher costs and the optimal control model achieving a better balance.           

 

Figure 7.1: In the given Figure, panels (a) through (c) represent the overall prevalence of infection, 

vaccination, and ASP (Average Social Payoff) in the Nash equilibrium (NE) situation using the behavior 

model. Panels (d) through (f) represent the same quantities in the social optimum (SO) situation using 

the optimal control model. Panel (g) displays the SED, which distinguishes the two ASPs in panels (f) 

and (c). The y-axis represents the transmission rate, ranging from 0.0 to 1.0, and the x-axis represents 

the vaccine effectiveness, from 0.0 to 1.0. The color scale indicates the values of the respective 

variables, with the cumulative number of infected individuals ranging from 0 to 16, the total number of 

vaccinated individuals ranging from 0 to 10, and the SED ranging from 0 to 6. The ASPs ranges are 

−20 to 0. By examining the figure, we can observe that as both the transmission rate and vaccine 

effectiveness increase, the social problem becomes more significant. This implies that higher 

transmission rates and more effective vaccines lead to more significant challenges in achieving a 

desirable social outcome. The SED panel (g) visually represents the differences between the optimal 

control model and the behavior model in terms of social payoffs. The figure demonstrates that 

addressing the social problem becomes more challenging as the transmission rate and vaccine 

effectiveness increase. This emphasizes the significance of identifying optimal control strategies to 

effectively manage vaccination efforts and prevent infections, ultimately leading to the attainment of 

optimal social outcomes. 

In Figures 7.2 and 7.3, the panels from Figure 7.1 are replicated with changes in the waning immunity 

rate. Figure 7.2 uses a waning immunity rate of 𝜔 =
1

60
 𝑑𝑎𝑦−1, while Figure 7.3 uses a waning 

immunity rate of 𝜔 =
1

30
 𝑑𝑎𝑦−1. The purpose is to examine the impact of waning immunity on the 
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social dilemma scenario while maintaining an identical range for the panels. Upon comparing the 

relevant panels in Figures 7.1, 7.2, and 7.3, we can observe that more individuals are vaccinated as the 

waning immunity rate increases. This decreases the average social payoff towards the socially ideal 

level in the context of optimal control. The SED panels allow us to identify regions similar to those in 

Figure 7.1 but with higher positive SED values. From these observations, we can conclude that 

increasing the rate of waning immunity amplifies the social dilemma, which aligns with expectations. 

This indicates that when waning immunity occurs faster, balancing vaccination efforts and achieving 

the desired social outcomes becomes more challenging. 

 

Figure 7.2: The Figure shows the overall prevalence of infection, vaccination, and ASP from the 

behavior model and optimal control model, as well as SED. All the ranges are the same as in Figure 7.1, 

with standard values of parameters as well, except the wanning immunity rate (𝜔).  
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Figure 7.3: This Figure displays the overall prevalence of infection, vaccination, and ASP from the 

behavior model and optimal control model, as well as SED. Except for the wanning immunity rate (𝜔), 

all ranges and standard parameter values are identical to Figure 7.1.   

Figure 7.4 focuses on the impact of the cost of the disease (𝑐) and the cost of vaccination (𝑐𝑣) on the 

social dilemma scenario, as well as the total number of infected individuals, vaccinated individuals, and 

the ASPs for both the behavior and optimal control models. The figure considers a range of values for 

the disease cost (𝑐) from 0.01 to 1.01 and the vaccination cost (𝑐𝑣) from 0.01 to 𝑐, with all other 

parameters set to their default values. From the panels representing the behavior model in the first row, 

we can observe that as the cost of vaccination increases, fewer individuals choose to get vaccinated, 

resulting in a higher overall number of people becoming infected. However, when comparing the 

behavior model to the optimal control model, it is evident that vaccination rates remain high and 

regional infection rates remain low in the latter. The panels depicting the average social payoff show a 

similar trend. When the costs of disease and vaccination are combined, the average social payoff 

increases as the cost of vaccination rises. This suggests higher vaccination costs incentivize individuals 

to prioritize vaccination, improving overall social outcomes. One interesting observation can be made 

from the SED panel. The SED is largest when the disease cost is high, and the cost of vaccination is 

around 0.4. This indicates that when the cost of the disease is high, but the cost of vaccination is 

moderately high, people hesitate to get vaccinated. As a result, the decision to get vaccinated becomes 

more dependent on the expense of the vaccination itself. Similar patterns have been observed in 

previous figures, such as Figures 7.1-7.3, where increasing the immunity rate resulted in higher values 

of SED, indicating an intensified social dilemma. This behavior aligns with human behavior and 

decision-making processes. 

In summary, Figure 7.4 demonstrates how the costs of disease and vaccination impact vaccination rates, 

infection rates, average social payoffs, and the intensity of the social dilemma. Higher vaccination costs 

lead to lower and higher infection rates, while the combined costs of disease and vaccination influence 

the average social payoff. The SED panel reveals the regions where the social dilemma is most 

pronounced, highlighting the interplay between vaccination costs and disease in shaping individual 

behavior and overall social outcomes.   
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Figure 7.4: This Figure illustrates the prevalence of infection, vaccination, and the ASPs from both the 

behavior model (NE) and the optimal control model (SO), along with the SED panel. Panels (a) through 

(c) represent the NE condition, while panels (d) through (f) depict the SO case. Panel (g) specifically 

shows the SED, distinguishing it from panels (f) and (c). The figure uses the cost of disease (𝑐) on the 

y-axis and the cost of vaccination (𝑐𝑣) on the x-axis, with ranges of 0.01 to 1.01 for the disease cost and 

0.01 to 𝑐 for the vaccination cost. The cumulative number of infected and vaccinated people ranges 

from 0 to 10, while the ASP ranges from -12 to 0. The SED ranges from 0 to 2, and the remaining 

variables follow the base case. As the cost of disease increases, it is evident that the social dilemma 

worsens. However, the most significant social dilemma occurs when the cost of vaccination is 

approximately 0.4, and it diminishes as the vaccination cost increases. This implies that when the cost 

of vaccination is moderate, people are more hesitant to get vaccinated despite the higher cost of the 

disease. This behavior highlights the delicate balance between vaccination costs and disease in 

influencing individual decisions and social outcomes. 

In summary, Figure 7.4 demonstrates the relationship between disease costs and vaccination and their 

impact on the social dilemma. Higher costs of disease exacerbate the social dilemma, but the intensity 

of the dilemma is greatest when the cost of vaccination is around 0.4. As the cost of vaccination 

increases, the social dilemma becomes less pronounced. The SED panel visually represents the regions 

where the social dilemma is most significant, shedding light on the interplay between the costs of 

vaccination and disease in shaping individual choices and the overall social dynamics.  

6.4 Conclusion 

When exploring an epidemic model and its associated social dilemma, particularly concerning 

vaccination, the primary focus is on implementing effective vaccination strategies. For individuals, the 

priority lies in vaccination uptake, taking into account factors like the eventual epidemic size, its peak, 
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and the cost of vaccination. Conversely, authorities aim to minimize disease spread while keeping costs 

low. The rate of immunity waning significantly affects strategy implementation for both individuals and 

authorities. Thus, integrating the epidemic model with optimal control theory becomes a valuable tool 

for healthcare professionals and management authorities in crafting and sustaining effective vaccination 

strategies. Previous studies have offered various analytical and numerical insights into optimal 

vaccination control strategies, often utilizing Pontryagin’s maximum principle 

[7,8,11,15,23,24,26,37,56]. However, these studies frequently overlooked vaccination costs in their 

models and analyses. Moreover, some explored constant-rate vaccination or interventions, posing 

challenges for real-world implementation [4,38,47,52,58,59,62]. 

This research takes a direct approach by incorporating vaccination costs into the analysis to derive an 

optimal vaccination control strategy while upholding Pontryagin’s maximum principle. Unlike prior 

works, we introduce a novel objective function that rigorously reflects the socially accumulated total 

cost. We compare a conventional cost-based behavior model, which considers human responses to 

vaccination based on epidemic conditions and costs, with our proposed optimal control model 

integrating vaccination and infection costs under the same parameters. Both models undergo thorough 

analysis and comparison, revealing the practicality and quicker stabilization of vaccination with the 

optimal control model. Regarding the social dilemma, numerical results illustrate how increasing rates 

of immunity waning amplify the Social Efficiency Deficit (SED), while higher vaccination costs 

somewhat mitigate it. Furthermore, the method used to calculate social dilemmas in this research is 

deemed more reliable for understanding social scenarios. 

While this study focuses on a simple model incorporating a single control—vaccination—it's crucial to 

note that managing pandemics involves considering various interventions like isolation, quarantine, 

treatment, and testing policies. Future work will extend our model to include multiple interventions to 

enhance the effectiveness of analyzing epidemic models and optimal control strategies for preventive 

measures. This broader perspective aims to provide a comprehensive understanding of how different 

interventions interact to manage and control pandemics. 
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Chapter 7 

Summary and Conclusion 

 

Throughout the journey of this thesis, we have embarked on a comprehensive exploration of epidemic 

models, behavior models, and optimal control theory, all aimed at unraveling the intricate dynamics of 

managing infectious diseases. While our investigation has traversed diverse epidemic scenarios, our 

overarching objective remained singular: to gain insights into how individuals respond to interventions 

and to uncover the social dilemmas inherent in epidemic situations. This pursuit has demanded a 

nuanced examination of individual behaviors across various circumstances, facilitated by an 

evolutionary approach grounded in mathematical modeling.  

In Chapter 1, we introduced the study's background, outlined the thesis structure, and provided 

fundamental preliminary information essential for this research. 

In Chapter 2, we immersed ourselves in an epidemiological model rooted in SEIR dynamics, where 

self-quarantine and forced quarantine interventions were entangled with human behavior dynamics. We 

discovered that the decision to self-quarantine was intricately linked to individual choices, driven by 

personal costs. Conversely, authorities could enforce quarantine through incentives, albeit constrained 

by budget limitations. These interventions, derived from behavioral modeling, emerged as pivotal 

strategies in curtailing infection peaks and addressing the social efficiency deficit, commonly referred 

to as the social dilemma. 

With the emergence of multiple strains of infectious diseases, exemplified by the challenges posed by 

COVID-19, Chapter 3 unveiled a two-strain epidemic model featuring the delayed emergence of a new 

strain, while exploring pre-infection and post-infection vaccination strategies. Our exploration revealed 

that human behavior in committing to vaccination dynamically responded to prevailing circumstances, 

with a propensity to vaccinate intensifying as infection rates rose or highly transmissible variants 

emerged. Interestingly, our analysis illuminated that delaying the second strain not only reduced 

infection peaks but also alleviated the social dilemma associated with vaccination decisions. 

Chapter 4 delved deeper into the intricacies of vaccination decision-making, casting light on the social 

dilemma by featuring both provaccination and antivaccination susceptible groups. We meticulously 

examined the impact of waning immunity on individuals' willingness to undergo revaccination, 

highlighting the influence of the current epidemic situation and the perceived outcomes of vaccination. 

Our findings underscored the significance of boosting vaccination rates to mitigate the social dilemma, 

notwithstanding the challenges posed by higher rates of waning immunity. 

In the face of the complexity posed by multi-strain diseases and the availability of multiple vaccination 

options, individual decision-making emerged as a critical determinant, particularly in the context of 
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waning immunity. Chapter 5 addressed this complexity by introducing a comprehensive 

epidemiological model that embraced multiple disease strains and vaccination options. Our analysis 

uncovered a nuanced interplay between waning immunity, vaccine efficacy, and the presence of highly 

transmissible strains, emphasizing the importance of achieving equilibrium in vaccine adoption. 

To fully comprehend the social dilemma inherent in epidemic models with interventions, it became 

imperative to scrutinize the flow of interventions and ascertain the social optimum. While previous 

studies predominantly relied on simplistic rate models, Chapter 6 pioneered a novel methodology 

leveraging optimal control theory to evaluate the Social Optimum of a vaccination game. By factoring 

in variables such as cost, availability, and distribution policies, our research yielded valuable insights 

into optimizing vaccination strategies within complex societal dynamics, underscoring the need to 

account for variables such as waning immunity and vaccination costs. 

 

In conclusion, this thesis has provided a comprehensive understanding of epidemic dynamics, shedding 

light on the complexities of individual decision-making and the social dilemmas that underpin epidemic 

scenarios. Our findings have profound implications for policy-making and public health efforts, 

furnishing a roadmap for navigating the challenges posed by infectious diseases and optimizing 

intervention strategies in a dynamic and evolving landscape. 

Limitations and Future Works 

Acknowledging the various approaches researchers have employed to analyze epidemic scenarios 

alongside interventions, it is evident that understanding disease dynamics and human responses to 

preventive measures is paramount for effective decision-making by authorities. In this thesis, we present 

a range of epidemic models integrated with behavior models and optimal control strategies, addressing 

diverse epidemic scenarios. Our chosen approach, the mean field approximation (Simple Ordinary 

Differential Approach), offers a straightforward yet acceptable technique for analyzing disease 

dynamics and human behavior responses to interventions. However, a notable limitation of this study 

is the absence of real-life data, which could enrich our analysis. Additionally, while the multi-agent 

simulation (MAS) approach provides a more nuanced understanding of epidemic dynamics in structured 

populations, it was not utilized here. Stability analysis, another commonly employed method in 

concluding epidemic situations, was also not included in our work. Nevertheless, our extensive 

numerical simulations provide valuable insights into various epidemic scenarios, especially where 

stability analysis is challenging. Moving forward, our primary objective is to apply our proposed models 

to real-life data and validate our findings in structured populations, enhancing the realism and utility of 

our models for healthcare management authorities. Furthermore, we aim to expand our analysis beyond 

the simplest scenario presented in this thesis (vaccination only) to encompass more complex epidemic 
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models involving quarantine, treatment, etc. In addressing the social dilemma inherent in epidemic 

models, we have introduced a novel technique incorporating intervention costs, which promises greater 

efficiency. While our current focus is on vaccination, future endeavors will extend this approach to 

encompass a wider array of interventions. Through these efforts, we aspire to contribute to a deeper 

understanding of epidemic dynamics and provide actionable insights for effective epidemic 

management.  

 

 

 


