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Abstract: The mesh orientation effect on the solution accuracy for composite plate structures 

using the DKMT (Discrete Kirchhoff-Mindlin Triangular) element is evaluated. DKMT is a 

triangular element that is free of shear locking and shows the best performance in the isotropic and 

composite plate in thin and thick problems. Two tests proposed with three and nine layers are 

evaluated using two mesh orientations (right orientation, Mesh A, and left orientation, Mesh B). The 

convergence of central displacement and total energy is then presented to understand which mesh 

orientations give better accuracy. The DKMT element gives good convergence behavior to the 

reference solution. Moreover, the DKMT element is not sensitive to mesh distortion. Mesh A 

provides better accuracy than mesh B for all cases analyzed in this paper. 
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1. Introduction 

Composite materials are widely used in civil, 

mechanical, and aerospace applications1-2). Composite 

material provides high stiffness and strength-to-weight 

ratio, corrosion, and high-temperature resistance3). An 

effective computational method in the composite 

application is very expected since the analytical solutions 

are only available for simple structures. It is well known 

that the Finite Element Method performs well in 

computational mechanics4). The composite application 

can be found in references5-8). One of the composite 

material applications is for plate structures, referred to as 

bending problems. In the plate bending problem, the 

Reissner-Mindlin plate is used to formulate many 

elements capable of being used in thick-to-thin plate 

structures9-10).  

The phenomenon of shear locking is one of the big 

problems in finite element analysis for plate-bending 

elements. The elements often gave poor results in thin 

plate problems. Reduced and selective integration have 

been performed to solve the problem11-14). They can 

improve convergence performance, but shear locking still 

becomes a problem.  

Hughes and Tezduyar proposed the Assumed Natural 

Strain (ANS) as one of the alternatives to solve the shear 

locking15-16). Many authors use it very effectively to 

develop a new element. Bathe and Dvorkin proposed a 

variation of the ANS method, and the well-known MITC 

element was introduced17-19). 

Katili proposed Triangular and Quadrilateral elements 

called DKMT and DKMQ elements20-21). These two 

elements give good results in thin and thick plates. The 

result of the thin plate problems proved that these two 

elements are free of shear locking. The application of 

DKMQ and DKMT elements in plate and shell for 

isotropic and composite structures has been presented in 

literature22-38). Regarding the promising results of the 

DKMT element, it is important to continue studying 

meshing strategy in composite applications.  

The main objective is to demonstrate the effect of mesh 

orientation on the solution accuracy of the DKMT element 

in composite applications. In numerical simulation, 

meshing is one of the important step39-40), a proper 

meshing strategy in line with the efficiency and accuracy 

of numerical simulations. Two numerical tests proposed 

by Srinivas and Pagano and Hatfield are evaluated by 

using two different mesh orientations41-43). The 

convergence of central displacement and energy is then 

presented to understand which mesh orientations give 

better accuracy.   

 

2. DKMT element 

The detailed formulation of the DKMT element in the 

composite application has been presented in30,32). Here, we 
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recall that formulation briefly; the details can be found in 

references30,32). The internal and external energies ( ) of 

DKMT element are:  
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Where curvature  is expressed as :  
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And γ is the transverse shear strain. In this element, 

the shear strain is interpolated independently. The matrix 

Hooke’s for bending and shear ( [Hb] ,[Hs] ) are: 
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where nl is the number of layers, zi is presented in (Fig. 

1) and 11, 12, 22 are the shear correction factors.  

 

 

Fig. 1: Layer orthotropic. 

 

DKMT element uses the linear interpolation for 

transverse displacement ( w  ) and incomplete quadratic 

interpolation for the rotations ( βx
, β y ) as in (Fig. 2): 

 

 

Fig. 2: DKMT Element. 

 

1,3

1,3 4,6

1,3 4,6

  

β  β   Δβ

β  β   Δβ

i i

i

x i xi k k sk

i k

y i yi k k sk

i k

w N w

N P C

N P S

=

= =

= =

=

= +

= +



 

 

 (5) 

 

Ni and Pk are the linear and quadratic functions, while Ck 

and Sk are the cosines direction of side k (Fig. 3). 

 

 
Fig. 3: Geomtery on side k. 

 

We can express equation 2 as:  
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of freedom at the mid-side nodes that will be eliminated 

later by using the Discrete Kirchhoff Mindlin method. The 

independent shear deformation on the side i – j: 

2
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The shear strain can be written as : 
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By using the Discrete Kirchhoff Mindlin method, we can 

express : 
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By introducing equations (17 – 18) into (6), we have : 
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Then, by introducing equations (17 – 18) into (13), we 

obtain the assumed shear strain field as: 
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3. Results and Discussion 

To compare the solution accuracy of the DKMT 

element in a composite plate structure, we analyze 2 cases. 

The first is a simply supported (SS) sandwich plate 

proposed by Srinivas, and the second is a three and nine-

layer SS plate proposed by Pagano and Hatfield41-43). The 

results of convergence are presented in central 

displacement and total energy. Two mesh orientations are 

evaluated to understand the effect of mesh orientation on 

the accuracy of the solution. The right orientation is Mesh 

A, and the left orientation is Mesh B.  

 

3.1  Srinivas sandwich plate. 

Figure 4 shows the geometric details of the simply 

supported (SS) sandwich plate proposed by Srinivas33). 

Due to the symmetry condition, only the area of ABCD is 

analyzed. The details of Mesh A and Mesh B are also 

presented in Fig.4. The material properties are: EL 

=3.4156MPa ; ET  =1.7931MPa ; υLT = 0.44 ;  GLT = 1 

MPa ; GLZ = 0.608 MPa ; GTZ = 1.015MPa. The three 

layers of a 0/0/0 symmetrical sandwich plate with the 

boundary condition w = βs = 0 on the boundary of the plate 

are evaluated. In this test, we use C = 1, C = 10, and C = 

50, where C is the factor proportionality of layer 2 (core) 

and layers 1 and 3 (skin). 
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Fig. 4: SS sandwich plate. 

 

The results of the central deflection at point C are 

presented in Tables 1 and Fig. 5 for two different mesh 

orientations. The analytical solutions are used as reference 

solutions41). In this test, the central displacement is 

expressed as :  

( )CoreC LT
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w G
w

h f
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Table 1 and Fig. 5 present the results for uniform mesh. 

We found the results given by the DKMT element are 

close to the proposed solution. Also, the results of mesh A 

converge faster than mesh B for a small number of 

elements. To understand the behavior of the whole 

structure, we also show the results of the total energy of 

the structure (Fig. 6). Again, we found that mesh A 

performs better than mesh B. Starting from 16×16×2 

element, mesh A and B give similar results. Mesh A 

performs better than mesh B for coarse mesh (small 

number of elements). It is essential to use mesh A for 

coarse mesh to get accurate results.  

 

Table 1. The Central deflection wC. 

 
 

  
Fig. 5: The central deflection wC. 

 

   
Fig. 6: The convergence of energy with a uniform mesh. 

 

 
Fig. 7: Distorted mesh for mesh A. 

 
Figure 7 shows the distorted mesh used to analyze the 

sensitivity of the DKMT element to the element distortion. 

Table 2 and Fig. 8 present the results for central 

displacement. The two mesh orientations give the results 

close to the reference solution. Moreover, we can find 

again that mesh A performs better than mesh B for a small 

number of elements. The same behavior is also found in 

total energy convergence, as presented in Fig. 9. We can 

conclude that the DKMT element is not sensitive to mesh 

distortion and gives convergence results as a uniform 

mesh. 

 
Table 2. The Central deflection wC. 

 
 

  
Fig. 8: The central deflection wC distorted mesh. 

 

  
Fig. 9: The convergence of energy with a distorted mesh. 

 
3.2  The 3 and 9 layers SS Plate 

Figure 10 presents the details of three and nine-layer 
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ratio (L/h = 4, 10, 50, 100). The Material properties used 

in this test are  EL = 25 MPa ;  ET =1 MPa ; υLT = 0.25 ; 
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GLT = 0.5 MPa ; GTZ = 0.2 MPa. We use shear correction 

factor for 3 - layer case: 11 = 0.570 ; 22 = 0.882 ; 12 

= 21 = 0  and stratification 0/90/0 symmetrical. While 

for 9 – layer case, we use  11 = 0.670 ; 22 = 0.666 ; 

12 = 21 = 0 and stratification 0/90/0/90/0/90/0/90/0 

symmetrical. The boundary conditions are w = βs = 0 on 

the plate boundary. The sinusoidal loading fz = f0 

sin(πx/L)sin(πy/L) is applied to the structures. The 

convergence behavior is presented in the form of vertical 

displacement in point C, which is expressed as: 

( ) ( )
4

4
    ;    4 1 2υ / 1 2υ υ

12
C LT L T TT LT TL

o

wQ
w Q G E E

S h f


 = = + + + − 

 (23) 

 
Fig. 10: The 3 and 9 layers. 

 
Table 3. The central deflection wC ( 3 layers). 

 
 

  
Fig. 11: The central deflection wC ( 3 layers). 

 
Table 4. The central deflection wC ( 9 layers). 

 
 

Table 3 and Table 4 show the results of central 

displacement for 3-layer and 9-layer cases for different 

values of L/h. We observed that the results were very close 

to the reference solution. Figure 11 and Fig. 12 present the 

convergence behavior for L/h = 4 and 100. We found that 

mesh A performs better than mesh B. Mesh A performs 

better than mesh B for coarse mesh (small number of 

elements). It is essential to use mesh A for coarse mesh to 

get accurate results. 

 

  

Fig. 12: The central deflection wC ( 9 layers). 

 
Table 5. The central deflection wC ( 3 layers distorted mesh). 

 

  

Fig. 13: The central deflection wC ( 3 layers distorted mesh). 

 

We also perform the test using distorted mesh, 

presenting the results in Tables 5 – 6 and Fig. 13 – 14. The 

results are also compared with the solution proposed by 

Pagano and Hatfield41-43). The DKMT element gives good 

results that converge to the reference solutions for the two 

mesh orientations. We observe once again that mesh A 

gives better results than mesh B.    

 
Table 6. The central deflection wC ( 9 layers distorted mesh). 

 

  

Fig. 14: The central deflection wC ( 9 layers distorted mesh). 
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that the DKMT element is not sensitive to mesh distortion. 

For all tests using distorted mesh, the DKMT element 

gives convergence results as uniform mesh. Moreover, we 

found that mesh A performs better than mesh B for coarse 

mesh (small number of elements). Meshes A and B give 

similar results when the number of elements increases 

(starting from 16×16×2). We found that meshing strategy 

is an essential factor in determining the accuracy of 

numerical simulation. Finally, the DKMT element can be 

used as an alternative element to analyze composite plate 

structures. 
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