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Abstract: Muography is a passive geophysical method that is advancing for multiple imaging applications. In this 

study, we present a methodological framework for muography to estimate density at a varying density-length. We utilized 

the muon absorption method to estimate material density, employing both experimental setups with plastic scintillator 

detectors, acrylic objects and simulations using the PHITS Monte Carlo code. By analyzing muon flux after passing 

through target materials, we compute an empirical model for density estimation. The findings demonstrate the technique's 

effectiveness in identifying density variations, with potential applications in geophysical exploration and geological 

studies. This research aims to advance the precision and reliability of muon-based density estimation by validating the 

density estimation using simulation and experimental approaches. 
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1. INTRODUCTION  

Muons are subatomic particles that share some 

similarities with electrons, such as having an electric 

charge, and possessing a spin of ½ intrinsic angular 

momentum. However, muons differ significantly in 

terms of mass, as they have a much larger mass of 

approximately 105.7 MeV/c², which makes them about 

207 times heavier than electrons [1]. Due to their large 

mass, muons are less readily accelerated when they come 

into contact with electromagnetic fields compared to 

electrons [2, 3]. High-energy muons originate from 

galactic cosmic rays (GCRs), which result from the 

acceleration of particles by supernovas and their 

remnants within our Milky Way galaxy [4]. Cosmic-ray 

muons have an energy range of 10 MeV – 100 GeV with 

an average of 2-4 GeV [3]. The Earth is continually 

bombarded by cosmic-ray with an approximate flux of 1 

muon per square centimeter per minute. The high energy 

of muon enables them to penetrate deeply into materials 

such as hundreds of meters and this makes them suitable 

for geological and underground studies [5-7]. 

Cosmic-ray muons typically show a higher flux at angles 

closer to the vertical, decreasing with increasing zenith 

angles. The azimuth distribution is almost isotropic and 

can vary based on local geomagnetic conditions and 

atmospheric effects [8]. As the muons pass through the 

objects, they have some interactions such as ionization, 

resulting in muon attenuation due to energy loss or 

changing direction because of scattering. By analyzing 

the behavior of muons in the matter, the density of the 

material can be estimated, and muon imaging becomes 

feasible. 

Following the discovery of cosmic-rays [9-13] and 

muons [14], muon radiography, currently known as 

“muography” was introduced by Alvarez, et al. [15]. 

Since then muography has been utilized for diverse 

applications including security screening [16, 17], 

magnetic field imaging [18],  nuclear waste monitoring 

[19], and imaging of damaged core of the Fukushima-

Daiichi nuclear power plant [20]. Besides these 

applications, there was a growing interest in utilizing 

muon imaging for Earth sciences applications as the 

cosmic-ray muons provide a passive method for 

continuous monitoring of subsurface imaging. The initial 

investigations pertaining to muon imaging were 

prompted by the necessity to assess the geological 

material covering underground laboratories that housed 

particle detectors [9]. Moreover, in recent years, high-

energy cosmic-ray muography has been utilized to 

capture images of the internal structures of geological 

formations, Tanaka, et al. [21] have developed a real-

time volcano monitoring system using muography to 

monitor the lava flow and mass change detection inside 

the Asama volcano in Japan. In their work, they have 

successfully mapped the crater floor density variation 

after volcanic ash eruption. Morishima, et al. [22] have 

applied cosmic-ray muon radiography to detect any 

undiscovered chambers or voids within the pyramid. 

Matsushima, et al. [23] demonstrated the relationship 

between the total number of muons counts when the 

water level in a tank was changing at a fixed time. 

Density estimation plays a crucial role in geophysical 

investigations, providing essential information about 

subsurface structures and material properties distribution. 

Accurate density models are vital for various applications, 

including mineral exploration, geological reservoir 

characterization, and environmental studies. Geophysical 

methods, such as seismic and gravity, have been widely 

employed to estimate subsurface densities. However, 

despite their extensive use and significant advancements, 

these methods face several limitations that affect the 

accuracy and spatial resolution of density estimations 

[24-27]. Therefore, there is a continuous need to fill this 

ambiguity. Moreover, muography leaves a passive source 

nature, making it a cheap method to deploy at various 

scales and applications for near or deep surface targets. 

In our study, we investigate the potential of using muon 

counts as a primary method for estimating material 

density. We employ both laboratory measurements and 

simulation modeling to obtain an empirical model for 

density estimation based on density length and muon 

counts. This work emphasizes the critical importance of 

accurate density estimation in subsurface imaging, 
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highlighting its role in directly linking to the medium's 

density. Our research aims to enhance the precision and 

reliability of density estimation methodologies. By 

comparing the results from both methods, we aim to 

enhance the precision and reliability of density 

estimation techniques, contributing significantly to 

geophysical subsurface exploration. 

 

2. METHODS AND MATERIALS  

In the current study, we employ a dual approach 

combining laboratory experiments and simulations to 

investigate the potential of muon counts as a primary 

method for estimating material density. The laboratory 

experiments provide real-world data subjected to 

environmental and atmospheric variations, while the 

simulations offer controlled conditions to validate and 

enhance the accuracy of our findings. 

 

2.1 Muons Absorption Method 

Charged particles muons, Interact with electrons in 

medium primarily through ionization while traveling 

through it. Their energy loss or deviation in direction 

(scattering angle) is directly related to the thickness and 

density of the material they pass through. Scientists have 

developed two muography techniques based on 

analyzing either the scattering or absorption of muons in 

matter [30]. In the present work, we are utilizing muons 

absorption properties to estimate the density of the 

materials. 

Muon absorption techniques involve measuring the flux 

of muons after they pass through a target material. By 

comparing the background (reference) measurement and 

muon fluxes after placing objects, it is possible to 

determine the amount of energy lost related to attenuation 

factor of the material and, consequently, the density of 

the material [28]. This method is particularly effective for 

dense materials where the attenuation is significant. 

Thus, their absorption rate is influenced by this density. 

By assessing the muon flux rate from various directions, 

it is possible to determine the density variations of the 

materials situated between the muon source and the 

detector. 

The intensity of cosmic muons can be expressed through 

the measured count rate. Let 𝐼0 represent the reference 

measurement and the count rate of muons detected before 

placing any object in the region of interest, I represent the 

count rate after passing through the absorbing medium, 𝜇 

is the attenuation factor, and x represents the path length 

through the material. Using these parameters, we can 

derive the following relationship: 

𝐼 = 𝐼0𝑒−𝜇𝑥,                                      (1) 

If the count rate and the thickness of the absorber are 

measured, the absorption coefficient can be calculated 

from the slope obtained by fitting the data to linear using 

Equation 2. 

           𝑙𝑛 (𝐼) = ln(𝐼0) − 𝜇𝑥,               (2) 

This equation can be used to determine the absorption 

coefficient experimentally. The fitting method employed 

is the least squares technique [29].  

 

2.2 Laboratory Measurements 

The diagram in Figure 1 illustrates the laboratory 

configuration for a muon coincidence measurements with 

four detectors (CH1, CH2, CH3, CH4). The 

discriminator outputs are sent to a coincidence detection 

circuit, which identifies simultaneous events across all 

detectors, removing unwanted events. When a 

coincidence is detected, a gate signal is generated to 

control the multi-channel analyzer, which processes and 

records the detected events. This setup ensures accurate 

muon detection by recording only events that trigger all 

four detectors simultaneously. Figure 2 illustrates the 

configuration of our laboratory experiment. In this setup, 

the target object is positioned centrally between four 

scintillators with dimensions of 20 × 20 cm, which are 

vertically aligned at the same point. This arrangement is 

designed to capture coinciding muon events with 

orientations ranging from vertical to slightly deviated 

angles. By doing so, we ensure that only muon events 

passing through the target object are recorded, thereby 

eliminating any undesired events. Additionally, we added 

a lead plate of a thickness of 3 cm to eliminate undesired 

particles such as electrons. An event is recorded when all 

scintillators react within a threshold window. In our 

experiment work, we use homogenous acrylic boxes with 

dimensions of 20 × 20 cm and a density of approximately 

1.19 g/cm3. The experiment initially records the 

background measurements (events count) for 48 hours 

per run. Moreover, an acrylic box is added every run until 

a total of four boxes are in place. This sequence of 

measurements is performed consecutively and repeated 

three times to ensure the repeatability and reliability of 

the data. Additionally, in our present work, we ignore the 

effect of oblique muon paths, as we assume a very minor 

effect due to the laboratory configuration and only small 

deviation in the muon path is expected. 

 

 

Fig. 1. Diagram illustrating muon coincidence detection 

setup to record simultaneous events. 

 

 

Fig. 2. Image of laboratory measurement using a) one 

acrylic and b) three acrylic boxes. The blue arrow 

illustrates a typical recorded coinciding event. 
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2.3 Data Filtering and Environmental Corrections 

The recorded raw data from the multichannel analyzer 

(MCA) are subjected to bandpass filtering based on the 

observed muon pulse peak, and removing the random 

coincidence recorded noise. Furthermore, the muon-

recorded counts are subject to environmental corrections 

[30], to remove the barometric and temperature 

fluctuations effects and adjust it to the base level. The 

Barometric effect is explained by the following equation: 

(
𝛿𝐼

𝐼
)

𝑃
= 𝛽 . 𝛿𝑃 ,                              (3) 

Where 
𝛿𝐼

𝐼
 is the normalized variation of muon flux 

intensity, 𝛽  is the barometric coefficient, 𝛿𝑃  is the 

pressure variation, calculated as 𝛿𝑃 = 𝑃 − 𝑃𝐵, where P 

is the current atmospheric pressure and PB is the base 

pressure value [31]. Now the temperature effect is given 

as follows:  

(
𝛿𝐼

𝐼
) 𝑇  =  ∫ ∝ (ℎ) ∙  𝛿𝑇(ℎ) 𝑑ℎ

0

ℎ0
 ,                (4) 

Where ∝ (ℎ)  is the temperature coefficient density at 

height h and 𝛿𝑇(ℎ) is the temperature variations at height 

h, calculated as 𝛿𝑇 = 𝑇 −  𝑇𝐵 , where T is the 

temperature during measurement time, and TB is the base 

temperature value [32]. In the last step as muon flux is 

not consistent during the measurement time, we apply an 

additional filter based on standard deviation (STD), 

removing data not corresponding to 85% of the measured 

data counts. 

 

2.4 Simulation Measurements 

This setup is complemented by simulation models 

replicating the lab conditions, allowing for 

comprehensive analysis and validation of the empirical 

density estimation model. The simulation modeling 

components and configuration are shown in Figure 3 

where similar geometries are used with reference from 

the floor to the concrete roof.  

 

 

Fig. 3. Schematic illustration of the simulation model 

used to replicate the lab conditions. The red and brown 

arrows represent events of interest (coinciding) and no 

interest, respectively.  

 

We simulate an equivalent event of 24 hours, assuming 

the following: 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠 𝑚𝑖𝑛⁄   =  𝐴 × 𝑀𝑢𝑜𝑛 𝐹𝑙𝑢𝑥 (1
𝑚𝑢𝑜𝑛

𝑐𝑚2.𝑚𝑖𝑛
)   

Where A is the area of the spherical source used, and 

Muon flux is a single event for each square centimeter 

[33]. In our simulations, we utilize PHITS (Particle and 

Heavy-Ion Transport code System) Monte Carlo code 

[34] to simulate muon interactions with our target 

objects. We use a mono-energy surface source of positive 

and negative muons and energy ranging from 1e−4 to 10 

GeV (Fig. 3). Cosmic-ray muons are generated based on 

the PARMA model, which provides a detailed 

description of the secondary cosmic-ray muon spectrum 

and its interactions with the Earth's atmosphere [34, 35]. 

Additionally, the PARMA model helps in accurately 

replicating the energy spectrum and angular distribution 

of cosmic-ray muons at different altitudes and depths, 

ensuring that our simulations closely mirror real-world 

conditions [36]. This approach provides a robust and 

reliable simulation environment for studying muon 

behavior and replicating the experiment environment. 

 

3. RESULTS  

In this section, we present a detailed analysis of the 

results obtained from both laboratory measurements and 

simulation experiments. The laboratory measurements 

are subject to uncertainties due to environmental and 

atmospheric conditions, which can affect the muon flux. 

These results are then compared with those from the 

simulation experiments to evaluate the accuracy and 

reliability of the simulation model in predicting muon 

flux behavior under controlled conditions. 

 

3.1 Laboratory Measurements 

The raw measurement counts, depicting the muon flux as 

a function of density length, are presented in Figure 4.a. 

This data is in the range of 300 counts originally, a 

bandpass filter was applied to remove unwanted events 

and restrict the data to the muon pulse peak exclusively. 

The total counts per each stage were reduced in the range 

of average counts 200 events per hour (Fig. 4.b), where 

almost a third of acquired data is believed to be of other 

particle undesired events such as electrons, gamma, and 

therefore has been filtered. This step is crucial before 

carrying out any further analysis, as it also showed 

enhancement in the data fitting to the regression lines. 

  

 

Fig. 4. A scatter plot shows the muon average counts per 

hour collected from each acquisition phase. a) Raw 

acquired data, b) after muon peak pulse filtering.   
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The obtained data from previous steps were subjected to 

corrections for environmental variations, as 

demonstrated in Figure 5. Public data on atmospheric 

temperature and pressure have been collected from 

Shimoufusa Ab station, Nagayama through Meteostat 

database [37].This has set all measurements to base 

conditions and minimized the uncertainty in the counts 

measurements due to atmospheric conditions variations. 

The obtained muon counts after environmental 

corrections show a further enhancement in the fitting to 

the regression models. In the last step, we apply the final 

STD filter where the total counts show a high fit to the 

regression model but vary from stage to stage (Fig. 6.b); 

a general trend of reduction in the muon counts is noticed 

between each phase experiment and assumed to be 

related to seasonal muon flux. The average counts 

consistently enhanced in fitting the regression model, 

improving the object material's absorption relationship 

and density length. 

 

 

Fig. 5. Diagram illustrating the experimental data 

collected from background (no acrylic) measurements 

before and after applying environmental corrections for 

each measurement phase. Part (a) shows the raw and 

corrected data for Phase 1, part (b) for Phase 2, and part 

(c) for Phase 3. Additionally, part (d) presents the 

temperature records corresponding to each phase of 

measurements, while part (e) displays the atmospheric 

pressure records corresponding to each phase. 

 

 

 

Fig. 6. A scatter plot shows the muon average counts per 

hour obtained. a) after obtaining muon counts at base-

level environmental corrections, b) after the STD filter 

was applied to the data shown in Figure a. 

 

We apply an exercise to estimate the density using the 

obtained average muon counts from all the phases using 

raw collected data and filtered denoised data shown in 

Table 1. The obtained densities from raw data have a high 

error at a very short density length compared to other 

longer density lengths. Meanwhile, the filtered data 

showed overall better density estimates at various density 

lengths.  

 

Table 1. Density estimations using laboratory 

experiment data 

 
Acrylic 

cubes 

Density 

length 

(g/cm2) 

Estimated 

density 

(g/cm3) 

Relative 

error (%) 

R
aw

 

D
at

a 

1 38.74 1.937 62.76 

2 46.18 1.154 2.99 

3 61.11 1.019 14.41 

4 71.39 0.892 25.01 

F
il

te
re

d
 

D
at

a 

1 26.34 1.317 10.65 

2 51.15 1.029 13.56 

3 55.48 0.925 22.29 

4 81.23 1.015 14.67 

 

3.2 Simulation Measurements 

The simulation results, depicting the muon flux as a 

function of density length, are presented in Figure 7. We 

use measurement counts from each stage to estimate the 

attenuation coefficient and determine the slope to best 

regression fit. The estimated densities from density 

length computation are as follows in Table 2. 
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Fig. 7. Scatter plot showing obtained muon flux from 

simulations for each acrylic experiment fitted to 

regression model. 

 

Table 2. Density estimations using simulation 

experiment data. 

Acrylic 

cubes 

Density 

length 

(g/cm2) 

Estimated 

density (g/cm3) 

Relative 

error (%) 

1 32.11 1.606 34.93 

2 33.08 0.827 30.50 

3 60.32 1.005 15.52 

4 80.19 1.002 15.76 
 

The density estimations at shorter density lengths exhibit 

higher relative errors than those at longer density lengths, 

which are more accurate. Specifically, the relative errors 

for the shortest density lengths (32.11 g/cm² and 33.08 

g/cm²) are significantly higher (34.93% and 30.50%, 

respectively) compared to those for longer density 

lengths (60.32 g/cm² and 80.19 g/cm²), which are 15.52% 

and 15.76%, respectively. This indicates that as the 

density length increases, the accuracy of the estimated 

density improves. Therefore, the computed relative error 

in density decreases as the density length increases, 

indicating a clear relationship between the accuracy of 

density length and its fitting to the regression model. This 

correlates to the same behavior observed in the raw data 

and single stages trendline. 

 

4. DISCUSSION 

The study presented here demonstrates the effectiveness 

of muography as a method for density estimation through 

a combination of laboratory measurements and 

simulation experiments. The results obtained from raw 

(Fig. 4.a) and filtered data (Fig. 6.b) highlight the critical 

role of data processing in improving the accuracy and 

reliability of density estimations. Overall, a higher error 

is observed for density estimations at smaller density 

lengths as shown in Tables 1 & 2, attributed to various 

factors, including the sensitivity of the measurements at 

such a small scale, environmental noises, experimental 

setup limitations, and inherent fluctuations in muon flux. 

A better density estimate is obtained at longer density 

lengths in both raw and filtered datasets. Further 

measurement at higher density lengths can increase the 

accuracy of density estimations and can lead to more 

accurate density. 

The simulation results were consistent with the 

laboratory measurements, reinforcing the validity of our 

methodological framework. However, the relative errors 

in the simulation data were generally lower than those 

observed in the raw experimental data due to the 

contribution of other particle events; however, still 

exhibited similar trends. This discrepancy is primarily 

due to the controlled conditions in simulations, which 

eliminate many of the environmental variables affecting 

real-world measurements. Nonetheless, the simulations 

provided valuable insights into the behavior of muon flux 

through different density lengths, corroborating the 

empirical findings and validating the data obtained from 

laboratory experiments. 

The ability to accurately estimate density using 

muography has significant implications for geophysical 

exploration and geological studies. The method’s 

precision in identifying density variations makes it a 

valuable tool for subsurface imaging, mineral exploration, 

and environmental studies. By enhancing the accuracy 

and reliability of density estimations, muography can 

contribute to more detailed and comprehensive 

geological models, aiding in the identification of 

subsurface structures and material properties. This 

research advances the precision and reliability of muon-

based density estimation by validating the density 

estimation using both simulation and experimental 

approaches. 

 

5. CONCLUSIONS 

This study demonstrates the effectiveness of muography 

for density estimation through both laboratory 

measurements and simulations. We found that data 

filtering and environmental corrections significantly 

improve accuracy, with filtered data showing lower 

relative errors than raw data. Longer density lengths 

provide more reliable estimations due to better regression 

model fitting, while shorter lengths have higher 

deviations and errors. The improved accuracy at higher 

density lengths is due to a better representation of the 

material's true attenuation properties, reducing 

measurement noise and uncertainties. 

Our results, consistent between simulations and 

laboratory measurements, validate our methodological 

framework and enhance confidence in using muography 

for density estimation. Accurate density estimation 

through muography has significant implications for 

geophysical exploration and geological studies, 

improving subsurface imaging and monitoring, mineral 

exploration, and environmental studies. This research 

advances the precision and reliability of muon-based 

density estimation, contributing to geophysical 

subsurface exploration. 
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