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Abstract: Predicting indoor absolute humidity is essential for effective building management, energy efficiency and 

occupant comfort. This research evaluates the performance of Transformer and Informer models in predicting indoor 

humidity using outdoor humidity data. The dataset consists of outdoor humidity measurements to forecast indoor 

conditions. We developed Transformer and Informer models to focus on attention mechanisms and sequence generation. 

Performance was evaluated using metrics such as MAPE, MSE, MAE, RMSE and R-squared. The Transformer model 

slightly outperforms the Informer model with a MAPE of 3.42% and an R-squared of 0.911, compared to the Informer's 

MAPE of 4.55% and R-squared of 0.867. This superior performance is due to the Transformer's enhanced attention 

mechanism and efficient sequence handling. This study provides advanced models for accurate indoor humidity 

prediction, with significant implications for building management and energy savings. Future research could explore 

real-time implementation and application to other environmental parameters.  
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1. INTRODUCTION  

Predicting indoor humidity is crucial for maintaining 

optimal indoor environmental conditions [1]. Humidity 

levels significantly impact building materials, electronic 

equipment, and human comfort. High humidity can lead 

to mold growth, structural damage and malfunctioning of 

electronic devices while low humidity can cause 

discomfort and health issues such as dry skin and 

respiratory problems [2]. Therefore, accurately 

predicting indoor humidity is essential to ensure the 

longevity of building materials and have a proper 

functioning of equipment and the well-being of 

occupants [3]. 

 

Indoor humidity prediction plays a critical role in various 

applications. In HVAC (Heating, Ventilation and Air 

Conditioning) systems such as accurate humidity 

predictions enable optimized control strategies that 

improve energy efficiency and maintain occupant 

comfort[4]. In museums, precise humidity control is vital 

for the preservation of artifacts and artworks. 

Additionally, maintaining indoor air quality in residential, 

commercial and industrial buildings relies on effective 

humidity prediction to ensure a healthy and comfortable 

environment. 

 

Accurate humidity prediction enhances building 

management systems by optimizing HVAC operations. 

By anticipating humidity changes, HVAC systems can 

adjust their performance to maintain desired indoor 

conditions which results in energy savings and improved 

comfort for occupants. Humidity control plays a 

significant role in reducing energy consumption. 

Accurate predictions allow for proactive adjustments to 

HVAC systems and able to minimize energy waste and 

leading to substantial energy savings [1]. For instance, 

better predictions can prevent overcooling or overheating 

thus optimizing energy use. 

 

Also, predicting indoor humidity accurately is 

challenging due to its inherent variability and complexity. 

External factors such as weather conditions and internal 

factors like occupancy and activities contribute to 

fluctuating humidity levels. This dynamic nature makes 

it difficult to develop models that can consistently predict 

humidity with high accuracy [2], [5]. 

 

Traditional statistical and empirical models often 

struggle to handle the dynamic nature of humidity [6]. 

These models may fail to capture the complex 

relationships between various factors influencing indoor 

humidity. Additionally, real-time prediction requires 

significant computational power in order to pose another 

challenge for existing models. 

 

The specific problem addressed in this research is the 

accurate prediction of indoor absolute humidity using 

outdoor humidity data. Current prediction models often 

face limitations in terms of accuracy, computational 

efficiency, and adaptability in which this study aims to 

overcome[7], [8], [9], [10]. Existing state-of-the-art 

methods for indoor humidity prediction have several 

gaps. Traditional models may not effectively handle long 

sequence dependencies and lead to inaccurate predictions. 

Additionally, these models often require high 

computational resources and making real-time 

applications challenging [10]. 
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To address these gaps, advanced models like 

Transformer and Informer models are needed. These 

models offer promising solutions for improving 

prediction accuracy and efficiency. Transformer models 

with their self-attention mechanisms can capture long-

range dependencies while Informer models introduce 

ProbSparse attention able to enhance computational 

efficiency. Therefore, this research aims to explore 

advanced deep learning techniques to achieve these goals. 

 

This research introduces a unique approach by applying 

ProbSparse attention in Informer models and specific 

architecture modifications in Transformer models. These 

innovations aim to improve prediction accuracy and 

computational efficiency. The study provides new 

theoretical insights into the application of advanced deep 

learning models for indoor humidity prediction. It 

explores the effectiveness of different attention 

mechanisms and sequence generation techniques in 

improving model performance. This research develops 

new models based on Transformer and Informer 

architectures specifically design for indoor humidity 

prediction. 

 

2. RELATED WORKS 

Earlier techniques for predicting humidity primarily 

relied on statistical models and rule-based systems. These 

models often used historical data and simple linear 

regressions to forecast humidity levels. For instance, 

empirical models based on temperature and dew point 

measurements were commonly used to estimate relative 

humidity. Rule-based systems which incorporated expert 

knowledge and predefined rules also played a significant 

role in the initial stages of humidity prediction [11]. 

However, these traditional methods often struggle with 

the dynamic and complex nature of humidity fluctuations 

leads to inaccuracies in predictions. 

 

2.1 Deep Learning Models 

Recurrent Neural Networks (RNNs) have been 

extensively used for time series prediction due to their 

ability to handle sequential data [12]. RNNs process 

sequences by maintaining a hidden state that captures 

information from previous time steps to allow them to 

learn temporal dependencies. This makes RNNs suitable 

for tasks such as humidity prediction where past humidity 

levels and external factors influence future values [13], 

[14]. However, RNNs suffer from significant limitations 

especially when it comes to long-term predictions. This 

leads to difficulties in learning long-range dependencies, 

resulting in poor performance on tasks requiring the 

integration of information over long periods [14]. 

 

To address the limitations of traditional RNNs, Long 

Short-Term Memory (LSTM) networks were introduced. 

LSTMs incorporate a memory cell that can maintain 

information over long durations, effectively mitigating 

the vanishing gradient problem. This is achieved through 

gates (input, forget and output gates) that regulate the 

flow of information into and out of the cell enabling the 

network to retain relevant information and discard 

irrelevant data. LSTMs have shown significant 

improvements in handling sequential data making them 

suitable for applications requiring long-term dependency 

tracking such as humidity prediction [12], [13]. 

 

 On the other hand, Gated Recurrent Units (GRUs) are a 

variant of LSTMs that simplify the architecture by 

combining the forget and input gates into a single update 

gate. GRUs have fewer parameters compared to LSTMs 

which can lead to faster training and lower computational 

requirements while still effectively capturing long-term 

dependencies [15]. Both LSTMs and GRUs have 

demonstrated superior performance over traditional 

RNNs in various sequential prediction tasks including 

weather forecasting and environmental monitoring[16]. 

 

Attention mechanisms represent a significant 

advancement in deep learning particularly for tasks 

involving sequential data [17]. The core idea behind 

attention is to allow the model to focus on specific parts 

of the input sequence that are most relevant to the 

prediction at each time step. This is particularly 

beneficial for long sequences where it becomes crucial to 

dynamically weigh the importance of different parts of 

the sequence [18]. 

 

In the context of humidity prediction, attention 

mechanisms can enhance model performance by 

enabling the network to selectively attend to critical 

periods or external factors influencing humidity 

levels[19]. The introduction of attention mechanisms has 

led to the development of models such as the 

Transformer, which entirely eschews recurrence in favor 

of attention-based operations. This shift has resulted in 

significant improvements in handling long-range 

dependencies and parallelizing computations, further 

boosting the efficiency and accuracy of predictions [17]. 

 

Attention mechanisms have not only improved the 

performance of sequential models but also paved the way 

for more sophisticated architectures like the Informer, 

which introduces ProbSparse attention to efficiently 

handle long sequence time-series forecasting with 

reduced computational complexity [20]. 

 

2.2 Informer and Transformer 

Transformer model introduced by Vaswani et al [19] 

reimplemented deep learning by introducing a novel 

architecture based on self-attention mechanisms, 

outperforms the recurrence found in traditional RNNs. 

The core component of the Transformer is the self-

attention mechanism which allows the model to weigh 

the importance of different elements in the input 

sequence dynamically [17]. This mechanism computes 

attention scores that determine how much focus to place 

on each part of the sequence, enabling the model to 

capture long-range dependencies effectively. The 

Transformer architecture consists of an encoder-decoder 

structure where both parts are composed of layers of self-

attention and feed-forward neural networks. 

 

Transformers have been applied successfully in various 

fields, including natural language processing (NLP), 

computer vision and time-series forecasting. In NLP, 

they have achieved state-of-the-art results in tasks such 

as machine translation, text summarization and question 

answering. In computer vision, Transformer-based 

models have been used for image classification, object 

detection and segmentation [21]. Their ability to handle 

long-range dependencies and parallelized computations 

makes them particularly suitable for these applications. 

The Informer model developed by Zhou et al. [20] builds 

on the Transformer architecture to address its limitations 

in long-sequence time-series forecasting. One of the main 

challenges with the Transformer is its quadratic time 
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complexity and high memory usage due to the self-

attention mechanism. The Informer model introduces the 

ProbSparse self-attention mechanism which reduces the 

computational burden by focusing only on the most 

relevant parts of the input sequence. This is achieved by 

selecting a subset of key-value pairs for attention 

calculation and significantly improves the efficiency 

while maintaining performance. 

 

The Informer also employs a generative style decoder 

that predicts long sequences in a single forward pass, 

further enhancing its ability to handle long-range 

dependencies in time-series data. These innovations 

make the Informer particularly suited for applications 

requiring efficient and accurate long-term predictions, 

such as weather forecasting and humidity prediction [20]. 

 

Comparative studies have shown that the Informer model 

outperforms the traditional Transformer model in long-

sequence prediction tasks due to its enhanced efficiency 

and reduced computational requirements [18]. Zhou et al 

demonstrated that the Informer achieved better 

performance on several large-scale time-series datasets 

with significant improvements in both accuracy and 

computational speed. Additionally, the Informer has been 

found to handle extreme long input sequences more 

effectively than the Transformer making it a more 

suitable choice for applications involving large datasets 

and long-term dependencies. 

 

One of the common issues in humidity prediction studies 

is the quality and availability of data. Accurate humidity 

prediction relies on comprehensive datasets that capture 

various influencing factors such as temperature, 

occupancy and external weather conditions [22]. 

However, data gaps, sensor inaccuracies and limited 

historical records can limit model training and validation 

which can lead to less reliable predictions [23]. 

 

Current models including advanced deep learning models 

like RNN and LSTM face several limitations [19]. 

Overfitting is a prevalent issue where models perform 

well on training data but fail to generalize to unseen data. 

Computational complexity is another significant 

challenge as these models require substantial 

computational resources for training and inference.  

 

Additionally, while these models can capture complex 

patterns, they may struggle with real-time prediction due 

to their intensive processing requirements [24]. Existing 

research in humidity prediction has highlighted the need 

for more accurate and efficient models. Specifically, 

there is a need for models that can handle the dynamic 

nature of indoor environments, integrate multiple data 

sources, and operate efficiently in real-time [25]. 

 

Therefore, this study aims to address these gaps by 

developing and evaluating Transformer and Informer-

based models for designs for indoor humidity prediction. 

By utilizing advanced deep learning techniques and 

optimizing model architectures the objective of this 

research focus to enhance prediction accuracy and 

efficiency. Potential areas for further research include 

exploring hybrid models that combine traditional and 

deep learning approaches and improving data collection 

methods to ensure higher quality datasets and developing 

algorithms that reduce computational demands while 

maintaining high performance. 

 

3. RESEARCH METHODOLOGY 

The dataset used in this study was obtained from the 

research [26]. The data was collected from a building 

located in Guatemala City, which lies in a tropical 

climate zone. This dataset provides detailed insights into 

the relationship between indoor and outdoor absolute 

humidity which is critical for developing predictive 

models. 

 

The dataset contains two primary variables, Outdoor 

Absolute Humidity and Indoor Absolute Humidity which 

both measured in grams per cubic meter (g/m³). The data 

was collected at a daily interval to provide a continuous 

time series of absolute humidity values over a specified 

period. Spanning from December 1, 2017, to January 31, 

2019, the dataset covers a full year and two months to 

ensure that seasonal variations are captured. 

 

The initial data inspection involved importing the dataset 

using pandas in Python for ease of manipulation and 

analysis. Ensuring the 'Datetime' column was in the 

correct datetime format and setting it as the index 

facilitated the time series analysis. Basic statistics 

including count, mean, standard deviation, minimum and 

maximum values were calculated to understand the 

distribution and range of the data. 

 

To handle missing values, an identification process 

revealed the presence of missing data in the 'Outdoor' 

column. The 'Indoor' column however had no missing 

values. For the 'Outdoor' absolute humidity values, the 

mean of the available data points was used to fill in the 

gaps in order to ensure continuity in the time series [27]. 

This imputation method was crucial for maintaining the 

integrity of the dataset.

 
Fig. 1. Informer Model Architecture for Indoor Absolute Humidity Prediction. 

 

 

Normalization was performed to scale the feature values 

within a specific range to enhance the performance of 

deep learning models. The MinMaxScaler was used to 

scale the 'Outdoor' humidity values to a range between 0 
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and 1. This scaler was then consistently applied to the test 

data. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 

 

where X represents the original feature values and  𝑋𝑚𝑖𝑛 

and 𝑋𝑚𝑎𝑥  are the minimum and maximum values of the 

feature. 

 

The dataset was resampled to a daily frequency to ensure 

a consistent interval between data points. A sequence 

length of 30 days was chosen to capture the temporal 

dependencies for the time series forecasting models. The 

following code snippet demonstrates the preprocessing 

steps, including converting the 'Datetime' column, 

handling missing values, normalizing the data and 

creating sequences for model training 

 

3.1 Deep Learning Models 

The Transformer model, introduced by Vaswani [19] 

revolutionized the field of natural language processing by 

eliminating the need for recurrent or convolutional layers 

and rely instead on self-attention mechanisms. The core 

components of the Transformer model include: 

 

1. Multi-Head Attention: Allows the model to 

focus on different parts of the input sequence 

simultaneously to capture various aspects of the 

data. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑡

√𝑑𝑘

) 𝑉 

 

where K and V are the query, key and value 

matrices, respectively and 𝑑𝑘 is the dimension 

of the keys. 

 

2. Positional Encoding: Adds information about 

the position of each element in the sequence to 

enable the model to understand the order of the 

data points. 

 

3. Feed-Forward Neural Network: Processes the 

attended features and outputs the final 

prediction. 

 

For this study, the Transformer model was configured 

with a head size of 128, four attention heads and four 

transformer blocks. The multi-layer perceptron (MLP) 

units included a dense layer with 256 units and a dropout 

rate of 10% to prevent overfitting. Figure 2 illustrates the 

implementation of the Transformer model. 

 

On the other hand, Informer model is an enhancement 

of the Transformer specifically designed for long 

sequence forecasting tasks. It introduces two key 

improvements. 

 

1. ProbSparse Attention: Efficiently handles 

long sequences by selecting a subset of the most 

relevant keys for attention, significantly 

reducing computational complexity. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑡

√𝑑𝑘

) 𝑉 

 

However, in ProbSparse Attention instead of 

calculating the attention scores for all query-key 

pairs, it selects the top u queries based on the 

sparsity measurement. 

 

𝑆𝑐𝑜𝑟𝑒(𝑞𝑖 , 𝑘𝑗) = (
𝑞𝑖 ∙ 𝑘𝑗

√𝑑𝑘

) 𝑉 

  

Here: 

𝑞𝑖 is the i-th query vector. 

𝑘𝑗is the j-th key vector. 

𝑑𝑘 is the dimension of the key vectors. 

 

2. Distilling Operation: Reduces the length of the 

input sequence through pooling operations, 

allowing the model to focus on essential 

information. 

 

The Informer model used in this study was configured 

with two encoder layers, each with a dimension of 128, 

eight attention heads, and a dropout rate of 10%. The data 

embedding layer incorporated a convolutional layer and 

positional embedding to enhance feature representation. 

The following Figure 1 demonstrates the implementation 

of the Informer model. 

 

These models, the Transformer and Informer, are 

highly sophisticated and effective in capturing the 

temporal dependencies inherent in time series data, 

making them well-suited for the task of predicting indoor 

absolute humidity based on outdoor data.  

  
Fig. 2. Transformer Model Architecture for Indoor 

Absolute Humidity Prediction. 

 

 

 

4. RESULTS AND DISCUSSION 

Table 1. Training Performance of Informer and 

Transformer. 
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Metric Informer Transformer 

MAPE 4.55% 3.42% 

R-squared 0.8675 0.9108 

Bias 0.3917 0.0776 

MSE 0.5157 0.3470 

MAE 0.5613 0.4482 

RMSE 0.7182 0.5891 

Correlation 0.9538 0.9556 

   

This section presents the results of comparing the 

performance of the Informer and Transformer models for 

indoor absolute humidity prediction using various 

prediction metrics. The purpose of this comparison is to 

evaluate which model offers better accuracy, efficiency 

and applicability based on intrinsic metrics like MAPE, 

R-squared, Bias, MSE, MAE, RMSE, Correlation and 

Standard Deviation as well as extrinsic factors such as 

model complexity, computational efficiency, and real-

world applicability. 

 

In terms of intrinsic comparison which is illustrated in 

Table 1 shows the Mean Absolute Percentage Error 

(MAPE) which measures the accuracy of predictions as 

a percentage reveals that the Transformer model has a 

lower MAPE (3.42%) compared to the Informer model 

(4.55%) indicating higher accuracy in predicting indoor 

humidity. The R-squared value which measures the 

proportion of variance explained by the model is 0.9108 

for the Transformer and 0.8675 for the Informer which 

suggests that the Transformer model explains more 

variance in the data and demonstrate better overall fit and 

predictive power. On the other hand, Bias defined as the 

difference between predicted and actual values is 

significantly lower in the Transformer model (0.0776) 

compared to the Informer model (0.3917) indicating that 

the Transformer is less prone to systematic error and 

provides more reliable predictions which is illustrated in 

Figure 5. Furthermore, the Mean Squared Error (MSE) 

which represent the average of squared differences 

between predicted and actual values is lower for the 

Transformer model (0.3470) than for the Informer model 

(0.5157) highlighting the superior prediction accuracy of 

the Transformer model. Similarly, the Mean Absolute 

Error (MAE) which measures the average of absolute 

differences between predicted and actual values is lower 

for the Transformer (0.4482) compared to the Informer 

(0.5613) shows a more accurate predictions by the 

Transformer model.  

 

The Root Mean Squared Error (RMSE), the square root 

of the average of squared differences between predicted 

and actual values is lower for the Transformer (0.5891) 

than for the Informer (0.7182), demonstrating better 

overall performance by the Transformer model in Figure 

5. Both models exhibit strong correlations between 

predicted and actual values with the Informer at 0.9538 

and the Transformer slightly higher at 0.9556, indicating 

strong predictive capabilities, though the Transformer 

has a marginal advantage. Both models have the same 

Standard Deviation (1.6796), suggesting similar 

variability in their predictions. 

 

For extrinsic comparison, the Transformer model is 

typically more computationally intensive due to its self-

attention mechanism which can be demanding in terms 

of both memory and processing power. The Informer 

model on the other hand is designed to handle long 

sequences more efficiently through its ProbSparse 

attention mechanism which reduces computational costs. 

Although the Transformer provides higher accuracy, the 

Informer's efficiency makes it suitable for scenarios 

where computational resources are limited, or real-time 

predictions are necessary. However, the Informer 

model's efficiency in handling large datasets and its 

reduced computational demands make it a strong 

candidate for real-time applications such as indoor 

humidity control in HVAC systems where timely 

predictions is crucial. Both models demonstrate strong 

linear relationships with actual values to ensure reliable 

performance in various real-world scenarios. 

 

The provided Figure 5 illustrates the generalization 

capabilities of the Informer and Transformer models in 

predicting indoor absolute humidity against actual data. 

Both models demonstrate a high degree of alignment 

with the actual indoor humidity trends, indicating their 

strong predictive abilities. The Transformer model 

depicted by the orange line closely follows the actual data 

with minor deviations showcasing its high accuracy in 

capturing the complex variations in indoor humidity. The 

Informer model represented by the blue line, also shows 

a good fit but with slightly larger deviations compared to 

the Transformer model. 

Fig. 3. Informer Model Training Loss 

 

 
Fig. 4. Transformer Model Training Loss 
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Fig. 5. Performance of Informer and Transformer Models on Unseen Data

  

This suggests that while both models can generalize well 

to unseen data and the Transformer model exhibits a 

marginally better performance in terms of accuracy. 
 

The generalization performance of these deep learning 

models towards unseen data is crucial for real-world 

applications such as in HVAC systems where accurate 

and timely predictions are essential for maintaining 

optimal indoor conditions. The graph highlights that both 

models can adapt to new data patterns effectively, 

reducing the risk of overfitting. The Transformer's lower 

Mean Absolute Percentage Error (MAPE) and Mean 

Squared Error (MSE) metrics, combined with its closer 

alignment to the actual data suggest that it may be more 

reliable for scenarios demanding high precision. On the 

other hand, the Informer's efficient handling of long 

sequences and reduced computational costs make it a 

viable option for applications where resource efficiency 

is a priority. Overall, the graph demonstrates that both 

models have strong generalization capabilities, with the 

Transformer model having a slight edge in predictive 

accuracy. 
 

In conclusion, the Transformer model exhibits superior 

accuracy and performance across most intrinsic metrics, 

making it ideal for tasks requiring high precision. 

However, the Informer model's computational efficiency 

and ability to handle long sequences efficiently provide 

significant advantages in real-time and resource-

constrained environments. The choice between models 

should be based on the specific needs of the application 

and balances the trade-offs between accuracy and 

computational efficiency. 
 

5. CONCLUSION 

In this study, we evaluated the performance of 

Transformer and Informer-based models for predicting 

indoor absolute humidity using outdoor humidity data. 

Our study aimed to address the limitations of existing 

humidity prediction models by focusing on the advanced 

deep learning techniques that can capture complex 

dependencies and improve prediction accuracy. The 

Transformer model demonstrated superior performance, 

achieving lower Mean Absolute Percentage Error 

(MAPE), Mean Squared Error (MSE), Mean Absolute 

Error (MAE), and Root Mean Squared Error (RMSE) 

compared to the Informer model, indicating higher 

prediction accuracy. The Transformer's higher R-squared 

value and lower bias further highlight its effectiveness in 

fitting the data and minimizing systematic prediction 

errors. 

 

The Informer model, although slightly less accurate than 

the Transformer, still showcased strong performance in 

capturing the trends and variability of indoor humidity. 

Its efficient ProbSparse attention mechanism allowed it 

to handle the dynamic nature of the data effectively while 

reducing computational overhead. This makes the 

Informer model a robust alternative for scenarios where 

computational efficiency is a priority. The specialized 

attention mechanisms in both models played a crucial 

role in their performance, with the Transformer's 

standard self-attention capturing complex dependencies 

well and the Informer's ProbSparse attention providing 

an efficient solution for long-sequence modeling. 
 

The findings of this study have significant practical 

implications for building management, energy efficiency, 

and indoor air quality control. Accurate indoor humidity 

predictions can lead to optimized HVAC system 

operations, resulting in substantial energy savings and 

improved occupant comfort. Additionally, reliable 

humidity control is essential for preserving artifacts in 

museums and preventing health issues related to mold 

and poor air quality. Our research contributes to the field 

by developing and evaluating advanced models 

specifically for indoor humidity prediction, 

demonstrating significant improvements in prediction 

accuracy, and providing new theoretical insights into the 

application of attention mechanisms for time series 

prediction. Future research can further optimize these 

models, explore real-time implementations, and extend 

their application to other environmental parameters for 

comprehensive indoor climate control. 
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