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Abstract: This study explores the efficacy of AutoML in developing machine learning models for pixel-wise classification 

of land cover in Landsat images, focusing on Boracay Island, Philippines. Using the MLJar AutoML tool, high-performing 

algorithms including Neural Network, XGBoost, CatBoost, Extra Trees and LightGBM were integrated into an ensemble 

classifier through iterative selection and tuning processes. Evaluation on the training image demonstrated superior 

performance with strong precision and recall metrics across various land cover classes. However, variability in classifier 

performance was evident when applied to images from different dates or sensors, particularly affecting built-up areas 

and less prevalent classes. Despite this variability, significant land cover trends from 2008 to 2024 were discerned in 

Boracay Island, showing a substantial increase in built-up areas (23% to 38% of total area) and a decline in vegetation 

cover (59% to 45%). These findings underscore the dynamic changes occurring on the island and highlight the practical 

applications of this study, such as urban planning, environmental monitoring, and policymaking to balance development 

with environmental preservation, ensuring the island's long-term sustainability.  
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1. INTRODUCTION  

Urbanization is accelerating worldwide, transforming 

landscapes and ecosystems at an unprecedented rate. 

Built-up area development associated with the expansion 

of urban areas often results in the conversion of natural 

habitats, agricultural lands, and green spaces, leading to 

environmental degradation, altered microclimates, 

reduced biodiversity, and other negative impacts [1,2]. 

Monitoring these changes through land cover mapping is 

crucial for sustainable urban planning and environmental 

management. Satellite remote sensing technology plays 

an important role in this regard by facilitating the 

acquisition of multitemporal images, and their analysis 

for the creation of land cover maps to enhance monitoring 

capabilities [3]. 

Over the last few decades, the field of remote sensing has 

witnessed a paradigm shift with the adoption of machine 

learning (ML) and deep learning (DL) techniques for 

land cover mapping and change detection [4]. Unlike 

traditional methods that rely on manual interpretation of 

satellite imagery, machine learning algorithms automate 

the processes of pattern recognition, feature extraction, 

and classification. This approach not only improves 

efficiency but also enhances the accuracy and scalability 

of land cover analysis.  However, the implementation of 

ML approach poses to be challenging. One of the primary 

challenges is the selection and configuration of 

appropriate models for specific applications. Users must 

choose from a variety of algorithms, such as Random 

Forests, Support Vector Machines (SVM), Artificial 

Neural Networks (ANNs), and others, each with its own 

strengths and limitations depending on the application, 

including the complexity and scale of the data [5,6]. 

Training and tuning an ML model is an iterative process 

and requires careful optimization of hyperparameters to 

maximize model performance in terms of accuracy, 

precision, recall, and other metrics relevant to the task at 

hand [7,8]. Given these challenges, proficiency in ML 

becomes imperative for users. However, in practice, such 

expertise is not universally attained. 

Automated Machine Learning (AutoML) has emerged 

both as a powerful tool and a practical framework to 

address these challenges. AutoML automates several 

critical processes spanning from data preparation, feature 

engineering, model selection, training, optimization and 

evaluation to the application of the model, e.g., for 

regression or classification tasks [9]. The primary goal is 

to minimize the manual work associated with ML 

technologies, thereby speeding up their implementation. 

Hence, AutoML is beneficial as it enables professionals 

and non-experts alike to effectively utilize ML models 

"off-the-shelf," even with limited data science expertise 

[10].  

Recently, the AutoML approach is starting to find 

applications in the remote sensing and geosciences fields. 

For example, AutoML has seen promising outcomes in 

susceptibility assessment for multiple forest disturbances 

[11], and in landslide susceptibility predictions [12]. A 

consensus from these cited examples is that not only 

AutoML simplified the process of ML model 

development and implementation, but it has also shown 

to have better accuracy, making it an attractive 

alternative to manual ML. 

Despite its successful applications in diverse fields, 

AutoML remains relatively underexplored in the context 

of land cover classification, particularly in enabling 

timely and accurate monitoring of urban expansion, land 

use changes, and green space dynamics at both local and 

global scales. Hence, this study aims to assess the 

feasibility and effectiveness of AutoML in automatically 

classifying land cover types using Landsat satellite 

remote sensing data. Our overarching goal with the 

AutoML approach is to enhance the accuracy and 

efficiency of monitoring urban expansion using 

automated techniques and facilitate the detection and 
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analysis of temporal changes in urban and green space 

patterns. We evaluated our approach using Boracay 

Island, Philippines as a case study site, an area that has 

undergone substantial development over the past few 

decades. Specifically, we aim to address the following 

research questions: 

• What ML models, or combinations thereof, can be 

developed using AutoML for the pixel-wise 

classification of land cover in Landsat images? 

• How well does an AutoML-generated land cover 

classifier generalize when applied to Landsat 

images acquired on different dates or by other 

sensors compared to those used for model training? 

• From the classified images, what land cover trends 

in the study area can be discerned and quantified 

considering the classifier’s accuracy? 

 

2. THE STUDY AREA 

Boracay is a resort island situated in the Western Visayas 

region of the Philippines (Fig. 1). It lies about 0.8 

kilometers off the northwest coast of Panay Island. 

Covering a total area of approximately 1,032 ha, it falls 

under the administration of three barangays within Malay, 

Aklan [13]. As of 2020, the island had a population of 

37,802, consisting of residents, migrants, and stay-in 

workers, excluding tourists [14]. Boracay Island is 

famous for its stunning white sandy beaches and vibrant 

nightlife. This small island attracts millions of tourists 

annually, significantly contributing to both the local and 

national economies [13].  

Over the last decades, Boracay has transformed from a 

largely subsistent agricultural community to a bustling 

hub of commercial and tourism activities [15]. This 

transformation has led to extensive urbanization, 

characterized by the expansion of built-up areas at the 

expense of green spaces. The increasing pressure from 

tourism-related infrastructure, such as hotels, restaurants, 

and recreational facilities, has significantly altered the 

island's landscape, including its surrounding waters [16]. 

The influx of tourists and the rapid and extensive 

development have raised critical environmental concerns, 

particularly regarding the sustainability of its natural 

resources and ecosystems. In 2018, starting on April 26, 

the Philippine government closed the island to local and 

foreign tourists for six months to address worsening 

ecological issues and environmental conditions [13]. The 

island reopened on 26 October 2018. 

Despite rapid and extensive development on the island 

being a major cause of critical environmental concerns, 

there is limited comprehensive information on the 

dynamics of land cover changes on Boracay Island. 

Previous efforts, such as the land cover mapping exercise 

using ML in [17], primarily focused on comparing the 

accuracy of ML models and generating built-up/non-

built-up maps without subsequent evaluation or analysis. 

The present study aims to address these gaps and 

contribute to a better understanding of the development 

of built-up areas and green space dynamics on the island.   

 

a 

 
b 

 
Fig. 1 a The geographical location of Boracay Island, in 

Malay, Aklan, Philippines. b A satellite view of Boracay 

from 2024, highlighting the boundaries of its three 

barangays. Satellite image credits: Maxar, Esri. 

 

3. METHODOLOGY 

 

3.1 Overview 

This study utilizes the AutoML framework to develop a 

ML classifier for mapping land cover of Boracay Island 

using Landsat satellite images. Our classes of interests 

include built-up, vegetation, barren areas, sand, and 

water. We chose to utilize Landsat images primarily due 

to their long-term data availability, which will enable the 

classifier we develop to be used for multitemporal land 

cover mapping of the study area. Additionally, these 

images are available as science products, ensuring they 

are analysis-ready and geographically consistent across 

time scales. The methodology we employed can be 

summarized as follows. Firstly, we utilized a recently 

acquired (year 2024) Landsat 8 Operational Land Imager 

(OLI) image, along with labeled training data, as inputs 

to an AutoML tool to develop the classifier. To 

underscore the importance of AutoML, we employed a 

naïve approach where we relied on the AutoML tool for 

model selection and parameter optimization. The 

performance of the ML-based classifier developed in the 

previous step was then evaluated for accuracy. This was 

done by classifying an independent test dataset taken 

from the same image used in training the model, as well 

as by classifying images acquired on different dates or by 

different sensors [e.g., Landsat 5 Thematic Mapper 

(TM)]. For each image where the classifier was applied, 

validation was conducted to assess its generalization 

capability across various acquisition dates, ensuring its 

accuracy before utilization in land cover mapping. Using 
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the results of the accuracy assessment, we estimated the 

uncertainties in land cover classification and 

incorporated these uncertainties in land cover area 

estimation and in quantifying changes in land cover, 

particularly in built-up and vegetated areas of the island 

in recent years. The detailed methodology is discussed in 

the succeeding sections. 

 

3.2 Landsat Images 

We downloaded Landsat 5 TM and Landsat 8 OLI 

images of Boracay Island (Table 1) from the United 

States Geological Survey (USGS) Earth Explorer 

(https://earthexplorer.usgs.gov/). The acquisition dates 

for these images were chosen to ensure the availability of 

corresponding reference data for training and validation 

purposes (see Section 3.3). The images, in GeoTIFF 

format, belong to path 112, row 52 of the Landsat 

path/row World Reference System catalogue. They were 

delivered as Level 2 Science Products (L2SP), which 

means that the images have undergone radiometric 

calibration, terrain correction, and atmospheric 

correction. The downloaded Landsat 5 images consist of 

six surface reflectance (SR) bands (bands 1-5, 7) and one 

surface temperature (ST) band (band 6). Landsat 8 

images have seven SR bands (bands 1-7) and one ST 

band (band 10). We opted to not utilize the ST band due 

to anomalous data pixels present in some of the images, 

hence, avoiding inconsistencies in the training data. Pixel 

values in both L2SP Landsat images are encoded as 

unsigned 16-bit integers, and with a spatial resolution of 

30 meters. In all the downloaded images, the area where 

the island is located is cloud-free. Using a Geographic 

Information System (GIS) software (ArcGIS Pro 3.3), we 

extracted subsets containing only the island and its 

surrounding waters from each image for subsequent 

analysis. Each subset has dimensions of 171x233 pixels, 

totaling 39,843 pixels. Within these subsets, the main 

island occupies 11,642 pixels, which corresponds to 

approximately 1,047.78 ha. This is 15.78 ha more than 

the reported area of the island, mainly due to the coarse 

resolution of the Landsat images. In determining the 

main island boundary, we utilized the Philippine 

subnational administrative boundaries GIS Shapefile 

available at Humanitarian Data Exchange website 

(https://data.humdata.org/dataset/cod-ab-phl).  

 

3.3 Training Data Preparation 

Training data for ML classifier development was mainly 

collected from the 2024 May 18 Landsat 8 image. The 

dataset includes pixels manually labeled as built-up areas 

(class 1), barren areas (class 2), sand (class 3), vegetation 

(class 4), and water (class 5). The labeling was aided by 

high-resolution (pixel size < 1 m) satellite image acquired 

on 2024 June 6, which we obtained from Esri’s World 

Imagery Wayback digital archive 

(https://livingatlas.arcgis.com/wayback/#active=39767

&mapCenter=121.93212%2C11.97048%2C14).    

To streamline the labeling process, a grid (“fishnet”) 

matching the exact dimensions of the subset image pixels 

was created using ArcGIS Pro. A point vector file 

(Shapefile) was also generated corresponding to the 

centers of each pixel (i.e., each point corresponds exactly 

to one pixel). These vector layers (grid of square 

polygons and points) were then overlaid onto the high-

resolution reference image for annotation purpose. A 

point is labeled as belonging to a particular class if at least 

50% of the area within the square polygon is covered by 

that land cover. All identifiable pixels were labeled to 

maximize the quantity of training data available, a 

common requirement in ML model development. 

However, we noticed that barren areas and sand are 

underrepresented when focusing only on Boracay Island. 

To avoid class imbalance during model training, we 

opted to collect additional samples of these classes from 

nearby islands. From all the labeled points, we randomly 

selected 800 points for each class, resulting in a total of 

4,000 points for model training. In addition to the class 

labels, we also extracted at each point the corresponding 

pixel values for each band of the Landsat image using the 

“Extract Multi Values to Points” tool in ArcGIS Pro. 

Only bands common to Landsat 5 and Landsat 8 OLI 

were utilized, as it our aim to test the generalization of 

the trained model when used to classify these types of 

images. These common bands are the blue, green, red, 

near infrared (NIR), short wave infrared 1 (SWIR1), and 

SWIR2. The final output of this step is a point Shapefile 

of the training data, along with its attribute table (*.dbf) 

containing the class labels and SR band values. 

 

Table 1. List of Landsat images for machine learning 

classifier development and land cover classification, with 

their corresponding high-resolution satellite images for 

training and validation data collection. 

Image 

Acquisition Date 
Imaging Sensor 

High-resolution 

Reference Image 

Acquisition Date 

2008 March 19 Landsat 5 TM 2008 January 16 

2020 August 27 Landsat 8 OLI 2020 May 20 

2023 June 17 Landsat 8 OLI 2023 June 29 

2024 May 2 Landsat 8 OLI 2024 June 6 

2024 May 18 Landsat 8 OLI 2024 June 6 
 

  

3.4 AutoML Using MLjar  

We utilized MLjar (https://supervised.mljar.com/), an 

AutoML Python package aimed for building, training, 

and deploying ML models. Its core functionality includes 

automating fundamental tasks such as data 

preprocessing, constructing ML models, and performing 

hyperparameter tuning using systematic approaches like 

random search and hill climbing [18]. MLJAR leverages 

various ML libraries and frameworks, including scikit-

learn, to implement its models. MLjar version 1.1.9 

(https://github.com/mljar/mljar-supervised), which we 

used in this work, has the following ML models: Linear, 

Random Forest, Extra Trees, Light Gradient Boosting 

Machine (LightGBM), Xgboost, CatBoost, Neural 

Networks, and Nearest Neighbors. Due to space 

limitations, we do not provide detailed descriptions of 

these models in this paper. For further information, 

readers are encouraged to consult widely available 

references, including MLJar’s website.  

We used the MLjar AutoML app 

(https://github.com/mljar/automl-app) in classifier 

development. As MLJar has been designed to work with 

tabular data, we converted our training dataset into a 

comma space value (CSV) file, containing the class 

numbers, and band values. In the AutoML app, we 

selected the “Train AutoML (advanced)” mode. In 

addition to selecting the best algorithms, this mode also 

enables feature engineering (i.e, “golden features” 

generation), feature selection, stacking and ensembling 

algorithms, and cross-validation. “Golden features” are 
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those that have great predicted power; they are 

constructed based on original features (e.g., the Landsat 

bands in the training data), mainly using feature 

differences or ratios [19]. Stacking, including ensemble 

stacking, is an ML technique that combines multiple base 

models (learners) using a meta-model (or meta-learner) 

to make predictions. The idea behind stacking is to 

leverage the strengths of different models by learning 

how to best combine their predictions. 

The classifier development process is straightforward. 

First, the CSV file containing the training data is 

uploaded to the application. The features for training are 

then selected, specifically the bands common to the three 

Landsat sensors: blue, green, red, NIR, SWIR1, and 

SWIR2. The class value (1-5) is set as the target for 

classification. We enabled advanced options such as 

golden features construction, feature selection, model 

stacking, and ensemble training. All available machine 

learning algorithms were considered. A 10-fold cross-

validation strategy was employed, incorporating training 

data shuffling and stratification, with log loss (also called 

cross-entropy loss) as the evaluation metric. A time limit 

of 3000 seconds was set, which proved sufficient for the 

AutoML tool to perform the advanced options.  

 

3.5 Classifier Performance Evaluation 

The land cover classifier developed in the previous step 

has its own performance evaluation metrics reported after 

development. We conducted independent evaluation of 

the classifier’s performance by testing it to image data 

not included in model training, including Landsat images 

of the study area acquired on different dates or by another 

sensor (TM). For this purpose, the point Shapefile 

(corresponding to the center of pixels within the study 

area) was used to extract SR band values from all the 

Landsat images, and individual CSV files were generated 

for each image (Table 1).  Each CSV file was then 

uploaded to the AutoML app for class prediction by the 

trained classifier. 

Each classification output was subjected to accuracy 

assessment. We employed good practice 

recommendations and workflow [20] to ensure unbiased 

estimation of the classification accuracies, including 

quantification of uncertainties due to misclassifications 

in land cover area estimation. This includes stratified 

random sampling of validation (test) samples from the 

classified images. As the study area is relatively small, 

the total number of test samples (n) was estimated using 

the following sample size formula [20]: 

𝑛 =
(∑ 𝑊𝑖𝑆𝑖)2

[𝑆(𝑂̂)]
2

+
∑ 𝑊𝑖𝑆𝑖

2

𝑁

 (1) 

where N = number of pixels in the study area (i.e., 11,642 

within the mainland Boracay), 𝑆(𝑂̂)  represents the 

standard error of the estimated overall accuracy we aim 

to achieve (set to 0.01), 𝑊𝑖 is the mapped (“classified”) 

proportion of class i, and 𝑆𝑖  is the class i standard 

deviation; 𝑆𝑖 =  √𝑈𝑖(1 − 𝑈𝑖) , where 𝑈𝑖  is the 

conjectured user’s accuracy of class i. The user’s 

accuracies are included in the trained model performance 

report. However, we decided to not use the calculated 

values as the actual user’s accuracies when applied to the 

other image data could be well below the reported trained 

model accuracies, especially that the model was only 

trained using a specific image data. For purposes of test 

sample size calculations, we set 𝑈𝑖  to 0.50 (i.e., we 

conjectured that the classifier’s user’s accuracy for all 

classes is 50%).   

The number of stratified random samples per image and 

per class are listed in Table 2. For the image used in 

model development, only those pixels not included in the 

training data were randomly selected per class. Each test 

sample was labeled using the corresponding high-

resolution satellite images obtained from Esri’s World 

Imagery Wayback digital archive and from the Google 

Earth Pro application. Afterwards, error matrices were 

generated per classified image, showing the distribution 

of correctly and incorrectly classified pixels across each 

class, which helps in assessing the classification accuracy 

and identifying the specific areas where the model 

performs well or needs improvement. Various metrics 

(Table 3) where utilized in the accuracy assessment and 

model performance evaluation. Overall Accuracy 

measures the proportion of correctly classified pixels out 

of the total pixels. Producer’s Accuracy (Recall) 

indicates the ability of the classifier to correctly label all 

pixels of a particular class, reflecting how well the actual 

land cover types are represented in the classification. 

User’s Accuracy (Precision) assesses the reliability of 

the classification by measuring the proportion of pixels 

classified as a certain class that are actually that class. 

The F1 Score is a harmonic mean of precision and recall, 

offering a single metric to assess the balance between 

correctly identifying positive instances (precision) and 

capturing all positive instances (recall) in a classification 

task. 

 

3.6 Land Cover Area Estimation 

Land cover classification aims to accurately determine 

the extent of specific land cover types. Typically, the area 

of each class is derived directly from the land cover map 

generated by the classifier. However, classification errors 

introduce biases in these maps [21]. Commission errors 

occur when the classifier incorrectly assigns a pixel to a 

class, leading to an overestimation of the area for that 

class. Conversely, omission errors occur when the 

classifier fails to correctly identify a pixel belonging to a 

class, resulting in an underestimation of the area for that 

class. To overcome these limitations, we adopted a 

procedure described in [20,21] for unbiased area 

estimation. The steps include converting the 

conventional error matrix into an error matrix of 

estimated area proportions. This new error matrix 

together with the mapped proportions of land cover 

classes are used as inputs to a stratified, unbiased area 

estimator, including its 95% confidence interval. The 

estimated area for each class is considered “error-

adjusted” as it includes area of omission error and 

excludes area corresponding to the commission error 

[21]. 

 

4. RESULTS AND DISCUSSION 

 

4.1 AutoML-generated Classifier 

Fig. 2 presents the primary results of the classifier 

development using the MLJar AutoML tool. Specifically, 

Fig. 2a illustrates the models that were iteratively 

selected and tuned, alongside their corresponding log loss 

values at each iteration. A lower log loss value indicates 

superior model performance. It can be noted that Linear, 

Random Forest, Extra Trees, and Nearest Neighbors 

1024



 

 

exhibited higher log loss values with greater variability, 

suggesting suboptimal performance relative to other 

models. In contrast, algorithms like XGBoost, CatBoost, 

Neural Network, and LightGBM consistently 

demonstrated lower log loss values, indicative of 

enhanced performance in the land cover classification 

task. This trend is further exemplified in Fig. 2b. 

It is important to note that each point in Fig. 2a represents 

a trained ML algorithm or model. The iterative process 

enabled the AutoML tool to identify and prioritize 

algorithms that consistently performed better throughout 

the iterations. Consequently, these high-performing 

algorithms were combined into an ensemble. Fig. 2c 

depicts the architecture of the optimal classifier, 

designated as "Ensembled_Stacked." This classifier is 

composed of individually trained algorithms, stacked 

algorithms (the same algorithm trained in different 

ways), and a “sub-ensemble” that itself comprises several 

individually trained algorithms. Each component within 

the ensemble contributes to the final prediction according 

to its assigned weight. The weights represent the 

importance or reliability of each model’s prediction, as 

determined during the training process.  

Looking closely at Fig. 2c, we can see that the main 

ensemble and the sub-ensemble are dominated by the 

Neural Network algorithm, and with few instances of 

Xgboost, CatBoost, LightGBM, ExtraTrees, and Nearest 

Neighbors. The feature engineering and feature selection 

capabilities of AutoML is evident, with some of the 

component algorithms utilizing Golden Features and 

KMeans Features. The golden features that were 

generated and utilized include the sum, difference, and 

ratio of Landsat bands. Trained algorithms utilizing 

KMeans Features means that the AutoML tool has 

utilized the KMeans clustering algorithm to create 

additional features from the training dataset. 

The developed classifier has class precisions, class 

recalls, class F1 scores, and overall accuracy greater than 

0.90 (Fig. 2d), indicating more than satisfactory 

classification performance. The classifier has better 

precision and recall in classifying all classes, although 

such characteristics is relatively lower in classes 1 and 3 

(built-up areas, sand).  

 

 

Table 2. Number of test samples for independent 

evaluation of the AutoML-generated land cover classifier. 

Class designations: 1- built-up areas, 2 – barren areas, 3 

– sand, 4 – vegetated areas, 5 – water. 

Classified 

Image 

Date 

Classified as 

1 2 3 4 5 Total 

2008 

March 19 192 74 67 500 16 849 

2020 

August 

27 261 52 56 439 11 819 

2023 

June 17 245 52 47 522 20 886 

2024 

May 2 275 82 42 306 10 715 

2024 

May 18 262 79 43 325 12 721 

 

 

Table 3. Classification accuracy and model performance 

evaluation metrics. Notations: TP – true positives, FP – 

false positives, FN – false negatives; n = total number of 

test samples. 

Metric Formula 

User’s Accuracy (Precision) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Producer’s Accuracy 

(Recall) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Overall Accuracy 
𝑇𝑃

𝑛
 

 

4.2 Independent Evaluation of Classifier 

Performance 

Fig. 3 shows the land cover maps that were generated by 

applying the AutoML-generated classifier to Landsat 

images. The results of the accuracy assessment of the 

land cover maps using an independent set of validation 

dataset are summarized in Tables 4 to 8. In our accuracy 

assessment, the water and sand classes were combined 

with the barren areas due to their minimal distribution 

and re-labeled as “Others.” This merging allows us to 

focus on the primary land cover classes of interest in this 

study: built-up and vegetation. 

The independent validation of the classification result 

from 2024 May 18 image (Table 4) shows relatively 

consistent accuracy with the accuracy reported after 

model development (Figure 2e), particularly for the built-

up and vegetation classes. The overall accuracy based on 

the validation is high at 0.953 (or 95.3%). The classifier 

maintained or even surpassed its values of precision, 

recall, and F1 scores for the built-up and vegetation 

classes. However, for other classes, the precision 

decreased to 0.858, indicating that the classifier 

incorrectly classified some built-up or vegetated areas as 

belonging to these other classes. 

When the classifier was applied to the 2024 May 2 

Landsat 8 OLI image, the validation results showed a 

considerable decrease in overall accuracy and most class-

based metrics (Table 5). The overall accuracy dropped 

from 0.953 (based on the 18 May 2024 image) to 0.866. 

Additionally, the precision for the built-up area class was 

low at 0.738, indicating that the classifier overestimated 

built-up areas in this image. However, the recall for the 

built-up area class remained high at 0.958, showing that 

the classifier correctly identified the majority of built-up 

area pixels. In contrast, for the vegetation class, the 

precision was high at 0.993, but the recall was lower at 

0.835, indicating that the classifier underestimated 

vegetated areas in this image. 

The drop in overall accuracy is also evident in the 

validation results for the other classified images (Tables 

6-8). The overall accuracies were 0.894 for the 2023 June 

17 Landsat 8 OLI image, 0.879 for the 2020 August 27 

Landsat 8 OLI image, and 0.881 for the 2008 March 19, 

Landsat TM image. While the precision for the built-up 

area class also decreased, it remained above 0.80. The 

recall values were above 0.80, except for the 2008 result, 

where it was 0.795. Notably, the precision and recall 

values for the vegetation class consistently remained high 

(above 0.90), indicating that the classifier performed 

satisfactorily in classifying this land cover class. For the 

other classes, the accuracy metrics also decreased and 
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showed consistency with the results for the other images. 

These findings suggest that the generalization capability 

of the AutoML-generated classifier, when applied to 

images acquired on different dates or by different 

sensors, demonstrates variability in performance. The 

classifier consistently performed well in identifying 

vegetation, with high precision and recall values across 

all images, indicating a strong generalization capability 

for this class. The classifier's performance for built-up 

areas showed variability, with precision dropping to as 

low as 0.738 in one instance, indicating an 

overestimation issue. For other classes, the precision and 

recall metrics were lower, particularly when classes were 

merged or minimal in distribution, suggesting the 

classifier struggles to generalize effectively for these less 

prevalent classes. Moreover, the notable drop in overall 

accuracy when the classifier was applied to images from 

different dates or sensors highlights the challenge of 

maintaining high performance across varied datasets. 

 

4.3 Land Cover Trends and Area Estimates 

Despite a decrease in accuracy when the classifier was 

applied to images from different dates and sensors, it 

maintained a moderate level of accuracy, allowing for the 

analysis of land cover trends in the study area. 

Additionally, detailed class-specific accuracies for each 

classified image facilitated the estimation of land cover 

class areas, including their 95% confidence intervals 

(Table 9). 

The generated land cover maps (Fig. 3) reveal a 

significant increase in built-up area development on the 

island from 2008 to 2024. In 2008, the estimated built-up 

area was 240.72 ± 19.77 ha, comprising approximately 

23% of the island's total area. By 2024, this area had 

increased by approximately 64% to 394.88 ± 14.45 ha, 

equivalent to an average annual increase of about 9.64 ha 

over a 15-year period. In 2024, built-up areas now cover 

about 38% of the island's total area. Most built-up areas 

are concentrated in the central and southern parts of the 

island, with development extending towards the north. 

The northern part of the island consistently exhibits 

notable barren areas. 

Vegetation cover was predominant from 2008 to 2023, 

but its dominance has declined over time. In 2008, the 

island had 620.9 ± 17.91 ha of vegetation, which 

accounted for approximately 59% of the island's total 

land area and remained relatively stable until 2023. By 

2024, vegetation cover had decreased to 469.24 ± 8.96 

ha, representing around 45% of the total area. This 

reduction in vegetation cover amounts to approximately 

9.48 ha per year, which is roughly equivalent to the 

annual increase observed in built-up areas on the island. 

Considering the uncertainties associated with the land 

cover classifications, the detected changes in both built-

up and vegetation areas appear realistic and are not solely 

due to misclassifications. The substantial increase in 

built-up areas and the corresponding decrease in 

vegetation cover are greater than the uncertainties 

indicated by the 95% confidence intervals, suggesting 

that these observed changes are likely genuine. While 

some variability and misclassification may be present, 

the confidence intervals for these measurements indicate 

a relatively high level of precision, supporting the 

validity of the trends. The parallel rates of increase in 

built-up areas and decrease in vegetation cover align with 

expected patterns of urban development in popular 

tourist destinations like Boracay Island, reinforcing the 

likelihood that these trends reflect real changes on the 

island, despite potential classification challenges. 

 

 
 

     

 
Fig. 2 Results of classifier development using MLJar 

AutoML. a. Leaderboard showing the performance of 

various ML models. b. Boxplots of model log loss. c The 

optimal classifier (“best model”): “Ensembled_Stacked” 

(models + sub-ensemble of models), shown here with its 

structure. d Error matrix. e. Accuracy metrics of the 

optimal classifier. 

 

5. CONCLUSIONS AND OUTLOOK 

This study makes significant contributions in two key 

areas: (1) the use of AutoML for land cover 

classification, and (2) quantifying recent land cover 

changes on Boracay Island. To the best of our 

knowledge, this is the first study that demonstrated the 

efficacy of utilizing AutoML for developing ML models 

tailored to pixel-wise classification of land cover in 

Landsat images. Through iterative selection and tuning 

processes, the MLJar AutoML tool effectively identified 

and integrated high-performing algorithms such as 

XGBoost, CatBoost, Neural Network, LightGBM, and 

Extra Trees into an ensemble classifier. While it showed 

superior performance with high precision and recall on 

the training image, its accuracy varied with images from 

a 

b 

c 

d 

Sub-ensemble 

Main ensemble (“Stacked”) 

1026



 

 

different dates or sensor, particularly struggling with 

built-up areas and less prevalent classes. 

Despite variability in classifier accuracy, the land cover 

maps reveal significant trends: built-up areas increased 

from 23% to 38% of the island, while vegetation cover 

declined from 59% to 45% between 2008 and 2024. 

This study has practical applications for urban planning, 

environmental monitoring, and policymaking on 

Boracay Island. Urban planners can use these trends to 

guide sustainable development and land use decisions. 

Environmental agencies can make use of the tracked 

changes in built-up and vegetation areas to monitor 

ecological impacts and implement conservation 

measures. Policymakers can leverage the land cover 

maps to create regulations that balance development with 

environmental preservation, ensuring the island's long-

term sustainability. Finally, the tourism industry can use 

the findings as an important input in managing growth in 

a way that protects natural resources and maintains the 

island's appeal. 

Further work involves refining the AutoML-derived 

classifier, particularly by incorporating additional 

training data from various dates and sensors. This will 

enhance the classifier's robustness and generalization 

across different temporal and sensor-based datasets. 

 

 
Fig. 3 Land-cover maps of Boracay Island generated by 

applying the AutoML-generated classifier to Landsat 

images. 

Table 4. Summary of results from the independent 

validation of the AutoML-generated classifier: 2024 May 

18 Landsat 8 OLI image 

Accuracy 

Metric 
Built-up Vegetation Others Mean 

Precision 0.966 0.982 0.858 0.935 

Recall 0.930 0.988 0.913 0.943 

F1 Score 0.948 0.985 0.885 0.939 

Overall 

Accuracy 
0.953 

 

 
Table 5. Summary of results from the independent 

validation of the AutoML-generated classifier: 2024 May 2 

Landsat 8 OLI image 

Accuracy 

Metric 
Built-up Vegetation Others Mean 

Precision 0.738 0.993 0.836 0.856 

Recall 0.958 0.835 0.806 0.866 

F1 Score 0.834 0.907 0.821 0.854 

Overall 

Accuracy 
0.866 

 

 
Table 6. Summary of results from the independent 

validation of the AutoML-generated classifier: 2023 June 

17 Landsat 8 OLI image 

Accuracy 

Metric 
Built-up Vegetation Others Mean 

Precision 0.882 0.929 0.765 0.858 

Recall 0.864 0.929 0.798 0.864 

F1 Score 0.873 0.929 0.765 0.861 

Overall 

Accuracy 
0.894 

 

 
Table 7. Summary of results from the independent 

validation of the AutoML-generated classifier: 2020 August 

27 Landsat 8 OLI image 

Accuracy 

Metric 
Built-up Vegetation Others Mean 

Precision 0.812 0.934 0.824 0.857 

Recall 0.906 0.919 0.705 0.843 

F1 Score 0.857 0.927 0.824 0.848 

Overall 

Accuracy 
0.879 

 

 
Table 8. Summary of results from the independent 

validation of the AutoML-generated classifier: 2008 March 

19 Landsat 5 TM image. 

Accuracy 

Metric 
Built-up Vegetation Others Mean 

Precision 0.807 0.944 0.771 0.841 

Recall 0.795 0.938 0.801 0.845 

F1 Score 0.801 0.941 0.786 0.843 

Overall 

Accuracy 
0.881 

 

 
Table 9. Estimates of land cover area with a 95% confidence 

interval for Boracay Island based on Landsat image 

classifications. All values are reported in ha. 

Classified 

Image 

Date 

Built-up Vegetation Others 

2008 

March 19 
240.72 ± 19.77 620.9 ± 17.91 

186.17 ± 

17.99 

2020 

August 27 
299.49 ± 19.47 570.57 ± 19.37 

177.72 ± 
18.77 

2023 June 

17 
295.18 ± 17.64 617.52 ± 18.93 

135.09 ± 

15.34 

2024 May 

18 
394.88 ± 14.45 469.24 ± 8.96 

183.66 ± 

14.89 
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