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Abstract: Leptospirosis, a zoonotic disease prevalent in tropical regions with consistent rainfall, has been extensively 

studied using hydrometeorological data. This study focuses on developing a spatio-temporal model to predict leptospirosis 

in the Kuantan district, Pahang, known for its heavy rainfall and high disease incidence. Utilizing the random forest 

machine learning algorithm, we integrated hydrometeorological variables such as rainfall, streamflow, water level, 

relative humidity, and temperature across four model scenarios, lagging them from zero to 12 weeks at four-weeks 

intervals. Our models achieved an average testing accuracy of 73.4%, with sensitivity and specificity of 83.8% and 62.9%, 

respectively. Notably, we observed a minimal variation among the model scenarios, contrasting with previous studies 

where lag time improved the results. These findings underscore the potential of our models as a predictive tool for 

leptospirosis, enhancing spatial and temporal understanding in the Kuantan district. This improved insight can inform 

targeted disease prevention strategies, ultimately aiding in better management of leptospirosis outbreaks. 
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1. INTRODUCTION  

Leptospirosis is a zoonotic disease caused by Leptospira 

sp. bacteria, primarily carried by rodents such as rats [1]. 

It is globally associated with high morbidity and 

mortality rates, particularly in developing countries with 

inadequate sanitation and health infrastructure [2]. The 

prevalence of leptospirosis is notably higher in tropical 

and subtropical regions, attributable to various risk 

factors inherent to these [3]. One significant factor is the 

frequent rainfall events, which play a critical role in the 

transmission dynamics of the disease. Rainfall facilitates 

the movement of Leptospira from rodents into the 

environment, increasing the risk of human exposure. 

Tropical countries, characterized by consistent rainfall 

throughout the year, often report higher incidences of 

leptospirosis. Consequently, rainfall data has been 

extensively utilized in mapping the temporal occurrence 

of the disease. Numerous modelling studies have been 

conducted to understand the patterns and drivers of 

leptospirosis outbreaks [4]. Temporal models have been 

developed to analyse disease trends over time, while 

spatial models have been employed to examine 

geographic distribution. To achieve a comprehensive 

understanding of leptospirosis at a local level, spatio-

temporal models have also been created, integrating both 

temporal and spatial dimensions. 

Kuantan, a district in the Pahang state on the East Coast 

of Peninsular Malaysia, presents a unique case study for 

leptospirosis due to its distinctive climatic and 

environmental conditions [5]. Despite Malaysia's overall 

tropical climate, the East Coast districts, including 

Kuantan, experience significantly higher rainfall, 

especially during the Northeast Monsoon season. This 

increased precipitation creates a conducive environment 

for the spread of waterborne diseases such as 

leptospirosis. 

Over the past decade, from 2011 to 2020, Kuantan has 

recorded a notably higher number of leptospirosis cases 

compared to other districts of Pahang. The frequent and 

intense rainfall in Kuantan leads to water accumulation 

and flooding, creating ideal conditions for the bacteria to 

thrive and spread. Consequently, the district has become 

a focal point for public health concerns regarding 

leptospirosis. 

Recurring leptospirosis outbreaks in Kuantan 

significantly strain public health resources and affect 

community well-being. The economic burden is 

substantial, encompassing both direct medical costs and 

indirect costs such as loss of productivity due to illness 

and prolonged recovery periods. The agricultural and 

tourism sectors, essential to the local economy, also 

suffer during these outbreaks, causing broader socio-

economic repercussions. Understanding the spatio-

temporal dynamics of leptospirosis in relation to 

hydrometeorological variables is therefore crucial for 

developing effective prevention and control strategies, 

ultimately reducing the disease burden and associated 

economic impacts. 

Given the rising incidence rates and the environmental 

factors at play, this research aims to develop an effective 

prediction model for leptospirosis in Kuantan using 

hydrometeorological factors as independent variables 

and employing the random forest machine learning to 

analyse the data from a spatio-temporal perspective, and 

make accurate predictions of leptospirosis occurrence 

over the study area. The main objectives to achieve this 

aim are: 

1. To assess and analyse the hydrometeorological 

data for reliability; 

2. To transform the input data consisting of both 

hydrometeorological and leptospirosis data into a spatio-

temporal format; 

3. To train the model with 60% of the data, and test 

the trained model with the remaining 40% of unseen data. 

The novelty of this research lies in focusing on Kuantan's 

unique hydrometeorological conditions, developing a 

spatio-temporal prediction model for leptospirosis using 

the random forest technique, and highlighting the 
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importance of aiding healthcare authorities in 

implementing timely and targeted precautionary 

measures. By accurately predicting potential outbreaks, 

this proactive approach could significantly enhance the 

health and well-being of the local population, 

underscoring the importance of this research in 

combating leptospirosis in Kuantan. 

 

2. MATERIALS AND METHODS 

This section details the research methodology employed 

in this study, elaborating on the various methods and 

techniques used to conduct the investigation. 

 

2.1 Study area 

Kuantan, a district in Pahang, serves as the capital city of 

the state. Situated on the East Coast of Peninsular 

Malaysia, Kuantan is highly susceptible to severe 

flooding events, primarily due to heavy and persistent 

rainfall during the Northeast Monsoon season. Covering 

an area of approximately 2,960 square kilometers, the 

district features a tropical rainforest climate, marked by 

significant rainfall throughout the year. The hydrological 

landscape of Kuantan is influenced by several major 

rivers, notably the Kuantan River and parts of the Pahang 

River. These rivers frequently overflow during periods of 

intense rainfall, exacerbating the region's flooding 

problems. This study focuses on this particular area, as 

depicted in Fig. 1, to develop a spatio-temporal model to 

predict the occurrence of leptospirosis. 

 

 
Fig. 1. Study area and locations of hydrometeorological 

stations. 

 

2.2 Data collection 

From 2011 to 2020, the Kuantan district had a higher 

incidence rate of 146.6 per 100,000 population, recording 

625 cases, the highest among all districts, according to 

the e-notification data retrieved from the Pahang State 

Health Department. This period saw a significant rise in 

leptospirosis cases, highlighting Kuantan as the most 

affected district in the region. The data from the e-

notification system provides a comprehensive overview 

of the public health landscape, emphasizing the severity 

of the leptospirosis outbreak in Kuantan compared to 

other districts. The high incidence rate of 146.6 per 

100,000 population and the total of 625 recorded cases 

underscore the critical need for targeted public health 

interventions and robust disease management strategies 

in the Kuantan district. 

The spatial distribution of hydrometeorological stations 

used for this study is shown in Fig. 1, while the list of 

data utilized is presented in Table 1. The study area’s 

hydrometeorological data, encompassing rainfall, 

streamflow, water level, relative humidity, and 

temperature, were sourced from two primary agencies: 

the Department of Irrigation and Drainage Malaysia 

(DID) and the Malaysian Meteorological Department 

(MetMalaysia). The DID provides extensive data on 

water-related parameters, such as rainfall, streamflow, 

and water levels, which are vital for understanding the 

dynamics of river systems and potential flooding events 

in the region. Meanwhile, the MetMalaysia supplies 

detailed meteorological data, including rainfall, relative 

humidity, and temperature readings. This comprehensive 

meteorological data is essential for assessing climatic 

conditions and their impact on the hydrological cycle. 

 

Table 1. List of hydrometeorological data used. 

Data Type Station ID Source 

Rainfall 

RF3631001 

DID 

RF3633104 

RF3732020 

RF3732021 

RF3828091 

RF3832015 

RF3833002 

RF3833004 

RF3930012 

RF3931013 

RF3931014 

RF3933003 

RF4033001 

RF4033002 

RF48657 MetMalaysia 

Streamflow 
SF3930401 

DID 
SF3629403 

Water Level 
WL3930401 

WL3629403 

Relative 

Humidity 
RH48657 

MetMalaysia 

Temperature 

TX48657 

TM48657 

TN48657 

 

2.3 Data processing 

The precise case locations where the disease was 

contracted were identified by analysing comments within 

the e-notification dataset provided by the Pahang State 

Health Department. These locations were then mapped 

spatially using QGIS software to visualize the 

distribution of cases across the district. To facilitate a 

detailed spatio-temporal analysis, a grid measuring 5 km 

by 5 km was overlaid on the entire study area, as shown 

in Fig. 2. This grid structure allowed for the production 

of time series data on a weekly basis for each grid cell. 
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Fig. 2. 5 km by 5 km grid generated over the study area. 

 

By segmenting the study area into these smaller units, the 

changes in disease incidence over time and across 

different locations could be analysed, providing a more 

granular understanding of the spatio-temporal dynamics 

of leptospirosis in Kuantan. By mapping the incidence 

data within these grid cells, patterns of spatial 

distribution could be discerned, providing insights into 

environmental and geographical factors contributing to 

the spread of leptospirosis. The use of QGIS software 

ensured accurate geospatial representation and analysis, 

supporting the development of targeted public health 

interventions and resource allocation strategies aimed at 

mitigating the impact of the disease in Kuantan. 

The case data were meticulously organized into a time 

series for each grid cell and aggregated on a weekly basis. 

The daily hydrometeorological data, including rainfall, 

streamflow, water level, relative humidity, and 

temperature, were averaged weekly to create a consistent 

temporal dataset. This weekly averaging process ensured 

that short-term fluctuations did not obscure longer-term 

trends. 

The rainfall data were subjected to spatial interpolation 

using the Kriging method [6], a geostatistical technique 

that provides accurate and reliable spatial estimates. This 

interpolation was performed for each weekly time step, 

and the results were then cropped into 5 km by 5 km grids. 

This process resulted in a comprehensive time series of 

rainfall data for each grid cell, capturing spatial 

variations in precipitation across the study area. 

The relative humidity and temperature data, on the other 

hand, were used without spatial interpolation. This 

decision was based on the availability of a single relevant 

meteorological station for these variables within the 

study area, making spatial interpolation unnecessary. 

The study area, dominated by the Pahang River and 

Kuantan River catchments, required specific attention to 

streamflow and water level data. Grids located within 

these catchments were assigned corresponding to the 

streamflow and water level data, ensuring that the 

hydrological dynamics of these important river systems 

were accurately represented in the model. 

 

2.4 Data analysis 

Several data analyses were conducted to check the 

quantity and quality of the hydrometeorological data 

used in this study. These analyses included checking data 

availability, consistency, reliability and redundancy. 

First, data availability was assessed by calculating the 

percentage of missing data. This step involved a thorough 

examination of each dataset to identify any gaps or 

missing values. By quantifying the extent of missing 

data, we could determine the completeness of the dataset 

and make necessary adjustments to ensure robust 

analysis. 

Next, we evaluated data consistency by plotting 

streamflow against water level data. This involved 

creating scatter plots to visually inspect the relationship 

between these two variables. Consistent data would show 

a clear, logical correlation between streamflow and water 

level, indicating that the measurements were accurate and 

reliable. 

To assess data reliability, we produced single mass 

curves [7] for each of the rainfall stations. The single 

mass curve is a cumulative plot of rainfall data over time, 

which helps identify any inconsistencies or anomalies in 

the data. A smooth and continuous curve indicates 

reliable data, while deviations from this pattern may 

suggest errors or irregularities in the measurements. 

Finally, we addressed data redundancy by conducting a 

multicollinearity test [8] between minimum, maximum, 

and mean temperature data received from the 

MetMalaysia. Multicollinearity occurs when 

independent variables in a dataset are highly correlated, 

which can distort the results of statistical analyses. By 

testing for multicollinearity, we ensured that our daily 

minimum temperature data were not redundant to the 

model. 

 

2.5 Input data preparation 

The study area is composed of 85 grid cells, each 

measuring 5 km by 5 km. Of these, the Kuantan River 

Basin encompassed 53 grid cells, while the Pahang River 

Basin contained 32 grid cells. Weekly processed data on 

leptospirosis cases and hydrometeorological variables 

were extracted for each grid cell. Each grid cell included 

five weekly hydrometeorological time series as 

independent variables: rainfall, streamflow, water level, 

relative humidity, and temperature. Additionally, one 

weekly time series for leptospirosis cases served as the 

dependent variable. For constructing the training dataset, 

60% of the data from each grid cell was compiled across 

all cells, ensuring a comprehensive representation of the 

study area. To facilitate the analysis, weeks with one or 

more reported cases of leptospirosis were classified as 

"Yes," indicating the presence of the disease, while 

weeks with no reported cases were classified as "No." 

This binary classification allowed for the application of 

machine learning techniques to predict the occurrence of 

leptospirosis based on the hydrometeorological 

conditions. The data structure of the input data is shown 

in Fig. 3. 

 

 
Fig. 3. Structure of input data prepared for machine 

learning. 
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2.6 Data partitioning 

The input data for the model was divided into two sets: 

60% for the training set and 40% for the testing set. 

Allocating a higher percentage to the training set is a 

common practice as was also performed by [9] to ensure 

that the model has ample data to learn from, thereby 

improving its accuracy and performance [10]. The split 

was carefully executed to maintain a balanced ratio of the 

output classes ("Yes" for weeks with one or more cases 

and "No" for weeks without any cases) in both the 

training and testing sets. 

To further enhance the balance of the datasets, random 

oversampling was applied to equalize the number of 

records in each output class. This step was crucial in 

preventing the model from becoming biased towards the 

more frequent class, thereby improving its predictive 

capability. 

Not only that, a comprehensive 3-fold cross-validation 

was employed to prevent overfitting and ensure the 

model's robustness [11]. In this method, the training data 

was divided into three equal subsets. The model was 

trained and validated three times, each time using a 

different subset as the validation set while the remaining 

two subsets (66.7% of the data) were used for training. 

This process allowed the model to be tested on different 

segments of the data, providing a thorough evaluation of 

its performance. Each round of validation helped identify 

strengths and weaknesses, leading to better fine-tuning 

and optimization. By ensuring the model was exposed to 

varied data during training and validation, the 3-fold 

cross-validation enhanced the model's ability to 

generalize to new, unseen data, resulting in a more 

reliable and accurate predictive model. 

 

2.7 Model training 

Random forest [12], a machine learning technique that 

was also employed by [13], is a powerful ensemble 

method in machine learning that utilizes multiple 

decision trees created through the bagging (Bootstrap 

Aggregation) technique. This technique involves 

generating multiple resampled datasets from the original 

training set, where each dataset contains duplicate 

records produced by random sampling with replacement. 

This approach helps in diversifying the trees and 

reducing overfitting. 

Each decision tree in the random forest is built 

independently on a resampled dataset. At each node of 

the tree, a subset of independent variables is randomly 

selected. The node is then split using the best variable 

from this subset, determined by a criterion like Gini 

impurity, which measures the probability of 

misclassification when splitting features at the nodes. 

This splitting process continues recursively until a 

specified stopping criterion is met, such as reaching a 

minimum node size or maximum tree depth. 

After constructing all decision trees in a random forest 

model, predictions are aggregated for each input 

instance. In classification tasks, the final prediction is 

determined through majority voting across all trees. This 

means that for each input, the prediction that occurs most 

frequently among all the decision trees is selected as the 

final output. 

In practice, a random forest model undergoes an internal 

model fitting procedure within the training set. This 

process is often performed multiple times, such as the 3-

fold cross-validation that the study had employed, where 

the training data is split into three subsets. Each iteration 

uses two-thirds of the total training data for training and 

the remaining one-third for validation. This approach 

helps in evaluating and refining the model's performance 

by testing it on different subsets of the data. 

Fig. 4 illustrates the sequential steps involved in the 

random forest algorithm. Beginning with the creation of 

resampled datasets through bagging, each decision tree is 

constructed independently on these datasets. The nodes 

of each tree are split based on randomly selected 

variables, aiming to optimize the predictive accuracy 

through diverse tree structures. By aggregating 

predictions from all trees, random forest effectively 

harnesses the collective strength of individual trees, 

making it a versatile and widely used method in machine 

learning for various predictive tasks. 

 

 
Fig. 4. Formation of random forest. 

 

2.8 Model testing 

The testing phase of the study was crucial for evaluating 

the model's predictive capability and robustness. To 

achieve this, 40% of the data from each 5 km by 5 km 

grid cell was designated as testing sets. These testing sets 

were essential for assessing the model's ability to forecast 

the presence or absence of leptospirosis cases on a 

weekly basis. During the testing phase, the single trained 

model was applied to each grid cell individually. For each 

5 km by 5 km pixel, the model predicted which weeks 

would have reported cases of leptospirosis and which 

weeks would not. This process was repeated for all the 

testing sets across the study area, allowing for a thorough 

evaluation of the model's performance. 

 

2.9 Model performance measurement 

The developed models underwent evaluation using 

metrics such as testing set accuracy, sensitivity, and 

specificity [14]. Typically, accuracy alone might suffice 

to assess the overall predictive capability of the model. 

However, given the imbalance in output classes, 
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sensitivity and specificity metrics were also calculated to 

provide additional insights into the model's performance. 

The formulae for calculating these metrics are as follows: 

 

Accuracy, 
TP + TN

TP + TN + FP + FN
 

 

Sensitivity, 
TP

TP + FN
 

 

 

Specificity, 
TN

TN + FP
 

 

where, 

TP = True Positives [correctly predicted positive (Yes) 

cases] 

TN = True Negatives [correctly predicted negative (No) 

cases] 

FP = False Positives [incorrectly predicted as positive 

(Yes)] 

FN = False Negatives [incorrectly predicted as negative 

(No)] 

 

According to the equations above, accuracy provides an 

overall measure of how often the model correctly predicts 

both positive (Yes) and negative (No) instances. It is 

influenced by the balance of the dataset classes; for 

balanced datasets, accuracy can provide a reliable 

measure of performance. Sensitivity indicates the 

proportion of actual positive instances that the model 

correctly identifies as positive (Yes). It is crucial in 

applications where correctly identifying positive cases is 

prioritized, such as in medical diagnostics or anomaly 

detection. Specificity indicates the proportion of actual 

negative instances that the model correctly identifies as 

negative (No). It complements sensitivity by focusing on 

the model's ability to avoid false positives, which is 

important in scenarios where correctly identifying 

negatives is critical, such as in spam email detection or 

quality control. 

 

2.10  Receiver operating characteristics (ROC) 

The Receiver Operating Characteristic (ROC) [15] curve 

was a critical tool for evaluating the performance of the 

leptospirosis prediction model. By plotting the true 

positive rate (sensitivity) against the false positive rate 

(1-specificity), the ROC curve provided a comprehensive 

view of the model's diagnostic ability across various 

threshold settings. This graphical representation helped 

in assessing the accuracy and robustness of the model's 

predictions. 

To generate the ROC curve, the trained model was 

applied to the 40% testing sets of each 5 km by 5 km grid 

cell to predict weeks with and without leptospirosis 

cases. For each threshold value, the model's predictions 

were compared with the actual occurrences, calculating 

the true positive and false positive rates. The resulting 

ROC curve illustrated the trade-off between sensitivity 

and specificity, with the area under the curve (AUC) 

serving as a single scalar value summarizing the model's 

overall performance. A high AUC value indicated strong 

discriminative ability, showing that the model effectively 

distinguished between weeks with and without 

leptospirosis cases. 

Based on Fig. 5., when the ROC curve extends above the 

diagonal line, it signifies that the model is effectively 

distinguishing between positive and negative cases better 

than random guessing. This indicates that the model 

exhibits discrimination ability beyond chance. Moreover, 

as the ROC curve ascends higher above the diagonal line 

towards the top-left corner, it reflects the model's 

enhanced capability to accurately classify positive and 

negative instances across varying threshold levels. 

 

 
Fig. 5. ROC curve extending above diagonal line. 

 

When the ROC curve falls below the diagonal line, as 

illustrated in Fig. 6., it suggests that the model's ability to 

distinguish between positive and negative cases is worse 

than random guessing. This indicates a lack of 

discrimination ability in the model's predictions. As the 

curve descends further below the diagonal line towards 

the bottom-right corner, it signifies a diminishing 

capability of the model to correctly classify positive and 

negative instances across different thresholds. 

 

 
Fig. 6. ROC falling below the diagonal line. 

 

2.11  Model scenarios 

Four different model scenarios were tested, each 

incorporating different lag times, which are known to be 

crucial in understanding the hydrometeorological 

influences on leptospirosis [16]. The lag times were 

applied by shifting hydrometeorological data forward to 

align with the occurrence of cases, with intervals of 4 

weeks ranging from 0 to 12 weeks in each model scenario. 

 

3. RESULTS AND DISCUSSION 

In total, four random forest models that differ by lag 

times were trained and tested. Table 2 presents the 
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performance of model during the training stage while 

Table 3 presents performance of model (after 

maximizing based on ROC) during the testing stage. 

 

Table 2. Model performance metrics during training 

period. 

Model 

Scenario 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

0 week lag 98.2 100.0 96.3 

4 weeks lag 88.7 85.2 83.6 

8 weeks lag 90.6 84.5 86.7 

12 weeks lag 91.1 85.0 87.5 

 

Based on Table 2, the models demonstrate strong 

performance metrics: an average training accuracy of 

92.2%, sensitivity of 88.7%, and specificity of 88.5%. 

These figures indicate that the models effectively learn 

and distinguish between weeks with and without 

leptospirosis cases on a weekly basis across a spatial 

resolution of 5km by 5km in the Kuantan district. The 

average sensitivity of 88.7% highlights the models' 

ability to accurately predict weeks when leptospirosis 

cases occur, demonstrating their effectiveness in both 

temporal and spatial dimensions. This capability ensures 

reliable identification of periods with actual leptospirosis 

cases within the specified geographic area. In terms of 

specificity, averaging at 88.5%, the models excel in 

predicting weeks without leptospirosis cases, ensuring 

dependable identification of periods when no cases were 

present within the same spatial resolution. 

Furthermore, a minimal variation observed among 

different model scenarios underscores their stability and 

reliability across various time lag settings. This stability 

suggests that adjusting lag time may not significantly 

impact the models' performance, which is advantageous 

for saving training time and optimizing resource 

efficiency without compromising predictive accuracy. 

Overall, these findings underscore the robustness of the 

random forest models in predicting leptospirosis, 

affirming their suitability for practical application in 

public health management and decision-making 

processes. 

 

Table 3. Model performance metrics during testing 

period. 

Model 

Scenario 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

0 week lag 74.0 80.7 67.3 

4 weeks lag 72.1 85.2 59.0 

8 weeks lag 73.1 84.5 61.8 

12 weeks lag 74.3 85.0 63.6 

 

According to Table 3, The average testing accuracy of 

73.4%, sensitivity of 83.9%, and specificity of 62.9% 

indicate a moderate performance of the model in 

predicting leptospirosis cases. While the overall accuracy 

remains decent, the model demonstrates a strong 

sensitivity in identifying weeks with leptospirosis cases, 

which is crucial for early detection and intervention by 

public health officers. However, the lower specificity 

suggests that the model is less accurate in correctly 

identifying weeks without leptospirosis cases, potentially 

leading to more false positives. 

A notable observation is the discrepancy between 

training and testing performance. The model appears to 

perform better during the training period than testing 

period, indicating a potential issue of overfitting. 

Overfitting occurs when the model fits too closely to the 

training data and fails to generalize well to new, unseen 

data. 

To address this, it may be necessary to increase the 

number of repeats or iterations during the internal model 

fitting process, such as cross-validation. By performing 

more iterations of cross-validation, the model can be 

exposed to a greater variety of training subsets and 

validation folds. This helps in generating a more 

generalized model that better captures underlying 

patterns and relationships in the data, rather than 

memorizing specific instances from the training set. 

Enhancing the model's generalization ability through 

increased cross-validation iterations can mitigate 

overfitting, improving its performance on unseen testing 

data. This approach ensures that the random forest model 

maintains robustness and reliability in real-world 

applications, supporting more accurate and effective 

decision-making in public health management. 

 

4. CONCLUDING REMARKS 

The models achieved an average prediction accuracy of 

73.4% in anticipating the occurrence of leptospirosis 

cases within the Kuantan district, establishing them as a 

valuable tool for public health officers. This accuracy 

level allows officers to effectively discern weeks with 

and without leptospirosis cases, facilitating timely 

interventions and resource allocation. However, these 

findings are preliminary, and there is potential to enhance 

model performance through meticulous adjustment of 

model controls and parameters. 

A noteworthy discovery from this study is the minimal 

variability observed across different model scenarios. 

This suggests that adjustments in lag time may have 

limited impact on the model's predictive capabilities 

when employing random forest machine learning for 

leptospirosis prediction. This stability in performance 

underscores the reliability of the models in various 

temporal configurations, offering consistency in their 

ability to forecast disease occurrence. 

Moving forward, further refinement and optimization of 

model parameters could potentially improve accuracy 

and robustness. By fine-tuning these aspects, future 

iterations of the models could yield even more precise 

predictions, bolstering their utility as essential tools in 

public health decision-making and proactive 

management strategies. 
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