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Abstract: Long-term multi-step traffic flow prediction is crucial for effective traffic management. Recently, XGBoost has 

demonstrated its capability in multi-step prediction applications. However, optimal hyperparameter tuning using 

adaptive intelligent methods like the Particle Swarm Optimization (PSO) algorithm has yet to be explored. This paper 

presents an Adaptive eXtreme Gradient Boosting (Adaptive-XGBoost) model utilising the direct method with the 

combination of Grid Search and PSO algorithms for adaptive hyperparameter tuning for multi-step prediction. This 

approach aims to demonstrate the potential of Adaptive-XGBoost compared to existing deep learning models like Long-

Short Term Memory (LSTM) and Transformer in terms of Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE). Experimental results show that the Adaptive-XGBoost model achieved a 3.10% and 4.98% improvement in MAE 

over the Transformer and LSTM models, respectively, and a 0.26% and 5.69% improvement in RMSE. These findings 

highlight the potential of Adaptive-XGBoost for improved long-term multi-step traffic flow prediction. 
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1. INTRODUCTION  

In recent years, with the rising number of vehicles in 

people’s daily lives, traffic congestion in densely 

populated urban areas has become unavoidable. This 

issue substantially affects the economy and the 

environment, worsening air pollution and posing a 

possible threat to human health [1, 2]. One solution to 

these problems is to mitigate traffic congestion using the 

Intelligent Transportation System (ITS), which enables 

traffic management to plan for a more effective urban 

transportation plan [3]. Accurate traffic flow prediction 

models are at the core of ITS, providing critical insights 

for anticipating traffic conditions and making informed 

decisions to mitigate congestion [4]. 

 

Multi-step predictions are crucial for practical traffic 

management applications, offering more utility than 

single-step prediction models. Current research 

predominantly focuses on enhancing deep learning 

models, such as Long-Short Term Memory (LSTM) and 

Transformer-based models. These models are especially 

effective for capturing temporal dependencies in 

sequential data, making them popular choices for time 

series predicting tasks, including traffic prediction. For 

instance, Doğan [5] analysed the performance of LSTM 

models with various multi-step ahead prediction 

strategies for traffic flow prediction. Wei and Liu [6] 

enhance the LSTM capability by proposing a 

convolutional LSTM network integrated with a multi-

head attention mechanism, demonstrating significant 

improvements in traffic flow prediction accuracy. 

Fernandes et al. [7] explored input variables, time frames, 

and multi-step approaches in LSTM models, highlighting 

the superior performance of the LSTM model for multi-

step, multi-variate traffic flow prediction. On the other 

hand, Transformer-based models, which have 

revolutionised natural language processing [8], are now 

being adapted for traffic prediction due to their ability to 

manage long-range dependencies and parallelise 

computations. Reza et al. [9] presented a multi-head 

attention-based transformer model for traffic flow 

prediction, outperforming traditional Recurrent Neural 

Network models in traffic flow prediction tasks. Xing et 

al. [10] introduced the Spatial Linear Transformer with 

Temporal Convolution Network to optimise the self-

attention mechanism and reduce computational costs. 

Similarly, Wang et al. [11] developed the Spatiotemporal 

Fusion Transformer, incorporating Seasonality Encoding, 

Tubelet Embedding, and Token Permutator modules to 

enhance traffic flow prediction performance. Lim et al. 

[12] introduced the Temporal Fusion Transformers for 

multi-horizon time series prediction, using attention 

mechanisms for high-performance prediction and 

interpretable insights. 

 

While deep learning models like LSTM and 

Transformer-based models have shown great promise for 

multi-step prediction applications, the potential of 

models inherently built for single-step prediction, such as 

XGBoost [13], remains underexplored. Historically, 

XGBoost was only used for single-step prediction, as 

demonstrated by Cao et al. [14]. This capability made it 

suitable for predicting the next single-step traffic flow 

value in the near future. Subsequently, its application was 

extended by integrating XGBoost with LSTM for multi-

step traffic flow predictions, a hybrid approach proposed 

by Zhang et al. [15], enhancing accuracy and robustness. 

However, this research was tested only on short-term 

predictions of less than a 1-hour interval. Recent 

evidence suggests that the XGBoost model can also adapt 

for long-term multi-step predictions for hourly interval 

data, showing superior results to LSTM, as revealed by 

Tsalikidis et al. [16]. These capabilities were evaluated 

using the Grid Search algorithm for hyperparameter 

tuning. However, applying more adaptive methods like 

Particle Swarm Optimization (PSO) remains unexplored. 
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Furthermore, to the best of current knowledge, the 

comparison of the XGBoost model with the Transformer 

model has also not been investigated. 

 

Therefore, this paper addresses this gap by presenting a 

novel approach for long-term multi-step traffic flow 

prediction using the direct method with the fusion of Grid 

Search and Particle Swarm Optimization (Direct-PSOGS) 

algorithm introduced by Omar et al. [17] for proposing 

an Adaptive eXtreme Gradient Boosting (Adaptive-

XGBoost) model. The proposed Adaptive-XGBoost 

model aims to capture complex temporal patterns in long-

term traffic data, demonstrating the model potential in a 

multi-step prediction scenario on a single road. This 

research also includes a comparative analysis with LSTM 

and Transformer models. The paper results show that the 

proposed model is superior to LSTM and Transformer 

models in terms of accuracy, making it suitable as an 

alternative improved long-term multi-step traffic flow 

prediction model for the ITS. 

 

The structure of the paper is as follows. Section 2 covers 

the fundamental concepts necessary for comprehension, 

including the proposed prediction model architecture 

principle and a general overview of the Transformer and 

LSTM model. Section 3 details the dataset and the 

experimental simulation settings. Section 4 presents the 

results and discussion. Finally, Section 5 offers 

conclusions and suggestions for future research 

directions. 

 

2. METHODOLOGY 

2.1 Principles of XGBoost  

XGBoost is one of the most popular, powerful, and 

effective gradient-boosting methods created by Chen and 

Guestrin [13], based on the Gradient Boosting Decision 

Tree proposed by Friedman [18]. The principal basis of 

XGBoost can be understood by first looking at its 

objective function, Γ which is given by: 

 

𝛤 = ∑

𝑛

𝑖=1

𝑙(𝑦
𝑖
, 𝑦̂

𝑖
)+, ∑

𝐾

𝐾=1

𝛺(𝑓
𝑘
) (1) 

  

In this formula, 𝑦𝑖  represents the actual value, and 𝑦̂𝑖 

represents the predicted value. The first part of the 

objective function is the training loss, 𝑙 which measures 

how well the model fits the training data. The second part 

is the sum of the complexities of each tree, where the 

complexity of the 𝑘-th tree is given by: 

 

𝛺(𝑓
𝑘
) =  𝛾𝑇 +

1

2
𝜆‖𝑤‖2  (2) 

  
Here, 𝑇 indicates the number of leaf nodes; 𝑤 is the leaf 

weight, 𝛾 is the penalty coefficient for the number of leaf 

nodes, and 𝜆 is the penalty coefficient for the leaf weight. 

The methodology for XGBoost can be broken down into 

the following steps. Given a dataset of 𝐷 = {(𝑥𝑖 , 𝑦𝑖): 𝑖 =
1,2, … , 𝑚, 𝑥𝑖 ∈ 𝑅𝑛 , 𝑦𝑖 ∈ 𝑅}  containing 𝑚  samples with 

𝑛-dimensional features, a model composed of 𝐾 decision 

trees can be represented as 𝑦̂𝑖: 

 

𝑦̂𝑖 = ∑

𝐾

𝐾=1

𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹 (3) 

  

Where 𝐹 denotes the function space consisting of all tree 

models, while  𝑓𝑘 represents each regression tree. 

 

𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞: 𝑅𝑛 → 𝑇, 𝑤 ∈ 𝑅𝑇) (4) 

  

Here, 𝑞  represents the mapping relationship between 𝑥 

and the leaf node, whereas 𝑤  represents the weight 

assigned to the leaf node. At the new iteration, the 

existing model predicted value is continuously improved 

by adding newly developed regression tree output to 

approach the actual value. Suppose the predicted result 

of the 𝑖-th sample in the 𝑡-th iteration is 𝑦̂𝑖
(𝑡)

, and the 

newly added regression tree is 𝑓𝑡(𝑥𝑖), then: 

 

𝑦̂𝑖
(𝑡) = ∑

𝑡

𝐾=1

𝑓𝑘(𝑥𝑖) = 𝑦̂𝑖
(𝑡−1) + 𝑓𝑡(𝑥𝑖) (5) 

  

Where 𝑦̂𝑖
(𝑡−1)

 is the predicted value of the model in the 

round 𝑡 − 1, and 𝑓𝑡(𝑥𝑖) is the function newly added in 

the round 𝑡. The initial state prediction is always set to 

𝑦̂𝑖
(0) = 0. By substituting this into the objective function, 

it becomes: 

 

𝛤(𝑡)
= ∑

𝑚

𝑖=1

𝑙[𝑦𝑖 , 𝑦̂𝑖
(𝑡−1) + 𝑓𝑡(𝑥𝑖)] + 𝛺(𝑓𝑡) + 𝑐 (6) 

  

Where 𝑐 is a constant term. Conducting the second-order 

Taylor expansion on the objective function and 

introducing regularisation terms, obtaining: 

 

𝛤
(𝑡)

= ∑

𝑚

𝑖=1

[𝑙𝑦𝑖 , 𝑦̂𝑖
(𝑡−1) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

+ 𝛺(𝑓𝑡) + 𝑐 

(7) 

  

Where 𝑔𝑖 = 𝜕
𝑦̂𝑖

(𝑡−1)𝑙(𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)) , ℎ𝑖 = 𝜕2

𝑦̂𝑖
(𝑡−1)𝑙(𝑦𝑖 , 𝑦̂𝑖

(𝑡−1))  are 

the first and second derivatives of the objective function, 

respectively, and 𝑐  is a constant term. Remove the 

constant term to get: 

 

𝛤̃
(𝑡)

≅ ∑

𝑚

𝑖=1

[𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝛺(𝑓𝑡) (8) 

  

By leveraging the gradient boosting strategy, the iterative 

process of adding new decision trees minimizes the 

defined objective function and enhances predictive 

performance until the model's stopping criterion is 

reached. 

 

2.2 Direct multi-step prediction strategy 

In this paper, the direct multi-step prediction approach 

has been selected to predict the next 24-hour horizon. 

This approach directly predicts multiple future time steps 

rather than relying on iteratively predicting one step at a 

time. By independently modelling each future time step, 

the direct method can provide more stable and accurate 

predictions for longer horizons. By defining the predicted 

horizon time step data as {𝜙̂𝑡+1, … , 𝜙̂𝑡+𝐻}  and the 

available observations data as {𝜙𝑡 , … , 𝜙𝑡−𝐿}, in which 

the 𝐻 > 1  represent both the total number of horizon 

values and the independent number of models that are 

trained separately during the model training process and 

𝐿 is the total past values, the direct multi-step strategy can 
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be modelled as: 

 

𝜙
𝑡+ℎ

= 𝑓ℎ(𝜙𝑡 , 𝜙𝑡−1, … , 𝜙𝑡−𝐿) + 𝜔ℎ 

 

for ℎ ∈ {1, … , 𝐻} 

(9) 

  
Here 𝑓ℎ and 𝜔ℎ denotes the model learned function and 

additive noise, respectively, for every model’s output, ℎ. 

The present work will utilise the single training step 

strategy recently highlighted by [15], which is better than 

the horizon training step strategy. Here, 𝐻  different 

models that also correspond to the total prediction 

horizon values are trained for predicting the output, 𝜙̂
𝑡+1

 

to 𝜙̂
𝑡+𝐻

 as 

 

𝜙̂
𝑡+ℎ

= 𝑓ℎ(𝜙𝑡 , 𝜙𝑡−1, … , 𝜙𝑡−𝐿) 

 

for ℎ ∈ {1, … , 𝐻} 

(10) 

  
The illustration of input and prediction output for the 

direct multi-step prediction strategy is shown in Fig. 1. 

 

 
Fig. 1. Direct multi-step prediction strategy. 

 

2.3 Grid Search Algorithm 

Grid Search is a widely used hyperparameter tuning 

technique in machine learning to optimise model 

performance. Fig. 2 shows the overview of the Grid 

Search algorithm. 

 

 
Fig. 2. Overview of the Grid Search Algorithm. 

 

It systematically works through multiple combinations of 

parameter values, cross-validating to determine which set 

of parameters produces the best results. 

 

2.4 Particle Swarm Optimization Algorithm 

Particle Swarm Optimization is an adaptive intelligent 

method inspired by the social behaviour of birds flocking 

or fish schooling. It optimises a problem by iteratively 

trying to improve a candidate solution concerning a given 

quality measure. The PSO algorithm update equations are 

as follows: 

 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑑𝑖(𝑡))

+ 𝑐2𝑟2(𝑔 − 𝑑𝑖(𝑡)) 
(11) 

  
𝑑𝑖(𝑡 + 1) = 𝑑𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (12) 

  

Where 𝑣𝑖  is the velocity, 𝑑𝑖  is the position, 𝑝𝑖  is the 

personal best position, 𝑔 is the global best position, 𝜔 is 

the inertia weight, 𝑐1 and 𝑐2 are the cognitive and social 

coefficients, and 𝑟1  and 𝑟2  are the random values 

between 0 and 1. Fig. 3 shows the overview of the PSO 

algorithm. 

 
Fig. 3. Overview of the PSO Algorithm. 

 

The algorithm repeatedly updates the velocity and 

position steps until a stopping criterion is met. The 

stopping criterion used in this paper is the maximum 

number of iterations run. The best position the particles 

encounter during the search represents the optimal 

solution. 

 

2.5 Adaptive-XGBoost 

The proposed Adaptive-XGBoost model in this paper is 

built upon integrating three advanced vital components: 

the direct model, Grid Search, and PSO algorithm. The 

novel hybrid optimisation algorithm, named the Particle 

Swarm Optimization Grid Search (PSOGS) algorithm, 

was first introduced by Açıkkar and Altunkol [19]. 

PSOGS is a redesign of PSO that can operate on a 

discrete search space. PSO is executed on the promising 

region identified by Grid Search. Thus, integrating PSO 

will fine-tune the hyperparameters by exploring the 

search space more adaptively and efficiently. Each 

proposed Adaptive-XGBoost using the direct method 

will be optimised using the PSOGS algorithm. Fig. 4 

below shows the architecture of the proposed singular 

Adaptive-XGBoost model for optimisation before 

applying the direct method. 

 

 
Fig. 4. Single Adaptive-XGBoost model during the 

training process for the direct multi-step prediction. 

 

2.6 Transformer 

The Transformer model, introduced by Vaswani et al. in 

2017, revolutionised the field of natural language 

processing by enabling parallel processing of sequence 

data [8]. The Transformer architecture consists of an 

encoder and a decoder, each composed of multiple layers. 

The encoder processes the input sequence and generates 

a set of attention-based representations. The decoder uses 

these representations to generate the output sequence. 

Each layer in the encoder and decoder has two main 

components: a multi-head self-attention mechanism and 

a position-wise feed-forward network. The multi-head 

self-attention mechanism allows the model to attend to 

different parts of the sequence simultaneously while the 

feed-forward network applies transformations 

independently to each position. 

 

 

2.7 Long-Short Term Memory 

The LSTM is a deep learning model capable of learning 

long-term dependencies, introduced by Hochreiter and 

Schmidhuber in 1997 [20]. The model is explicitly 

designed to avoid the long-term dependency problem, 
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making them well-suited for time series prediction tasks, 

where predicting future values is highly dependent on 

past information [21]. The key to LSTM is their ability to 

maintain a cell state over time. This cell state acts like a 

conveyor belt, running through the sequence chain with 

minor linear interactions. LSTM can selectively 

remember or forget information through their gates: the 

forget gate, input gate, and output gate. as shown in Fig. 

5. Where 𝑋𝑡  denotes the input sequence, while 𝑧𝑡 

represent the hidden state and 𝐶𝑡 is the updated cell state. 

 

 
Fig. 5. The forget, input and output gate of the LSTM. 

 

3. EXPERIMENTAL SETUP 

3.1 Dataset description 

A real-time traffic flow dataset with hourly data was used 

in this paper. The source of the dataset is stated in [22]. 

The dataset represents the traffic flow data from the 

westbound lanes of Interstate 94 at ATR station 301 in 

Minnesota. The dataset was filtered to consider only the 

weekday traffic flow from January to March 2018, 

yielding 1561 observable data points. This selection was 

explicitly made to focus on standard workweek traffic 

patterns, which are critical for accurate traffic flow 

prediction. Any missing data was imputed by the linear 

interpolation method, ensuring a complete and consistent 

dataset for analysis. The whole dataset except for the last 

five days of March 2018 (Monday to Friday) was used as 

the train set. In the train set, 35 days (840 hours) from 1st 

January to 16th February 2018 was used as the training 

set, while the next 25 days (600 hours) from 19th 

February to 23rd March 2018 was used as the validation 

set. The last five days (120 hours) for the final weekdays 

of March 2018 were used as the test set. 

 

3.2 Dataset processing 

The min-max normalisation method had been used to 

scale the input data, adjusting the feature values to fall 

within a specific range [0, 1]. This method ensures that 

each feature contributes proportionately to the model’s 

prediction results. The final predicted results were 

applied inverse normalisation to ensure they returned to 

the original scale, allowing for a direct and meaningful 

comparison with measured traffic flow values. The 

normalisation and inverse normalisation formulas are 

shown below: 

 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (11) 

  
𝑥𝑠𝑐𝑎𝑙𝑒 = 𝑥𝑛𝑜𝑟𝑚 × (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑥𝑚𝑖𝑛  (12) 

where 𝑥 is the original value of the feature, 𝑥𝑚𝑖𝑛 is the 

minimum value of the training dataset, 𝑥𝑚𝑎𝑥  is the 

maximum value of the training dataset, 𝑥𝑛𝑜𝑟𝑚  is the 

value after normalisation, and 𝑥𝑠𝑐𝑎𝑙𝑒  represents the value 

of the original scale. 

 

3.3 Model evaluation metrics 

The metrics that evaluate all model’s performances are 

the Mean Absolute Error (MAE) and Root Mean Squared 

Error (RMSE). The MAE provides a precise measure of 

average prediction error in the same units as the data and 

the RMSE focuses on the magnitude of prediction errors. 

 

3.4 Model parameter setting 

The combination of different parameter values 

significantly impacts the proposed model’s prediction 

accuracy, making parameter tuning crucial for accurate 

predictions. 

 

Table I lists the essential parameters of the search space 

of the Adaptive-XGBoost model that are being focused 

on, which include max_depth, learning_rate, 

n_estimators, reg_lambda, and gamma. The max_depth 

controls the maximum depth of the trees; deeper trees can 

capture more complex patterns but may lead to 

overfitting. The learning_rate determines the step size 

during the model update; smaller values require more 

trees but can improve model accuracy. The n_estimators 

refer to the number of trees to be built, where increasing 

the number of trees can improve the model but also 

increase computational complexity. The reg_lambda, 

which is the ridge regularisation term on weights, helps 

in controlling the model’s complexity and prevents 

overfitting. Finally, gamma represents the minimum loss 

reduction required to partition a leaf node further, with 

higher values leading to fewer splits and a more 

conservative model. Other hyperparameter settings 

follow the default values of the Python sklearn XGBoost 

hyperparameter settings in [23]. For the PSO algorithm, 

the 𝜔, 𝑐1 and 𝑐2 values are set to 0.5, the default value of 

Python’s pyswarm library. The number of iterations and 

particles are fixed at 100 to ensure an optimal search run. 

 

Table I. Adaptive-XGBoost Parameters Search Space 

Parameter Values 

max_depth [3, 6, 9] 

learning_rate [0.01, 0.1, 0.2, 0.3] 

n_estimators [50, 100, 200] 

reg_lambda [0, 0.1, 1] 

gamma [0, 0.1, 1] 

 

By specifying the proposed model’s search space, the 

PSOGS algorithm can adaptively find the best 

hyperparameter combination in the above search space.  

 

Inspired by reference [9], the Transformer model has 

redefined hyperparameter values for optimal 

performance. Specifically, it utilises 2 attention heads, an 

embedding dimension of 32, a feed-forward dimension 

of 128, and includes 1 encoder and 1 decoder block. The 

output features have also been adjusted to 24, which is 

suitable for the predicted horizon length. The LSTM 

model architecture and hyperparameter settings are based 

on reference [17]. 

 

4. RESULTS AND DISCUSSION 

Table II shows the best performance results for the 

proposed Adaptive-XGBoost compared with the 

Transformer and LSTM for hourly predictions over a 24-

hour horizon across five days. 
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Table 2. Performance comparison of different models 

Model MAE RMSE 

Adaptive-XGBoost 247.35  329.13 

Transformer [9] 255.26 329.98 

LSTM [17] 260.31 348.99 

 

The results in Table 2 show that the Adaptive-XGBoost 

model outperforms both the Transformer and LSTM 

models in terms of MAE and RMSE. Specifically, the 

Adaptive-XGBoost model achieved a 3.10% 

improvement in MAE over the Transformer and a 4.98% 

improvement over the LSTM. Additionally, the model 

achieved a 0.26% improvement in RMSE over the 

Transformer and a 5.69% improvement over the LSTM. 

These findings indicate that the proposed Adaptive-

XGBoost model is more accurate and reliable for multi-

step traffic flow prediction over the specified period. 

These results demonstrate the model’s suitability for 

applications requiring high-precision traffic flow 

predictions. All the models predicted values and the 

actual unseen values are plotted in Fig. 6. 

 

 
Fig. 6. Plot of prediction results for all models. 

 

By observing the plotted line graph of all the models 

compared to the actual unseen data, the proposed 

Adaptive-XGBoost can capture the traffic patterns over 

all five days relatively reliably, similar to popular multi-

step prediction models like LSTM and Transformer 

within the family of deep learning. 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, an Adaptive-XGBoost model was proposed 

for long-term multi-step traffic flow prediction. The 

model leverages a combination of Grid Search and PSO 

algorithms for hyperparameter tuning, aiming to improve 

the accuracy and reliability of predictions. Experimental 

results demonstrated that the Adaptive-XGBoost model 

outperforms traditional deep learning models like LSTM 

and Transformer regarding MAE and RMSE. 

Specifically, the Adaptive-XGBoost model achieved a 

3.10% and 4.98% improvement in MAE over the 

Transformer and LSTM models, respectively, and a 0.26% 

and 5.69% improvement in RMSE. The proposed 

model’s ability to capture complex traffic patterns and 

exemplary performance in multi-step prediction tasks 

highlight its potential for practical applications in the ITS. 

The Adaptive-XGBoost model can help in effective 

traffic management and urban planning, reducing 

congestion and improving overall traffic flow by 

providing accurate long-term multi-step traffic flow 

prediction. 

 

While the results are promising, there are several avenues 

for future research to enhance the model and its 

applications further. One possible direction is to 

investigate other advanced optimization techniques, such 

as Genetic Algorithms or Bayesian Optimization, to 

improve the model’s performance further. These 

techniques could provide a more efficient and practical 

approach to hyperparameter tuning, potentially leading to 

more accurate and reliable traffic flow predictions. 

Additionally, exploring these optimization methods 

could reveal insights into the strengths and weaknesses 

of different approaches, contributing to the broader field 

of multi-step traffic flow prediction research. Another 

potential area of research is to extend the model to 

include additional external factors, such as weather 

conditions, special events, or road incidents, which can 

significantly impact traffic flow and improve multi-step 

prediction accuracy. Incorporating these factors into the 

model could enhance its ability to capture the complex 

dynamics of real-world traffic systems. For instance, 

weather conditions like heavy rain or snow can 

drastically reduce traffic speeds, while special events 

such as concerts or sports games can lead to sudden 

spikes in traffic volume. Road incidents, including 

accidents or construction work, can cause unexpected 

delays and congestion. By integrating these variables, the 

model could provide more robust and contextually aware 

predictions, ultimately aiding in more effective traffic 

management and urban planning. 
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