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Abstract: Mangkono (Xanthostemon verdugonianus) is a hardwood species indigenous to the Philippines. This study 

uses the Maximum Entropy model to assess the impact of climate change on the current and future potential distribution 

of Mangkono in the Caraga region. Five models were produced: ones for current condition, two for 2050 (SSP 245 and 

SSP 585), and two additional for 2070 (SSP 245 and SSP 585). Evaluation using Area Under Curve (AUC) and True 

Skill Statistics (TSS) indicated satisfactory performance, with AUC scores ranging from 0.983 to 0.987 and TSS values 

from 0.750 to 0.832. According to the results, the potential area is expected to increase under SSP 245 for 2050 and 

decrease with SSP 585. Both SSP 245 and SSP 585 in 2070 will decrease. Our findings suggest that to effectively manage 

this species, it is crucial to implement preventive environmental measures and include climate change models into land 

use and forest management plans. 
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1. INTRODUCTION  

Globally, it is projected that 20-30% of the plant and 

animal species will encounter an increased risk of 

extinction due to global warming [6]. The impact of 

climate change on forests includes heightened 

vulnerability to disturbances such as insect outbreaks, 

invasive species, wildfires, and storms. These factors can 

diminish forest productivity and, in severe cases, lead to 

the extinction of certain flora species [8]. 

 

Mangkono (Xanthostemon verdugonianus) is recognized 

as the most complex timber tree indigenous to the 

Philippines. The wood of the Mangkono tree is esteemed 

for its exceptional hardness, rendering it suitable for 

various applications such as shipbuilding, tool handles, 

poles, piers, and bridges [4]. Areas abundant in heavy 

metals are increasingly favored for ironwood cultivation 

and have been subjected to mining exploitation, 

concluding that these practices threaten conservation 

efforts [12]. Additionally, the growing demand for 

Xanthostemon wood as a commercially viable resource 

has recently sparked conservation apprehensions. 

Unsustainable harvesting practices and unregulated 

activities such as land conversion and mining pose 

potential threats to the remaining stands and contribute to 

habitat loss (SIPLAS). The International Union for 

Conservation of Nature (IUCN) has designated 

Mangkono as “vulnerable” due to an estimated 

population decline of more than 30% in the past three 

generations. 

 

Species Distribution Models (SDMs) are based on the 

idea that it is possible to measure the link between a 

certain pattern of interest (like the number of species or 

absent) and a set of environmental factors [14]. MaxEnt 

is a widespread species distribution modeling (SDM) 

method that uses presence-only data based on maximum 

entropy modeling principles [5]. The main idea of 

MaxEnt is to find the probability distribution that has the 

most entropy, which means it is the most spread out, 

while still following the limits set by the data on species 

occurrences and the environmental conditions in the 

study area [2]. MaxEnt is a predominant algorithm for 

analyzing presence-only data. Presence-only data 

comprises samples of species occurrences where the 

target species is confirmed to be present. Models that 

need presence-only data are more frequently used 

because presence-only records are the most easily 

accessible form of species data, whether gathered from 

fieldwork or museum collection [11]. 

 

Climate change is forecasted to affect indigenous 

hardwood trees in the Philippines. There is a pressing 

need to employ species distribution modeling techniques 

for predicting these species’ current and future potential 

distribution. The current and future distribution of 

Mangkono will provide an understanding of the extent of 

Mangkono. 

 

The main objective of this study is to model the species 

distribution of Mangkono in the Caraga region. 

Specifically, the study aims to identify environmental 

variables affecting the potential distribution of 

Mangkono in Caraga region; generate the potential 

distribution of Mangkono in Caraga region using MaxEnt 

and model the future distribution of Mangkono under 

climate change scenarios and global climate model for 

2050 and 2070. This study is essential since it will 

determine the current and future geographical 

distribution of Mangkono in the Caraga Region. The 

result of this study will aid in developing targeted 

conservation strategies to mitigate threats. Integrating the 

result into land use policies can help prevent further 

habitat degradation, promoting sustainable practices that 

balance conservation with economic development. 
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2. METHODOLOGY 

 

2.1 Study Area 

The Caraga Region is located and can be seen in the 

northeastern part of Mindanao, Philippines, and covers 

an area of 18,847 square kilometers. It comprises five 

provinces: Agusan del Sur, Agusan del Norte, Surigao 

del Sur, Surigao del Norte, and the Dinagat Islands. It 

hosts the nation's fourth largest established timberland, 

spanning 992, 131 hectares. The region leads the nation 

in log production, yielding the highest volume at 

573,782.08 cubic meters. This distinction solidifies the 

Caraga Region`s status as “the timber corridor of the 

Philippines'' [10]. 

 

 
Fig. 1. Study Area 

 

2.2 Methodological Framework 

To gain a thorough understanding of the methodological 

framework of the study, it is crucial to clarify the entire 

process for better understanding. The research 

methodology comprises three primary stages: image 

preprocessing, MaxEnt modeling, and model evaluation. 

 

Fig. 2. Methodological Framework of the study 

 

2.3 Mangkono Occurrence Data 

The occurrence data of Mangkono (Xanthostemon 

verdugonianus) used in this study came from the 

Department of Environment and Natural Resources 

(DENR). The Department disseminates information 

concerning Mangkono in the Caraga region. Following 

the collection of occurrence data presented in a polygon 

feature format, a process is undertaken in ArcGIS using 

“feature to points” to generate coordinates. As a result, 

45 Mangkono occurrence data points were generated. 

These coordinates are subsequently encoded into a 

spreadsheet and saved in “comma-separated values” csv 

format as required by MaxEnt. 
 

 
Fig. 3. Mangkono Occurrence Points 

 

2.4 Environmental Variables 

The 19 bioclimatic variables were downloaded from the 

WorldClim https://worldclim.org/  database version 2.1. 

It has a spatial resolution of 30 seconds (approximately 1 

square kilometer) for 1970–2000 as a current period [3]. 

This database includes monthly minimum, maximum, 

and mean temperatures, and monthly mean annual 

precipitation. These datasets have been extensively 

employed in developing species distribution models [13]. 

The soil data were downloaded from Geoportal PH 

(https://www.geoportal.gov.ph/). The Digital Elevation 

Model (DEM) database on the Shuttle Radar Topography 

Mission (SRTM) website 

(http://srtm.usgs.gov/index.php) was downloaded and 

further analyzed using Spatial Analyst Tools of ArcGIS 

to derive slope and aspect. All environmental data were 

processed with uniform extent, cell size, and projection 

system (WGS_1984_UTM_Zone_51N) within ArcGIS 

and converted into American Standard Code II (ASCII) 

format. The overall environmental variables used in this 

study are summarized in Table1. 

 

Table 1. List of Environmental Variables 

CODE NAME 

BIO 1 Annual Mean Temperature 

BIO 2 Mean Diurnal Range 

BIO 3 Isothermality 

BIO 4 Temperature Seasonality 

BIO 5 Max Temperature of Warmest Month 

BIO 6 Min Temperature of Coldest Month 

BIO 7 Temperature Annual Range 

BIO 8 Mean Temperature of Wettest Quarter 

BIO 9 Mean Temperature of Driest Quarter 
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CODE NAME 

BIO 10 Mean Temperature of Warmest Quarter 

BIO 11 Mean Temperature of Coldest Quarter 

BIO 12 Annual Precipitation 

BIO 13 Precipitation of Wettest Month 

BIO 14 Precipitation of Driest Month 

BIO 15 Precipitation Seasonality 

BIO 16 Precipitation of Wettest Quarter 

BIO 17 Precipitation of Driest Quarter 

BIO 18 Precipitation of Warmest Quarter 

BIO 19 Precipitation of Coldest Quarter 

ELEV Elevation 

SLOPE Slope 

ASPECT Aspect 

SOIL Soil 

 

2.5 Climate Models and Scenarios 

According to IPCC, Global Climate Models (GCMs) are 

esteemed as the most sophisticated instruments for 

simulating the response of the global climate system to 

the ongoing increase in greenhouse gas concentrations.  

To predict the species' future distribution under various 

climate emission scenarios and global climate models, 

bioclimatic variables were gathered with a spatial 

resolution of 30 seconds for 2041–2060 (2050s) and 

2061–2080 (2070s). These were derived from the sixth 

assessment report of the Intergovernmental Panel on 

Climate Change (IPCC) from https://worldclim.org/. EC-

Earth3-Veg was selected in this study where it gives 

more accurate uncertainty estimates and a more complete 

look at the important climate feedback mechanisms 

compared to global circulation models (GCMs). In order 

to enhance the reliability and plausibility of the modeling, 

the scenarios SSP585 (most extreme) and SSP245 

(intermediate) were selected for the periods 2050 and 

2070. 

 

2.6 Environmental Variables Selection 

The selection of variables is the most critical factor in 

species distribution modeling. Eliminating redundant 

variables can augment the analytical capability of the 

model and mitigate multicollinearity among the variables 

[7]. Given the correlation among environmental variables, 

it becomes essential to screen them carefully. The initial 

step involves inputting all environmental variables and 

occurrence data into MaxEnt for an initial run and those 

environmental variables with zero contribution will be 

removed from the final analysis. Then, the remaining 

variables are then subject to correlation analysis, and if a 

correlation exceeding 0.8 is detected between variables, 

variables with higher contribution rate will be included in 

the final model. 

 

 

2.7 Species Distribution Modeling 

The current and future geographical distribution of 

Mangkono were built using Maxent version 3.4.1 with 

Mangkono occurrence points and uncorrelated 

environmental variables. During the modeling process, 

75% of the species occurrence data were utilized as 

training data to develop species distribution models. In 

comparison, the remaining 25% were retained as testing 

data to assess the accuracy of each model. Additionally, 

the Random Seed option in Maxent was enabled. The 

maximum number of background points for sampling 

was maintained at 10,000 and the model was executed in 

15 replicates with 5000 iterations to ensure sufficient 

time for convergence. In each iteration, the presence data 

is randomly partitioned through subsampling. 

 

Table 2. Mangkono Distribution Models 

Model Period SSP 

1 Current 

2 2041-2060 SSP 245 

3 SSP 585 

4 2061-2080 SSP 245 

5 SSP 585 

 

2.8 Model Evaluation 

In the Maxent model, the Area Under the Curve (AUC) 

of the Receiver Operating Characteristic (ROC) was 

often used as a default for evaluating the accuracy of the 

model. As the average AUC value increases, the model's 

prediction accuracy improves. The performance levels 

were categorized as follows: excellent (>0.9), good (0.8–

0.9), accepted (0.7–0.8), poor (0.6–0.7), and 

unsatisfactory (<0.6). The closer the AUC value was to 1, 

the higher the model's performance [9]. Additionally, 

True Skill Statistics (TSS) was also used as a model 

evaluation where the TSS score ranges from +1 to −1, 

where a score near 1 denotes an almost perfect model and 

a score near zero or less than zero denotes a model that is 

no better than random [1]. 

 

2.9 Mangkono Distribution Model 

The outcomes derived from the modeling process were 

categorized into four classes. Within this classification, 

the range of <0.2 was deemed low potential, 0.2 to 0.4 

was regarded as moderate potential, 0.4 to 0.6 was 

identified as good potential, and >0.6 was classified as 

highly potential. These categorizations were established 

utilizing the Reclassify tool within ArcGIS and were 

reclassified into four classes [15]. 
 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Variables Selection 

In the initial run of the Maxent model, all 23 

environmental variables and occurrence points were 

incorporated to identify variables with zero percent 

contribution. The outcome revealed that soil exhibited 

the highest contribution to the distribution of Mangkono, 

accounting for 38.6%, followed by precipitation 

seasonality (Bio15) and mean diurnal range (Bio2) with 

contributions of 27.5% and 7.7% respectively. 

Conversely, variables such as Bio1, Bio6, Bio8, Bio10, 
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and Bio11 made 0 contribution to the model and will be 

removed from further analysis. 

 

Table 3. Percent Contribution of Variables 

Variable Percent Contribution 

BIO 1 0 

BIO 2 7.7 

BIO 3 4.4 

BIO 4 0.2 

BIO 5 0.5 

BIO 6 0 

BIO 7 6 

BIO 8 0 

BIO 9 0.1 

BIO 10 0 

BIO 11 0 

BIO 12 1.8 

BIO 13 0.3 

BIO 14 2.5 

BIO 15 27.5 

BIO 16 1.6 

BIO 17 2.2 

BIO 18 0.1 

BIO 19 4.9 

ELEVATION 1 

SLOPE 0.1 

ASPECT 0.7 

SOIL 38.6 

 

The remaining 18 environmental variables undergo 

correlation analysis in RStudio, variables with a 

coefficient value of r ≥ 0.8 are deemed correlated. If there 

are two or more environmental factors with a correlation 

greater than 0.8, the variable with a higher contribution 

rate is chosen to be included in the model. Finally, 12 

environmental variables will be used for the final 

modeling. 

 

Table 4. Environmental Variables for Final Model 

Soil Soil 

Bio 15 Precipitation Seasonality 

Bio 02 Mean Diurnal Range 

Bio 14 Precipitation of Driest Month 

Soil Soil 

Bio 17 Precipitation of Driest Quarter 

Elevation Elevation 

Aspect Aspect 

Bio 05 Max Temperature of the Warmest 

Month 

Bio 04 Temperature Seasonality 

Bio 09 Mean temperature of Driest Quarter 

Slope Slope 

Bio 18 Precipitation of Warmest Quarter 

 

3.2 Model Evaluation 

AUC (area under the receiving operating curve) is a 

statistic that is frequently used to assess the prediction 

effectiveness of species distribution models. However, 

related research has shown that AUC is not sufficient. 

Thus, we employed True Skill Statistics (TSS) as an 

additional measure, which incorporates the advantages of 

Kappa statistics and has a strong correlation with AUC 

statistics. TSS scores range from +1 to −1, where a score 

near 1 denotes an almost perfect model and a score near 

zero or less than zero denotes a model that is no better 

than random. Table 5 is the summary for model 

evaluation of the five models indicating that the result 

was accurate for current and future projection since AUC 

and TSS are widely used for evaluating the accuracy of 

the model. 

 

Table 5. Summary for AUC and TSS 

MODELS AUC TSS 

Current 0.987 0.832 

SSP 245 (2050) 0.983 0.801 

SSP 585 (2050) 0.986 0.825 

SSP 245 (2070) 0.985 0.821 

SSP 585 (2070) 0.984 0.750 

 

3.3 Mangkono Distribution Model 

The outcomes derived from the modeling process were 

categorized into four classes. Within this classification, 

the range of <0.2 was deemed low potential, 0.2 to 0.4 

was regarded as moderate potential, 0.4 to 0.6 was 

identified as good potential, and >0.6 was classified as 

high potential. These categorizations were established 

utilizing the Reclassify tool within ArcGIS and were 

reclassified into four classes. As shown in the figures are 

the potential distributions for Mangkono. 
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Fig. 4. Current Distribution of Mangkono 

 

 
Fig. 5. Maxent Model for SSP 245 (2050) 

 

 
Fig. 6. Maxent Model for SSP 585 (2050) 

 

 
Fig. 7. Maxent Model for SSP 245 (2070) 

 

 
Fig. 8. Maxent Model for SSP 585 (2070) 

 

Based on the result of the MaxEnt modeling, the 

predicted current and future potential distribution of 

Mangkono were likely to be affected positively and 

negatively by future climate. Mangkono potential 

distribution in the current and future projection shows 

that the potential areas are concentrated in Surigao del 

Sur, Surigao del Norte and Dinagat Islands. The variables 

deemed influential in predicting both the present and 

future distribution of Mangkono are soil and bio15. Each 

of the five models demonstrated commendable 

performance, with AUC values spanning from 0.983 to 

0.987 and TSS values ranging between 0.750 and 0.832. 

 

3.4 Comparing Current and Future Models 

As shown in Table 6, the current high potential area for 

Mangkono encompasses 26.52 km2. Projections for SSP 

245 (2050) indicate an increased potential area from 

current which is a sustainable development scenario but 

decreases the potential area for SSP 585 which is towards 

the worst-case scenario. According to the model for 2070, 

there is a decrease of potential area in both SSP 245 and 

SSP 585 from current distribution. 

 

Table 6. Current and Future Potential Areas 

Category 

(Km2) 

LP 

(<0.2) 

MP 

(0.2-0.4) 

GP 

(0.4-0.6) 

HP 

(>0.6) 

Current 17295.50 256.68 36.09 26.52 

SSP 245 

(2050) 

17305.43 276.58 59.65 28.97 

SSP 585 

(2050) 

17442.59 155.30 47.46 24.94 

SSP 245  

(2070) 

17390.33 196.88 56.60 25.78 

SSP 585 

(2070) 

17390.27 213.42 39.61 25.78 

 

4. CONCLUSION 

This study has investigated how climate change affects 

the geographical distribution of Mangkono, a vulnerable 

native tree species in the Philippines. Five models were 

created for present and future scenarios using occurrence 

points of Mangkono and environmental variables. This 

study successfully received a limited number of 
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occurrence data sets for Mangkono from the Department 

of Environment and Natural Resources (DENR). 

Additionally, a probable distribution model for the 

Mangkono was built using several variables. The study 

effectively simulated the potential distribution of 

Mangkono under two different scenarios (SSP 245 and 

SSP 585) for the time periods 2041-2060 and 2061-2080. 

The analysis also identified the key characteristics that 

influence the spread of this species. To validate the model, 

the Area Under the Curve (AUC) of the Receiver 

Operating Characteristic (ROC) was utilized, 

categorizing performance levels as excellent (>0.9), good 

(0.8–0.9), accepted (0.7–0.8), poor (0.6–0.7), and 

unsatisfactory (<0.6). Additionally, True Skill Statistics 

(TSS) were employed, with scores ranging from +1 to −1, 

where a score near 1 indicates an almost perfect model. 

For error analysis, the TSS score near zero or less than 

zero denotes a model that is no better than random. The 

model was evaluated using these statistics to ensure 

accuracy and reliability. The statistical methods 

employed aimed to enhance the robustness and reliability 

of the findings by providing a comprehensive assessment 

of the model's performance under different scenarios. 

 

The study findings suggest that soil, precipitation 

seasonality, and topography are some of the 

environmental variables that play crucial roles in 

determining the distribution of the Mangkono species. 

This document serves as a guide for safeguarding, 

introducing, and nurturing Mangkono in environmentally 

appropriate areas. The current model does not account for 

biological interactions and human activities, which could 

significantly affect Mangkono's distribution in the 

Caraga region. The absence of biological interactions in 

the model may lead to an oversimplification of the 

ecosystem dynamics, potentially underestimating or 

overlooking the true distribution of Mangkono. Human 

activities, such as deforestation, land-use changes, and 

urbanization, are crucial factors influencing species 

distribution. Therefore, it is suggested to incorporate 

additional environmental and biological data in the 

model, such as interactions between Mangkono and other 

plant species or pollinators, as well as human land-use 

patterns, to enhance the model's precision and accuracy. 
Additionally, implementing long-term monitoring 

programs is recommended to validate the model’s 

predictions and track actual changes in Mangkono 

distribution over time. 
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