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Abstract: Accurate tree counting in plantations is essential for effective management and resource allocation, yet 

traditional manual digitization methods are labor-intensive and time-consuming. This study presents an innovative 

approach to automate tree counting in oil palm plantations using UAV/drone orthophoto imagery and the Faster R-

CNN algorithm implemented in Python. High-resolution images were captured using UAVs and pre-processed for 

clarity. The Faster R-CNN model was trained on annotated images with manually labeled bounding boxes. Leveraging 

a two-stage pipeline, the model generates region proposals and classifies objects within them. Performance evaluation 

using precision, recall, and Intersection over Union (IoU) metrics demonstrated the model's high accuracy, achieving 

an average precision (AP) of 75% and an average recall (AR) of 44%. The automated process significantly reduces 

labor costs and time compared to traditional methods. This study highlights the effectiveness of integrating UAV 

technology with machine learning for agricultural applications, providing a scalable solution adaptable to various 

plantations and tree species.  
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1. INTRODUCTION  

Accurate tree counting is a critical task in plantation 

management, essential for effective resource allocation 

and operational planning. Traditionally, this task has 

relied heavily on manual digitization methods, where 

human labor is used to count and document each tree. 

While effective in terms of accuracy, these methods are 

labor-intensive, time-consuming, and prone to human 

error, making them impractical for large-scale 

plantations. The manual process can significantly delay 

decision-making and increase operational costs, posing 

a substantial challenge for efficient plantation 

management. 

 

The integration of advanced technologies in agriculture 

is becoming increasingly important to enhance 

productivity and reduce manual labor. One such 

technological advancement is the use of unmanned 

aerial vehicles (UAVs) or drones, which can capture 

high-resolution orthophoto images of plantations from 

above. Coupled with sophisticated machine learning 

algorithms, such as the Faster Region-based 

Convolutional Neural Network (Faster R-CNN), these 

technologies offer a promising solution to automate the 

tree counting process. 

 

UAVs provide a bird's-eye view of large plantation 

areas, allowing for comprehensive coverage and 

detailed imagery that can be used for various analytical 

purposes. The Faster R-CNN algorithm, known for its 

accuracy and efficiency in object detection, can process 

these images to identify and count individual trees. This 

combination of UAV imagery and machine learning can 

significantly reduce the time and labor involved in tree 

counting, providing a scalable and accurate alternative 

to traditional methods [1], [2]. 

 

Despite the potential benefits, there are challenges to 

implementing these technologies in tree counting. 

Variations in tree size, density, and overlapping can 

affect the accuracy of the detection algorithms. 

Moreover, the quality of the UAV images can be 

influenced by factors such as lighting conditions and the 

angle of capture, which must be accounted for in the 

preprocessing stage [3]. 

 

Previous studies have demonstrated the effectiveness of 

using UAVs and deep learning for precision agriculture 

and tree counting. For instance, Yamaguchi et al. [6] 

used high-resolution object detection to improve 

precision agriculture, while Kato et al. [7] implemented 

automated tree counting using convolutional neural 

networks and aerial imagery. 

 

The current reliance on manual digitization for tree 

counting in oil palm plantations is inefficient and 

unsustainable for large-scale operations. Manual 

methods, while accurate, require substantial labor and 

time, leading to delays in data processing and higher 

operational costs. This inefficiency hinders timely 

decision-making and resource management, critical 

aspects for maintaining plantation productivity and 

profitability. 

 

Given these limitations, there is a pressing need for a 

more efficient method that can handle large-scale data 

with minimal human intervention while maintaining or 

exceeding the accuracy of manual counting. This study 

aims to address this need by exploring the use of UAV 

orthophoto imagery combined with the Faster R-CNN 

algorithm to automate the tree counting process. By 

leveraging these technologies, the study seeks to 

develop a scalable and efficient solution that can 

improve the accuracy and speed of tree counting in oil 

palm plantations, ultimately enhancing overall 

plantation management [4]. 
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The proposed approach not only aims to reduce labor 

and time costs but also to provide a framework that can 

be adapted to various types of plantations and tree 

species. This flexibility is crucial for broader 

applicability and for addressing the diverse needs of 

different agricultural sectors. 

 

2. METHODOLOGY 

The data for this study consists of high-resolution 

orthophoto images captured using unmanned aerial 

vehicles (UAVs) over oil palm plantations in Peninsular 

Malaysia.  

 

 
Fig. 1. Palm Oil Plantation Raster. 

 

From Fig. 1, the whole image shows a plantation that is 

on a hilly plane, thus the trees positioning follows the 

plane topography. This leads to the tree edges 

overlapping with one another and not be in the 

conventional uniform order of the standard plantation. 

 

2.1 Data Preparation 

Shown in Fig. 2 is the research design for this study. 

The research design contains the steps and the process 

flow of the methodology. 

 

Pre-processing 

RGB Conversion: All images were converted from their 

original format to the RGB color space. This conversion 

is necessary for the subsequent processing stages as 

most machine learning algorithms, including Faster R-

CNN, operate on RGB images. 

 

Normalization 

Each pixel value in the images was normalized by 

dividing by 255, bringing all pixel values to a range 

between 0 and 1. This step is essential to ensure that the 

model can process the images effectively and 

consistently. 

 

Annotation 

Bounding boxes were manually drawn around each oil 

palm tree in the images. These bounding boxes serve as 

the ground truth for training the model. The coordinates 

of these bounding boxes were saved in XML format, 

including information such as the top-left and bottom-

right coordinates, the size of the image in pixels, and the 

object class (oil palm tree). 

 

Data Augmentation 

To improve the model's robustness, data augmentation 

techniques such as horizontal flipping, rotation, and 

scaling were applied. These augmentations help the 

model generalize better by exposing it to various 

transformations of the input data. 

 

 
Fig.2. Research design. 

 

 

2.2 Modeling 

The Faster Region-based Convolutional Neural 

Network (Faster R-CNN) was used for this study due to 

its high accuracy and efficiency in object detection 

tasks. The Faster R-CNN model consists of several 

components, including a feature extraction network, a 

region proposal network (RPN), and a detection 

network. 

 

Feature Extraction 

The feature extraction network, typically a 

convolutional neural network (CNN) like ResNet-50, 

processes the input image to extract high-level features. 

These features are then used by the RPN to generate 

region proposals. 

 

Region Proposal Network (RPN) 

The RPN generates region proposals by sliding a small 

network over the feature map output by the feature 

extraction network. It outputs a set of rectangular object 

proposals, each with an associated abjectness score. The 

RPN uses anchor boxes of different scales and aspect 

ratios to detect objects of various sizes. 
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Region of Interest (RoI) Pooling 

The proposed regions are then passed through an RoI 

pooling layer, which converts the different-sized 

proposals into fixed-size feature maps. This step ensures 

that all proposed regions can be processed uniformly by 

the subsequent layers. 

 

Detection Network 

The detection network classifies the objects within the 

proposed regions and refines their bounding boxes. It 

outputs the final object class and the coordinates of the 

bounding box for each detected object. 

 

2.3 Evaluation 

To assess the performance of the model, a thorough 

evaluation using standard metrics is essential. The 

primary evaluation tool used is the confusion matrix, 

which falls under classification evaluation. Table 3.1 

presents the confusion matrix: 

 

Table 1. Confusion Matrix 

 Predicted 

Positive  

Predicted 

Negative 

Actual 

Positive  

True Positive 

(TP)  

False Negative 

(FN) 

Actual 

Negative 

False Positive 

(FP)  

True Negative 

(TN) 

 

From these components, common metrics such as 

Accuracy, Precision, Recall, and F1 Score can be 

calculated: 

 

Recall: The ability to identify relevant cases within a 

dataset, indicating how well the model detects true 

positives. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

 

Precision: The ability to identify only the relevant data 

points, reflecting the quality of the positive predictions. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

F1 Score: The harmonic mean of Precision and Recall, 

providing a balance between the two. 

 
𝐹1 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

The model's performance in object detection is also 

measured using the Intersection over Union (IoU) 

metric. IoU measures the overlap between the predicted 

bounding box and the ground truth bounding box. It is 

calculated as: 

 
𝐼𝑜𝑈 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

Average Precision (AP) and Average Recall (AR) 

To provide a detailed breakdown of the model’s 

performance, different IoU thresholds (0.50, 0.75, and 

0.50 to 0.95) and object sizes (small, medium, and 

large) are used. 

 

Average Precision (AP): Calculated by computing the 

precision and recall for different IoU thresholds and 

taking the area under the precision-recall curve. AP 

measures the model's precision at various thresholds. 

 𝐴𝑃 =∑(𝑝(𝑟) × ∆𝑟) (5) 

 

Average Recall (AR): Calculated by computing the 

recall at different IoU thresholds and object sizes, 

measuring the proportion of true positives detected by 

the model. 

 

𝐴𝑅 =
1

𝑅
∑𝑝(𝑟)

𝑅

𝑟=1

 (6) 

 

Higher values of AP or AR indicate better performance 

of the object detection model. 

 

3. RESULTS AND ANALYSIS  

 

All the images will be converted into Red, Green, and 

Blue, RGB channel that can be viewed on computer 

display and all the images will be divided with 255 to 

normalize the dataset so that the pixel value of images 

in the dataset will lie between 0 and 1 for a faster 

training process. 

 

The box coordinates of the annotated image will be 

extracted from its each individual xml file and will be 

stored into a list of boxes and its labels. The dataset will 

also be converted into Tensor so that it can be processed 

by the deep learning model, in this case the faster R-

CNN model. The dataset is split into training and testing 

data to be used for model evaluation. 

 

3.1 Model Evaluation 

From the iteration of training, the IoU metric will show 

the AP and AR of the overall model, this will indicate 

whether the model performance is good or not. Each 

epoch will show a slight improvement of AP and AR 

evaluation value, this indicates the model underwent 

training using the custom dataset that was being used. 

Shown in figure 4.1.5 (a) is the value for metric. 

 

 
Fig. 2. Model evaluation result. 

 

The result shows that the AP and AR of the model is 

acceptable at 75% and 44% respectively, meaning that it 

can detect the tree correctly but there is still some error 

when recognizing the correct trees. Shown in Fig. 3 is 

an example of expected output for the tree detection and 

the model output for the detected palm oil tree. 

 

From the image in Fig. 3, the model can detect the palm 

oil tree correctly, but the trees that are so clump together 

are harder to be detect by the model thus causing the 

trees to not be box. The model bound each of the boxes 

in the middle of the tree. Fig. 3(a) shows the expected 

output, which serves as the ground truth with correctly 
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placed red boxes marking target detections. Fig. 3(b) 

presents the model's actual output, with red boxes 

showing where the model has identified targets. By 

comparing these two images, it shows the model's 

accuracy, identifying any discrepancies such as missed 

detections or false positives. 

 

 
(a) 

 
(b) 

Fig. 3. Expected and model output comparison. 

 

 

3.2 Orthophoto Analysis and Tree Point Generation 

With bounding box being able to successfully detect the 

tree and bound it in the middle of the box, it can be 

converted to point by finding the midpoint of the 

predicted boxes. The analysis of the test dataset's 

orthophoto images demonstrated the model's ability to 

detect trees effectively. Shown in Fig. 4 is the 

conversion of the predicted bounding boxes to point 

plot. Fig. 4(a) shows the predicted output with red 

bounding boxes indicating the detected objects or 

regions of interest. In contrast, Fig. 4(b) converts these 

bounding boxes into a point plot, where each blue dot 

represents the center of a detected bounding box from 

Fig. 4(a). The conversion of predicted bounding box in 

(a) coordinates to the tree crown's midpoint in (b) 

showed that the model accurately placed the bounding 

boxes around the trees, with the points plotted on the 

crown. Although the bounding boxes varied in size 

based on the tree's size and density, the midpoint 

calculation consistently placed the point on the tree 

crown, ensuring accurate tree detection even in areas 

where trees were densely packed. 

 

 
(a) 

 

 
(b) 

Fig. 4. Conversion from predicted bounding boxes to 

point plot. 

 

3.3 Model Accuracy 

The model's performance was evaluated using key 

metrics such as Average Precision (AP) and Average 

Recall (AR) at different Intersection over Union (IoU) 

thresholds and object areas. Shown in Fig. 5 the result 

of the model performance. The model achieved an AP 

of 38.9% across IoU thresholds of 0.50 to 0.95, 

indicating moderate overall precision. At an IoU 

threshold of 0.5, the AP was 75%, suggesting high 

precision at this threshold. However, the AP dropped to 

34.5% at an IoU threshold of 0.75, indicating lower 

precision at higher thresholds. The AP for small, 

medium, and large objects was 30.9%, 46%, and 57.5%, 

respectively, showing better precision for larger objects. 

The AR can be summarized as in Table 2. 
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Fig. 5. Model performance result. 

 

Table 2. AP Summary 

Average 

Precision (AP) 

IoU thresholds Comment 

38.9% 

(all) 

0.50 to 0.95 moderate overall 

precision 

75% 0.50 relatively high 

precision 

34.5% 0.75 lower precision 

30.9% 

(small) 

0.50 to 0.95 moderate precision 

46% 

(medium) 

0.50 to 0.95 higher precision 

57.5% 

(large) 

0.50 to 0.95 higher precision 

 

The AR across IoU thresholds and object sizes also 

varied. For one detection per image, the AR was 0.9%, 

increasing to 7.8% for 10 detections per image and 44% 

for 100 detections per image. The AR for small, 

medium, and large objects was 35.1%, 52.4%, and 

59.9%, respectively, indicating better recall for larger 

objects.  The AR can be summarized in Table 3 as such. 

These metrics suggest that the model can accurately 

detect oil palm trees, with some limitations in densely 

packed areas. 

 

Table 3. AR Summary 

Average 

Recall (AR) 

IoU thresholds Comment 

0.9% (1 detection) 0.50 to 0.95 low recall 

7.8% (10 detection) 0.50 to 0.95 higher recall 

44% (100 detection) 0.50 to 0.95 moderate overall 

recall 

35.1% (small with 

100 detection) 

0.50 to 0.95 moderate precision 

52.4% (medium 

with 100 detection) 

0.50 to 0.95 relatively higher 

recall 

59.9% (large with 

100 detection) 

0.50 to 0.95 relatively higher 

recall 

 

The Faster R-CNN method was compared to traditional 

manual digitization across three aspects: accuracy, 

efficiency, and flexibility. 

 

Accuracy: The Faster R-CNN model achieved an 

average precision of 75%, while the traditional manual 

method typically offers higher precision. However, the 

model's performance can be improved by increasing the 

training dataset size, reducing human error inherent in 

manual methods. 

 

Efficiency: The automatic method processed a test 

dataset of six images (1,298 x 1,430 pixels) in 25 

seconds, including bounding box detection, midpoint 

conversion, georeferencing, and CSV file generation. 

This efficiency is significantly superior to the manual 

method, which is time-consuming and labor-intensive. 

 

Flexibility: The Faster R-CNN model demonstrated 

adaptability to different environments and tree sizes due 

to the diverse training dataset, making it less biased and 

more versatile compared to the manual method. 

 

4. CONCLUSION 

The deployment of the Faster R-CNN model for palm 

tree counting has proven to be successful, demonstrating 

the model's capability to accurately detect and count 

palm trees in orthophoto imagery. This method offers a 

significantly faster and more efficient alternative to 

traditional manual digitization, reducing the time and 

effort required for tree counting.  

 

However, integrating the model into ArcGIS software 

presents some challenges, particularly in exporting the 

model's output into a compatible format. This 

integration process requires further exploration and 

development to streamline and enhance compatibility 

between the model and ArcGIS. 

 

Recent advances in object detection models, particularly 

for aerial imagery, present intriguing opportunities to 

improve the accuracy of our Faster R-CNN-based 

model. For small item recognition in aerial photos, for 

example, the Efficient-Lightweight YOLO (EL-

YOLOv5) model improves detection performance by 

fine-tuning the architecture to balance low-level and 

deep feature maps. The approach improves precision 

without appreciably raising computational complexity 

by incorporating more precise low-level features [8]. In 

the same way, the Efficient YOLOv7-Drone model 

tackles the difficulties of aerial imagery collected by 

drones, which frequently contains closely spaced small 

objects. By eliminating ineffective detection heads and 

using adaptive multi-layer masking to concentrate 

processing power on pertinent foreground regions, this 

technique maximizes efficiency and accuracy in 

detection [9]. A notable advantage of the Faster R-CNN 

model is its adaptability to other types of farms or tree 

species. By expanding and modifying the training 

dataset, the model can be fine-tuned for accurate tree 

counting in various agricultural settings, making it a 

versatile tool for different agricultural projects. 

 

In summary, the Faster R-CNN model offers an 

efficient and accurate solution for palm tree counting. 

Despite the challenges in integrating with ArcGIS, its 

speed and flexibility make it a promising tool for tree 

counting across various agricultural applications. 

Continued research and development will further 

enhance its usability and expand its potential in 

precision agriculture. 
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