
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Yield Estimation of Major Crops in Butuan City,
Agusan del Norte Using Geospatial Techniques

Edgardo Ricardo B. Sajonia Jr
Department of Electronics Engineering, Caraga State University (CSU DECE)

Anamarie P. Sajonia
College of Engineering and Geosciences, Caraga State University (CSU CEGS)

https://doi.org/10.5109/7323281

出版情報：Proceedings of International Exchange and Innovation Conference on Engineering &
Sciences (IEICES). 10, pp.325-331, 2024-10-17. International Exchange and Innovation
Conference on Engineering & Sciences
バージョン：
権利関係：Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International



Proceeding of International Exchange and Innovation Conference on Engineering & Sciences 

(IEICES) 

Yield Estimation of Major Crops in Butuan City, Agusan del Norte  

Using Geospatial Techniques 

Edgardo Ricardo B. Sajonia Jr.1 2 3, Anamarie P. Sajonia3 4 5  

1Department of Electronics Engineering, Caraga State University (CSU DECE) 
2Center for Renewable Energy, Automation, and Fabrication Technology (CSU CRAFT)  

3College of Engineering and Geosciences, Caraga State University (CSU CEGS) 
4Department of Agricultural and Biosystems Engineering, Caraga State University (CSU DABE) 

5Center for Resource Assessment Analytics and Emerging Technologies (CSU CREATE) 

Corresponding author email: ebsajonia@carsu.edu.ph  

 

Abstract: This study uses LiDAR derivatives and Landsat 8 OLI/TIRS for yield estimation of major crops in Butuan City, 

Agusan del Norte, Philippines. Yield estimation is crucial for crop management, food security, and economic impact. 

Remote sensing techniques and GIS were used for crop yield estimation. eCognition software classified photos, while 

LiDAR derivatives like Canopy Height Model (CHM), Digital Surface Model (DSM), and Normalized Digital Surface 

Model (nDSM) were produced. Vegetation objects were classified into High, Medium, and Low Elevation Groups based 

on LiDAR nDSM heights. Regression analysis developed the allometric equation for yield estimation. The study achieved 

94.36% overall accuracy in map classification and yield estimations of 84.5% for banana, 87.9% for coconut, 72.5% for 

corn, and 86.4% for mango. Average production was 58.414 tons/ha for bananas, 1,001.15 tons/ha for coconut, 8.48 

tons/ha for corn, and 1.256 tons/ha for mango. 
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1. INTRODUCTION  

Agriculture remains a significant contributor to the GDP, 

overall employment, and the means of subsistence for the 

rural population. It is also the nation's main source of 

income, with impoverished households experiencing the 

worst levels of food insecurity. The country's agricultural 

development has great potential in Mindanao. Providing 

more over 40% of the nation's food needs and making up 

over 30% of the national food commerce, it is regarded 

as the food basket of the nation[1]. However, the negative 

effects of climate change on agriculture and the growing 

population's demand for food make ensuring food 

security in the nation a significant concern. 

According to [2], changes in climatic elements will affect 

agricultural production. The rising temperatures 

eventually lead to lower yields of desired crops while 

promoting the growth of weeds and pests. Furthermore, 

variations in precipitation patterns raise the risk of both 

long-term production decreases and short-term crop 

failures. Global food security is at risk due to the general 

negative effects of climate change on agriculture, even 

though particular crops may prosper in some parts of the 

world [3]. It was predicted that yields for crops of East 

Asia and the Pacific in 2050 will decline by 4% for maize 

because of climate change [4]. Furthermore, the report of 

[5], under mild El Niño circumstances, the country's total 

agricultural production losses might be P8.09 billion, 

while during a severe dry spell, they could reach P20.46 

billion. 

Hence, estimating crop yields is crucial both at national 

and regional levels. Planners and decision-makers can 

forecast how much to import in the event of a shortage or 

export in the event of a surplus thanks to crop yield 

estimation. Furthermore, it permits the government to do  

tactical backup plans for redistributing food in the event 

of a famine. 

Light Detection and Ranging, or LIDAR, has become 

increasingly popular for use in remote sensing. The 

ability to analyze vegetation and topography elements in 

distinct three dimensions is made possible by airborne 

altimetric LiDAR [6,7,8,9,10,11].  Across a wide area of 

the landscape, this active sensor pulses a laser, measuring 

the intensity and round-trip times of the returned pulses. 

These data are then translated into range measurements. 

Accuracy is obvious and recognized by numerous 

governments and business sectors with the use of LIDAR 

technology. Therefore, it is essential to extract data 

precisely and accurately as a baseline for estimating the 

output of high-value crops in Butuan City. This will give 

decision-makers on agricultural vegetation more 

trustworthy information. Additionally, this will open new 

avenues for crop-related research and development in the 

future. 

 

2. METHODOLOGY 

This section presents the description and profile of the 

study area and the major processes employed as shown 

Fig. 2. To generate yield estimation of major crops in 

Butuan City, Agusan del Norte, Philippines. It has five 

major processes employed: landcover classification, 

features extraction, field measurements, development of 

the allometric model, and yield estimation. 

 

2.1 The Study Area 

The Butuan City Planning Office's data indicates that the 

city's total land area is 816.62 km². 48.64% of its total 

area is made up of agricultural land, 32.82% of forestland, 

7.48% of pastureland, and 11.06% of built-up land [12]. 

It only illustrates that agriculture occupies a large portion 

of the city's entire territory. Fig. 1 shows the location of 

the study and its boundaries. 
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Fig. 1. Map of Butuan city and its boundary. 

 

2.2 Agricultural Resource Classification 

Pre-processed LiDAR data and color aerial imagery 

(orthophoto) of Butuan City were the remotely sensed 

datasets used in this study for the classification of high-

value crops. For object-based image analysis, the item 

was first segmented before being classified. To create 

meaningful "objects," neighboring pixels were grouped 

according to their homogeneity through a method known 

as segmentation [13,14,15,16,17]. The next step involved 

classifying these items. Several eCognition techniques 

made it simple to perform both segmentation and 

classification. Using user-defined rule sets, object-based 

classification was carried out. 

 
Fig. 2. Process flow of the study. 

 

2.3 Validation and Accuracy Assessment 

Field validation surveys were carried out to confirm the 

real land cover existed in the area and to evaluate the 

accuracy of the classified land cover using the general 

rule sets produced. The following previous operations 

were included in the validation process: (a) choosing 

training/validation points; (b) digitizing road routes; (c) 

creating field guide maps; and (d) conducting actual field 

validation surveys. The project's field validation surveys 

yielded validated points, which were then used to assess 

the accuracy of the resulting classification using ENVI's 

classification confusion matrix. 

 

2.4 Banana, Coconut, Corn, and Mango Feature 

Extraction 

Mango, banana, coconut, and corn features were taken 

from the identified land cover and converted to a 

shapefile for use in a GIS using the eCognition 

environment. The resources were categorized using the 

created ruleset, which was then used in the software's 

process tree. The process of extraction involved choosing 

the classes to be exported, configuring the export type as 

shapefile, and exporting the output through the toolbar. 

Furthermore, a stratified sampling technique was 

employed to determine the sample site based on the 

region distribution of each crop, utilizing the attributes 

that had been extracted. 

 

2.5 Field Measurement (In situ Spectral Response 

Measurement of Banana, Coconut, Corn and Mango 

On a clear, sunny day, spectral signature measurements 

were made at intervals of 9 AM to 2 PM using a USB 

4000 Spectrometer[18,19]. Every sample was measured 

in two minutes after three trials totaling thirty scans each. 

Every trial contains two light references—before and 

after—and one black reference.  Except for the dark 

reference, all 30 scans were taken throughout the 2 

minutes for these references. 

The Ocean OpticsTM Spectrometer was used to measure 

the reflectance spectra at each sampling point, slightly 

above the canopy. The sensor has a spectral range of 350 

nm to 1000 nm for data detection and recording. The 

sensor was part of the setup that measured the spectra of 

the crops. It was placed somewhat above the canopy, put 

in a makeshift pole, and connected to fiber optics. A 

laptop computer was linked to the spectrometer, which 

was used to carry out the scanning process, show the plot 

of the observed reflectance, and store the reflectance data. 

There were only three modes of spectral measurements 

for maize, but five modes of spectral measurement were 

carried out for each sample crop stage: four on the side 

of the canopy (i.e., at 45 degrees separation) and one on 

top of the canopy. It required 20 scans for each mode; the 

sample's spectral reflectance at that sampling location is 

represented by the average of those scans. The amount of 

radiation reflected by the sample crop and the reflected 

radiation from a "white reference panel" (Ocean Optics 

LS1 diffused reflectance standard) were the two types of 

measurements made at each site. Both before and after 

the sample crops were measured, the white reference 

panel was measured. All gathered data were converted to 

Microsoft Excel format and the reflectance was 

calculated using the equation below. 

𝑅 =
𝐿𝑐𝑎𝑛𝑜𝑝𝑦

𝐿𝑝𝑎𝑛𝑒𝑙
 𝑥 100% 

Eqn. 1. Reflectance equation 

 

where Lpanel is the measured radiance for the calibration 

panel, Lcanopy is the average measured radiance above 

the canopy, and R is the canopy reflectance. 

 

2.6 Statistical Analysis and Allometric Model 

Development 

Global vegetation indices, such as the Vegetation 

Condition Index (VCI), which measures plant greenness, 

the Thermal Condition Index (TCI), which measures 

temperature, and the Vegetation Health Index (VHI), 

which is a linear combination of VCI and THI, were used 

to estimate yield [20,21].  Using ArcMap 10.4 software, 

an allometric model was created between the actual yield 

data of the five sample locations per crop and the 

Vegetation Health Index of the processed image. 
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Regression analysis was then used to analyze the model 

and create a yield map for Butuan City. 

 

2.7 Yield Estimation and Accuracy Assessment 

Using vegetation health index extracted from Landsat 8 

OLI/TIRS data using GVI indices, including yield data 

of the previous planting cycle, a yield estimation was 

made via regression using Microsoft Excel 365. Crop 

health analysis was determined using spectral analysis of 

its chlorophyll content, obtained through a field survey 

using a USB 4000 spectrometer.  This was then compared 

to a control with standard chlorophyll quantities of crops 

in areas with known minimal thermal stress 

Global vegetation indicators, such as the Vegetation 

Condition Index (VCI), which measures plant greenness, 

the Thermal Condition Index (TCI), which measures 

temperature, and the Vegetation Health Index (VHI), 

which is a linear combination of VCI and THI, were used 

to estimate yield [22,23]. The accuracy assessment of the 

model was performed to assess its suitability for yield 

estimation. The ratio of the estimated to actual yield of 

the five sampling regions for each crop—banana, 

coconut, corn, and mango—was obtained from fieldwork 

interviews. 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Agricultural Resource Classification 

Based on the developed methodological procedure, the 

orthophoto and LiDAR derivatives of Butuan City were 

subjected to pre-processing before the classification of 

the crops in the city, and the result is shown in Fig. 3. The 

findings showed that Butuan City's agricultural resources 

included bananas, rice, corn, coconuts, mangoes, and oil 

palm. However, additional non-agricultural land cover 

characteristics, like water, roads, fallow areas, grasslands, 

shrublands, sand/bare rock/clay, buildings, and non-

agricultural trees, were also included in the classification. 

 
Fig. 3. Classified resources in Butuan city. 

 

As Fig. 4 illustrates. Butuan City's primary agricultural 

resources included bananas, coconuts, corn, and mangoes. 

It made up 0.5%, 13.67%, 0.02%, and 2.00% of the area 

distribution's total classified features, respectively.  

Additionally, the degree of accuracy in the resource 

classification was evaluated. The outcome demonstrates 

that the created optimized algorithm uses Object-Based 

Image Analysis (OBIA) classification to extract detailed 

agricultural resources and provides the best feasible 

result. 

 
Fig. 4. Summary of areal distribution of classified 

resources. 

 

As illustrated in Fig. 5, the overall accuracy of the 

classified detailed resource map created using LiDAR 

data increased to a high of 94.36%, with the Kappa Index 

Agreement (KIA) being closest to 93%.  

 
Fig. 5. Accuracy assessment of the classified resources 

 

The general accuracy of earlier research [23,25] results 

was increased from roughly 72% to 91% for the 1985 

map, 76% to 90% for the 1995 map, and 79% to 87% for 

the 2005 map. This means that the study's accuracy yields 

very respectable results for thorough classification 

mapping utilizing LiDAR data and orthophoto. 

 

3.2 Banana, Coconut, Corn and Mango Features 

Extraction 

Using eCognition software, features of bananas, coconuts, 

corn, and mangos were extracted from the classified 

resources and converted to shapefiles for GIS application 

and the result is shown in Fig. 5. The retrieved features 

resulted in 195,233 overall segmented objects, of these, 

6,162 (3.15%) were segmented for bananas, 164,725 

(84.37%) for coconuts, 198 (1.01%) for corn, and 24,148 

(12.36%) for mangos. Among the top 4 major crops in 

the city, coconut had the highest areal distribution with a 

total of   4, 357 .15 hectares followed by mango with 203. 

32 hectares. 

Additionally, using GIS, the minimum, maximum, total, 

and mean height and crown area values of the banana, 

coconut, corn, and mango were ascertained. It reveals 

that the average height of corn, mango, coconuts, and 

bananas, and 7.64 m, 1.13 m, and 3.92 m, respectively, 

were found in Butuan City. Banana stems can grow up to 

4 or 5 meters tall. According to [26], banana stems can 

reach up to 4 to 5 meters high. Hence, based on the result 
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of this study, bananas were considered at the 

reproductive stage with a 4 m average height. 

 
Fig. 6. Extracted banana, coconut, corn, and mango 

features in Butuan city. 

 

 
Fig. 7. The attribute tables of extracted features and its 

distribution 

 

In addition, according to [27], the average height of 7.64 

m of coconut was estimated as 16 years old using their 

developed allometric equation and the result of the corn 

height shows that the majority of the crops were at the 

vegetative stage at tassel development. Nutrients and 

water were in high demand to meet the growth needs. 

Moreover, the average height of grafted mango is 15 feet 

[28,29] which conformed to the result of this study. 

 

3.3 Development of Allometric Model for Yield and 

VHI 

Using a spectrometer, the spectral reflectance of the 

banana, coconut, corn, and mango was evaluated during 

in-situ field measurement to establish their physical 

attributes. The three EMS sections of the visible region 

(400–700 nm), near-infrared region (700–1350 nm), and 

mid-infrared region (1350–2500 nm) are where its 

spectral reflectance can be found. While NIR has very 

low absorption, transmittance, and reflectance, and MIR 

has medium to low transmittance and reflectance, the 

visible region has low reflectance, high absorption, and 

minimal transmittance [30]. 

 
(a) Spectral reflectance of banana 

 

 
(b) Spectral reflectance of coconut 

 

 
(c) Spectral reflectance of the different stages of corn 

 
(d) Spectral reflectance of mango 

Fig. 8a-8d. Spectral reflectance of the major crops 

 

A healthy green plant's reflectance rises sharply in the 

near-infrared (NIR), where a plant leaf normally reflects 

40–50% of incident energy between 700 and 1300 nm. In 

the mid-IR, reflectance is controlled by water content. 

After 1300 nm, healthy vegetation usually absorbs or 

reflects light energy, with reflectance peaks occurring 

between 1600 and 2200 nm. Water absorbs between 1400 

to 1900 nm, although the precise locations of these bands 

vary, causing absorptions. As a result, all samples were 
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regarded as healthy vegetation that complied with the 

study of [31]. Fig. 8 shows the different spectral 

responses of each crop. 

To generate a yield map in Butuan City, an allometric 

model was developed between the actual yield data of the 

five sample points per crop and it Vegetation Health 

Index of the processed image using ArcMap 10.4 

software and the results are shown in Fig. 9. 

 
Fig. 9. Allometric model between yield and VHI 

 

Based on the results, vegetation health index and yield 

had a strong fit linear relationship based on the R2 value 

of the analysis with 0.8904, 0.7401, 0.9834, and 0.902 for 

banana, coconut, corn, and mango, respectively. The 

highlighted red box of the figures was the allometric 

equation developed to estimate the yield given the 

vegetation health index and its corresponding R2 value. 

The model shows that the vegetation health index had a 

significant impact on yield since the intercept coefficient 

was negative which means that there is a significant 

decrease in yield as VHI decreases for both crops. 

Moreover, the developed model indicated a strong 

validity of the regression output since there is a very 

small significance F value for both crops with a greater 

probability that the model is valid based on the P-value. 

 

3.4 Yield Estimation and Accuracy Assessment 

Using the developed allometric equation for yield 

estimation, maps were produced to illustrate the 

distribution of the estimated yield of banana, coconut, 

corn, and mango in Butuan City based on the Vegetation 

Health Index. Fig. 10 shows the estimated yield 

distribution of bananas in the city and based on the result; 

it had an average production of 58.414 tons per hectare. 

 
Fig. 10. Estimated yield distribution of banana (ton/ha) 

 

Yields of 15, 20, and up to 45 tons/ha can normally be 

obtained for the 'Brazilian', 'Bluefields', and 'Cavendish' 

varieties, respectively [32]. Yields of 84 tons/ha have 

been reported under optimal conditions. Hence, 

proper care and maintenance are recommended in 

banana plantations in Butuan City to attain better 

yield under good conditions. 

Also, the estimated yield of coconut was computed, and 

the result is shown in Fig. 11. Based on the result, Butuan 

City had a total estimated coconut production of about 

164.913 metric tons with an average yield of 1,001.15 

tons/ha with a comparative result to the PCA-Caraga 

Report (Copra Production 2017-2022) of 1,045.6 tons/ha. 

On the other hand, the estimated yield distribution of corn 

in Butuan City is shown in Fig. 12. Most of the corn 

farmers in Butuan City were planting Hybrid corn 

varieties. The result shows that there was an estimated 

total yield of 1.6 metric tons with an average yield of 8.48 

tons/ha which had a comparative result to the average 

hybrid corn yield in Mindoro Occidental at 5.5-9.0 

tons/ha [33,34]. 

 
Fig. 11. Estimated yield distribution of coconut ton/ha) 

 
Fig. 12. Estimated yield distribution of corn (ton/ha) 

 

Moreover, the estimated yield of the extracted mango in 

Butuan City was computed and the result was mapped as 

shown in Fig. 13.  Based on the result, there was an 

estimated total production of 180.882 metric tons with an 

average yield of 1.256 tons/ha. The 2017-2022 report of 

the City Agriculture Office stated that the average yield 

of mango in the city was about 1.5 tons/ha. Thus, its yield 

data estimation has an accuracy of 83.4%. 

To determine the fitness of the model for yield estimation, 

an accuracy assessment was performed. Assessment was 

done by getting the ratio of the estimated yield to the 

actual yield of banana, coconut, corn, and mango 

collected during fieldwork interviews of the five 

sampling areas per crop. 
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Fig. 13. Estimated yield distribution of mango (ton/ha) 

 

Based on the result, the model had an accuracy of 84.5%, 

87.9%, 72.5%, and 83.7% for banana, coconut, corn, and 

mango, respectively. The resulting accuracy shows 

acceptable results for yield estimation using LiDAR data 

coupled with Landsat 8 images. 

 

4. CONCLUSION 

The study's findings led the researchers to the conclusion 

that remote sensing may be used to estimate the yield of 

bananas, coconuts, corn, and mangoes. The various 

resources in the city were categorized using object-based 

classification of high-value crops using an improved 

SVM model with LiDAR data and Orthophoto. An 

important yield estimate was produced by the devised, 

optimized method that was used in the classification and 

produced an extremely high overall accuracy. Yield 

estimation was produced with sufficient practical use of 

LiDAR data (Normalized Digital Surface Mod [nDSM]) 

and other remote sensing data; the resulting accuracy 

indicates satisfactory results for yield estimation using 

LiDAR data coupled with Landsat 8 images. 

Thus, the project's output was valuable for several 

purposes, including planning, observing, and evaluating 

the physiological structure for resource management, 

economics, food security, technology application, and 

other purposes. 
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