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Abstract: Concerns about irrigation performance associated with water dependability and climate change threats to 

food security stress the need to evaluate water adequacy and understand climate impacts on irrigated environments. The 

study assessed the irrigability index of selected irrigation systems in Camarines Sur, Philippines. Geodatabases were 

processed in QGIS to determine the slope and soil-based potential irrigable areas and calibrated SWAT models simulated 

streamflow for water resources-based potential irrigable areas. Results revealed insufficient water in irrigation systems 

to support continuous flooding of service areas, especially during the dry season, highlighting vulnerability to water 

supply fluctuations. Climate change is projected to exacerbate water insufficiency issues. Low irrigability indices also 

limit further irrigation development despite high land suitability. The study recommends improving geodatabases, 

optimizing cropping calendars, and using water-saving technologies. The study's methodology and results can aid in 

irrigability index assessments and may serve as a reference in planning and managing irrigation projects.  
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1. INTRODUCTION  

 

Rice is the staple food for Filipinos and is of immense 

economic, traditional, and political importance, making 

it an integral component of the country's food security 

and poverty alleviation plans. The government has 

heavily relied on irrigation as a policy instrument to boost 

agricultural production for the past decades, representing 

nearly a third of all public investments since the 1960s, 

with greater priority to the rice sector, accounting for at 

least two-thirds of public expenditure in agriculture and 

having the highest publicly funded irrigation projects [1], 

[2] [3]. However, these irrigation investments did not 

translate to a comparable cropping intensity and 

productivity, citing the lack of technical evaluation of 

available water resources and climate change as 

contributing factors [1], [3], [4]. 

 

The pressing concerns about the low performance of 

irrigation systems associated with water dependability 

prompted a collaborative effort to establish appropriate 

criteria for assessing the feasibility of the proposed 

irrigation projects, thus introducing the irrigability index 

(II), with higher values indicating greater feasibility. The 

irrigability index is the ratio of water resources-based 

potential irrigable area (WR-based PIA) to the slope and 

soil-based potential irrigable (SS-based PIA), which 

estimates the irrigable area based on available water 

resources and land suitability, respectively [5].   

 

The data inputs to estimate the irrigability index can be 

processed using GIS software and hydrologic models. 

GIS-based software has been utilized to employ 

geospatial techniques for suitability mapping for the 

cultivation of crops [6], [7] and water resources 

assessment [8]. The Soil and Water Assessment Tool 

(SWAT) is a well-known hydrologic model that can 

simulate the quality and quantity of surface and forecast 

the environmental effects of land use, land management 

techniques, and climate change in watersheds using 

limited data [9]. Several studies have successfully 

utilized SWAT in the Philippines to model streamflow, 

assess the impacts of land use, land cover, and climate 

change on runoff and sediment yield, and simulate 

watershed and hydrologic responses for water resources 

management [10]–[15]. 

 

This study assessed the baseline and climate change 

scenario irrigability index of selected irrigation projects 

in Camarines Sur. Geodatabases were processed in QGIS 

to extract the SS-based PIA, calibrated SWAT models 

were used to simulate streamflow for WR-based PIA, and 

the projected change in rainfall and temperature under the 

Representative Concentration Pathway (RCP4.5) model 

from the Department of Science and Technology - 

Philippine Atmospheric, Geophysical and Astronomical 

Services Administration (DOST-PAGASA) were used to 

obtain the projected irrigability index for 2036-2065.  

 

The methodology, results, and gaps identified in the 

study could help in performing irrigability index 

assessments, which primarily dictate the technical 

feasibility of irrigation projects. Its site-specific outputs 

may serve as a reference for systems design and planning, 

operation adjustments, and selection of technology 

options to mitigate possible effects of climate change. It 

can also serve as a localized basis for irrigation master 

plans. 

 

2. MATERIALS AND METHODS 

2.1 Study Areas 

The study focused on Camarines Sur, a province in 

southeastern Luzon, located between 14°10' and 13°15' 

North Latitude and 124°10' and 122°40' East Longitude. 

It is the largest province in the Bicol Region, covering 

526,682 hectares, and bordered by Quezon, Camarines 

Norte, San Miguel Bay, and the Pacific Ocean to the 

north; Albay to the south; Lagonoy Gulf to the east; and 

Ragay Gulf to the west. Camarines Sur has abundant 

natural resources and a high potential for rice production 

due to its substantial agricultural land and relatively high 

rainfall varying spatially at 2800 to 3300 mm annually. 
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Fig 1. Location of study areas showing the service areas and dam locations. 

 

The study areas are among the largest run-of-the-river 

irrigation systems in the province: the Tigman-

Hinagyagan-Inarihan River Irrigation System (THIRIS) 

and the Cagaycay River Irrigation System (CRIS). The 

study assessed the baseline irrigability index in the two 

sites and evaluated the impact of climate change on CRIS 

as a representative site (see Figure 1). 

 

2.2. Data and Pre-Processing 

 

Geospatial data were used for hydrologic modeling and 

delineating potential irrigable areas. The Digital 

Elevation Model (DEM) was sourced from the National 

Mapping and Resource Information Authority 

(NAMRIA). Vector data were obtained from Geoportal 

Philippines, including soil maps, 2020 land cover maps, 

built-up areas, protected areas, areas with Certificate of 

Ancestral Domain Title (CADT), road and river networks, 

and administrative boundaries. Additional information, 

such as project briefs, technical descriptions, dam 

locations, service areas, parcel maps, and inventory of 

existing irrigation projects, were requested from the 

National Irrigation Administration (NIA). 

 

In hydrologic modeling, data included rainfall, minimum 

and maximum air temperatures, relative humidity, net 

solar radiation, and streamflow records. Daily river 

discharge data from the Department of Public Works and 

Highways (DPWH) monitoring stations were used for 

model calibration and validation. However, the study 

faced challenges with the quality and reliability of 

streamflow records. In past modeling studies, outputs are 

often compared to observed data, assuming that observed 

values are error-free. Modeling evaluation statistics also 

recognized but did not provide recommendations on 

dealing with errors in measurement data, possibly due to 

the lack of literature on measurement uncertainty [16]. 

Such a case also applies to the modeling studies 

conducted here in the Philippines based on the literature 

reviewed for this research. In this study, a 20% expected 

measurement error was assumed for the calibration of the 

model. It is based on the visual checking and inspection 

of streamflow data and available information in related 

literature, such as [17] establishing an estimate for data 

uncertainty for streamflow measurement at 6-19% and 

[16] performance rating, modeled streamflow may be 

rated "good" if it is within 10-15% measured streamflow 

data of typical quality. 

 

Weather data, including rainfall, air temperature, relative 

humidity, and wind speed, were sourced from the DOST-

PAGASA agrometeorological station in CBSUA, Pili, 

Camarines Sur. While rainfall data were complete, other 

parameters had significant gaps, and net solar radiation 

was not measured in the weather station. Rainfall in the 

province also varies spatially, prompting the use of 

weather data from sources like Climate Hazards Group 

InfraRed Precipitation and Stations (CHIRPS) for rainfall, 

National Centers for Environmental Prediction - Climate 

Forecast System Reanalysis (NCEP-CSFR) for net solar 

radiation, and National Aeronautics and Space 

Administration (NASA-POWER) for air temperature, 

relative humidity, wind speed). These datasets were 

chosen for their accessibility, proven reliability in 

previous studies, and validation performed using the 

observed data from the agrometeorological station to 

enhance model performance. 

 

2.3 SWAT Modeling 

 

This study utilized the Soil and Water Assessment Tool 

(SWAT) to simulate streamflow using weather, soil 

characteristics, land cover, and topography of the area. 

 

CRIS requires one watershed model, while THIRIS, 

supported by three dams, requires the development of 

three separate watershed models (see Table 1). The 

generated SWAT watershed reports from the final default 

models used in the study are presented in Table 2. 
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Table 1. Watershed models for each study area. 

IRRIGATION 

SYSTEM/ 

WATERSHED MODEL 

CRIS Cagaycay 

THIRIS Hinagyagan, Inarihan, and Tigman 

 

Model auto-calibration was carried out in the SWAT 

Calibration and Uncertainty Program (SWAT-CUP) 

using the Sequential Uncertainty Fitting (SUFI-2) 

algorithm, following the protocol outlined by [18], [19].  

 

Table 2. Watershed reports for the final SWAT models. 

PROPER-

TY 

WATERSHED 

Cagay-

cay 

Hinagya-

gan 

Inari-

han 

Tigman 

Size, has 4707 2019 3314 3308 

Mean Elev, 

m 

449 247 335 374 

Slope Range (%) 

0-8 25.48 33.96 48.9 21.76 

8-18, % 28.72 25.51 19.3 23.85 

>18, % 45.81 40.53 31.81 54.39 

Land use, (%) 

Forest 33.95 4.39 21.91 19.35 

Agricultural 

land 

51.18 84.35 72.55 74.60 

Grassland 3.80 1.58 - 1.31 

Shrubs 9.13 8.22 3.05 3.40 

Urban 1.66 1.45 2.24 0.44 

Water 0.28 - 0.24 0.90 

Soil type, (%) 

Clay - 20.3 95.3 18.35 

Clay loam 56.6 79.7 4.7 81.65 

Sandy loam 43.4 - - - 

 

Only the Cagaycay and Hinagyagan rivers had gauging 

stations among the four watersheds studied. For 

ungauged rivers, the SWAT parameters regionalization 

was employed based on watershed characteristics derived 

from SWAT watershed reports. This regionalization or 

parameter transfer approach is supported by findings 

from various studies, which suggest that proximity and 

similar watershed characteristics are influential criteria 

for successful SWAT parameter regionalization. For 

instance, [20] highlighted the importance of geographic 

proximity and watershed similarity in parameter 

transferability. Watershed characteristics such as land 

use, soil type, and topography are critical in successfully 

regionalizing SWAT parameters [21]. [22] further 

documented these findings, demonstrating that regions 

with similar climatic and hydrological conditions can 

share calibrated parameters with minimal loss of 

accuracy. 

 

2.4 Model Evaluation 

 

The Nash–Sutcliffe model efficiency (NSE), RMSE-

observations standard deviation ratio (RSR), Percent 

Bias (PBIAS), and statistical indices for stochastic 

models, P-factor and R-factor, were used to assess model 

performance. 

 

SWAT calibrations involved optimizing the P-factor and 

R-factor while considering changes in NSE as the 

objective function. The P-factor represents the 

percentage of observed data within the 95PPU band, 

while the R-factor indicates the width of this band. It is 

recommended to achieve a P-factor ≥ 0.7 and R-factor ≤ 

1.5 for river discharge [23], aiming to envelop observed 

data with minimal uncertainty [23]. 

 

2.5 Derivation of Water Resources Based Potential 

Irrigable Area 

 

The WR-based PIA was determined by dividing the 

monthly dependable flow (by performing a Hydrologic 

Frequency Analysis in HEC-SSP) by the diversion water 

requirement. The diversion water requirement was 

computed based on criteria, recommendations, and 

guidelines from the NIA and the Philippine Agricultural 

Engineering Standards (PAES) [24]. 

 

2.6 Derivation of Slope and Soil Based Potential 

Irrigable Area 

 

QGIS software was used to extract the SS-based PIA 

from the irrigation system's geodatabase, using the 

method adopted from [8] and [5] (see Figure  2). 

Fig 2. Methodological framework for processing the 

gross and net land-based potential irrigable area. 
2.7 Climate Change Scenario Analysis 

 

This study evaluated the impact of climate change on the 

irrigability index by focusing on the WR-based PIA in 

the Cagaycay River Irrigation System. The projected 

changes in rainfall and temperature for 2036-2050 under 

the RCP4.5 scenario from DOST-PAGASA were used 

relative to the baseline climate (1971-2000). According 

to PAGASA, the Philippines is already experiencing 

some of these projected changes, making this scenario a 

realistic comparison with the baseline and depicting an 

optimistic future with mitigated emissions [25]. 

 

3 RESULTS AND DISCUSSION 

 

3.1 SWAT Initial Model 

 

Initial models for the Cagaycay and Hinagyagan 

watersheds were evaluated using graphical analysis, NSE, 

and coefficient of determination (R²) based on available 

river discharge measurements. Time series plots 

indicated that both models captured observed flow data 
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trends and temporal behavior. However, they struggled 

to estimate the base flow, tending to overestimate peak 

flows and underestimate extremely high flows. 

 

The uncalibrated models exhibited NSE values greater 

than 0, indicating better predictions than mean observed 

values. Both models showed similar R² values: 0.39 for 

Hinagyagan and 0.40 for Cagaycay, suggesting that 

approximately 40% of the observed data variability is 

explained by the models.  

 

The promising performance of the initial models for 

Cagaycay and Hinagyagan underlines the effectiveness 

of applying the same dataset and modeling approach to 

two ungauged watersheds, providing valuable insights 

into their hydrological behavior. 

 

3.2 SWAT Calibration and Validation 

 

Calibration was conducted on the gauged Cagaycay and 

Hinagyagan watersheds. The outcomes of these 

calibrations were subsequently used as a reference for the 

Tigman and Inarihan Rivers. Table 3 presents the 

calibration and validation results, including P-factor, R-

factor, NSE, PBIAS, and RSR. Figures 3-4 illustrate the 

95PPU plots for calibrating each watershed. 

 

Table 3. Statistical indices during performance 

evaluation of the SWAT calibrated models 

 Cagaycay Hinagyagan 

Calibration   

P-factor 0.74 0.72 

R-factor 0.77 0.75 

NSE 0.45 0.45 

PBIAS 10 -0.5 

RSR 0.75 0.74 

Validation   

P-factor 0.77 0.77 

R-factor 0.91 0.99 

NSE 0.53 0.32 

PBIAS -0.5 15 

RSR 0.69 0.82 

 

The final SWAT calibrated models yielded NSE below 

0.5 and RSR above 0.70, while PBIAS values from -1.7% 

to 10%. The Cagaycay model improved significantly 

from 0.01 to 0.45, indicating substantial improvement of 

watershed parameters in model performance. Initially, 

the Hinagyagan River model already showed adequate 

performance with an NSE of 0.39, which improved to 

0.45 post-calibration. However, both NSE and RSR 

values fell outside the "satisfactory" calibrated model 

thresholds (NSE > 0.50, RSR < 0.70) defined by  [16]. 

 

This suggests that factors beyond the physical watershed 

parameters included in the model may affect the fit 

between simulated and observed data. Such factors could 

include point sources like springs that consistently 

recharge streams or the presence of upstream reservoirs 

and dams. It's important to note that many SWAT 

modeling studies, including those reviewed in this 

research, often operate with minimum required datasets 

due to data limitations in the Philippines. Faced with 

similar constraints, the decision was made to accept the 

model rather than adjusting parameters to meet 

subjective satisfactory criteria that may not account for 

missing components in the physical model. 

 

Furthermore, NSE values can be subjective and 

influenced by data characteristics such as magnitude, 

number of points, outliers, and repetitions [26]. These 

considerations are critical for interpreting results, as both 

high and low flows are included in the study's calibration 

and validation datasets. Issues may arise when 

optimizing and comparing NSE across basins with 

diverse seasonal and dynamic characteristics [27]. Also, 

despite [16] defining thresholds for NSE and RSR, these 

indices are interrelated as NSE is the same as 1-RSR2 

[27]. 

 

With accelerated land use changes and disturbances, the 

deterministic approach in modeling—focused on 

comparing observed and simulated values—has become 

increasingly challenging. Goodness-of-fit criteria like 

NSE, RSR, and PBIAS may not fully capture 

complexities introduced by these changes and 

uncertainties in input data (e.g., rainfall, weather, land 

use, soil) and measurement errors (e.g., sediment and 

river discharge) [23]. 

 

To assess model performance, P-factor and R-factor were 

used to describe the simulation results. The calibration 

and validation process successfully enclosed at least 70% 

of observed data within the 95PPU band. Average P-

factor and R-factor values achieved were within the 

recommended thresholds (>0.70 and <1.15, respectively).  

 

Despite the models' limitations, they showed significant 

improvement compared to the initial model, considering 

inherent uncertainties. This improvement reflects 

meaningful calibration and enhances their ability to 

simulate hydrological processes, thereby rendering them 

valuable for subsequent analyses in this study.  

 

Table 4 presents the calibrated parameter ranges for the 

watersheds modeled in this study. Parameters from the 

Cagaycay and Hinagyagan watersheds were applied to 

the Tigman and Inarihan watersheds, respectively, due to 

their proximity and similar watershed characteristics (see 

Table 2).
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Fig 3. 95PPU plot of observed and simulated streamflow from calibrated Cagaycay watershed model 

 

 
Fig 4. 95PPU plot of observed and simulated streamflow from the calibrated Hinagyagan watershed model 

Table 4. Calibrated SWAT parameters 

Parameter 
Cagaycay Hinagyagan 

Min Max Min Max 

*CN2.mgt 

-

0.25 0.01 

-

0.13 0.008 

**GWQMN.gw 180 760 317 1038 

**REVAPMN.gw 810 1550 425 808 

**GW_DELAYgw 5 95 22 141 

**ALPHA_BF.gw 0.59 0.78 0.53 0.84 

**RCHRG_DP.gw 0.7 1 0.65 1 

**ESCO.hru 0.61 1 0.68 1 

*OV_N.hru 0.08 0.22 0.02 0.2 

*SLSUBBSN.hru 

-

0.08 0.15 

-

0.09 0.15 

*HRU_SLP.hru -0.1 0.13 

-

0.46 -0.13 

**LAT_TTIMEhru 38 72 38 71 

*SOL_AWC().sol -0.1 0.3 

-

0.32 -0.05 

*SOL_K().sol -0.1 0.3 -0.4 -0.1 

*SOL_BD().sol 

-

0.23 0.07 

-

0.23 0.07 

**CH_N2.rte 0.15 0.3 0.15 0.29 

**CH_K2.rte 60 100 59 100 

**ALPHA_BNKrt

e 0 0.5 0 0.44 

**SURLAG.bsn 10 22 9.94 21.84 

**EPCO.bsn 0.61 1 0.6 1 

Type of change: * relative, **replace. 

 

Moreover, Global Sensitivity Analysis revealed that CN2 

(SCS Runoff Curve Number), GW_DELAY 

(Groundwater Delay, days), SOL_BD (Moist Bulk 

Density), and RCHRG_DP (Deep Aquifer Percolation 

Fraction) are the most sensitive parameters at a 5% level 

of significance for both calibrated models for the 

Cagaycay and Hinagyagan watersheds. 

 

3.3 Water Resources Based Potential Irrigable Area 

 

The potential irrigable area was determined using the 

monthly dependable river flow and calculated irrigation 

water requirements; the provincial average varies from 

1.39 to 1.57 lps/ha under various cropping calendars. 

Cropping calendar optimization revealed that both 

irrigation systems can cater to larger service areas if 

planting for the wet season starts in the 1st week of June 

and the harvesting period starts in the 3rd week of 

September. Meanwhile, for the dry season, planting 

should begin during the 1st week of December, and the 

harvesting period should start in the 3rd week of March. 

Table 5 shows the WR-based PIA under the optimum 

cropping calendar for each irrigation system.  

 

Table 5. WR-based PIA for each irrigation system 

considering the optimum cropping calendar. 

Irrigation 

System 

Wet season, has Dry season, has 

THIRIS 2985 2274 

CRIS 1915 1873 

 

3.4 Slope-Soil Based Potential Irrigable Area 

 

Based on the suitable slope and soil for a rice-based 

cropping system, the net potential irrigable of THIRIS 

and CRIS stands at 4,246 and 2,270 hectares, 

respectively.   

 

Table 6 compares the recorded firmed-up and the derived 

net potential irrigable area with at least 5 hectares of 

contiguous area for each irrigation system. The derived 

net potential irrigable area exceeds the recorded firmed-

up service areas. 
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Table 6. Comparison of firmed-up service area and 

derived net potential irrigable area for each irrigation 

system. 

Irrigation 

System/Project 

Firmed-Up 

Service Area 

Derived Net PIA 

using System's 

Boundary 

THIRIS 3,604.0 4,246.0 

CRIS 2,010.0 2,270.0 

 

This suggests that areas within the vicinity of the 

irrigation systems meet the criteria for potential 

development but have not yet been utilized for rice 

cropping, are not yet irrigated, or are not yet covered by 

the irrigation systems' service area. The higher net 

potential irrigable area indicates a broader potential for 

irrigation development beyond the current service area. 

 

3.5 Baseline Irrigability Index 

 

The ratio of the WR-based PIA to the SS-based PIA 

(using the firmed-up service area) for each site was used 

to express these components as an irrigability index (see 

Table 7). The higher the value, the more technically 

feasible the site is based on water availability and land 

suitability, assuming a rice-based cropping system and 

continuous flooding irrigation scheme. 

 

Table 7. Calculated irrigability Index 

Irrigation 

System 

Wet Season Dry Season 

THIRIS 0.83 0.63 

CRIS 0.95 0.93 

 

Both irrigation systems registered an irrigability index of 

less than 1, indicating that the water resources available 

are insufficient to irrigate the designed firmed-up service 

area under continuous submergence conditions. 

Irrigability indices also exhibited a decline during the dry 

season, indicating the vulnerability of irrigation systems 

to variations in water availability. Similar situations have 

been documented in recent studies of other national 

irrigation systems in the country [28], [29]. 

 

The high irrigation water requirements for land 

preparation, particularly at the start of the wet season, 

prompt the adoption of asynchronous cropping calendars. 

Controlled irrigation through rotational water delivery is 

also practiced during the dry season. However, the 

impacts of these practices on irrigation system 

performance and yield response have not yet been 

optimized or fully determined. 

 

Furthermore, the indices obtained are only based on the 

designed firmed-up service area. Therefore, expansion is 

not recommended despite the high land suitability 

evidenced by higher SS-based PIA. These issues on 

water sufficiency were proven to continue under climate 

change scenario analysis conducted in this study. 

 

3.6 Irrigability Index Under Climate Change 

Scenario 

 

The average irrigability index in the Cagaycay River 

Irrigation System is projected to decline from 0.94 to 

0.79 (Table 7). This reduction is attributed to decreased 

rainfall and streamflow and increased evapotranspiration 

due to rising mean temperatures. The monthly 

dependable flow derived from SWAT-simulated 

streamflow generally reflects the trend of projected 

changes in rainfall and the effect of rising mean 

temperatures. 

 

Table 7. Comparison of baseline and climate change 

scenario irrigability index of CRIS 

Scenario WR Based PIA, has Irrigability Index 

Wet 

Season 

Dry 

Season 

Wet 

Season 

Dry 

Season 

Baseline 1915 1873 0.95 0.93 

RCP4.5 1498 1680 0.75 0.84 

 

Figure 5 compares monthly dependable flow for the 

baseline and climate change scenario in Cagaycay River 

and the monthly effective rainfall and potential 

evapotranspiration in the service area of the irrigation 

system. 

 

Dependable flow for the June-July-August (JJA) and 

September-October-November (SON) seasons is 

projected to decrease from 5.5 to 5.1 m³/s and 9.6 to 9.5 

m³/s, respectively. The JJA season is projected to be the 

driest, with a 17.6% decrease in seasonal rainfall and the 

highest temperature increase of 1.2°C. This is the primary 

reason for a larger decline in the irrigability index during 

the wet season compared to the dry season. The 2.5% 

decrease in rainfall will also cause a minimal reduction 

in streamflow during the SON season. 

 

 
Fig 5. Comparison of baseline and climate change 

scenario monthly dependable, and ETo and Effective 

Rainfall flow in Cagaycay River Irrigation System 

 

Almost no change is observed in the March-April-May 

(MAM) season streamflow. However, rainfall is 

projected to increase by 5.5%. Despite a 13.3% projected 

increase in rainfall for the December-January-February 

(DJF) season, the dependable flow is expected to 

decrease slightly from 10.4 m³/s to 10.2 m³/s. It should 

be noted that the projected increase in rainfall is primarily 

due to extreme events by the end of the year, with rising 

temperatures potentially influencing this behavior. These 

conditions, coupled with a projected increase in diversion 

water requirements from 1.25 to 1.38 (lps/ha), resulted in 

a lower water resources-based potential irrigable area, 

reflected in the irrigability index of the irrigation system. 
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4. SUMMARY, CONCLUSION AND 

RECOMMENDATIONS 

 

The study assessed the irrigability index of selected 

irrigation systems in Camarines Sur, Philippines, namely 

the Tigman-Hinagyagan-Inarihan River Irrigation 

System (THIRIS) and the Cagaycay River Irrigation 

System (CRIS). The irrigability index is a criterion used 

to assess the technical feasibility of irrigation projects, 

considering the available water resources and land 

suitability. It is the ratio of the water resources-based 

potential irrigable area (WR-based PIA) to the slope and 

soil-based potential irrigable area (SS-based PIA). The 

higher the value, the more technically feasible the project 

is.  

 

Considering the recorded firmed-up service areas, both 

sites registered irrigability indices of less than 1 and 

further declined during the dry season. This indicates that 

the water resources available for irrigation are 

insufficient to support the service area under a continuous 

flooding irrigation scheme. The low irrigability indices 

also further limit irrigation development despite the high 

land suitability evidenced by the higher derived SS-based 

PIA compared to the actual service areas. 

 

In the case of limited water resources, efficient water 

utilization is crucial. The study recommends adopting the 

optimum cropping calendar presented in this study, 

enhancing farm practices and precise irrigation 

scheduling by evaluating the effectiveness of the 

irrigation systems' water delivery schedule, particularly 

on yield response. Irrigation program implementers 

should also consider the appropriateness of Alternate 

Wetting and Drying (AWD), dry seeding, and other 

water-saving technologies to increase water productivity. 

These technologies are well documented as effective 

ways to increase water productivity, especially given the 

case of excessive water use in irrigation and coping with 

water scarcity applicable to varied environmental 

conditions and rice cultivars [30]–[33] 

 

Such issues with water sufficiency are projected to 

worsen under a climate change scenario, as the average 

irrigability index of the Cagaycay River Irrigation 

System is projected to drop by 15.8%. This reduction is 

attributed to decreased rainfall and streamflow and 

increased evapotranspiration due to rising mean 

temperature. 

 

Furthermore, other regions may adopt the methodology 

of the study in the conduct of irrigability assessments, 

and weather data from sources such as CHIRPS, NCEP-

CSFR, and NASA-POWER may be used as an 

alternative in case of lack of measured weather data. 

Regionalization or transfer of SWAT parameters may be 

employed to calibrate ungauged watersheds; however, 

studies with focus and in-depth analysis on calibration 

protocols and regionalization of SWAT parameters are 

recommended as a research area, as hydrologic modeling 

in the region is constrained by the availability and 

reliability of data, particularly streamflow data. The 

irrigation program implementers should improve the 

geodatabase of irrigation projects, including mapping 

service areas, and establish a collaborative information 

system for effective planning implementation and 

utilization of available resources across multiple projects. 
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