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Abstract

Screening methods are useful tools for variable selection in regression analy-
sis when the number of predictors is much larger than the sample size. Factor
analysis is used to eliminate multicollinearity among predictors, which improves
the variable selection performance. We propose a new method, called Truncated
Preconditioned Profiled Independence Screening that better selects the number of
factors to eliminate multicollinearity. The proposed method improves the vari-
able selection performance by truncating unnecessary parts from the information
obtained by factor analysis. We confirmed the superior performance of the pro-
posed method in variable selection through analysis using simulation data and real
datasets.

Key Words and Phrases: Factor analysis, High dimensional data, Multicollinearity, Screening,

Variable selection.

1. Introduction

Recent developments in the field of communication technology have generated data
in a variety of fields, including finance, medicine, and agriculture. Appropriate analysis
of such data enables us to reveal the relationships inherent in the complex phenomena.
Regression analysis is one of the most widely used statistical methods to do this (Hastie
et al., 2009; Fahrmeir et al., 2013). For example, if we want to understand the regularity
of the sales of a product, we set the sales as the response and the product attributes
(price, color, size, etc.) as the predictors. To understand the correct relationship between
the predictors and the response, it is necessary to select and analyze important variables
from the large amount of data that appear to be strongly related to a given response.

Variable selection is used in several fields. In finance, variables related to corporate
accounting data are selected to construct a statistical model that predicts the risk of
corporate bankruptcy (Tian et al., 2015). Another example is the selection of variables
that relate to data on macroeconomic indicators to estimate volatility, which is used to
select which company to invest in and to make decisions about the timing of investments
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(Fang et al., 2020). Variable selection is also used in clinical models that predict possible
future diseases (Chowdhury and Turin, 2020) and in near-infrared spectroscopy analysis
to measure food compositions (Yun et al., 2019).

It is difficult to apply the classical variable selection techniques such as stepwise
regression to high-dimensional data. LASSO (Tibshirani, 1996), the typical example
of methods using L1-type regularization, also has an issue that when the number of
variables p exceeds the sample size n, it selects only n variables at most. More recently,
Sure Independence Screening (SIS) was proposed to greatly reduce the dimension of the
predictors and select important variables (Fan and Lv, 2008). SIS selects predictors in
the order of their Pearson’s correlations with the response in linear regression models.
Although this is a simple technique, the probability that the set of variables selected
by SIS contains a set of truly important variables converges to one as the sample size
increases. Several extensions of SIS have been proposed. Fan and Song (2010) extended
the idea of SIS to generalized linear models, and Fan et al. (2011) extended it to high-
dimensional additive models. In addition, there are screening methods that use non-
linear correlations instead of Pearson correlations. Li et al. (2012a) proposed a method
that is robust to outliers that uses Kendall’s rank correlation coefficient. Li et al. (2012b)
used distance correlation, and Balasubramanian et al. (2013) used the Hilbert-Schmidt
Independence Criterion (HSIC). With these criteria, we can apply the screening methods
without assuming any distribution for the variables. Zhang et al. (2017) also proposed
a method for censored data. The development of screening methods was summarized in
Fan and Lv (2018).

Nevertheless, most of these screening methods have the problem that their perfor-
mance degrades in the presence of multicollinearity. To solve this problem, Wang and
Leng (2016) proposed a method called High-dimensional Ordinary Least squares Pro-
jection (HOLP), which accommodates highly multicollinear predictors by selecting vari-
ables in the order of their relations estimated by high-dimensional ordinary least squares.
Factor Profiled Sure Independence Screening (FPSIS) proposed by Wang (2012) trans-
forms the data for predictors by applying factor analysis, which reduces multicollinearity.
Then we can select appropriate variables by applying SIS to the transformed data that
correspond to unique factors. Preconditioned Profiled Independence Screening (PPIS)
proposed by Zhao et al. (2020) improved the FPSIS transformation process to reduce
multicollinearity more correctly. PPIS eliminates unnecessary information from the pre-
dictors by using all of the common factors obtained from applying factor analysis to the
predictors, whereas FPSIS uses only a subset of common factors.

However, PPIS seems to eliminate more information about predictors than nec-
essary, which can degrade variable selection performance. To overcome this issue, we
propose a method to improve the effectiveness of removing multicollinearity by modify-
ing PPIS to select variables more accurately. We truncate some of the common factors
eliminated in the PPIS transformation process to prevent excessive loss of information
for variable screening. We call our proposed method Truncated PPIS (TPPIS). The
reason why TPPIS improves the variable selection performance can be explained by a
model based on the distribution of eigenvalues. The truncation part is determined ob-
jectively using the BIC-type criterion proposed by Wang (2012). SIS is then applied
to the data whose multicollinearity has been removed by the transformation process.
Through analysis of simulated and real data, we show that TPPIS can transform data
appropriately.
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The remainder of this paper is organized as follows. Section 2 describes existing
screening methods, and then the proposed method is described in Section 3. In Section
4, we confirm the performance of the screening method through a simulated data anal-
ysis, and then report the results of real data analysis in Section 5. Section 6 presents
discussions.

2. Screening methods utilizing factor analysis

Suppose we have n sets of observations {(yi,xi); i = 1, . . . , n}, where yi ∈ R is
a response and xi = (xi1, . . . , xip)

⊤ ∈ Rp is a vector of predictors. In particular, we
assume that n < p and xi is standardized and yi is centered. The relationship between
yi and xi is assumed to be represented by the following linear model:

yi = x⊤
i β + εi,

where β = (β1, . . . , βp)
⊤ ∈ Rp are regression coefficients and εi ∈ R is independent and

identically distributed (i.i.d.) random noise following N(0, σ2). Let y = (y1, . . . , yn)
⊤ ∈

Rn, X = (x1, . . . ,xn)
⊤ ∈ Rn×p, and ε = (ε1, . . . , εn)

⊤ ∈ Rn. Then the above linear
model can be expressed as

y = Xβ + ε. (1)

Fan and Lv (2008) defined the set of indices of truly important variables as M∗ =
{1 ≤ j ≤ p : βj ̸= 0}. Let ω = (ω1, . . . , ωp)

⊤ = X⊤y ∈ Rp and define the importance
of the j-th variable as |ωj | (1 ≤ j ≤ p). SIS excludes predictors that are considered to
be unnecessary by selecting the j-th variables in order of increasing |ωj |. However, SIS
does not work well in the presence of strong multicollinearity (Fan and Lv, 2008). For
example, |ωj | becomes smaller even for important variables, or |ωj | becomes larger even
for unimportant variables.

In FPSIS (Wang, 2012), SIS is applied after a transformation process to remove
multicollinearity by applying factor analysis. Let Z ∈ Rn×d be a matrix of vectors of d
(< n) common factors of X, B ∈ Rp×d be factor loadings, and X̌ ∈ Rn×p be a matrix
composed of unique factors. Then we can express their relationships as X = ZB⊤ + X̌,
where the columns of X̌ are independent of each other. Although Z is not uniquely
determined due to the rotation invariance, a solution for Z can be obtained by singular
value decomposition.

Let µ1, . . . , µn be n singular values of X, where µ1 ≥ . . . ≥ µn > 0, since we assume
n < p here. The singular value decomposition of X gives

X = UDV ⊤, (2)

where U = (u1, . . . ,un) ∈ Rn×n,ul = (u1l, . . . , unl)
⊤ ∈ Rn, D = diag(µ1, . . . , µn) ∈

Rn×n, V = (v1, . . . ,vn) ∈ Rp×n,vl = (v1l, . . . , vpl)
⊤ ∈ Rp (l = 1, . . . , n), and U⊤U =

V ⊤V = In. Let U1 = (u1, . . . ,ud) ∈ Rn×d denote the first d columns of the matrix U
in (2). Then U1 can be regarded as one of the solutions of Z. Wang (2012) decided the
value of d by the following equation using the ratio of the singular values of X:

d = argmax
1≤l≤n−1

µ2
l

µ2
l+1

. (3)
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The projection matrix onto the orthogonal complement of the linear subspace spanned
by the column vectors of the matrix U1 is given by

QF = In − U1U
⊤
1 . (4)

Left-multiplying both sides of (1) by QF gives

QFy = QFXβ +QFε. (5)

Let ŷ = (ŷ1, . . . , ŷn)
⊤ = QFy and X̂ = (X̂1, . . . , X̂p) = QFX. X̂ is an approximation of

the unique factors X̌. The use of X̂ instead of X enables us to eliminate multicollinearity
and to select appropriate variables. FPSIS calculates ωj = (n−1X̂⊤

j X̂j)
−1(n−1X̂⊤

j ŷ) =

X̂⊤
j ŷ/X̂⊤

j X̂j , and then selects variables where |ωj | is large in order.
PPIS (Zhao et al., 2020) improved the FPSIS transformation process. First, after

applying SVD to X as in (2), they divided each of the matrices U,D, V into two parts
at the d-th column: U1 = (u1, . . . ,ud) ∈ Rn×d, U2 = (ud+1, . . .un) ∈ Rn×(n−d), D1 =
diag(µ1, . . . , µd) ∈ Rd×d, D2 = diag(µd+1, . . . , µn) ∈ R(n−d)×(n−d), V1 = (v1, . . . ,vd) ∈
Rp×d, V2 = (vd+1, . . .vn) ∈ Rp×(n−d). Let

QP = U2D
−1
2 U⊤

2

(
In − U1U

⊤
1

)
= U2D

−1
2 U⊤

2 (6)

and replaceQF withQP in (5). This is based on the Puffer transformation (Jia and Rohe,
2012). PPIS calculates ωj = X̂⊤

j ŷ/X̂⊤
j X̂j as in FPSIS, where ŷ = QPy, X̂ = QPX,

and then selects variables in order of the size of |ωj |. The number of dimensions d
of U1 is determined by (3) using the ratio of the singular values of X. We explain
the reasonableness of PPIS in Section 3.2. using a model based on the distribution of
eigenvalues.

However, if the magnitudes of the singular values after the d-th are not sufficiently
small compared to those before the d-th, X̂ is still multicollinear when we simply remove
from X the effects that are related to the first d common factors of X. Therefore, by
removing the influence of the n common factors of X including the information after the
d-th factor that is not used in FPSIS, X̂ becomes closer to the unique factors X̌, which
leads to the elimination of more multicollinearity.

3. Proposed method

3.1. TPPIS

We propose selecting the number of factors to eliminate more multicollinearity by
modifying the transformation process in PPIS. Let α be a tuning parameter that sat-
isfies α ∈ (0, 1] and d < [nα]. After applying SVD to X, as in (2), we divide U,D, V
into three parts at the d-th column and the [nα]-th column: U = (U1, U2a, U2b), D =
blockdiag{D1, D2a, D2b}, V = (V1, V2a, V2b), U1 = (u1, . . . ,ud), U2a = (ud+1, . . . ,u[nα]),
U2b = (u[nα]+1, . . . ,un), D1 = diag(µ1, . . . , µd), D2a = diag(µd+1, . . . , µ[nα]), D2b =
diag(µ[nα]+1, . . . , µn), V1 = (v1, . . . ,vd), V2a = (vd+1, . . . ,v[nα]), and V2b = (v[nα]+1,
. . . ,vn). Then we define the following projection matrix

QT = U2aD
−1
2a U

⊤
2a

(
In − U1U

⊤
1

)
= U2aD

−1
2a U

⊤
2a.

Using X̂ = QTX rather than QPX, we can eliminate multicollinearity more accurately
since QT leaves the information that corresponds to the unique factors by truncating
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U2b and D2b from U2 and D2, respectively. TPPIS calculates ŷ, X̂, and ω using the
equation that replaces QF with QT in (5), and then selects variables where |ωj | is large
in order to identify the set of indices of important variables that satisfy βj ̸= 0 in (1).

Denote a set of k selected variables as

Mk = {1 ≤ j ≤ p : |ωj | is among the first k largest of all }

and denote predictors whose columns are composed ofMk asX(Mk) ∈ Rn×k. We predict

the response using y = X(Mk)β̂(Mk), where β̂(Mk) is the least squares estimator of
the regression coefficient of X(Mk), that is,

β̂(Mk) =
{
X(Mk)

⊤X(Mk)
}−1

X(Mk)
⊤y. (7)

3.2. Reasons why TPPIS improves the effectiveness of removing multi-
collinearity

We discuss the reason why TPPIS improves the effectiveness of removing multi-
collinearity and the variable selection performance. Zhao et al. (2020) indicates that
the transformation process using QP of (6) works well for data that follow a highly
multicollinear spike model. The spike model has the property that some eigenvalues of
the variance-covariance matrix are larger than others. Suppose that the eigenvalues of a
variance-covariance matrix X, denoted by Σp, can be divided into three size categories:
large, medium, and small. Among p eigenvalues, let d be the number of large eigenval-
ues, m be the number of medium eigenvalues, and p − d − m be the number of small
eigenvalues. Then the spike model assumes that Σp is represented as

Σp =

d∑
r=1

(λr + σ2
0)u

∗
ru

∗
r
⊤ +

m∑
s=1

(ωs + σ2
0)u

∗
d+su

∗⊤
d+s +

p−d−m∑
t=1

σ2
0u

∗
d+m+tu

∗⊤
d+m+t,

where λ1 ≥ . . . ≥ λd > ω1 ≥ . . . ≥ ωm > 0, σ2
0 is a positive constant, and {u∗

1, . . . ,u
∗
p}

constitute an orthonormal basis of Rp. In this case, X can be expressed as

X =

d∑
r=1

√
λrzru

∗
r
⊤ +

m∑
s=1

√
ωszd+su

∗
d+s

⊤ + σ2
0Λ, (8)

where zw ∈ Rn (w = 1, . . . , d +m) are i.i.d. N(0, In) vectors and Λ ∈ Rn×p has i.i.d.
N(0, 1) elements. The vectors zr and u∗

r respectively represent a common factor and
a factor loading of X, and σ2

0Λ represents a unique factor of X. Let X1, X2, X3 be
the first, second, and third terms of (8), respectively; that is, we can express (8) as
X = X1 +X2 +X3.

Since QF in (4) is the projection matrix onto the orthogonal complement of the
linear subspace spanned by the column vector U1 ∈ Rn×d, QF can remove the effect of
d common factors. That is,

QFX = QF (X1 +X2 +X3)

≈ X2 +X3.

Similar to QF , the transformation by the matrix
(
In − U1U

⊤
1

)
in QP in (6) eliminates

the components relating to X1 from X. The matrix U2D
−1
2 U⊤

2 in QP , based on the
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Puffer transformation, makes singular values of X close to each other, which leads to
the elimination of correlations between the columns. Therefore, QP can eliminate the
components relating to X2 and X3. Since X3 is associated with unique factors, it should
be retained as much as possible. However, since U2 and D2 utilize all the information
beyond the d-th dimension, QP unnecessarily removes additional components relating
to X3. In contrast, QT preserves the components of X3 by truncating U2b and D2b, then
TPPIS effectively eliminate the multicollinearity.

3.3. Selection of tuning parameters

The performance of the proposed method strongly depends on the dimension d of
U1, the tuning parameter α, and the number k of selected variables. We have to decide
appropriate values for them. To do this, we use the BIC-type criterion adapted to high-
dimensional data proposed by Wang (2012). Using β̂(Mk) in (7), the BIC-type criterion
is given by

BIC(Mk) = log

{∣∣∣∣∣∣y −X(Mk)β̂(Mk)
∣∣∣∣∣∣2}+ (n−1log p)|Mk| log n. (9)

We use grid search to find the optimal d, α, and k, selecting the values with which make
BIC smallest as the optimal parameters.

4. Simulation examples

To investigate the effectiveness of the proposed TPPIS method, we compare TPPIS
with the existing methods. After calculating the importance of each predictor on the
response for each method, the number of variables is determined using the BIC-type
criterion (9), and then the variable selection performance is verified.

4.1. Settings for simulated data

Following the simulations in Zhao et al. (2020), we performed simulation studies in
four settings. The sample size n and the number of predictors p are set as n = 100, 300,
and p = 1000 as common values for each example, respectively. For the TPPIS parameter
d, we examined five patterns: 0.2n, 0.4n, 0.6n, 0.8n, and the value given by (3). In
addition, we examined five values ranging from 0.2 to 1.0 in increments of 0.2 for α. In
the numerical experiments, we consider only the values of d and α such that d < [nα].
For the number of variables, k, we examined n values ranging from 1 to n. We then
select the d, α, and k giving the smallest BIC as the optimal parameters.

• Example 1

In this case, among the 1000 predictors, four variables are related to the response.
For each i in 1 ≤ i ≤ n,

yi = 5xi1 + 5xi2 + 5xi3 − 15xi4 + εi,

where εi are i.i.d. errors following N(0, 1), xi = (xi1, . . . , xip)
⊤ are i.i.d. predictors
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following N(0,Σ) and the variance-covariance matrix Σ = (Σjk)
p
j,k=1 satisfies

Σjj = 1,

Σjk = φ (j ̸= k, j ̸= 4, k ̸= 4),

Σ4,k = Σj,4 =
√
φ (j, k ̸= 4).

We investigated three values for the parameter φ: 0.5, 0.7, and 0.9.

• Example 2

For each i in 1 ≤ i ≤ n,

yi = 5xi1 + 5xi2 + 5xi3 − 15xi4 + 5xi5 + εi.

The setting is similar to that in Example 1, but the fifth variable is added. In
addition, the variance-covariance matrix Σ of the predictor satisfies Σ5,j = Σj,5 = 0
(j ̸= 5).

• Example 3

For each i in 1 ≤ i ≤ n,

yi = 5xi1 + 5xi2 + 5xi3 − 15xi4 + 5xi5 + εi.

The regression model is the same as in Example 2, except that the sixth variable,
which is not included in the regression model, satisfies xi6 = 0.8xi5 + δi, where δi
follows i.i.d. N(0, 0.01). Compared to Example 2, the data for the predictors are
more multicollinear.

• Example 4

We consider the case where X follows a spike model (8), given by

X =

d∑
r=1

zrb
⊤
r +

m∑
s=1

n
−(s+9)
m+10 zd+sb

⊤
d+s + X̌,

where zk ∈ Rn (k = 1, . . . , d + m) are i.i.d. vectors following N(0, In), bk ∈ Rp

is a vector of i.i.d. N(0, 1) elements, and X̌ = (x̌1, . . . , x̌n)
⊤ ∈ Rn×p with x̌i =

(x̌i1, . . . , x̌ip)
⊤ ∈ Rp, E(x̌ij) = 0, and cov(x̌ij1 , x̌ij2) = Ip. This case corresponds

to equation (8) with
√
λr = 1 (1 ≤ r ≤ d),

√
ωs = n

−(s+9)
m+10 (1 ≤ s ≤ m), and

σ2
0 = 1.

In this example, d is set to 3 and m is set according to four patterns: 0.2n, 0.4n,
0.6n, and 0.8n. The regression model is given by

yi = 5xi1 + 4xi2 + 3xi3 + 2xi4 + εi,

where εi are i.i.d. errors following N(0, σ2) with σ2 = var(Xβ)/5 and
β = (5, 4, 3, 2, 0, . . . , 0)⊤ ∈ Rp.

In each example, we generate datasets 100 times for each combination of parame-
ters. For each dataset, the numbers of selected predictors and the least squares estimator
(7) is calculated. The number of variables is determined using the BIC in (9).
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4.2. Comparison methods

The proposed TPPIS method is compared with the existing SIS, FPSIS, and PPIS
methods. TPPIS involves two tuning parameters, d and α, to determine the transforma-
tion matrix QT . We examine two types of TPPIS: one is that d is determined by (3) and
α is selected based on BIC in (9), and another is that both d and α are determined using
BIC in (9). We refer to the former as TPPISα and the latter as TPPISd,α. In addition
to the original FPSIS, which selects the value of d by (3), we also compare a modified
FPSIS where d is selected by the BIC in (9). We denote this method as FPSISd. We
test the values of d in FPSISd with five patterns, as in the case of TPPIS.

4.3. Score metric for screening

We evaluate the variable selection performance of the screening methods using the
score based on the number of correctly and incorrectly selected variables. We refer to
necessary predictors as Positive (P) and unnecessary variables as Negative (N) in the
regression model. Since the true regression coefficients of the simulated data are known,
we can calculate True Positive (TP), False Positive (FP), True Negative (TN), False
Negative (FN), Recall (TP/(TP+FN)), and Precision (TP/(TP+FP)).

The weighted F-score is weighted on the Recall side by the importance θ as follows:

Fθ-score =
1 + θ2

1
Precision + θ2

Recall

,

where Precision = TP/(TP+FP) and Recall = TP/(TP+FN). Since the screening meth-
ods aim to select variables while retaining as many necessary variables as possible, we
focus on Recall and therefore we use F2-score.

4.4. Simulation results

The results of the variable selection for Example 1 are shown in Table 1. The
numbers in the x(j) column represent the total number of times that the j-th predictor
variable is selected. For all settings, SIS never selected x(4). This is because y =

(y1, . . . , yn)
⊤ and (x14, . . . , xn4)

⊤ are uncorrelated due to the generation mechanism
of the data, which gives a smaller |ω4|. For other methods than SIS, the value of
|ω4| is larger than that for SIS due to the transformation process by factor analysis.
In particular, TPPISα selected x(4) more frequently than the existing methods, and
moreover, TPPISd,α obtained the largest x(4). The F2-scores of TPPISα are better than
those of existing methods, and those of TPPISd,α are the highest values in all settings.
We confirmed that the performance of TPPIS in variable selection is improved compared
to the existing methods. Figure 1 shows values of BIC and F2-scores for fixed d and
different α in TPPIS. This figure demonstrates that α is selected appropriately by BIC.

The results for Example 2 are shown in Table 2. The table shows that in many
cases the numbers in x(5) are close to 100 because the fifth variable is uncorrelated with
the other predictors. In all cases, the F2-scores of TPPISα and TPPISd,α are the same
and the highest.

Table 3 summarizes the result for Example 3. This shows that the numbers in x(5)

and the value of F2-score are smaller than those of Example 2 due to the addition of
the sixth variable, which is highly correlated with the fifth variable. For the cases with
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n = 300 and φ = 0.9, FPSISd and TPPISd,α, which determine d by BIC, give lower
x(6) values. It seems to be useful to use BIC to select d for data with multicollinearity.
TPPISd,α gives the highest F2-score among all methods.

Table 4 shows the results for Example 4. In this example, the variables with large
regression coefficients tend to be more important, resulting in x(1) ≥ x(2) ≥ x(3) ≥ x(4)

under many settings. F2-scores for PPIS and TPPIS are high because these methods
are effective for the spike model. In particular, TPPISα and TPPISd,α give the highest
F2-scores for all settings.

5. Real data analysis

We apply the proposed screening methods to the analysis of two real datasets.
For both datasets, we selected variables by TPPISα and TPPISd,α, where the tuning
parameters d and α are determined by BIC from the same set of d and α candidates as
in Section 4.1.

5.1. Condition monitoring of hydraulic systems

We applied the screening methods to data on condition monitoring of a hydraulic
system (Helwig et al., 2015). This dataset was obtained experimentally using a hydraulic
test rig to measure values such as pressure, volumetric flow, and temperature while
varying the settings of four different hydraulic components (coolers, valves, pumps, and
accumulators). We use data with the sample size 1449, taken under stable system
settings. The response is a value that expresses the degree of accumulator failure as
a continuous value. A higher value is closer to normal condition with 130 being the
optimal pressure, 115 being a slightly reduced pressure, 100 being a severely reduced
pressure, and 90 being close to total failure. The predictors are the values measured by
17 sensors and form a total of 43680. We apply the five screening methods to analyze
this dataset as in the section on examples of simulated data. The number of variables
is determined using BIC.

Table 5 shows the results of the analysis of this dataset. From this result, we find
that TPPISα and TPPISd,α select variables from the largest number of sensors. These
methods select variables ‘volume flow sensors (FS)’ and ‘efficiency factor (SE),’ which
are not selected by the other methods. In addition, these methods give the best BIC
score among all methods. These results indicate that these sensors may relate to the
condition of accumulators.

5.2. S&P500

The S&P 500, one of the U.S. stock market indices, is obtained by weighting the
market capitalization of 500 companies selected as representative of publicly traded
companies. This analysis uses the data for the year 2020. The sample size is 253, which is
the number of trading days. The response is the value of the S&P500, and the predictors
are the stock price of each of the 500 companies that make up the S&P500. Note that
the number of columns of predictors may be greater than 500 because some companies
have multiple stocks, differentiated based on whether they include voting rights. Since
the S&P500 is weighted by market capitalization, it is assumed that the stock price of
the company with the highest market capitalization is selected as an important variable.
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The values of the S&P500 are obtained from Federal Reserve Economic Data (FRED)1,
and the stock prices of the 500 companies that make up the S&P500 are obtained from
the website2.

We applied six screening methods to this dataset and compared BIC and selected
variables. The results for the S&P500 are shown in Table 6. TPPISd,α gives the best BIC
score among all the methods. The seven variables selected by TPPISd,α include com-
panies with particularly large market capitalizations such as ‘AAPL’ (Apple), ‘MSFT’
(Microsoft) and ‘AMZN’ (Amazon).

6. Discussion

We have proposed TPPIS, a variable screening method for high-dimensional data
with strong multicollinearity. TPPIS improves the variable selection performance by
using a BIC-type criterion to determine the number of common factors that have a role
in removing multicollinearity. In the analysis of simulated data, TPPIS outperformed
existing methods using factor analysis for variable selection. This suggests that TPPIS
may be able to correctly select variables that are not considered important by existing
methods.

The transformation process of TPPIS to remove multicollinearity from the data
uses only information from the data corresponding to the predictors and we do not
consider the relation to the response. Developing a transformation processing method
that incorporates information from both types of data could further improve the variable
selection performance. Although numerical examples confirmed that the performance
of TPPIS is better than that of existing methods, no mathematical proof is provided.
In the process of devising a proof, we may be able to identify the characteristics of the
data for which TPPIS is most effective.
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Table 1: Simulation results for Example 1
n p φ Method best d best α BIC F2-score x(1) x(2) x(3) x(4)

100 1000 0.5 SIS - - 7.982 0.285 38 27 32 0
FPSIS 1 - 5.791 0.914 91 90 95 88
FPSISd 20 - 5.736 0.940 96 95 94 93
PPIS 1 - 5.674 0.948 96 95 95 93
TPPISα 1 0.8 5.590 0.973 98 97 99 97
TPPISd,α 1 0.8 5.590 0.973 98 97 99 97

0.7 SIS - - 7.583 0.283 38 35 24 0
FPSIS 1 - 5.691 0.940 95 93 96 92
FPSISd 20 - 5.643 0.964 97 96 98 96
PPIS 1 - 5.632 0.962 98 97 95 95
TPPISα 1 1.0 5.632 0.962 98 97 95 95
TPPISd,α 20 1.0 5.623 0.971 100 97 97 97

0.9 SIS - - 6.664 0.250 26 30 30 0
FPSIS 1 - 5.567 0.969 97 99 96 96
FPSISd 1 - 5.567 0.969 97 99 96 96
PPIS 1 - 5.550 0.984 98 100 98 98
TPPISα 1 1.0 5.550 0.984 98 100 98 98
TPPISd,α 1 1.0 5.550 0.984 98 100 98 98

300 1000 0.5 SIS - - 9.009 0.462 61 66 67 0
FPSIS 1 - 6.200 0.981 100 100 100 97
FPSISd 1 - 6.200 0.981 100 100 100 97
PPIS 1 - 6.137 0.993 100 100 100 98
TPPISα 1 1.0 6.137 0.993 100 100 100 98
TPPISd,α 1 1.0 6.137 0.993 100 100 100 98

0.7 SIS - - 8.590 0.476 72 66 67 0
FPSIS 1 - 6.252 0.971 100 100 100 95
FPSISd 60 - 6.247 0.968 98 99 99 94
PPIS 1 - 6.323 0.962 100 99 99 92
TPPISα 1 0.8 6.206 0.977 99 99 100 96
TPPISd,α 60 0.6 6.113 0.994 100 100 100 99

0.9 SIS - - 7.722 0.365 48 46 53 0
FPSIS 1 - 6.168 0.978 100 100 100 95
FPSISd 60 - 6.167 0.978 99 100 99 95
PPIS 1 - 6.123 0.987 99 99 100 97
TPPISα 1 0.8 6.086 0.996 100 100 100 99
TPPISd,α 1 0.8 6.086 0.996 100 100 100 99
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Table 2: Simulation results for Example 2
n p φ Method best d best α BIC F2-score x(1) x(2) x(3) x(4) x(5)

100 1000 0.5 SIS - - 8.229 0.264 2 1 9 0 100
FPSIS 1 - 6.420 0.915 95 93 93 94 97
FPSISd 1 - 6.420 0.915 95 93 93 94 97
PPIS 1 - 6.176 0.933 93 97 96 92 96
TPPISα 1 1.0 6.176 0.933 93 97 96 92 96
TPPISd,α 1 1.0 6.176 0.933 93 97 96 92 96

0.7 SIS - - 7.736 0.238 0 0 0 0 100
FPSIS 1 - 6.814 0.845 78 78 88 91 99
FPSISd 1 - 6.814 0.845 78 78 88 91 99
PPIS 1 - 6.344 0.920 92 90 93 93 99
TPPISα 1 1.0 6.344 0.920 92 90 93 93 99
TPPISd,α 1 1.0 6.344 0.920 92 90 93 93 99

0.9 SIS - - 6.714 0.238 0 0 0 0 100
FPSIS 1 - 7.908 0.343 21 17 19 83 29
FPSISd 20 - 6.273 0.893 88 85 89 96 98
PPIS 1 - 6.214 0.904 90 85 90 92 100
TPPISα 1 1.0 6.214 0.904 90 85 90 92 100
TPPISd,α 1 1.0 6.214 0.904 90 85 90 92 100

300 1000 0.5 SIS - - 9.182 0.584 65 67 69 0 100
FPSIS 1 - 6.378 0.983 100 100 100 94 100
FPSISd 1 - 6.378 0.983 100 100 100 94 100
PPIS 1 - 6.367 0.983 100 100 100 95 100
TPPISα 1 0.8 6.362 0.985 100 100 100 95 100
TPPISd,α 1 0.8 6.362 0.985 100 100 100 95 100

0.7 SIS - - 8.781 0.491 47 58 43 0 100
FPSIS 1 - 6.313 0.988 100 100 100 96 100
FPSISd 1 - 6.313 0.988 100 100 100 96 100
PPIS 1 - 6.327 0.985 100 100 100 96 100
TPPISα 1 0.6 6.271 0.990 100 99 99 98 100
TPPISd,α 1 0.6 6.271 0.990 100 99 99 98 100

0.9 SIS - - 7.829 0.269 6 6 7 0 100
FPSIS 1 - 6.379 0.960 99 100 100 97 100
FPSISd 60 - 6.301 0.978 99 99 99 95 100
PPIS 1 - 6.279 0.981 99 99 99 97 100
TPPISα 1 0.8 6.240 0.990 99 99 99 98 100
TPPISd,α 1 0.8 6.240 0.990 99 99 99 98 100
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Table 3: Simulation results for Example 3
n p φ Method best d best α BIC F2-score x(1) x(2) x(3) x(4) x(5) x(6)

100 1000 0.5 SIS - - 8.223 0.178 2 0 0 0 73 26
FPSIS 1 - 6.735 0.824 87 85 89 85 88 75
FPSISd 20 - 6.649 0.848 86 91 88 88 88 70
PPIS 1 - 6.331 0.904 94 95 94 93 94 79
TPPISα 1 1.0 6.331 0.904 94 95 94 93 94 79
TPPISd,α 1 1.0 6.331 0.904 94 95 94 93 94 79

0.7 SIS - - 7.733 0.164 0 0 0 0 69 31
FPSIS 1 - 6.928 0.786 83 81 74 88 87 66
FPSISd 20 - 6.511 0.868 90 92 90 93 88 65
PPIS 1 - 6.275 0.899 96 92 93 92 93 80
TPPISα 1 1.0 6.275 0.899 96 92 93 92 93 80
TPPISd,α 1 1.0 6.275 0.899 96 92 93 92 93 80

0.9 SIS - - 6.683 0.202 0 0 0 0 85 15
FPSIS 1 - 7.831 0.350 20 14 16 89 29 6
FPSISd 20 - 6.517 0.808 80 79 83 93 79 34
PPIS 1 - 6.191 0.928 92 96 96 97 98 70
TPPISα 1 1.0 6.191 0.928 92 96 96 97 98 70
TPPISd,α 1 1.0 6.191 0.928 92 96 96 97 98 70

300 1000 0.5 SIS - - 9.275 0.447 50 48 54 0 93 65
FPSIS 1 - 6.592 0.924 97 97 100 92 98 89
FPSISd 60 - 6.499 0.947 99 97 100 93 99 76
PPIS 1 - 6.359 0.955 99 99 98 98 99 79
TPPISα 1 1.0 6.359 0.955 99 99 98 98 99 79
TPPISd,α 1 1.0 6.359 0.955 99 99 98 98 99 79

0.7 SIS - - 8.834 0.316 20 21 21 0 94 28
FPSIS 1 - 6.491 0.942 99 99 99 94 99 90
FPSISd 60 - 6.462 0.948 98 97 98 94 100 55
PPIS 1 - 6.502 0.943 100 98 99 94 100 72
TPPISα 1 0.4 6.393 0.952 99 100 99 98 99 88
TPPISd,α 1 0.4 6.393 0.952 99 100 99 98 99 88

0.9 SIS - - 7.830 0.237 1 0 0 0 99 2
FPSIS 1 - 6.463 0.936 97 99 97 98 100 80
FPSISd 60 - 6.354 0.962 97 97 97 97 96 7
PPIS 1 - 6.315 0.969 99 99 99 98 100 52
TPPISα 1 1.0 6.315 0.969 99 99 99 98 100 52
TPPISd,α 60 1.0 6.260 0.989 100 99 99 99 99 4
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Table 4: Simulation results for Example 4
n p d m Method best d best α BIC F2-score x(1) x(2) x(3) x(4)

100 1000 3 20 SIS - - 10.537 0.377 100 25 10 0
FPSIS 3 - 10.961 0.285 34 67 11 0
FPSISd 20 - 10.865 0.338 52 65 13 5
PPIS 3 - 10.385 0.578 88 93 45 4
TPPISα 3 1.0 10.385 0.578 88 93 45 4
TPPISd,α 3 1.0 10.385 0.578 88 93 45 4

40 SIS - - 10.858 0.488 100 44 37 0
FPSIS 3 - 11.613 0.213 18 60 5 0
FPSISd 20 - 11.219 0.468 78 83 21 5
PPIS 3 - 10.618 0.676 99 98 62 10
TPPISα 3 1.0 10.618 0.676 99 98 62 10
TPPISd,α 3 1.0 10.618 0.676 99 98 62 10

60 SIS - - 11.129 0.563 100 58 56 0
FPSIS 3 - 11.790 0.337 40 72 22 0
FPSISd 20 - 11.506 0.470 80 76 21 6
PPIS 3 - 10.852 0.738 100 98 76 19
TPPISα 3 1.0 10.852 0.738 100 98 76 19
TPPISd,α 3 1.0 10.852 0.738 100 98 76 19

80 SIS - - 11.443 0.611 100 57 78 0
FPSIS 3 - 11.835 0.501 74 73 55 0
FPSISd 3 - 11.835 0.501 74 73 55 0
PPIS 3 - 11.180 0.753 99 99 87 9
TPPISα 3 1.0 11.180 0.753 99 99 87 9
TPPISd,α 3 1.0 11.180 0.753 99 99 87 9

300 1000 3 60 SIS - - 11.571 0.669 100 89 94 0
FPSIS 3 - 11.726 0.604 99 100 78 0
FPSISd 60 - 10.464 0.929 100 100 100 89
PPIS 3 - 10.279 0.981 100 100 100 100
TPPISα 3 1.0 10.279 0.981 100 100 100 100
TPPISd,α 3 1.0 10.279 0.981 100 100 100 100

120 SIS - - 12.268 0.758 100 100 100 0
FPSIS 3 - 12.265 0.772 100 100 100 0
FPSISd 60 - 11.867 0.890 100 100 99 69
PPIS 3 - 11.692 0.945 100 100 100 83
TPPISα 3 1.0 11.692 0.945 100 100 100 83
TPPISd,α 3 1.0 11.692 0.945 100 100 100 83

180 SIS - - 12.951 0.772 100 100 100 0
FPSIS 3 - 12.926 0.784 100 100 100 0
FPSISd 60 - 12.923 0.795 100 99 90 35
PPIS 3 - 12.708 0.884 100 100 100 59
TPPISα 3 1.0 12.708 0.884 100 100 100 59
TPPISd,α 3 1.0 12.708 0.884 100 100 100 59

240 SIS - - 13.481 0.780 100 100 100 0
FPSIS 3 - 13.469 0.785 100 100 100 0
FPSISd 3 - 13.469 0.785 100 100 100 0
PPIS 3 - 13.477 0.796 100 100 88 28
TPPISα 3 0.8 13.435 0.811 100 100 93 27
TPPISd,α 3 0.8 13.435 0.811 100 100 93 27
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Figure 1: Values of BIC and F2-score for different α in TPPIS of Example 1. The
top row shows BIC results and the bottom row shows F2-score results. The values for
n = 300 are represented by •, and the values for n = 100 are represented by ×. p is
1000 in all cases.

Table 5: Results for condition monitoring of hydraulic systems
Method best d best α BIC Number of selected variables
SIS - - 11.740 12
FPSIS 2 - 12.452 8
FPSISd 2 - 12.452 8
PPIS 2 - 12.491 41
TPPISα 2 0.4 11.711 17
TPPISd,α 2 0.4 11.711 17

Table 6: Results for S&P500
Method best d best α BIC Number of selected variables
SIS - - 13.646 2
FPSIS 2 - 13.513 5
FPSISd 101 - 12.934 17
PPIS 2 - 13.346 11
TPPISα 2 0.8 13.119 15
TPPISd,α 50 0.4 12.629 7


