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Abstract: Measurement uncertainty is essential for accurate comparison and decision-making in 
various fields. The ISO/IEC GUM standardizes uncertainty estimation, yet traditional methods like 
the Law of Propagation of Uncertainties (LPU) face limitations. The Monte Carlo Method (MCM) 
offers a solution, especially for complex models. Our study explores MCM’s application in refriger-
ator power measurement, overcoming challenges encountered with traditional methods. Three MCM 
methodologies— a priori, adaptive with 1 or 2 significant decimal digits—were tested. The findings 
reveal that while all three methods yield relatively similar results—51.3 𝑊𝑊 estimated measured power 
with a standard uncertainty of 1.44 𝑊𝑊—the a priori method with 𝑀𝑀 = 106 and the adaptive method 
with 2 significant decimal digits exhibit greater stability compared to the adaptive method with 1 
significant decimal digit. This underscores MCM’s effectiveness in handling intricate uncertainties 
and its potential for advancing measurement reliability and quality. 
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1. Introduction  
Measurement uncertainty serves as a pivotal quantita-

tive indicator reflecting the quality of measurements. Its 
omission compromises the feasibility of comparing simi-
lar measurements, predetermined reference values, or 
standards1). Furthermore, it plays a critical role in deci-
sion-making processes2), risk management strategies3), 
tolerance level determinations4), selection of measurement 
methodologies5,6), accreditation compliance7), hypotheses 
testing8), calibration interval determinations9), and the 
communication of technical variables10). Thus, accurate 
measurement prediction necessitates a realistic represen-
tation of the ongoing measurement process11). 

In the era of global development, achieving unanimous 
acceptance of measurement and testing results is impera-
tive to support global free trade initiatives. Consequently, 
there is a pressing need for a universal procedure to pre-
dict measurement uncertainties, facilitating cross-country 
comparisons and metrology recognition. This necessity 
led to the establishment of a harmonized standard, notably 

realized through the ISO/IEC GUM (Guide to the Expres-
sion of Uncertainty in Measurement). 

Despite its widespread adoption, the traditional method 
of uncertainty estimation, based on the law of uncertainty 
propagation (LPU)12), has been critiqued for its inherent 
limitations. These limitations include the linearization of 
measurement models and the utilization of the t-student 
distribution to assess probability distribution, relying on 
an effective degree of freedom. Hence, to address these 
constraints, the ISO/IEC GUM supplement proposed the 
utilization of the Monte Carlo Method (MCM) 13). The 
Monte Carlo approach offers an alternative means to re-
solve various restrictions associated with the GUM uncer-
tainty framework, encompassing issues such as asymmet-
ric uncertainty distribution, nonlinear models14), multi-
collinearity, and systematic bias15). 

In the wake of Supplement 1 to ISO/IEC GUM, the uti-
lization of Monte Carlo Simulation (MCS) has prolifer-
ated across diverse fields for uncertainty evaluation. No-
tably, some studies have employed MCS to validate un-
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certainties derived from the LPU GUM method16–20), cit-
ing its advantages, including its independence from partial 
derivative calculations and effective degrees of freedom, 
particularly advantageous for complex measurement 
models21). Furthermore, this finding has been corrobo-
rated by another studies22–25). Regarding the determination 
of the number of Monte Carlo simulations (MCS), various 
methodologies have been employed, including the a priori 
method and the adaptive method26,27). However, despite 
this growth, the literature remains devoid of any investi-
gation into the measurement uncertainty associated with 
refrigerator efficiency testing. 

Meanwhile, a study on uncertainty in freezer/refrigera-
tor consumption tests has been documented in 28). How-
ever, it is noteworthy that the test protocol continues to 
reference the obsolete ISO 15502 standard, which has 
been superseded by the IEC 62552:2015 standard. Addi-
tionally, it is pertinent to highlight that in the assessment 
of measurement uncertainty, the paper does not adhere to 
ISO GUM principles but instead employs the standard de-
viation derived from the error mean square of the Analysis 
of Variance (ANOVA) technique. 

Several scholarly works published within the past half-
decade have employed the IEC 62552:2015 standard as a 
benchmark in their assessments, primarily concerning 
power and energy consumption measurements in refriger-
ators29–33). Nevertheless, these studies predominantly con-
centrate on appraising refrigerator performance and offer 
limited discussion on measurement uncertainty. Notably, 
only a singular study undertook an exhaustive evaluation 
of measurement uncertainty in refrigerator energy effi-
ciency testing, employing the Monte Carlo Method 
(MCM) 34). This study focused on assessing the energy ef-
ficiency index, calculated in accordance with the GB 
12021.2-2015 standard—a directive established by the 
Chinese standardization administration governing the per-
missible electricity consumption limits and energy effi-
ciency ratings of household refrigerators. 

Diverging from prior research endeavors28,34), our work 
centers on steady state power measurement data derived 
from refrigerator testing, adhering to the IEC 62552:2015 
standard. Nevertheless, the intricacies inherent in the for-
mula used to compute steady-state power pose challenges 
for estimating measurement uncertainty, particularly con-
cerning the calculation of sensitivity coefficients. Conse-
quently, our study aims to assess uncertainty in steady 
state power measurement using the MCM, anticipating 
that its implementation will surmount the aforementioned 
challenges. As the second aim, we endeavor to establish a 
method for determining the optimal number of Monte 
Carlo simulations, balancing between a priori and adap-
tive approaches, to yield stable measurement uncertainty 
estimation results. 

 
2. The evaluation of measurement uncer-

tainty using Monte Carlo simulation 

The Monte Carlo is a well proven method that had been 
acknowledged by the Supplement 1 ISO/IEC GUM to be 
an alternative method to evaluate uncertainty measure-
ment especially when the LPU faces some limitations. 
This is also validated by some previous papers16–20). 

The MCS procedure utilizes pseudorandom numbers 
generated algorithmically and forced to follow a specific 
probability distribution. For a normal distribution, the 
numbers were determined by the value of mean and stand-
ard deviation. For every input value, the MCS procedure 
generates a numerical value randomly assigned from each 
probability density function (PDF). The numerical value 
generated through this procedure turns input into a single 
numeric output using a known function. This process is 
repeated numerous times to produce some output simula-
tion results. Mean and standard deviation from the output 
become the estimation of the measured value and its 
standard uncertainty of measurement result. Since the in-
put values are randomly assigned from a probability dis-
tribution and related to each input variable, all processes 
can be considered a procedure for the propagation of dis-
tribution. In addition, since MCS uses random samples 
from PDF as inputs, this procedure also produces output 
probability distribution and coverage interval. While the 
LPU GUM only provides means and standard uncertainty 
of measurement, the MCS complemented it by generating 
an actual PDF that contains more information. GUM sup-
plement 113) provides steps that are required to be con-
ducted to implement MCS for estimating uncertainty: 
a. Defining the measurand and input quantities: clearly 

determining what is going to be measured. 
b. Modeling: a mathematical function that relates be-

tween the measurand (Y) and input quantities (Xi) that 
affect it. It is stated by Eq. 1 as follows: 

( )
1 2
, , ,

N
Y f X X X=   (1) 

c. Estimating PDF for input quantities: choosing the 
most appropriate PDF for each input quantity. In this 
case, the principle of maximum entropy in Bayesian 
theory can be applied. The most common distribution 
based on the level of information on input quantities 
must be considered. For example, using the rectangu-
lar distribution if the only information available on in-
put quantity are the maximum and minimum limits. 

d. Preparing and running the MCS. 
e. Summarizing and presenting the result. 

Steps (d) and (e) can be elaborated further as follows 
35): 

1. Determining 𝑀𝑀 (number of trials that will be con-
ducted). Generally, a higher number would lead to 
higher result convergence. This number can be de-
cided using a priori or adaptive method. 

2. Generating a set of 𝑁𝑁  input parameter 
{𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁   } . These are random values distrib-
uted based on the PDF of each input parameter. This 
process must be repeated 𝑀𝑀  times for each input 
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quantity. One of the requirements for reliable simu-
lations is the use of a good random number generator. 
Supplement 1 GUM recommends the use of the 
Wichmann-Hill algorithm36). 

3. Calculating 𝑌𝑌 (output quantity) using an appropri-
ate model as expressed in Eq. 2: 

( )1, 2, ,, , , ,  for 1, 2, ,j j j N jy f x x x j M= =   (2) 

The result can be used to predict the PDF of 𝑌𝑌. 
4. Calculating the mean and standard deviation of out-

put vector {𝑦𝑦1,𝑦𝑦2, . . . , 𝑦𝑦𝑀𝑀} as the y measurement re-
sults and the standard uncertainty 𝑢𝑢(𝑦𝑦). 

5. Sorting the output vector in ascending order and de-
termining the coverage interval [𝑦𝑦𝐿𝐿 ,𝑦𝑦𝐻𝐻]  in cover-
age probability 𝑝𝑝, using Eqs. 3 and 4 as follows37): 

( )( )round 1L M α= +  (3) 

( )( )( )round 1 1H M α= + −  (4) 
6. Alpha (α) is the significance level ( 0.025α =  for 

95% coverage probability), and the round(x) func-
tion is used to represent the closest integer to 𝑥𝑥. In 
other words, 𝑦𝑦𝐿𝐿  and 𝑦𝑦𝐻𝐻 are the 2.5% and 97.5% 
sorted percentiles of 𝑦𝑦𝑖𝑖38).  

Supplement 1 GUM recommends that M, as the number 
of simulations, is determined to provide a reasonable rep-
resentation of the expected result based on the general rule 
as expressed in Eq. 5: 

410

1
M

p
>

−  
(5) 

If p is 0.95, for example, then the selected coverage 
probability is 95% (100p%), and M must be higher than 
200,000. The value of 106 is often deemed appropriate for 
95% coverage probability. However, if M is selected a pri-
ori, there would be no direct control over the generated 
result. Furthermore, the random character of the process 
and the probability distribution of the output quantity (𝑌𝑌) 
have an influence on determining the required 𝑀𝑀 value 
and will vary from one case to another. Therefore, the de-
termination of the value of M is then carried out adaptively. 

When the value of M is determined using the adaptive 
approach, condition selection is checked after every sim-
ulation to identify the stability of the results. These checks 
include the mean, standard deviation, and limits of the se-
lected output interval. A result is considered stable if two 
standard deviations of the result are lower than the speci-
fied numerical tolerance. 

Hereby below is the MCS algorithm calculation with 
the adaptive approach39): 
(a) Select the coverage probability (𝑝𝑝) for the interval 

determination 
(b) Select the number of significant decimal digits 

(𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑  )  for uncertainty 𝑢𝑢(𝑦𝑦) . Usually, the 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑  is 
either one or two. 

(c) Determine the number of simulations (𝑀𝑀) for each 

step in the pr ess. The standard practice is to use Eq. 
6 as follows: 

4max
100

,10
1

M
p

=
−

 
 
 

 (6) 

These two values are smaller than the total estimated 
iteration (106) so that the variability of parameters 
after each sequence can be determined. Aside from 
that, the 𝑀𝑀 value is a multiple of (1 −  𝑝𝑝)−1 to get 
the shortest coverage interval (104 is the multiply of 
(1 −  𝑝𝑝)−1 for a common case, with 𝑝𝑝 = 0.95 and 
0.99). 

(d) Variable ℎ calculates the number of MCS. For the 
first time, set ℎ = 1. 

(e) For every ℎ  sequence, 𝑀𝑀  simulations are con-
ducted, resulting in 𝑦𝑦𝑟𝑟  value (𝑟𝑟 =  1, . . . ,𝑀𝑀)  and 
the estimated parameters are stated by Eqs. 7 and 8 
as follows: 
• Mean as the estimation of 𝑦𝑦 from 𝑌𝑌: 

( )

1

1 Mh

rr
y y

M =
= ∑

 
(7) 

 
• Standard deviation as the standard uncertainty 
𝑢𝑢(𝑦𝑦) related with 𝑦𝑦(ℎ): 

( ) ( )( )( )

1

1
221 Mh

r

h
ru y

M
y y

=
=
 −  

∑  (8) 

 
• For example, 𝑞𝑞  is the part of integers from 

𝑝𝑝𝑝𝑝 +  ½. Sort the values of 𝑦𝑦𝑟𝑟  (𝑟𝑟 =  1, … ,𝑀𝑀) 
in nondescending sequence 𝑦𝑦(𝑟𝑟)  (𝑟𝑟 =  1, … ,𝑀𝑀), 
then obtain the probabilistically symmetric cov-
erage interval for 𝑌𝑌 =  [𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙

(ℎ) ,𝑦𝑦ℎ𝑖𝑖𝑖𝑖ℎ
(ℎ) ]. The inter-

val limits are 𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙
(ℎ) = 𝑦𝑦(𝑟𝑟)  and 𝑦𝑦ℎ𝑖𝑖𝑖𝑖ℎ

(ℎ) = 𝑦𝑦(𝑟𝑟+𝑞𝑞) , 
where 𝑟𝑟  is the part of integers from (𝑀𝑀 −
𝑞𝑞)/2 +  ½. If the expected result is the shortest 
coverage interval, r* must be determined as 
𝑦𝑦(𝑟𝑟∗+𝑞𝑞) −  𝑦𝑦(𝑟𝑟∗)   <  𝑦𝑦(𝑟𝑟+𝑞𝑞)   −  𝑦𝑦(𝑟𝑟)  for all val-
ues, 𝑟𝑟 =  1, … , (𝑀𝑀 −  𝑞𝑞). 

(f) Analyzing parameter variabilities needs more than 
one sequence, so if ℎ = 1, a unit must be added, and 
step (e) must be repeated. 

(g) After each sequence has been obtained, this last pa-
rameter mean and standard deviation must be calcu-
lated using Eqs. 9-12 as follows: 
• Estimated value: 

( )
1

1ˆ h i
i

y y y
h =

= = ∑  (9) 

( )
( )( )

1
22

ˆ 1

1 ˆ
1

h i
y i

s y y
h h =

 
= − 

−  
∑  (10) 

• Standard uncertainty: 
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( )( )1

1ˆ( ) h i
i

u y u y
h =

= ∑  (11) 

( )
( )( ) ( )( )

1
22

ˆ( ) 1

1 ˆ
1

h i
u y i

s u y u y
h h =

 
= − 

−  
∑  (12) 

• The lower limit of coverage interval is expressed 
in Eqs. 13 and 14: 

( )
1

1ˆ h i
low lowi

y y
h =

= ∑  (13) 

( ) ( )
1

2
2( )

ˆ 1

1 ˆ ˆ
1low

h i
y low lowi

s y y
h h =

 
= − 

−  
∑  (14) 

• The upper limit of coverage interval is calculated 
using Eqs. 15 and 16: 

( )
1

1ˆ h i
high highi

y y
h =

= ∑  (15) 

( ) ( )
1

2
2( )

ˆ 1

1 ˆ ˆ
1high

h i
y high highi

s y y
h h =

 
= − 

−  
∑  (16) 

(h) The numerical tolerance (𝛿𝛿 ) associated with 𝑢𝑢(𝑦𝑦) 
must be calculated to apply the stability criterion to 
the results. 𝑢𝑢(𝑦𝑦) is calculated as in step (e) using all 
the values in the ℎ × 𝑀𝑀 matrix. For computer cal-
culation purposes, the uncertainty must be expressed 
as 𝑢𝑢(𝑦𝑦)  =  𝑐𝑐 × 10𝑑𝑑, where 𝑐𝑐 is an integer with the 

same number of digits as the significant digits of 
𝑢𝑢(𝑦𝑦), and 𝑑𝑑 is an integer. The numerical tolerance 
is stated in Eq. 17: 

110
2

dδ =  (17) 

(i) Stability criteria stated that if the value of 2𝑠𝑠𝑦𝑦�   , 
2𝑠𝑠𝑢𝑢�(𝑦𝑦), 2𝑠𝑠𝑦𝑦�𝑙𝑙𝑙𝑙𝑙𝑙, or 2𝑠𝑠𝑦𝑦�ℎ𝑖𝑖𝑖𝑖ℎ is higher than 𝛿𝛿, a unit 
must be added to ℎ, and step (e) must be repeated. 

Finally, after the stability criteria have been verified, all 
ℎ × 𝑀𝑀 model values must be used to calculate 𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙  and 
𝑦𝑦ℎ𝑖𝑖𝑖𝑖ℎ  using step (e) for each sequence. The values of 𝑦𝑦 
and 𝑢𝑢(𝑦𝑦) have been computed in step (g). 

 
3. Methods 
3.1 Calculation of Steady State Power of Refrigerator  

IEC 62552-3:201540) is an International standard that 
regulates the test method for calculating energy consump-
tion of household refrigerators. The amount of energy 
consumption is calculated based on the steady state power 
of the refrigerator. The Annex B section of IEC 62552-
3:2015 explains that there are two methods of determining 
the steady state condition of the refrigerator during testing, 
namely the SS1 and SS2 approaches. Both methods have 
their own stability criteria. Technically, the SS2 approach 
can be used as an alternative if the stability criteria with 
the SS1 approach are not met. Steady state power of the 
refrigerator is the measured power when the refrigerator 
has reached steady state, either through the SS1 or SS2 
approaches. This value is then corrected by Eq. 18 on the 
basis of consideration of the difference between the meas-
ured ambient temperature during the test and the nominal 
ambient temperature of the test.  

( )
( )( )

( )
( )( )

( )

1

1 2 1 2

1

1
18 18

1

i am imi
SS SSM at am

it it

at am

V T TV
P P T T

c T c c T c

T T COP

−

−

  × − = × + − × × ×   × + + × + +  

+ − ×∆  

∑ ∑
 (18) 

3.2 Measurement 
The dataset utilized in this research stems from refrig-

erator testing conducted in accordance with the IEC 
62552:2015 standard, a methodology akin to that em-
ployed in prior research by Kusnandar41), particularly fo-
cusing on power measurements. The object of examina-
tion is a two-door refrigerator, characterized by specifica-
tions delineated in Table 1. 

The measurand in this research is steady-state power of 
refrigerator (Pss in Eq. 18). This value is obtained by the 
time the compartment temperature reaches its steady-state 
condition. Other quantities, Tim and Tam, are obtained by 
measuring the inner compartment and the ambient temper-
ature. While Vi is determined based on the information 
written on the refrigerator label. 

Table 1. Specification of refrigerator under test. 
Specification Value 
Brand/Type Polytron/PR-21SERI 
Nominal Voltage 220 𝑉𝑉 
Current/Freq. 1.1 𝐴𝐴/50 𝐻𝐻𝐻𝐻 
Max Lamp Power 15 𝑊𝑊 
Heating Power 145 𝑊𝑊 
Frozen Compartment Vol.  41 𝐿𝐿 
Unfrozen Compartment Vol. 125 𝐿𝐿 
Refrigerant R134a/90g 
Climate Class T 

 
The experimental configuration and positioning of ther-

mocouple sensors adhered meticulously to the guidelines 
outlined in the IEC standard 62552-1:2015, depicted in 
Fig. 1. Specifically, five thermocouple sensors were stra-
tegically deployed within the frozen compartment, while 
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three sensors were positioned within the unfrozen com-
partment. Additionally, two sensors were affixed on both 
the left and right sides, maintaining a separation distance 
of 30 cm from the test specimen to capture ambient tem-
perature variations. Temperature and power data record-
ing was carried out simultaneously utilizing a dedicated 
data logger and power meter with a logging time of 10 
seconds.  

 
Fig 1. Measurement Set-up 

The test was carried out in a temperature-controlled 
room at 32℃, which is the temperature of the test room 
for products for a climate class T/Tropical (it is mean that 
the refrigerator was designed to be used in tropical area). 
Since the test object used was a refrigerator with a 2-star 
compartment type, the target temperatures for the frozen 
and unfrozen compartments were −12℃  and 4℃ , re-
spectively. The thermostat on the refrigerator was set in 
such a way that the temperature in the frozen and unfrozen 
compartments approaches the set target. Figure 2 shows a 
graph of refrigerator temperature and power over time, 
with unloaded conditions during the measurements. The 
spike shown in the graph indicates when the refrigerator 
is defrosting. Steady-state conditions are determined be-
tween two defrosts with stability criteria according to 
standard provisions (SS1 or SS2).  

Measurement uncertainty assessment was meticulously 
executed employing the Monte Carlo method, wherein the 
number of trials (M) was determined through three distinct 
approaches: 

1) A priori, by setting 𝑀𝑀 = 106. 
2) Adaptive, by setting the number of significant deci-

mal digits 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 = 2. 
3) Adaptive, by setting the number of significant deci-

mal digits 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 = 1. 
Each of the aforementioned methodologies underwent 

a tenfold repetition, facilitating rigorous comparison of 
outcomes. The simulation endeavor was orchestrated uti-
lizing the computational capabilities of Matlab39), a 

widely acknowledged software platform renowned for its 
robust numerical computation and visualization function-
alities. 

 

 
Fig. 2: Graph of refrigerator temperature and power over 

time 
 

4. Results and Discussions 
Table 2 provides a comprehensive breakdown of 

sources of uncertainty in measuring the steady-state power 
of a refrigerator, along with their estimated probability 
distribution functions (PDFs). The estimated values of the 
PDF parameters from each of these components of uncer-
tainty are the inputs in conducting the Monte Carlo simu-
lation. 

For the steady-state power (PSSM), sources of uncer-
tainty include repeated measurement, power meter (PM) 
resolution, and PM calibration. Repeated measurement 
and PM calibration are modeled with a normal distribution. 
The mean steady-state power from repeated measure-
ments is estimated at 53.6 𝑊𝑊, with a standard deviation 
of 0.99 𝑊𝑊. PM calibration introduces a mean deviation 
of −0.05 𝑊𝑊  with a standard deviation of 0.02 𝑊𝑊 . PM 
resolution is represented by a uniform distribution ranging 
from −0.05 𝑊𝑊 to 0.05 𝑊𝑊. 

Regarding ambient temperature (Tam), sources of uncer-
tainty encompass repeated measurement, data logger (DL) 
resolution, DL calibration, chamber calibration, and ther-
mocouple calibration. These sources are modeled with 
normal or uniform distributions. Repeated measurement 
of ambient temperature yields a mean of 31.8°C with a 
standard deviation of 0.10°C. DL calibration introduces a 
mean deviation of 0.6°C with a standard deviation of 
0.1°C. Chamber calibration and thermocouple calibration 
contribute mean deviations of 0.4°C and 0.2°C, respec-
tively, with corresponding standard deviations. 
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Table 2. Sources of uncertainty in measuring the steady state power of the refrigerator and its estimated distribution (PDF). 

Sources Type Dist. 
Parameters 

Mean Std. Dev Min Max 

Steady-
state Power 

(PSSM)  

Repeated measurement A Normal 53.6 𝑊𝑊 0.99 𝑊𝑊 - - 

Power Meter (PM) resolution B Uniform - - −0.05𝑊𝑊 0.05𝑊𝑊 

PM calibration B Normal −0.05 𝑊𝑊 0.02 𝑊𝑊 - - 

Ambient 
temperature 

(Tam) 
 
  

Repeated measurement A Normal 31.8℃ 0.10℃ - - 

Data Logger (DL) resolution B Uniform - - −0.05℃ 0.05℃ 

DL calibration B Normal 0.6℃ 0.1℃ - - 

Chamber calibration B Normal 0.4℃ 0.3℃ - - 

Thermocouple calibration B Normal 0.2℃ 0.4℃ - - 

Frozen 
temperature 

(T2m) 
  

Repeated measurement A Normal −13.4℃ 0.05℃ - - 

Data Logger (DL) resolution B Uniform - - −0.05℃ 0.05℃ 

DL calibration B Normal 0.6℃ 0.1℃ - - 

Thermocouple calibration B Normal −0.8℃ 0.4℃ - - 

Unfrozen 
temperature 

(T1m) 
  

Repeated measurement A Normal 5.9℃ 0.05℃ - - 

Data Logger (DL) resolution B Uniform - - −0.05℃ 0.05℃ 

DL calibration B Normal 0.6℃ 0.1℃ - - 

Thermocouple calibration B Normal −0.4℃ 0.4℃ - - 

Similarly, frozen temperature (T2m) and unfrozen tem-
perature (T1m) undergo uncertainty analysis. For both tem-
peratures, repeated measurements and DL resolution are 
considered, along with DL calibration and thermocouple 
calibration. The PDFs for these sources are also repre-
sented by normal and uniform distributions, with means 
and standard deviations specified accordingly. 

Three approaches of determining the number of trials 
(M) in Monte Carlo Simulation (MCS) are presented in 
Appendix A. In Table A.1, with 𝑀𝑀 = 106 (a priori), all 
simulations yield an estimated measured value (𝑃𝑃𝑆𝑆𝑆𝑆 ) of 
51.30 W with a standard uncertainty (𝑢𝑢(𝑃𝑃𝑆𝑆𝑆𝑆)) of 1.44 W. 
The coverage interval spans from 48.47 W to 54.13 W. 
Adaptive MCS with 2 significant decimal digits (Table 
A.2) also maintains consistency in 𝑃𝑃𝑆𝑆𝑆𝑆   and 𝑢𝑢(𝑃𝑃𝑆𝑆𝑆𝑆), yet 
the coverage interval fluctuates slightly. Conversely, 

adaptive MCS with 1 significant decimal digit (Table A.3) 
exhibits slight variations in 𝑃𝑃𝑆𝑆𝑆𝑆 and 𝑢𝑢(𝑃𝑃𝑆𝑆𝑆𝑆), influencing 
the coverage interval.  

Meanwhile, the average results from the 10 simulations 
are presented in Table 3. In estimating the 95% coverage 
interval, the three methods provide results that still vary, 
both for the lower and upper limits of the interval. How-
ever, the variation in the simulation results using the a pri-
ori method and the adaptive method with 2 significant 
decimal digits are relatively smaller than the results using 
the adaptive method with 1 significant decimal digit. On 
the average, there is only a difference of 0.01 𝑊𝑊  be-
tween the 95% coverage interval of a priori method and 
the adaptive method with 2 significant decimal digits, both 
for the lower and upper limits.

 
Table 3. Statistics from 10 times Monte Carlo simulation with three approaches to determine of M. 

MCS  
methods 

Number of  
trials, 𝑴𝑴 

Measured 
value, Pss (W) 

Standard  
uncertainty, 
u(Pss) (W) 

𝟗𝟗𝟗𝟗% coverage 
interval 

(W) 

Significant 
digit, ndig 

Numeric 
tolerance, δ 

A priori 106 51.30 1.44 [48.49-54.15] - - 

Adaptive 2.32 × 106 51.30 1.44 [48.50-54.16] 2 0.01 

Adaptive 3.1 × 104 51.30 1.44 [48.47-54.13] 1 0.1 

Moreover, based on the outcomes derived from the 
Monte Carlo simulation concerning the steady-state 
power measurement of the refrigerator, it is evident that 
both the a priori method (𝑀𝑀 = 106 ) and the adaptive 
method with 2 significant decimal digits yield comparable 

results in estimating the measured value, standard uncer-
tainty, and 95% coverage intervals. This suggests a robust-
ness and consistency in the methodology across multiple 
simulations. Conversely, the adaptive Monte Carlo simu-
lation with 1 decimal digit demonstrates discrepancies in 
the obtained values upon repeated simulations, indicating 
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its less favorable performance. Additionally, the distribu-
tion graphs generated from these three approaches are vis-
ually depicted in Fig. 3, offering further insights into the 
distribution characteristics of the simulated data. 

Fig. 3 demonstrates that the Monte Carlo simulation 
(MCS) output yields a steady state power distribution 
closely resembling a normal distribution, particularly evi-
dent in the a priori method (𝑀𝑀 = 106) and the adaptive 
approach with two significant decimal numbers (Fig. 3-a 
and 3-b). The distributions align closely with the normal 
distribution curve line. Therefore, employing a normal 
distribution approach is appropriate for determining the 
95% coverage interval for the estimated value of the 
standard uncertainty. On the other hand, the adaptive MCS 
method with one significant decimal digit produces an 
output distribution graph that deviates more from the nor-
mal curve line due to the smaller number of simulations 
(Fig. 3-c). 

 

 
Fig. 3-a: The output distribution graph of the MCS using the 

a priori method (𝑀𝑀 = 106). 

 
Fig. 3-b: The output distribution graph of the MCS using the 

adaptive method with 2 significant decimal digits.  

 
Fig. 3-c: The output distribution graph of the MCS using the 

adaptive method with 1 significant decimal digit. 
 

5. Conclusions 
The application of the Monte Carlo method to evaluate 

uncertainty in the steady-state power measurement of re-
frigerators, based on the IEC 62552:2015 standard, has 
yielded promising results. Our study produced an esti-
mated measured value of 51.3 𝑊𝑊 with a standard uncer-
tainty of 1.44 𝑊𝑊. By addressing the challenges outlined 
in the introduction, particularly regarding the limitations 
of traditional methods such as the Law of Uncertainty 
Propagation (LPU), the Monte Carlo method emerges as a 
robust alternative for uncertainty estimation in complex 
measurement models. 

The choice between setting the number of trials (𝑀𝑀) for 
the Monte Carlo simulation presents interesting insights. 
Both approaches, setting 𝑀𝑀 = 106 and using an adaptive 
method with 2 significant decimal digits, yield relatively 
similar results. This flexibility in methodology under-
scores the versatility and effectiveness of the Monte Carlo 
method in handling intricate measurement uncertainties. 

Our findings suggest that the Monte Carlo method of-
fers a viable solution to the uncertainty calculation prob-
lem encountered with traditional methods, especially 
given the complexities involved in determining sensitivity 
coefficients in complicated measurement models. Further-
more, future research should delve deeper into investigat-
ing dominant factors of uncertainty components, explor-
ing correlations among input quantities, and determining 
appropriate distributions using the Monte Carlo method. 

The main challenges of using the Monte Carlo Method 
for uncertainty estimation in refrigerator power measure-
ments include the computational intensity due to the need 
for a large number of simulations and significant pro-
cessing power. Additionally, selecting appropriate proba-
bility distributions, conducting thorough sensitivity anal-
ysis to identify influential parameters, establishing con-
vergence criteria, and ensuring result stability. The choice 
of software and tools also impacts the ease and effective-
ness of the analysis 
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Nomenclature 

MCM Monte Carlo Method 
MCS Monte Carlo Simulation 
LPU Law of Propagation of Uncertainties 
PDF Probability Density Function 
GUM Guide to the Expression of Uncertainty in 

Measurement 
PSS steady state power of refrigerator after correc-

tion 
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆  steady state power obtained through the SS1 

or SS2 approach (𝑊𝑊) 
𝑇𝑇𝑎𝑎𝑎𝑎  target ambient temperature of test chamber 

(℃) 
𝑇𝑇𝑎𝑎𝑎𝑎  measured ambient temperature of the test 

chamber during the test period (℃) 
𝑉𝑉𝑖𝑖 nominal volume of compartment 𝑖𝑖 (𝐿𝐿) 
𝑇𝑇𝑖𝑖𝑖𝑖 measured temperature of compartment 𝑖𝑖 

during the test period (℃) 
𝑇𝑇𝑖𝑖𝑖𝑖  target temperature for energy consumption of 

compartment 𝑖𝑖 (℃) 
𝑐𝑐1 constant value = 0.011364 (–) 
𝑐𝑐2 constant value = 1.25 (–) 
∆𝐶𝐶𝐶𝐶𝐶𝐶 adjustments given are in accordance with the 

type of product and test conditions (based on 
the standard, the value is set at −0.014) 

 
Greek symbols 
δ numerical tolerance (–) 
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A. MCS results with three approaches of determining the number of trials (M) 

Table A1. MCS results with 𝑀𝑀 = 106 (a priori) 

Simulation No.: 1 2 3 4 5 6 7 8 9 10 

Estimated measured value, Pss (W)   51.30 51.30 51.30 51.30 51.30 51.30 51.30 51.30 51.30 51.30 

Standard uncertainty, u(Pss) (W) 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 

Lower limit of 95% coverage interval (W)  48.47 48.48 48.51 48.50 48.50 48.47 48.51 48.49 48.50 48.50 

Upper limit of 95% coverage interval (W)  54.13 54.14 54.17 54.16 54.15 54.13 54.16 54.14 54.15 54.14 

Number of trials, M  106 106 106 106 106 106 106 106 106 106 

 

Table A2. Adaptive MCS with 2 significant decimal digits 

Simulation No.: 1 2 3 4 5 6 7 8 9 10 

Estimated measured value, Pss (W)   51.30 51.30 51.30 51.30 51.30 51.30 51.30 51.30 51.30 51.30 

Standard uncertainty, u(Pss) (W) 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 

Lower limit of 95% coverage interval (W)  48.51 48.50 48.50 48.48 48.50 48.51 48.48 48.50 48.51 48.52 

Upper limit of 95% coverage interval (W)  54.17 54.16 54.16 54.13 54.16 54.15 54.14 54.15 54.16 54.18 

Number of trials, M  1.98×106 2.38×106 2.41×106 2.19×106 2.25×106 2.21×106 2.69×106 2.41×106 2.15×106 2.57×106 

 
Table A3. Adaptive MCS with 1 significant decimal digit 

Simulation No.: 1 2 3 4 5 6 7 8 9 10 

Estimated measured value, Pss (W)   51.30 51.29 51.29 51.30 51.30 51.31 51.31 51.30 51.31 51.31 

Standard uncertainty, u(Pss) (W) 1.44 1.44 1.45 1.45 1.44 1.44 1.45 1.44 1.45 1.45 

Lower limit of 95% coverage interval (W)  48.46 48.52 48.49 48.52 48.38 48.43 48.37 48.52 48.51 48.52 

Upper limit of 95% coverage interval (W)  54.11 54.16 54.15 54.18 54.05 54.07 54.06 54.14 54.16 54.21 

Number of trials, M  2×104  2×104  2×104  6×104 4×104  4×104  2×104  4×104  2×104  3×104  
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