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Abstract: One of the primary components in solar photothermal collectors is the absorber 

because its role is very influential on system performance. Recent research on developing solar 
photothermal absorbents has found materials with impressive absorption performance of more than 
90%. The next challenge is to find environmentally friendly materials, simple and easy to 
manufacture, available in abundance, easy to recycle, easy to install, durable, and easy to maintain 
while maintaining high performance. In addition, the existing solar thermal collector is varied and 
requires selecting appropriate materials. Therefore, this study presents a brief review to make it 
easier for engineers to choose the most suitable material for solar thermal application, which is 
designed based on the latest research findings. Moreover, this study is also helpful for researchers 
as a reference source to find novelty and state-of-the-art research on photothermal absorber 
materials. 

 

 
Keywords: phototherapy; solar collector; solar energy; solar thermal; renewable energy; solar 
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1. Introduction 

Global energy demand continues to increase, and 
adequate renewable energy sources are needed1–7). Solar 
energy is a popular renewable-sustainable energy source, 
and its applications increased continuously due to its 
huge energy potential and eco-friendly8–13). Moreover, 
solar energy sources can be utilized in various types of 
applications such as refrigeration14–16), electric 
generation17–19), water pumping20–23), cooking24), 
adsorption cooling25,26), water heater27), and air 
heater28,29). The most common mechanism for converting 
solar radiation energy is photovoltaics30–32) and 
photothermal31). 

The technology for utilizing solar thermal energy is 
commonly referred to as solar thermal by utilizing the 
phenomenon of photothermal. The absorber is one of the 
main components in solar photothermal to make it can 
work optimally33,34). Recent studies have shown that the 
absorber can work very impressively with an absorbency 
level of more than 90%. The next challenge is not only 
the absorptivity level of at least 90%, but also it must be 
cheaper and environmentally friendly35–37) or as a low-
cost environmentally-friendly solution35). Furthermore, 
the solar thermal development must also consider the 
simple and easy manufacturing aspect38,39), the material 
is available in abundance40), easy to recycle41), easy 
installation42), long service life24,43–45), easy 
maintenance46) and economical47–49). These renewable 
technology criteria will be an effective and sustainable 
solution50). 

Materials with various groups have been developed 
and researched with the results of their unique properties. 
Meanwhile, the types of solar photothermal also vary 
with a wide range of operating conditions. For example, 
unconcentrated solar photothermal collectors operate at 
less than 100°C51) while the concentrated types operate at 
over 1000°C52). Moreover, various types of solar 
photothermal are designed for various purposes such as 
desalination, water harvesting, sterilization, deicing, 
energy harvesting, wastewater treatment, oil spill cleanup, 
water pumping, and air conditioner53–55). Currently, the 
issue of water pollution is a severe problem in several 
countries56–58). Therefore, solar photothermal absorbers 
must be able to work in their respective operating 
conditions. Finally, it raises the challenge of selecting the 
suitable material to operate for a long time with a high-
efficiency performance. 

Responding to the problem above, this study presents 
various developments of the latest research innovations 
in material studies for solar photothermal absorbers. 
Furthermore, the review will provide a proper reference 
for engineers selecting the material for developing their 
solar thermal design. Moreover, our study also provides 
insights for researchers to discover novelty and state-of-
the-art in the studies of materials engineering for solar 
photothermal. 

2. Work Mechanism 

Solar energy can be utilized and converted into various 
forms of energy, including electricity by photovoltaic, 
chemical (fuel) by photochemical, photocatalyst, and 
photobiochemical, health therapy by phototherapy and 
thermal energy by photothermal59). Among these 
technologies, the current research findings show that the 
photothermal conversion process is the most efficient60). 
Materials that function to absorb light and convert it into 
heat energy are called photothermal absorbers. 
Photothermal is produced by photoexcitation from 
absorbed light, resulting in the partial or nearly complete 
production of thermal energy and diffuse the heat to the 
external environment61–63). In designing high-
performance solar collectors, the sunlight irradiation 
absorption and the efficiency of converting solar 
radiation energy to heat energy are the parameters that 
contribute most to the overall photothermal efficiency 
and achievable temperature64,65).  

Solar radiation in the energy conversion process of the 
photothermal absorber material has three interaction 
mechanisms: local plasmon heating, semiconductor non-
radiative dilation, and molecular thermal 
oscillation59,60,66). The plasmonic mechanism is the most 
dominant conversion of solar energy into heat. Energy 
conversion occurs when a semiconductor is irradiated 
causing electrons to be excited in the semiconductor to 
produce energy near the band gap. Furthermore, the 
energy released from phonons results in local heating67). 

 
3. Performance 

There are four most tested photothermal absorber 
material performances, namely absorbance (𝛼𝛼) emittance 
(𝜀𝜀), efficiency (𝜂𝜂), and temperature (𝑇𝑇). 

 
3.1 Absorbance 

Absorbance is an optical property that represents the 
ability of a material to absorb received light. It is 
formulated by the Beer-Lambert-Bouguer law in 
equation (1). 

𝛼𝛼 = log10
𝐼𝐼0
𝐼𝐼

 (1) 

Where 𝐼𝐼0  is the intensity of light that is shot at the 
specimen (incident light) and 𝐼𝐼 is the intensity of light 
that passes through the specimen (transmitted light). The 
absorbance test value is 0 −∞ , where 0 means the 
material does not absorb light at all and ∞ means the 
material absorbs it completely. An illustration of testing 
equation (1) is presented in Fig. 1. 
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Fig. 1: Illustration of absorbance test using 

spectrophotometry 
 

The absorbance performance expressed in % units is 
formulated in equation (2). An absorbance value of 0% 
means the material does not absorb light at all and 100% 
means it absorbs light completely. 

10−𝛼𝛼 =
𝐼𝐼0
𝐼𝐼

 (2) 

Meanwhile, to measure absorbance at a certain 
wavelength range, it is formulated in equation (3)68). 

𝛼𝛼(𝜃𝜃) =
∫ [1 − 𝑅𝑅(𝜃𝜃, 𝜆𝜆) − 𝜏𝜏(𝜃𝜃, 𝜆𝜆)]𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃(𝜃𝜃, 𝜆𝜆)𝑑𝑑𝑑𝑑

∫ 𝑃𝑃(𝜃𝜃, 𝜆𝜆)𝑑𝑑𝑑𝑑𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

Where 𝜆𝜆 is the wavelength of light, 𝜃𝜃 is the angle of 
light, 𝑅𝑅  is reflectance, 𝜏𝜏  is transmittance, and 𝑃𝑃  is 
radiation power. 

 
Fig. 2: Relationship between light interaction on the 

specimen (absorbance, reflectance, and transmittance) 
 

With the law of conservation of energy, the illustration 
in Fig. 2 can be formulated in equation (4)69). 

%𝛼𝛼 + %𝑅𝑅 + %𝑇𝑇 = 1 (4) 

Therefore, the photothermal absorber has better 
performance the higher absorbance. Meanwhile, the 

reflectance and transmittance get better at a lower value. 
 

3.2 Emittance 

Emittance (𝜀𝜀) is the performance of a material which 
represents the ratio of the radiation emitted by a material 
at the same temperature to the radiation emitted by a 
perfectly black material70). The emittance performance is 
formulated in equation (5) with an illustration of the 
difference between emittance and reflectance presented 
in the figure. 

𝜀𝜀 =
∫ [1 − 𝑅𝑅(𝜆𝜆)]𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵(𝜆𝜆,𝑇𝑇)𝑑𝑑𝑑𝑑

∫ 𝐵𝐵(𝜆𝜆,𝑇𝑇)𝑑𝑑𝑑𝑑𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

 (5) 

Where 𝜆𝜆  is a certain radiation wavelength, 𝑇𝑇  is a 
certain temperature, 𝑅𝑅 is reflectance, and 𝐵𝐵 is black body 
emissive power71). 

Photothermal absorber material is considered to have 
good performance if the emittance is lower 72). A lower 
emittance value indicates that the material releases less 
heat in the form of radiation losses. In contrast to 
reflectance and transmittance where the losses are in the 
form of light radiation, emittance releases energy losses 
in the form of heat which is illustrated in Fig. 3. To 
reduce emittance losses, one of the efforts that can be 
made is by coating using low emitter material. He et al73) 
used AlCrWTaNbTi nanoceramic to coat a stainless-steel 
substrate to obtain a material with low emittance 
properties. 

 
Fig. 3: Emittance illustration 

 
3.3 Temperature 

Temperature (𝑇𝑇)  measurements can generally be 
carried out using thermocouple sensors, laser 
thermometers, and camera terameters. The thing that 
needs to be paid attention to when using a sensor 
thermocouple thermometer is that the sensor is not 
exposed to incident light because the sensor can cause a 
photothermal effect. As a result, the sensor does not 
measure the temperature of the specimen but instead 
measures itself. Therefore, the solution is that the sensor 
should be immersed in the specimen or placed on the 
opposite side of the surface exposed to direct light as 
shown in Fig. 4. 
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Fig. 4: Temperature measurement using thermocouple sensors 

 
Temperature measurements using an infrared laser 

thermometer (gun) and thermometer camera must 
contain no solid material that obstructs imaging even 
though the material is transparent. An illustration of 
testing photothermal absorber material using a laser 
thermometer and thermal camera is presented in Fig. 5. 
Thermometers and thermal cameras only measure solid 
materials the first time they are exposed and they cannot 
measure the temperature on the backside. Camera 
thermal thermometers have the advantage of displaying 
temperature distribution, whereas thermocouple sensors 
and laser thermometers can only measure at certain 
points. 

 
Fig. 5: Temperature measurement uses (a) laser thermometer 

and (b) thermal camera  
 

In testing the temperature performance of 
photothermal absorber materials which can be carried out 

simultaneously, it can be carried out in uncontrolled 
environmental test conditions such as testing directly 
under sunlight. Meanwhile, tests carried out partially or 
alternately must be carried out under controlled 
environmental conditions. The main parameters that 
must be controlled are ambient temperature and light 
radiation sources with as small a deviation as possible. If 
these parameters cannot be controlled, the test data 
results will be unreliable. 

 
3.4 Efficiency 

The energy conversion efficiency (𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒.𝑎𝑎𝑎𝑎𝑎𝑎) in 
photothermal absorbents is formulated74,75) in equation 
(6). 

𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 .𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑄𝑄
𝐸𝐸

=
𝑚𝑚 × ∆𝐻𝐻𝑇𝑇

𝐼𝐼 × 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 × (∆𝑡𝑡𝑇𝑇) (6) 
 

Where 𝑄𝑄  is the thermal energy, 𝐸𝐸  is incident light 
during the irradiation time, 𝑚𝑚  is the mass of the 
absorbent, ∆𝐻𝐻𝑇𝑇  is the enthalpy change of the absorbent at 
(𝑇𝑇) , 𝐼𝐼  is the intensity of light illumination, 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎  the 
surface area of the absorbent exposed to radiation, and 
∆𝑡𝑡𝑇𝑇 is the time required to reach (𝑇𝑇). 

Measurements by Yan and Li,74) were in direct 
radiation conditions, whereas experiments for focused 
light require a light radiation focusing factor (𝐹𝐹) which 
is formulated in equation (7). 

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑚𝑚 × ∆𝐻𝐻𝑇𝑇

𝐹𝐹 × 𝐼𝐼 × 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 × (∆𝑡𝑡𝑇𝑇) (7) 

The 𝐹𝐹  value comes from a combination of material 
transmittance (%𝑇𝑇)  and concentration ratio (𝐶𝐶) , 
formulated in equation (8). 

𝐹𝐹 = %𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝐶𝐶 (8) 
The optical concentration ratio factor (𝐶𝐶) is the ratio 

of the lens surface area (𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) to the absorbing surface 
area (𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎), formulated in equation (9)76). 

𝐶𝐶 =
𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎

 (9) 

Light passing through the lens cannot be transmitted 
completely. Therefore, the transmittance of the system is 
a combination of the transmittance of several lenses 
through which light passes, formulated in equation (10). 

%𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  %𝜏𝜏1 × .  .  .  × %𝜏𝜏𝑛𝑛 (10) 
Equations (6) to (10) are simplified to obtain equation 

(11). 

𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑚𝑚 × ∆𝐻𝐻(𝑡𝑡,𝑚𝑚,𝑇𝑇)

%𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝐼𝐼 × (∆𝑡𝑡𝑇𝑇) (11) 
 

The vapor generation efficiency (evaporation) or solar 
to vapor efficiency, is formulated in equation (12)77). 

𝜂𝜂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑚̇𝑚 × ℎ𝑣𝑣
𝐶𝐶 × 𝑃𝑃

 (11) 
 

Where 𝑚̇𝑚 ̇ is the evaporation mass flow rate and ℎ𝑣𝑣 is 
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the evaporation enthalpy. Meanwhile, 𝐶𝐶  is the optical 
concentration factor and 𝑃𝑃 is solar power. 

 
4. Material Classification 

The types of materials for solar photothermal 
absorbers are classified into six types, namely: metal, 
ceramic, carbon, polymer, natural, and composite as 
shown in Fig. 6. The classification is based on the 
similarity of material properties and fabrication methods. 
Furthermore, in this material category it is further 
explained regarding its application, structure, 
manufacturing method, performance. The performance 
presented is in the form of light absorptiveness, light 
emissivity, efficiency of conversion of radiant energy to 
heat or vapor generation, and maximum tested 
temperature. 

 
Fig. 6: Classification of solar photothermal absorber materials 

 
4.1 Metal 

Li and Wang (2020) classify metal-based materials for 
solar photothermal into three: plasmonic metal 
nanomaterials, porous metal, and metal element 
composites78). Plasmonic metal nanomaterials work 
through absorbed light energy causing electrons to be 
excited to produce energy near the band gap, which in 
turn releases energy back employing photon re-emission 
(luminescence) or phonon generation (heat)67,79). Besides 
being useful as a photothermal absorber, nanofluid 
material is also helpful in increasing heat capacity, 
conductivity of working fluids, and dynamic viscosity80–

82). While the porous metal material works by trapping 
the light that enters the pores83). The metal element 
composite works by combining different material 
properties to obtain new material properties, which are 
discussed further in the composite materials chapter. 

In general, metal materials have excellent properties 
because they have high thermal stability51,73,84–88). 
Moreover, metal is the primary commodity in solar 
energy applications89). With various structures, metallic 
materials can operate with more than 95% 
absorptivity78,90,91). Therefore, metal materials are 
suitable for concentrated solar photothermal absorbers. 
However, metal material is more expensive when 
compared to carbon-based materials and is prone to 
corrosion78). 

Generally, virgin metal materials have high 
reflectivity; consequently, their absorptivity is low. 
Metals require manufacturing engineering with a 
selective coating method to have a high absorptivity92). 
Therefore, the metal material in the solar collector 
functions as a substrate absorber coated by a selective 
absorber with high absorbance values, low emissivity, 
and low reflectivity. If desired without coating, the 
reflectivity of metallic materials can be reduced, and the 
absorbance of light can be increased by forming a narrow 
cavity structure such as foam or sponge. The most 
commonly used metal materials for solar photothermal 
absorbers are titanium93,94), aluminum95–97), copper98–102), 
and stainless steel45,93,103). Generally, a single metal 
material (non-composite) for plasmonic models use 
nanoparticle structure, Fig. 7. (a), or film, Fig. 7. (b), that 
simultaneously acts as a nanofluid78). The thin film is 
more promising for vapor generation, while the 
nanofluid is more promising for temperature generation 
and heat transfer. Vapor generation will have the property 
of inhibiting temperature generation because the 
evaporative cooling effect occurs with the release of heat 
through the vapor medium104,105). 

 

 
Fig. 7: Two types of plasmonic models for steam generation 

application (a) nanoparticle and (b) metal film (source: 
author's document) 

  

Photothermal 
materials

Metal

Ceramic

Carbon

Polymer

Natural

Composite 
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Table 1. Recent findings of metal materials as photothermal absorbers. 

Types Application Structure / Manufacturing Method 
Performance 

Ref. 
α ε 𝜂𝜂 T 

Titanium 

Photothermal in general 
Ultrathin Titanium / Aluminum 
Nitride / Titanium parallel coating 
on a stainless-steel substrate 

89% 19% Na Na 93) 

Solar thermal steam 
generation, 
desalination, macula-
removing, and 
biological sterilization 

Titanium spheres in the hydrogel 
layer 

93.6% 
(average) 
98.9% 
(maximum) 

Na >90% Na 94) 

Aluminum 

Concentrated power 
solar absorber 

Composite ceramic films on 
aluminum substrate 

95.20% 5.45% Na >400°C 95) 

Photothermal in general 
Nanoporous anodic aluminum oxide 
(NPAAO) films on 6061-T6 
aluminum alloy 

Na 
<7.7% 
(reflectance) 

Na 290 °C 96) 

Photothermal and 
radiative cooling 

a 200-nm-thick metallic aluminum 
(Al) film + aluminum oxide (𝐴𝐴𝐴𝐴2𝑂𝑂3) 
wafer 

>80% Na Na 

185°C 
(heating) 
−12°C 
(cooling) 
20°C 
(ambient) 

97) 

Copper 

Solar steam generation 
Copper sulfide-macroporous 
polyacrylamide hydrogel 

>80% Na 92% 55.3 °C 98) 

Solar thermal energy 
storage and 
photothermal 
conversion 

Microencapsulated phase change 
materials with copper and copper 
oxide 

Na Na 62.79% 245 °C 99) 

Solar thermal in general 
CuO in selective dip-coating on Cu 
substrat 

75.02% 75.02% 46.38% Na 106) 

Photocatalysis, solar 
energy harvesting, 
optoelectronics, and 
biomedical technologies 

Cu-Based Core−Shell Nanoparticles Na Na 66% Na 100)  

Solar thermal parabolic 
trough collecto 

Volumetric porous foam Na Na 60% 

12.2 °C 
(enhancement 
from 
ambient) 

102) 

Stainless 
steel 
45,93,103) 

High temperature solar 
thermal collector 

Textured stainless steel coated with 
AlCr oxide 

86%–92% Na Na 800 °C 45) 

Photothermal in general Ultrathin Titanium / Aluminum 
Nitride / Titanium parallel coating 
on a stainless-steel substrate 

89% 19% Na Na 
93) 

Solar thermal heat 
harvesting 

Dielectric/conducting multilayer 
coating on Stainless Steel tubes 

∼85% 0.14% Na 350 °C 103) 

*Notes: α = absorbance, ε = emittance, η = efficiency, and T = temperature. 
 
4.2 Ceramic 

Ceramic materials are the choice to manufacture 
photothermal absorbers that are safe against damage at 
high temperatures while maintaining high spectral 
selectivity, conductivity and radiation properties at 
working temperatures107). The most striking advantage of 
ceramics is their chemical structural and corrosion 
resistance108,109). Therefore, ceramic materials are very 
suitable for concentrating solar photothermal. However, 

ceramic materials are more expensive, difficult to 
fabricate, and difficult to recycle than metals. Therefore, 
the dark ceramic material is more suitable for application 
as a selective absorbent coating material than as a 
substrate absorbent material for solar collectors. 

The type of ceramics that have been widely studied for 
thermal absorbers include barium titanate (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵3)110–

112), silicon carbide ( 𝑆𝑆𝑆𝑆𝑆𝑆 )113–116), silicon nitride 
( 𝑆𝑆𝑆𝑆3𝑁𝑁4 )117,118), aluminum oxide (𝐴𝐴𝐴𝐴2𝑂𝑂3 )96,119–122), and 
titanium carbide ( 𝑇𝑇𝑇𝑇𝑇𝑇 )123–125). Data on the latest 
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developments in ceramic materials as photothermal 
absorbers with application details, structure, 
manufacturing methods and performance are presented 
in the Table 2. 

The data shows that the temperature performance of 
the ceramic-type material as a photothermal absorber 
work with a very wide susceptibility, starting from low 

temperatures of less than 100°C to more than 1000°C. 
The temperature achieved by the ceramic material in 
converting light radiation energy into heat is affected by 
the intensity of the light received. A concentrated 
collector lens or mirror is the most common method used 
to increase the intensity of light a material receives.

 
Table 2. Recent findings of ceramic materials as photothermal absorbers. 

Types Application Structure / Manufacturing Method 
Performance 

Ref. 
α ε 𝜂𝜂 T 

Barium 
Titanate 
(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵3) 

Conversion of 𝐶𝐶𝐶𝐶2 to 
methane (photothermal-
photocatalyst)  

Composite with nickel nanoparticle Na Na 
94.4% 
conversion 

270 °C 110) 

Seawater desalination Composite with carbonized sawdust Na Na 72.04% Na 111) 
Light-to-heat conversion Nanoparticles Na Na Na 55.5 °C 112) 

Silicon 
Carbide 
(𝑆𝑆𝑆𝑆𝑆𝑆) 

Radiative cooling and 
light absorption 

Coatings 91.24% 8% Na Na 113) 

Solar heat harvesting 
Hybrid nanofluid with indium-tin-oxide 
(ITO) 

98.9% Na 34.1% Na 114) 

Heat harvesting 
Microcapsule containing phase change 
materials (microPCMs) with melamine 
urea formaldehyde (MUF) 

>90% Na 74.4% 61.1 °C 115) 

Heat harvesting Foam Na Na 85.4% > 1000 °C 116) 

Silicon 
Nitride 
(𝑆𝑆𝑆𝑆3𝑁𝑁4) 

Heat harvesting in 
concentration solar 
power (CSP) 

Layers coating (Inconel / 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 −4𝑆𝑆𝑆𝑆3𝑁𝑁4 / 𝑆𝑆𝑆𝑆3𝑁𝑁4 / 𝐴𝐴𝐴𝐴2𝑂𝑂3)  

92 ± 0.5% 
33 ± 
0.5 

Na 700 °C 117) 

Heat harvesting in 
concentration solar 
power (CSP) 

Layers coating (𝑇𝑇𝑇𝑇𝑇𝑇2 / TiB(N) / 𝑆𝑆𝑆𝑆3𝑁𝑁4) 96.4% 18% Na 82 °C 118) 

Aluminum 
Oxide 
(𝐴𝐴𝐴𝐴2𝑂𝑂3) 

Heat harvesting and 
photothermal sensor 

Layers coating Na Na Na 290 °C 96) 

Heat harvesting Photonic crystal coatings 90% 11% Na 
Room 
temperature 

119) 

Direct absorption solar 
thermal collector 

Blended nanoparticle (𝐴𝐴𝐴𝐴2𝑂𝑂3/𝐶𝐶𝐶𝐶3𝑂𝑂4) > 80% Na Na 

increase 
19.4 °C 
form 
ambient 
temperature 

120) 

Hear harvesting using 
solar thermal 

laminated cubic solar absorber (LCSA) 
by metal-dielectric bilayers 

>90% at 420–
2112 nm and 
>96.32% 280 
nm–2500 nm 

Na 90% 1726.85 °C 121) 

𝐶𝐶𝐶𝐶2 hydrogeneration Membrane Na Na Na 329 °C 122) 

Titanium 
Carbide 
(𝑇𝑇𝑇𝑇𝑇𝑇)123–

127) 

Heat energy harvesting 
in high temperature 

One-layer nano-composite TiN/TiC-
based cermet coatings 

≈80.1% ≈2% Na 650 °C 123) 

Solar heat energy 
harvesting 

TiC–SiC composites Na Na Na 
500 – 
1000 °C 

124) 

Bulk solar absorber SiC-TiC nanocomposite 76% 44% Na 1550 °C 125) 

Copper 
Oxide 
(CuO) 

General application 
(unspecified) 

Thin films are made by spray pyrolysis 85% to 92% Na Na 400 °C 128) 

Solar selective absorber 
in general 

Thin films coating of reduced graphene 
oxide wrapped copper oxide (rGO-CuO) 

825 5% Na Na 129) 

solar thermal energy 
harvesting 

Copper oxide (CuO) nano coatings on 
stainless steel (SS) substrate 

97.4% 40.8% Na Na 130) 

*Notes: α = absorbance, ε = emittance, η = efficiency, and T = temperature. 
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4.3 Carbon 

Carbon-based materials have many excellent 
properties for solar photothermal absorbers131). Naturally, 
the carbon material is black, so it promises high 
absorbance. However, carbon materials do not 
necessarily absorb all light because there is still a Fresnel 
reflection at the dielectric interface of 5-10%132). The 
main challenge of the nature of carbon materials is 
hydrophobic because it weakens the heat exchange 
between water and material87,131,133,134). Combining 
hydrophobic and hydrophilic materials is the solution to 
increasing the contact between the adsorbent and water 
so that the heat transfer increases.135). In a system, there 
are three heat transfer mechanisms, namely radiation, 
conduction and convection136). In addition, experimental 
results on a flat plate solar collector show that carbon 
material in nanofluid particles as a heat transfer fluid is 
unstable137). Therefore, additional treatment is still 
needed to improve the performance of the heat transfer 
fluid, such as by combining it with other materials, 
including coating, mixing, encapsulation, and other 
methods. Increasing heat transfer can also be done by 
making the perforated fins structure138). 

The type of carbon materials that are widely used as 
solar thermal absorbers include mesoporous carbon41,139–

141), carbon dots142–146), carbon nanofluid147–152), 
graphene/graphite153–159), fullerene160–162), and carbon 
nanotube (CNT)163–167). Application, structure, 
manufacturing method and performance of each type of 
carbon material as a photothermal absorber are presented 

in Table 3. 
Amorphous carbon is better for low thermal 

propagation applications because it has a lower thermal 
conductivity than crystalline carbon168,169). Material 
conductivity properties consideration is important 
because materials with high thermal conductivity prevent 
heat concentration which reduces the local thermal 
effect170). Therefore, several methods to reduce thermal 
conductivity have been proposed, such as preparing 
porous materials in which the air entering the pores has 
high thermal resistance to suppress thermal dissipation. 

Carbon is widely used as a photothermal absorber 
material because, abundantly available, the absorptivity 
performance is more than 90%, easy to manufacture, and 
the light absorptivity range is quite comprehensive (200-
800nm)171). Moreover, various carbon materials can be 
combined to obtain multiple structures. Table 3 shows 
that various carbon materials can be formed with 
numerous systems structures and used in multiple 
applications with different performances. Carbon 
material at the nanoscale not only functions as a 
photothermal absorber but is also helpful in improving 
the properties of heat transport media172) and has the 
potential for commercial scale development173). 
Moreover, the use of nanoparticle fluid material can 
improve the superior thermal and optical properties of 
solar collectors174). Other studies also argue that a 
decrease in the price of graphene carbon material will 
increase the use of this type of material in a broader 
range of solar collectors’ applications175).

 
Table 3. Recent findings of carbon materials as photothermal absorbers. 

Types Application Structure / Manufacturing Method 
Performance 

Ref. 
α 𝜂𝜂 T 

Mesoporous 
carbon 41,139–141) 

Solar steam generation 
Geopolymer–Mesoporous Carbon 
Composites 

≈89% >84.95% 82.1 °C 41) 

Heat harvesting by direct 
absorption solar collectors 

Partial substitution of dual 
plasmonic Au–Ag alloy 
nanoparticles. 

91.7% 71.1% 57.1 °C 139) 

Vapor generation 

Laser-induced graphene 
composite material (LMPC) 

89–99% 
98.7% thermal-
vapor 
conversion rate 

76 °C 
(absorber 
surface) 
75 °C (water 
body) 

140) 
Monolithic biomass porous carbon 
(MPC) 

85–95% 
88% 
thermal-vapor 
conversion rate 

Heat energy harvesting 
Layer composite with gradient 
index glass 

>40% Na >50 °C 141) 

Carbon dots 

Water purification 
composite (carbon dots-wood) 
(Nanoparticle-aggregate) 

Na 
93.9% (solar to 
steam) 

Na 142) 

Water evaporation 
Dual layer composite (carbon 
dots-wood) (nanoparticle-
microchannels) 

Na 
92.5% (solar to 
steam) 

44 °C (at 
absorber) 
31 °C (at bulk 
water) 

143) 

Photothermal – 
phototherapy (cancer 
therapy) 

bioinspired sulfur-doped carbon 
dots 

Na 55.4% Na 144) 
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Solar photothermal (PT) - 
thermoelectric generator 
(TEG)  

Layer composite Na ∼46.6% 114°C 145) 

Seawater desalination 
Phosphorus doping into carbon 
nanostructures 

Na 83.6% 89.5°C 146) 

Carbon nanofluid 

Direct absorption 
parabolic solar collector 

Nanofluid 94% 73.41% 43.49 °C 147) 

Water desalination Nanoparticles 50 nm Na Improve 36 % 80–100 °C 148) 

Heat energy harvesting in 
a compound parabolic 
concentrator 

Nanoparticle Na 55.88% 

35 °C 
(increase 10°C 
than ambient 
temperature). 

149) 

Heat energy harvesting in 
a tubular direct absorption 
solar collector 

Nanoparticle Na 80% 
Increase 
>29.3 °C from 
ambient 

150) 

Solar heat energy 
harvesting and water 
heating in a continuous 
flow system 

Carbon quantum dots nanofluid Na Na 
>60 -144.5 °C 
(surface area) 

151) 

Direct solar absorption Nanoparticle 200 nm 87% 
Increase 200% 
than base fluid 

85 °C 152) 

Graphene/graphite 

Water heating and/or 
steam generation for 
domestic water heating 
and solar-driven 
desalination 

Plasmonic graphene polyurethane 
nanocomposites 

Na 96.5% 84.2 °C 153) 

Photothermal in general Nitrogen-doped graphene Na 87% Na 126) 
Solar heating or 
distillation 

Thin films microstructure 97.4% 84.6% Na 154) 

Steam generation 
Integrated structure of graphite 
powder (GP) and a semipermeable 
collodion membrane (SCM) 

Na 56.8% 
34.9 - 35.2 °C 
(top water 
surface) 

155) 

Steam generation 
Hybrid of graphene oxide and 
carbon black 

Na ∼98% ∼ 58 °C 
(surface area) 

156) 

Steam generation Membrane with random layers 97% 

90% -92% 
(directly 
proportional to 
the increase in 
light 
concentration 1-
5) 

43 °C (steam) 
≈40 °C 
(membrane) 

157) 

Thermal energy 
harvesting by direct 
absorption 

Nanoparticles in volumetric Na 77% 43 °C 158) 

Heat transfer fluid for 
closed-loop solar thermal 
collector 

Nanoplatelets nanofluids Na 90.7% 23.6 °C 159) 

Fullerene 

Photothermal therapy and 
photodynamic therapy 

Nanoparticles Na 
99.82% (drug-
loading 
efficiency) 

68 °C (tumor 
site) 

160) 

Heat harvesting in low-
temperature solar 
collector 

Nanoparticles Fluid Na 

<70% or 
increase 47.2% 
compare to pure 
water 

Na 161) 

Photothermal therapy Nanovesicles 94% 52.3% Na 162) 
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Carbon nanotube 
(CNT) 

Solar steam generation 
and wastewater 
purification 

Diatomite/carbon nanotube 
combined aerogel 

Na 91% Na 163) 

Solar steam generation 

Porous organic 
Semiconductors layers (covalent 
triazine framework (CTF)- carbon 
nanotube (CNT)) 

Na 93.2% ∼72 °C 164) 

General solar energy 
harvesting 

Nanocomposite films coating 
(𝑉𝑉𝑉𝑉2–CNT) 

Na Na 
25-95 °C 
(surface) 

165) 

Solar evaporator 
Porous Ni/CNTs composite 
membrane 

94.3% Na 58.9 °C 166) 

Cleanup of crude oil spills 
micro spherical aerogels based on 
carbon nanotubes/reduced 
graphene oxide (CNT/RGO) 

> 90% Na 91 °C 167) 

*Notes: α = absorbance, ε = emittance, η = efficiency, and T = temperature. 
 

4.4 Polymer 

Optically active nano polymers are one of the 
promising photothermal absorber materials for low to 
middle-temperature solar collectors because of their high 
light absorbance performance, affordable cost, 
lightweight, and easy chemical manipulation132). 
However, polymeric materials are unsuitable for 
operation at high temperatures due to their low thermal 
stability176). Therefore, polymeric materials for 
photothermal absorber are more suitable for low 
temperature applications such as phototherapy177). 
Recently, photothermal for cancer therapy has gotten 
much consideration because of its non-invasive nature, 
good temporal-spatial assurance, and minor drug 
resistance178). 

In general, polymeric materials that promise as 

photothermal therapy absorbers are conjugated polymers 
(CPs) which are a type of organic semiconductor 
material with large π-conjugated performance and have a 
delocalized electronic structure179). Moreover, polymeric 
materials are also suitable for use in solar collectors with 
low-temperature performance of less than 100°C. 
Polyaniline (PANI)180–186), Polythiophene (PTh)187–189), 
Polydopamine (PDA)190–195), and Polypyrrole (PPy) 
180,196–204) based materials are a popular type of CPs 
investigated recently as substantial electron 
delocalization structures because they have optical 
properties that are feasible as photothermal absorbers205). 
The summary of polymer materials as photothermal 
absorbers based on application, structure/manufacturing 
method and performance is presented in Table 4. 

 
Table 4. Recent findings of polymer materials as photothermal absorbers. 

Types Application 
Structure / Manufacturing 

Method 
Performance 

Ref. 
α 𝜂𝜂 T 

Polyaniline 
(PANI)177,180–186) 

Potential clinical 
applications 

Polypyrrole and polyaniline 
nanocomposites 

≈  60%  ≈  24%  ≈  80 ℃  180) 

Photothermal conversion and 
electricity generation 

Polyaniline (PANI) nanoparticles 
into porous Anodic Aluminum 
Oxide (AAO) membrane 

Variative Na > 60 °C 181) 

Solar steam generation 

Three-dimensional self-floating 
foam composite impregnated 
with porous carbon and 
polyaniline 

96.1% 87.3% 48.6 °C 182) 

Wearable electronics and 
smart garments 

Multi-responsive fabric 
composite 

Na Na 57.8 °C 183) 

Photoacoustic Imaging-
Guided Anticancer 
Phototherapy 

Nanoparticles (Gold 
Nanostar@Polyaniline) 

Na 78.6% ≈ 60 ℃  184) 

Tumor therapy 
Polyaniline-grafted 
nanodiamonds 

Variative Na 44.4 °C 185) 

Solar evaporation 
Bioinspired polyaniline 
composite polyurethane sponge 

Na 80% 86.1 °C 186) 

Polythiophene 
(PTh) 

Photothermal therapy in 
cancer treatment 

Nanoparticles Na Na 49.4 °C 187) 
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Killing multidrug-resistant 
bacteria 

Nanoparticles Na Na 37 °C 188) 

In vivo dual-modal imaging 
guided synergistic 
photothermal/radiation 
therapy 

𝑀𝑀𝑀𝑀𝑀𝑀2 Quantum Dot@Polyaniline 
Inorganic–Organic Nanohybrids 

Variative Na 37 °C 189) 

Polydopamine 
(PDA) 

Boosting solar steam 
generation 

Polydopamine/wood composites 87% ≈ 77% ≈ 40 °C 190) 

Tunable photothermal 
actuator 

Polydopamine nanoparticles in 
hydrogel bilayers 

Variative Na Na 191) 

Plasmonic photothermal 
cancer therapy 

Polydopamine coated gold nano 
blackbodies 

Variative Na > 50 °C 192) 

Photothermal therapy for 
liver cancer knocks down the 
anti-cancer target NEDD8-
E3 ligase ROC1 (RBX1) 

Nanoparticles Variative 78.3 ± 4.6% 48 °C 193) 

Potential for photothermal 
treatment 

Polydopamine sub-microspheres Na Na > 48 °C 194) 

Photothermal/chemodynamic 
cancer combination therapy 

Polydopamine nanoparticles 
coated with a metal-polyphenol 
network 

≈83.4 % 22.7 % 37 °C 195) 

Polypyrrole 
(PPy) 

Solar generators for 
desalination 

Ag/polypyrrole co-modified 
poly(ionic liquid)s hydrogels 

96% 88.7% 42.9 °C 196) 

Photothermal conversion and 
thermosensing functions for 
wearable applications 

Integrated polypyrrole-based 
smart clothing 

Variative Na 68.4 °C 197) 

Photothermal-assisted 
photoelectrochemical water 
oxidation 

Polypyrrole modification on 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵4  

∼60% 63% 44.6 °C 198) 

Photothermal energy storage 
Polypyrrole-coated expanded 
graphite-based phase change 
materials 

Variative Na 120 °C 199) 

Oil/water separation 
Superhydrophobic cotton via 
polypyrrole deposition 

Na 91.8% 59.5 °C 200) 

Solar desalination 
Photothermal converting 
Polypyrrole/Polyurethane 
composite foams 

Na 86.9% 
61.2 °C at 4-
sun 

201) 

Precise raman/photoacoustic 
imaging and photothermal 
therapy 

Hybrid Polypyrrole and 
Polydopamine nanosheets 

Variative 69% 37°C 202) 

Water extraction 
Polypyrrole-modified cotton 
fabric with tunable 
microstructures 

>98.3% Na 48.3 °C 204) 

Photothermal energy 
conversion and storage 

Flexible textiles with polypyrrole 
deposited phase change 
microcapsules 

Na 93.14% 75.6 °C 203) 

*Notes: α = absorbance, ε = emittance, η = efficiency, and T = temperature. 
 

PANI is one of the conductive polymers and currently 
popularly researched206). It has the advantage of being 
easy to produce quickly using many methods of 
engineering oxidation numbers to obtain different 
colors207). Moreover, PANI is popular in applications in 
the biomedical field because it has high conductivity, 
reliable biocompatibility, stable photostability, and the 
capability of light-to-heat conversion due to its reversible 
control capabilities through protonation doping and 

redox208). Therefore, PANI is a superior photothermal 
material because of its high light absorption performance 
in visible and near-infrared (NIR) light waves for energy 
conversion into heat and also has low light reflection loss 
properties209,210). Apart from being a photothermal 
therapy, the PANI material performs well as a basic 
material for composite sponges in seawater desalination 
applications186). 

PTh-type polymers have excellent photostability, high 
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light harvesting performance, simple manufacturing, and 
diverse applications with various combinations of 
substituents208). In NIR light irradiation, polythiophene 
shows the ability of photothermal and photodynamic 
effects so that this material has the potential as an antigen. 
Bhattarai and Kim (2020) found a hyperthermal effect on 
the PTh nanoparticle synthesized from Surfactant-Free 
Oxidative Polymerization, which was tested on 
Colorectal Carcinoma Cells187). The PTh antigen effect 
under NIR radiation also has been presented by Li et al. 
(2022) where they synthesized the enhanced 
PTh/MnO2@M nanovaccine during tumor and cancer 
immunotherapy211). 

PDA is a conjugated polymer that has been 
extensively studied with various structures, combinations, 
and applications. The most common application is as a 
photothermal therapy for cancer. This material works 
with the mechanism of cancer hyperthermia therapy 
which can be combined with chemotherapy, 
photothermal, or photodynamic therapies to obtain 
optimal efficacy212). Khurana et al. (2022) developed a 
nano-sized black gold-coated PDA to overcome spatial 
thermal damage during the photothermal therapy 
process192). Wang et al. (2022) used a PDA of semi-micro 
particle size supported by Palladium nanoparticles to 
accelerate the reaction of a thermal catalyst under visible 
light and NIR radiation testing213). Wujie et al. (2022) 
innovated with Cu 2-x Se@PDA nanoparticle and found 
that the material killed >95% of MCF-7 cells in NIR 
irradiation with a wavelength of 808 nm for 5 minutes214). 
Aside from being a photothermal therapy material, PDA 
has also been studied as a steam generator. Zou et al. 
(2021) developed a polydopamine/wood composite with 
a vapor generation efficiency performance of ≈77% 
under 1 sun illumination190). The next application of 
PADA material is as an actuator, where Lee et al. (2022) 
developed a controllable bilayer actuator incorporated 
with PDA nanoparticles191). 

Another high-performance conductive polymer, i.e., 
black PPy and its derivatives due to better photothermal 
stability compared to PANI132), and the biocompatibility 
is also excellent215–220). In addition, its low light 
reflectance, wide operating wavelength range (200-2500 
nm) as well as high photo-to-thermal conversion 

efficiency of more than 90%221–227). Moreover, PPys is 
easily coated with various substrates such as conductive 
and non-conductive materials with curved structures228). 

Poly(N-phenylglycine) or (PNPG) is the next polymer 
class material often used in photothermal processes. 
PNPG material with a water lily structure can be used for 
steam generators with a higher efficiency performance of 
93.5%229). In addition to working with photothermal, 
PNPG can be combined with other light energy 
conversion methods and produce double application 
combinations. PNPG with a layer structure combined 
with 𝑀𝑀𝑀𝑀𝑀𝑀2  Nanohybrid using a Photothermal-
Photoelectric method can generate steam and electricity 
simultaneously230). Moreover, PNPG is also helpful as a 
tanker therapy or commonly referred to as photothermal-
phototherapy, using a spectrum of Near Infrared light 
(NIR)231). 

 
4.5 Natural 

Natural materials are classified based on their 
properties obtained directly from nature without any 
processing which results in damage to their natural 
properties. The crushing treatment, but the material does 
not become too small, is still categorized as a natural 
material because it does not change the natural properties. 
Natural materials are believed to have the advantage of 
being biodegradable, having a low impact on the 
environment, being abundantly available, affordable and 
sustainable232,233). 

In general, natural materials have lower performance 
than metamaterials because they only rely on their 
natural properties. However, the material's properties as 
solar photothermal can still be utilized. Natural materials 
that previous researchers as solar thermal absorbers, have 
studied include asphalt234–238), sand239–241), gravel36,242,243), 
stone244,245), pumice245,246), and pebble247,248). Aside from 
being a solar photothermal absorber, natural materials 
such as crushed gravel sand can be used as heat storage 
and increase the vapor temperature in the preheating 
process, increasing the vapor production speed249). The 
summary of natural materials as photothermal absorbers 
based on application, structure/manufacturing method 
and performance is presented in Table 5 

 
Table 5. Recent findings of natural materials as photothermal absorbers. 

Types Application Structure / Manufacturing Method 
Performance 

Ref. 
α 𝜂𝜂 T 

Asphalt 

Solar collector 
Self-healing asphalt mixture with 
fibres 

Na Na 53 °C 235) 

Solar energy harvesting, 
conversion, and storage 

Phase change materials (PCMs) 
composites (polypyrrole and 
asphalt) 

Na 93.8% > 90 °C 236) 

Road anti-icing and de-
icing 

Superhydrophobic emulsified 
asphalt coating modified by CNTs 
and PTFE 

Na Na 42.8 °C 237) 

Anti-icing Superhydrophobic coatings on Na Na increase of 238) 
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asphalt pavement 9.2 °C 

Sand 

Solar evaporator for large-
scale and scalable 
freshwater production 

Sandy sediment 90 % 97 % 56.4 °C 239) 

Solar-to-thermal purified 
water harvesting 

Black sand aggregate 98.25% 
82.63% under 
1.5 sun 

43.4 °C 240) 

Wastewater purification 
Quartz sand@g-C3H4/CoFe-LDH 
core/shell heterostructures 

Na 95.35 % 57 °C 241) 

Gravel 

Solar air heating system Granular > 92% 
10% (exergy 
efficiency) 

> 60 °C 36) 

Energy storage materials 
for performance 
improvement of 
hemispherical distillers 

Black gravel Na 56% 69 °C 242) 

Sensible heat storage 
material 

Natural gravel Na 53.3% 102 °C 243) 

Stone 

Porous sensible absorber 
of solar still 

Basalt stones Na 22.6% 63.7 °C 244) 

General photothermal 
absorber 

Andesite granular natural stone Variative Na 89.00 °C 245) 

Pumice 

General photothermal 
absorber 

Pumice granular natural stone Variative Na 73.00 °C 245) 

Sensible heat storage of 
solar still 

Pumice granular natural stone Na 62.4% ≈ 73.00 °C 246) 

Pebble 

Sensible thermal storage 
materials in solar stills 

Natural pebble Na 53% 54 °C 247) 

Photothermal absorber for 
water heater solar thermal 
collector 

Coated pebble Na 47.23% ≈  60 °C 248) 

*Notes: α = absorbance, ε = emittance, η = efficiency, and T = temperature. 
 

Due to low performance but low cost, natural 
materials are more suitable for low-temperature 
applications and suitable for large-scale applications. 
Therefore, natural materials in solar photothermal are 
more promising for space heating and building materials. 
In a building design, choosing energy-saving material is 
a critical consideration250–252). Ultimately, energy savings 
have implications for optimal economic benefits253,254). 
However, many types of natural materials have not been 
studied, so they still provide potential for applications at 
medium and high temperatures. Naturally dark or black 
in color and porous materials deserve further study 
regarding their potential as high-performance, 
inexpensive, and environmentally friendly photothermal 
absorbers. 

 
4.6 Composite 

Every single material has its advantages and 
disadvantages. By combining various materials, new 
material properties will be obtained by maintaining the 
structure of the constituent materials255–258). For example, 
most metallic materials have a high enough reflectivity; 
thus, the light absorptivity becomes low. Therefore, a 
selective photo absorber material is coated, which is 
generally made of ceramic. With this method, a 

composite sandwich material has been obtained. An 
example in this case is aluminum covered by 
TiN/TiNxOy/SiO295). Sandwich structures in 
photothermal solar have been classified into intrinsic 
absorbers, semiconductor metal tandem absorbers, 
cermet absorbers, textured absorbers, DMD absorbers, 
multilayer absorbers, and selective solar-transmitting 
coatings on a blackbody-like absorber259). 

Another composite structure is the solar photothermal 
membrane166,260–264). This material is often used as vapor 
generation for desalination or water purification 
purposes265). The narrow slits in the membrane structure 
are useful for trapping the radiating light, thereby 
reducing its reflection. Moreover, the narrow-slit 
structure is also beneficial for lifting water by the 
capillarity effect. A composite structure that combines 
high water absorptivity at the bottom and high light 
absorption at the top will optimize the performance of 
the membrane structure as a solar vapor generator. 

 
5. Concluding remarks 

The photothermal absorber is one of the main 
components in the solar collector whose role is very 
influential on system performance. Recent research on 
developing solar photothermal absorbers has found 
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materials with impressive absorption performance of 
more than 90%. The next challenge is to find 
environmentally friendly materials, simple and easy to 
manufacture, available in large quantities, easy to recycle, 
easy to install, durable, and easy to maintain while 
maintaining high performance. In addition, the existing 
solar thermal collectors vary and require the selection of 
appropriate materials. 

The results showed that there are 6 materials suitable 
for use as solar photothermal absorbers, namely metal, 
ceramic, carbon, polymer, natural, and composite. The 
ceramic material type has very good performance and is 
long-lasting so it is suitable for high-concentration and 
high-temperature solar collectors, but it tends to be more 
expensive. Therefore, the ceramic type is suitable for 
collectors for solar power plants. The metal type is not as 
expensive as the ceramic type but its performance is not 
as good as the ceramic type. However, metals can still be 
used for medium to high-temperature solar collectors. 
Applications of photothermal absorbers for medium to 
high temperatures include solar water heating on a 
household and industrial scale. Furthermore, the carbon 
type tends to be cheaper than the ceramic and metal 
types, but its performance is not as good as either of 
them. The carbon type is easily damaged at high 
temperatures so it is suitable for low to medium solar 
collectors such as generating steam in the desalination 
process, water treatment, and household water heating. 
Furthermore, the Polyaniline (PANI), Polythiophene 
(PTh), Polydopamine (PDA), and Polypyrrole (PPy) 
polymer types work at low temperatures. Its non-toxic 
nature has been widely developed as an agent for the 
treatment of cancer and cancer. This material is not 
commonly used in solar collectors because it is easily 
damaged even at medium temperatures. However, it has 
the potential to be applied to low-temperature collectors 
such as for vapor generation. Meanwhile, natural 
materials are the most environmentally friendly materials 
because they do not pollute the environment and are the 
cheapest because they do not need complex treatment to 
maintain their natural properties. There are still various 
natural materials whose performance as photothermal 
absorbers has not been studied. The materials that have 
been tested so far can work at low to medium 
temperatures so their application is similar to the carbon 
type. The composite class was developed to answer the 
challenges of the weaknesses and strengths of each 
material. This material was developed by combining 
various materials so that new, unique properties emerge 
according to needs. The use of composite materials is 
very wide from low to high temperatures. The majority 
of materials reported by researchers recently can be 
classified as composite materials.  

It concluded that no material has perfect properties. 
Therefore, engineers must understand and choose the 
most appropriate material for the designed solar 
photothermal application. In addition, there are many 

opportunities for researchers to discover scientific 
novelties by cross-experimental or cross-modeling 
various kinds of existing or new structures with existing 
or new materials. In the future, testing solar thermal 
absorber materials for environmental sustainability is 
also essential instead of just testing the engineering 
performance. 

 
Nomenclature 

α = absorbance 
ε = emittance 
η = efficiency 
𝑇𝑇 = temperature  
𝐼𝐼0 = incident light 
𝐼𝐼 = transmitted light 
𝑅𝑅 = reflectance 
𝜃𝜃 = angle of light 
𝜏𝜏 =transmittance 
𝑃𝑃 = radiation power 
𝐵𝐵 = black body emissive power 
𝜆𝜆 = certain radiation wavelength 
𝜂𝜂 = efficiency 
𝑚𝑚 = mass of the absorbent 
𝐻𝐻 = enthalpy 
A  = surface area 
𝑡𝑡 = time required to reach 
𝐹𝐹 = light radiation focusing factor 
𝐶𝐶 = optical concentration ratio factor 
𝑚̇𝑚 = the evaporation mass flow rate 
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