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Abstract: This study introduces SVEIATRD compartmental model, exploring the interplay of 
vaccination, testing, treatment, in the context of individual decision-making in epidemic control. The 
model is comprehensively analyzed to derive reproduction numbers and maximum infections and 
deaths. The results of comprehensive simulations illustrate the intricate compromises associated with 
managing resource allocation regarding vaccine coverage, testing availability, and treatment capacity. 
Vaccination plays a crucial role in achieving herd immunity; however, the advantages diminish after 
certain coverage thresholds. Implementing widespread testing is crucial for early diagnosis and 
transmission control. Adopting treatment measures plays a crucial role in further limiting the spread 
of a particular disease or condition. However, the effectiveness of treatment adoption is hindered by 
the restrictions imposed by available resources. 
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1.  Introduction  
The study presents an epidemiological model that 

expands upon the conventional susceptible-exposed-
infected-recovered (SEIR) model by integrating factors 
related to vaccination, testing, and treatment. The primary 
objective of this study is to examine the potential impact 
of individuals' decision-making processes on the 
containment of epidemics, specifically concerning 
vaccination, testing, treatment rates, vaccine efficacy, and 
the development of immunity. This research endeavors to 
offer insights into the efficient management of epidemic 
transmission through informed decision-making by 
analyzing the interrelated dynamics. 

Theoretical epidemic modelling predominantly uses 
compartmental models, with the SIR (susceptible-
infected-recovered) model being widely recognized1). The 
model has undergone expansion to incorporate many 
situations, interventions, and assumptions. Among the 
most prevalent extensions are the SEIR model2), along 
with its derivatives, including SVIS3), SEIQR4), SAVIER5), 
and SEAIHRD6). The mathematical models of epidemic 
dynamics introduced by Kermack et al.1) and subsequent 
researchers7-9) have been very important in epidemiology. 
These models have been essential in studying various 
tactics to control and prevent the spread of infectious 
diseases. Their relevance has been particularly highlighted 
during the COVID-19 pandemic10-11). Gaining a 

comprehensive understanding of the transmission 
dynamics of this disease is of utmost importance in 
efficiently implementing preventive measures and 
accurately forecasting the occurrence of outbreaks. 
Comprehending the transmission of this ailment is crucial 
for successfully implementing preventive measures and 
accurately forecasting epidemics. Many theoretical 
models have been postulated to replicate the 
dissemination of COVID-19 across various scenarios12-15). 
Numerous health measures, including physical protection 
and individual and national initiatives, have been 
intensively investigated as strategies to mitigate the spread 
of the pandemic16-21). 

Identifying and segregating individuals who have 
contracted the COVID-19 virus are widely acknowledged 
as crucial measures in managing the spread of the 
pandemic22). The testing process plays a crucial role in 
identifying confirmed infections facilitating the 
implementation of suitable treatment strategies and 
prevention measures. As a result, implementing testing 
measures typically leads to a decrease in epidemic growth 
rates, as it encourages more individuals to pursue 
preventive measures and actively seek appropriate 
medical interventions. Participation in vaccination 
programs and adoption of self-defense measures during an 
epidemic are also influenced by individual behaviors and 
decisions23-25). The contingent valuation method is crucial 
for evaluating individuals' monetary valuation, demand, 
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hesitancy, and acceptance of vaccination26-30). This 
assessment takes into account the socio-economic-
demographic perspective, specifically considering 
vaccine effectiveness and the associated cost burden. 
Furthermore, it is imperative to consider the healthcare 
system's efficacy, capacity, and recovery rate in delivering 
treatment and mitigating disease transmission. This is 
important, as a dysfunctional system could worsen the 
epidemic31). Immunity can be acquired through several 
means, including the process of recovery, vaccination, or 
the administration of convalescent plasma transformation 
as a treatment32). The acquisition of immunity, whether 
through vaccination, therapeutic intervention, or natural 
infection, substantially influences the transmission of 
diseases. 

To account for these characteristics, a novel epidemic 
model known as SVEIATRD (susceptible-vaccinated-
exposed-diagnosed infected-undiagnosed infected-
treated-immune-deceased) is introduced. This model 
integrates vaccination, testing, and treatment components 
into the conventional SEIR model. Extensive simulations 
have demonstrated that the testing rate significantly 
influences epidemic dynamics since individuals tend to 
forego seeking treatment if they have not received a 
diagnosis for the disease. Simultaneously monitoring test 
positivity rates and the basic reproduction number can be 
a valuable tool in evaluating and enhancing public health 
management and testing systems. This approach can 
contribute to a more comprehensive comprehension of 
epidemic dynamics. The present model considers the 
influence of self-awareness, specifically in the context of 
testing and vaccination, on many factors such as illness 
risk, rates of intervention (including vaccination, testing, 
and treatment), the effectiveness of these treatments, and 
the development of immunity via recovery. 

Although the model primarily emphasizes epidemic 
dynamics, it is crucial to recognize the substantial amount 
of research that integrates social dynamics into epidemic 
modeling. The significance of incorporating human 
behavioral responses into disease models has been 
highlighted by significant advancements in the 
Vaccination Game (VG) and Intervention Game (IG) 
domains. These methodologies, frequently employing 
frameworks such as Bauch's Behavior model33) or 
evolutionary game theory (EGT)34), offer valuable 
insights into the influence of individual decision-making 
processes on epidemic outcomes35-37). 

The reason for our choice to exclusively examine 
epidemic dynamics in this research was driven by the 
intention to separate and examine the precise effects of 
vaccination, testing, and treatment interventions on the 
spread of the disease. By excluding social dynamics, we 
can better analyze the direct impact of these interventions 
on the spread of the epidemic. Nevertheless, we 
acknowledge that this method has constraints, as it fails to 
encompass the intricate interaction between human 
conduct and the spread of diseases. Possible future 

developments of this research could incorporate elements 
of social dynamics, enabling the essential parameters p, ρ, 
and η to fluctuate over time in response to changing 
individual attitudes and behaviors. This would offer a 
more extensive and accurate representation of the 
progression of an epidemic. Nevertheless, the existing 
model is an initial stage in comprehending the interaction 
among various intervention strategies, offering valuable 
insights that can guide public health policy and resource 
allocation choices.  

 
2.  Model and Methods 

A compartmental model called SVEIATRD is 
developed, which aims to analyze the spread dynamics of 
infectious illnesses by incorporating the effects of 
vaccination, testing, and treatment as control strategies. 
The model consists of eight distinct stages, namely 
susceptible (S), vaccinated (V), exposed (E), diagnosed 
infected (I), undiagnosed infected (A), treated (T), 
recovered (R), and deceased (D). Individuals susceptible 
to the disease and who have not yet been affected can 
acquire the infection by encountering individuals who 
have been diagnosed with or have not been diagnosed with 
the infection. Nevertheless, an incubation phase precedes 
the manifestation of infection in individuals. The 
individuals throughout this period are commonly referred 
to as individuals who have been exposed. During the 
incubation period, individuals exposed to the virus carry 
it within their bodies but cannot transmit it to other 
vulnerable individuals.  

Furthermore, susceptible individuals can potentially 
receive vaccination via a vaccination system that may 
have some imperfections. Individuals who have been 
vaccinated can develop immunity to the disease through 
the vaccination, or they may progress to a stage when they 
are exposed to the disease. However, the likelihood of 
transitioning to the exposed stage is significantly lower for 
vaccinated individuals than those susceptible to the 
disease. Following this, those who have contracted the 
illness can be classified into two distinct groups: those 
who have received a positive diagnosis through testing 
and those who remain undiagnosed due to either opting 
not to undergo testing or receiving inaccurate negative test 
results. Undiagnosed individuals are generally presumed 
to refrain from seeking treatment, differentiating them 
from diagnosed individuals who can explore medical 
assistance. 

The compartmental model is depicted in Fig. 1. 
Individuals susceptible to a disease and those who have 
been vaccinated can be exposed to the disease when they 
come into contact with infected individuals. The 
transmission rates for susceptible individuals and 
vaccinated individuals are 𝛽𝛽 and (1 − 𝜂𝜂)𝛽𝛽, respectively, 
where 𝜂𝜂  denotes the effectiveness of the vaccination. 
Following a period of incubation lasting 1/𝜎𝜎 , a 
proportion 𝑝𝑝 of the individuals who were exposed to the 
virus will test positive and subsequently be identified as 
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diagnosed infected individuals. Conversely, the remaining 
fraction of individuals, 1 − 𝑝𝑝, will not be diagnosed and 
will be classified as undiagnosed individuals. 

 

 
Fig. 1: Graphical representation of the compartmental 

SVEIARTD model 
 
The parameter 𝜌𝜌  represents the probability of 

individuals choosing to undergo treatment. A higher value 
of 𝜌𝜌  signifies a greater likelihood for individuals to 
receive treatment. The parameter 𝛼𝛼𝑡𝑡 signifies the rate at 
which individuals acquire immunity or achieve recovery 
during the course of treatment, whereas the parameter 𝜔𝜔𝑡𝑡 
reflects the mortality rate associated with the treatment. 
Individuals who have received a vaccination acquire 
immunity as a result of the vaccination at a rate denoted 
as 𝛼𝛼𝑣𝑣. 

Individuals who have received a diagnosis but choose 
not to pursue treatment have two possible outcomes: they 
may experience natural recovery at a rate represented by 
𝛼𝛼, or they may encounter mortality with a chance denoted 
by 𝜔𝜔 . Individuals who remain undiagnosed and do not 
actively pursue treatment exhibit equivalent likelihoods of 
both recovery and fatality. The model's formulation is 
expressed by equations (1.1) to (1.8), where 𝛬𝛬 represents 
the overall birth rate, and 𝜇𝜇  represents the per capita 
death rate. Table 1 is a compilation of thorough details 
regarding the model's parameters and their corresponding 
explanations. 

Table 1: Explanation of the parameters in the model 

Rate Description 

𝛼𝛼 Recovery/immunity rate from infection 

𝛼𝛼𝑡𝑡 
Recovery/immunity rate from treatment (signifies 
completely successful treatment) 

𝛼𝛼𝑣𝑣 Recovery/immunity rate from vaccination 

𝛽𝛽 Disease transmission rate 

𝜂𝜂 Vaccination efficiency 

𝜔𝜔 Death rate from infection 

𝜔𝜔𝑡𝑡 Death rate from treatment (signifies failed treatment) 

𝑝𝑝 Testing rate 

𝜌𝜌 Treatment rate 

𝜏𝜏 Vaccination rate 

𝜎𝜎 Incubation rate 

 
𝑆𝑆′(𝑡𝑡) = 𝛬𝛬 − 𝜏𝜏𝑆𝑆(𝑡𝑡) − 𝛽𝛽𝑆𝑆(𝑡𝑡)[𝐼𝐼(𝑡𝑡) + 𝐴𝐴(𝑡𝑡)] + 𝛾𝛾𝛾𝛾(𝑡𝑡) −

𝜇𝜇𝑆𝑆(𝑡𝑡)  (1.1) 
 

𝑉𝑉′(𝑡𝑡) = 𝜏𝜏𝑆𝑆(𝑡𝑡) − (1 − 𝜂𝜂)𝛽𝛽𝑉𝑉(𝑡𝑡)[𝐼𝐼(𝑡𝑡) + 𝐴𝐴(𝑡𝑡)] −
𝛼𝛼𝑣𝑣𝑉𝑉(𝑡𝑡) − 𝜇𝜇𝑉𝑉(𝑡𝑡) (1.2) 

 
𝐸𝐸′(𝑡𝑡) = 𝛽𝛽[𝑆𝑆(𝑡𝑡) + (1 − 𝜂𝜂)𝑉𝑉(𝑡𝑡)][𝐼𝐼(𝑡𝑡) + 𝐴𝐴(𝑡𝑡)] −

𝜎𝜎𝐸𝐸(𝑡𝑡) − 𝜇𝜇𝐸𝐸(𝑡𝑡) (1.3) 
 
𝐼𝐼′(𝑡𝑡) = 𝑝𝑝𝜎𝜎𝐸𝐸(𝑡𝑡) − 𝜌𝜌𝐼𝐼(𝑡𝑡) − 𝛼𝛼𝐼𝐼(𝑡𝑡) − 𝜔𝜔𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝐼𝐼(𝑡𝑡)

  (1.4) 
 
𝐴𝐴′(𝑡𝑡) = (1 − 𝑝𝑝)𝜎𝜎𝐸𝐸(𝑡𝑡) − 𝛼𝛼𝐴𝐴(𝑡𝑡) − 𝜔𝜔𝐴𝐴(𝑡𝑡) − 𝜇𝜇𝐴𝐴(𝑡𝑡)

  (1.5) 
 
𝛾𝛾′(𝑡𝑡) = −𝛾𝛾𝛾𝛾(𝑡𝑡) + 𝜌𝜌𝐼𝐼(𝑡𝑡) − 𝛼𝛼𝑡𝑡𝛾𝛾(𝑡𝑡) −𝜔𝜔𝑡𝑡𝛾𝛾(𝑡𝑡) − 𝜇𝜇𝛾𝛾(𝑡𝑡)

  (1.6) 
 
𝑅𝑅′(𝑡𝑡) = 𝛼𝛼𝑣𝑣𝑉𝑉(𝑡𝑡) + 𝛼𝛼𝐼𝐼(𝑡𝑡) + 𝛼𝛼𝐴𝐴(𝑡𝑡) + 𝛼𝛼𝑡𝑡𝛾𝛾(𝑡𝑡) − 𝜇𝜇𝑅𝑅(𝑡𝑡)

  (1.7) 
 
𝐷𝐷′(𝑡𝑡) = 𝜔𝜔𝐼𝐼(𝑡𝑡) + 𝜔𝜔𝐴𝐴(𝑡𝑡) + 𝜔𝜔𝑡𝑡𝛾𝛾(𝑡𝑡) − 𝜇𝜇𝐷𝐷(𝑡𝑡) 

  (1.8) 
 
The proposed model is composed of a bilinear system 

that encompasses a total of eight differential equations. To 
comply with the principle of mass conservation, it is 
necessary for the overall change across all states to 
balance out and result in a net value of zero since 

 
𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝑉𝑉(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) + 𝛾𝛾(𝑡𝑡) +

𝑅𝑅(𝑡𝑡) + 𝐷𝐷(𝑡𝑡)  (2) 
 
To this end, it is assumed 
 

𝛬𝛬 = 𝜇𝜇𝑁𝑁(𝑡𝑡)  (3) 
 
3.  Mathematical Analysis 
3.1  Positivity and boundedness  

For further analysis, we prove that the system is 
positive and well-bounded; that is, a non-negative value 
always bounds the fractions of all the states. Adding 
equations (1.1) through (1.8), we get 

 
𝑁𝑁′(𝑡𝑡) = 𝛬𝛬 − 𝜇𝜇𝑁𝑁  (4) 

 
Solving the differential equation (4) for N(t), it is 

obtained 
 

𝑁𝑁(𝑡𝑡) = 𝛬𝛬/𝜇𝜇 + �𝑁𝑁(0) − 𝛬𝛬
𝜇𝜇
� exp(−𝜇𝜇𝑡𝑡) (5) 
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Therefore, for all 𝑡𝑡 ≥ 0, 
 

0 ≤ 𝑁𝑁(𝑡𝑡) ≤ 𝛬𝛬
𝜇𝜇
  (6) 

 
Consider any compartment 𝑋𝑋  from the model. It is 

evident from equation (2) that 𝑋𝑋(𝑡𝑡) ≤ 𝑁𝑁(𝑡𝑡) for any 𝑡𝑡 ≥
0. Additionally, 

 
𝑋𝑋′(𝑡𝑡) ≥ −𝜇𝜇𝑋𝑋(𝑡𝑡)  (7) 

 
Solving inequality (7) for 𝑋𝑋(𝑡𝑡), it is obtained 
 

𝑋𝑋(𝑡𝑡) ≥ 𝑋𝑋(0) exp(−𝜇𝜇𝑡𝑡) (8) 
 
If 𝑋𝑋(0) ≥ 0, then for all time 𝑡𝑡 ≥ 0, 
  

0 ≤ 𝑋𝑋(𝑡𝑡) ≤ 𝑁𝑁(𝑡𝑡) ≤ 𝛬𝛬
𝜇𝜇
 (9) 

 
Therefore, equation (9) proves all the compartments' 

positivity and boundedness and the overall model. 
 

3.2  Reproduction Number 
The basic reproduction number of an infection is the 

expected number of cases directly generated by one case 
in a population where all individuals are susceptible to 
infection. We adopt the next-generation matrix 
approach38) at the disease-free equilibrium (DFE) to 
calculate it. At DFE, the number of susceptible, 
vaccinated, and immune individuals is given by 

 
(𝑆𝑆∗,𝑉𝑉∗,𝑅𝑅∗) = � 𝛬𝛬

𝜏𝜏+𝜇𝜇
, 𝜏𝜏𝛬𝛬

(𝛼𝛼𝑣𝑣+𝜇𝜇)(𝜏𝜏+𝜇𝜇)
, (𝛼𝛼𝑣𝑣𝜏𝜏𝛬𝛬)
𝜇𝜇(𝛼𝛼𝑣𝑣+𝜇𝜇)(𝜏𝜏+𝜇𝜇)

� (10) 
 
The value of 𝑅𝑅∗ signifies the fraction of the population 

who obtained vaccination-induced immunity. In contrast, 
𝑆𝑆∗ and 𝑉𝑉∗ values represent unvaccinated and vaccinated 
susceptible populations, respectively, at equilibrium. The 
DFE stands as 

 
𝐸𝐸0 = (𝑆𝑆∗,𝑉𝑉∗,𝐸𝐸∗, 𝐼𝐼∗,𝐴𝐴∗,𝛾𝛾∗,𝑅𝑅∗,𝐷𝐷∗) =

� 𝛬𝛬
𝜏𝜏+𝜇𝜇

, 𝜏𝜏𝛬𝛬
(𝛼𝛼𝑣𝑣+𝜇𝜇)(𝜏𝜏+𝜇𝜇)

, 0,0,0,0, 𝛼𝛼𝑣𝑣𝜏𝜏𝛬𝛬
𝜇𝜇(𝛼𝛼𝑣𝑣+𝜇𝜇)(𝜏𝜏+𝜇𝜇)

, 0� (11) 
 
The matrices 𝐹𝐹 of new infection terms and 𝑉𝑉 of the 

remaining transfer terms associated with the model are 
given by 

 

𝐹𝐹 = �
0 𝛽𝛽𝑠𝑠0 𝛽𝛽𝑠𝑠0
0 0 0
0 0 0

�  (12a) 

 

𝑉𝑉 = �
𝜎𝜎 + 𝜇𝜇 0 0
−𝑝𝑝𝜎𝜎 𝜌𝜌 + 𝛼𝛼 + 𝜔𝜔 + 𝜇𝜇 0

−(1 − 𝑝𝑝)𝜎𝜎 0 𝛼𝛼 + 𝜔𝜔 + 𝜇𝜇
�

  (12b) 
 
By solving for the maximum eigenvalue of 𝐾𝐾 = 𝐹𝐹𝑉𝑉−1 

given by spectral radius  𝜌𝜌(𝐾𝐾) , the basic reproduction 
number of the model 𝑅𝑅0 is given by 

 
𝑅𝑅0 = 𝜌𝜌(𝐹𝐹𝑉𝑉−1) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠0

(𝑝𝑝+𝜇𝜇)(𝜌𝜌+𝛼𝛼+𝜔𝜔+𝜇𝜇)
+ (1−𝑝𝑝)𝑝𝑝𝑝𝑝𝑠𝑠0

(𝑝𝑝+𝜇𝜇)(𝛼𝛼+𝜔𝜔+𝜇𝜇)
 

  (13) 
 
For 𝑅𝑅0 ≤ 1 , the disease-free equilibrium is globally 

stable. For 𝑅𝑅0 > 1, two equilibria exist: the disease-free 
equilibrium, which is unstable, and a unique endemic 
equilibrium, which is globally stable whenever 𝐼𝐼(0) +
𝐴𝐴(0) > 0 39). The basic reproduction number can be 
subdivided into 𝑅𝑅𝑠𝑠𝑠𝑠 , 𝑅𝑅𝑠𝑠𝑠𝑠 , 𝑅𝑅𝑣𝑣𝑠𝑠 , and 𝑅𝑅𝑣𝑣𝑠𝑠  for 
susceptible-diagnosed, susceptible-undiagnosed, 
vaccinated-diagnosed, and vaccinated-undiagnosed 
individuals, respectively. 

 
𝑅𝑅𝑠𝑠𝑠𝑠 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑆𝑆∗)

(𝑝𝑝+𝜇𝜇)(𝜌𝜌+𝛼𝛼+𝜔𝜔+𝜇𝜇)
  (14a) 
 

𝑅𝑅𝑠𝑠𝑠𝑠 = (1−𝑝𝑝)𝑝𝑝𝑝𝑝𝑆𝑆∗

(𝑝𝑝+𝜇𝜇)(𝛼𝛼+𝜔𝜔+𝜇𝜇)
  (14b) 

 
𝑅𝑅𝑣𝑣𝑠𝑠 = 𝑝𝑝𝑝𝑝𝑝𝑝(1−𝜂𝜂)𝑉𝑉∗

(𝑝𝑝+𝜇𝜇)(𝜌𝜌+𝛼𝛼+𝜔𝜔+𝜇𝜇)
  (14c) 
 

𝑅𝑅𝑣𝑣𝑠𝑠 = (1−𝑝𝑝)𝑝𝑝𝑝𝑝(1−𝜂𝜂)𝑉𝑉∗

(𝑝𝑝+𝜇𝜇)(𝛼𝛼+𝜔𝜔+𝜇𝜇)
  (14d) 

 
4.  Results 

The model under consideration simplifies to a 
conventional SEIRD framework when the parameters 𝜏𝜏, 
𝑝𝑝 , and 𝜌𝜌  are assigned specific values: 𝜏𝜏 = 0 , 𝑝𝑝 = 1 , 
and 𝜌𝜌 = 0 . The setup functions as the fundamental 
scenario illustrating the spread of disease without any 
measures to control it. Figure 2 presents a comparative 
analysis of several interventions, including vaccination, 
testing, and treatment, in relation to the default situation. 
Figure 2(a) demonstrates a decrease in the total number of 
infected individuals (𝐼𝐼 + 𝐴𝐴)  as the vaccination rate, 
denoted as 𝜏𝜏 , approaches unity. Significantly, the 
augmentation of the vaccination rate from 𝜏𝜏 = 0 to 𝜏𝜏 =
0.1 considerably enhances the containment of pathogen 
transmission. Increasing the value of 𝜏𝜏 to 0.5 results in 
further enhancements. However, the incremental 
improvement in the number of infected individuals 
between 𝜏𝜏 = 0.5 and 𝜏𝜏 = 0.9 is negligible. It is crucial 
to emphasize that as the value of 𝜏𝜏 increases, there is a 
decrease in the number of infected individuals, but at the 
same time, the duration of the infection period increases. 
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Fig. 2: Comparison of model dynamics with default cases 

under the variations of (a) vaccination rate 𝜏𝜏, (b) testing rate 
𝑝𝑝, and (c) treatment rate 𝜌𝜌. Values of other parameters are 

given in Table 2. 
 

Table 2: Default values of the parameters in the model 
Parameter Value 
𝑆𝑆(0) 0.9505 
𝐸𝐸(0) 0.048 
𝐼𝐼(0) 0.0005 
𝐴𝐴(0) 0.0005 
𝛾𝛾(0) 0.0002 
𝑅𝑅(0) 0.0003 
𝛼𝛼 0.1667 
𝛼𝛼𝑡𝑡 0.3333 
𝛼𝛼𝑣𝑣 0.0005 
𝛽𝛽 0.8333 
𝜂𝜂 0.5 
𝜔𝜔 0.001 
𝜔𝜔𝑡𝑡 0.0005 
𝑝𝑝 0.5 
𝜌𝜌 0.08 
𝜎𝜎 0.5 
𝜏𝜏 0.1 

Λ 
0.0001  for calculations related to 𝑅𝑅0 , 0 
otherwise 

𝜇𝜇 
0.0001  for calculations related to 𝑅𝑅0 , 0 
otherwise 

 
Figure 2(b) examines various testing rates, where 𝑝𝑝 =

0.9 and 𝑝𝑝 = 0.5 represent 90% and 50% positivity rates 
for detecting infections, respectively. On the other hand, 
𝑝𝑝 = 0.1 indicates a significant proportion of undiagnosed 
cases. The examination of Fig. 2(b) indicates that the 
occurrence of infections is significantly reduced when 
there is widespread utilization of testing (𝑝𝑝 = 0.9 ). A 
discernible decrease in disease spread is noticed compared 
to the initial reference point. As the value of 𝑝𝑝 lowers, 

there is a commensurate increase in the number of infected 
individuals. Concerning Figure 2(c), a value of 𝜌𝜌 = 0.1 
indicates a very small proportion of infected individuals 
choosing to pursue treatment, whereas a value of 𝜌𝜌 = 0.9 
indicates a significant treatment adoption. An increase in 
the parameter 𝜌𝜌  is associated with decreased disease 
transmission. However, it is important to note that the 
magnitude of this effect diminishes as 𝜌𝜌  increases, 
indicating diminishing marginal returns.  

Figure 3 examines the efficacy of vaccination options 
within the scenario offered. Figures 3(a) and 3(b) illustrate 
the highest count of infected and deceased individuals, 
respectively, observed at different levels of vaccination 
rate (𝜏𝜏) and vaccination efficiency (𝜂𝜂). The data highlights 
the significance of maintaining optimal levels of 
vaccination efficacy to successfully mitigate infection 
transmission. The containment of diseases continues to be 
challenging when the value of 𝜂𝜂 is low, regardless of the 
degree of vaccine coverage. In contrast, increased values 
of 𝜂𝜂  are associated with significantly reduced 
occurrences of infected and deceased individuals, 
especially when τ is at moderate to high levels. Figure 3(c) 
provides a comprehensive analysis of the relationship 
between the vaccination rate (𝜏𝜏) and disease transmission 
rate (𝛽𝛽) in governing the upper limit of illnesses inside the 
model. When the value of 𝛽𝛽 is low, it is seen that limited 
infection is prevalent across all values of 𝜏𝜏. In situations 
where disease transmission rates are elevated, 
manipulating the parameter 𝜏𝜏 has been observed to lead 
to a reduction in infection rates. However, it is important 
to note that the effectiveness of this intervention lowers 
due to the fixed value of 𝜂𝜂 within this particular context. 
In contrast, Fig. 3(d) demonstrates a significantly 
accelerated illness control as the efficacy of vaccination 
increases, particularly for large values of 𝛽𝛽. 

 

 
Fig. 3: Effectiveness of vaccination strategies: (a) Maximum 

number of infected individuals as a function of vaccination rate 
𝜏𝜏 and vaccination efficiency 𝜂𝜂, (b) Maximum number of 
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deceased individuals as a function of vaccination rate 𝜏𝜏 and 
vaccination efficiency 𝜂𝜂, (c) Maximum number of infected 
individuals as a function of disease transmission rate 𝛽𝛽 and 

vaccination rate 𝜏𝜏, (d) Maximum number of infected 
individuals as a function of disease transmission rate 𝛽𝛽 and 

vaccination efficiency 𝜂𝜂. Values of other parameters are given 
in Table 2. 

 
Figure 4 emphasizes the crucial significance of testing 

inside the model context. Figure 4(a) depicts the 
relationship between the maximum number of infected 
individuals and two key variables: the testing rate (𝑝𝑝) and 
the disease transmission rate (𝛽𝛽). Figure 4(b) depicts the 
highest count of deceased individuals under identical 
settings. When the tendency for disease transmission 
decreases, the testing rate has minimal impact on the 
spread of the disease. However, when examining 
scenarios characterized by large values of 𝛽𝛽, it becomes 
increasingly imperative to possess a correspondingly high 
value of 𝑝𝑝. When the testing rate is elevated, there is an 
increase in the number of individuals who acquire a 
positive diagnosis for the disease. Consequently, there is 
also a rise in the number of individuals who are willing to 
undergo treatment such as hospitalization, quarantine, and 
other health interventions facilitate effective disease 
control. 

 

 
Fig. 4: Effect of testing and diagnosis on (a) number of 

infected individuals, (b) number of deceased individuals. 
Values of other parameters are given in Table 2. 

 
Figure 5 presents an analysis of the influence of 

treatment selection and effectiveness on the spread of the 
disease. Figure 5(a) depicts the relationship between the 
maximum number of infected individuals and two key 
factors: the disease transmission rate (𝛽𝛽) and the treatment 
rate (𝜌𝜌). The criticality of the issue arises when the value 
of 𝛽𝛽  attains significant levels while 𝜌𝜌  remains 
considerably lower in contrast. Most 𝜌𝜌 values effectively 
mitigate the spread of diseases within the low to moderate 
𝛽𝛽  values range. Nevertheless, to effectively control the 
spread of the disease, it is imperative to maintain a 
treatment rate that ranges from moderate to high, 
especially while the transmission rate (𝛽𝛽) continues to rise. 
A similar trend can be observed about the greatest number 
of deceased individuals, as depicted in Fig. 5(b). Reduced 
disease transmission results in decreased mortality rates 
across various degrees of treatment. In order to maintain 
regulated disease transmission, it is important to 
implement a treatment level that ranges from medium to 

high for intermediate 𝛽𝛽 values. When 𝛽𝛽 levels are high, 
there is a strong positive correlation between low values 
of 𝜌𝜌  and a relatively high number of deaths, whereas 
moderate to high values of 𝜌𝜌  are associated with a 
moderate number of deaths. Figure 5(c) displays the 
relationship between the maximum number of deceased 
individuals and the variables 𝛽𝛽 and 𝛼𝛼𝑡𝑡, representing the 
infection rate and the rate of recovery or immunity from 
treatment, respectively. The variable 𝛼𝛼𝑡𝑡  serves as a 
measure of treatment effectiveness within this particular 
situation. As depicted in the figure, the variable 𝛼𝛼𝑡𝑡 
demonstrates significantly reduced variability in its 
association with disease transmission. A decrease in 𝛽𝛽 
values is associated with a decrease in the number of 
deaths, regardless of the values of 𝛼𝛼𝑡𝑡. 

 

 
Fig. 5: Influence of treatment choice and efficacy: (a) 

Maximum number of infected individuals as a function of 
treatment rate 𝜌𝜌 and disease transmission rate 𝛽𝛽, (b) 

Maximum number of deceased individuals as a function of 
treatment rate 𝜌𝜌 and disease transmission rate 𝛽𝛽, (c) 

Maximum number of deceased individuals as a function of 
recovery rate from treatment 𝛼𝛼𝑡𝑡 and disease transmission rate 
𝛽𝛽, (d) Maximum number of deceased individuals as a function 

of treatment rate 𝜌𝜌 and recovery rate from treatment 𝛼𝛼𝑡𝑡. 
Values of other parameters are given in Table 2. 

 
In contrast, elevated 𝛽𝛽 values are associated with an 

increased incidence of mortality across nearly all levels of 
𝛼𝛼𝑡𝑡. The pattern is notably evident when examining values 
of 𝛽𝛽  that are exceptionally high and values of 𝛼𝛼𝑡𝑡  that 
are exceptionally low. Figure 5(d) illustrates the 
relationship between the variables 𝜌𝜌  and 𝛼𝛼𝑡𝑡  and their 
impact on the maximum number of deceased individuals. 
Adverse possibilities occur when either parameter takes 
on low levels. The issue is further aggravated when the 
value of 𝛼𝛼𝑡𝑡  is low while 𝜌𝜌  continues to climb. This 
scenario highlights a notable disparity between the 
inclination of individuals to pursue treatment and the 
sufficiency of the treatment resources that are accessible. 
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The disparity between the demand for treatment and the 
limited availability of medical resources has adverse 
consequences. 

Figure 6 depicts the observed dynamics of the model, 
namely the interplay between various efficacy and 
recovery rates. Figure 6(a) examines the influence of 
vaccination efficiency (𝜂𝜂) and vaccine-induced immunity 
(𝛼𝛼𝑣𝑣) on the prevalence of infected people. An observable 
phenomenon of controlled infection transmission is seen 
when the values of either parameter are increased. At even 
moderate levels of 𝛼𝛼𝑣𝑣 , the disease remains effectively 
managed throughout all values of 𝜏𝜏 . Infections may 
exhibit a modest increase in occurrence when 𝛼𝛼𝑣𝑣 values 
are moderate and 𝜏𝜏 values are low. There is a significant 
rise in infection rates when both parameters reach much 
lower values. Figure 6(b) illustrates the relative impact of 
vaccine-induced immunity 𝛼𝛼𝑣𝑣  and treatment-induced 
immunity 𝛼𝛼𝑡𝑡 on the mortality rate. Both variables exhibit 
comparable functions in limiting the occurrence of 
fatalities. Lower values of any variable are linked to 
negative consequences. Relatively advantageous 
conditions are obtained when both variables exhibit 
moderate to high levels. 

 

 
Fig. 6: Modeling efficiency and recovery from different 

interventions: (a) Maximum number of infected individuals as 
a function of recovery rate from vaccination 𝛼𝛼𝑣𝑣 and 

vaccination efficiency 𝜂𝜂, (b) Maximum number of deceased 
individuals as a function of recovery rate from treatment 𝛼𝛼𝑡𝑡 

and recovery rate from vaccination 𝛼𝛼𝑣𝑣. Values of other 
parameters are given in Table 2. 

 
In Figure 7, we explore the impact of interventions and 

choice factors by graphing the number of infected 
individuals as a function of various intervention rates, 
namely the vaccination rate (𝜏𝜏) and testing rate (𝑝𝑝). When 
the testing rate is high (𝑝𝑝 = 0.9), we continuously see low 
infection rates, irrespective of the vaccination rate. In the 
scenario where vaccination is not available ( 𝜏𝜏 = 0 ), 
installing comprehensive testing measures effectively 
decreases the occurrence of illnesses. Nevertheless, a 
discernible effect on the vaccination rate becomes 
apparent when the testing rate declines moderately (𝑝𝑝 =
0.5 ). The absence of vaccination is associated with a 
notable rise in the occurrence of illnesses, as indicated by 
𝜏𝜏 values ranging from 0 to 0.3. 

 

 
Fig. 7: Effect of interventions and choice factors by plotting 

the maximum number of infected individuals as a function of 
(a) vaccination rate 𝜏𝜏 and testing rate 𝑝𝑝, (b) vaccination rate 
𝜏𝜏 and treatment rate 𝜌𝜌, and (c) testing rate 𝑝𝑝 and treatment 

rate 𝜌𝜌. Values of other parameters are given in Table 2. 
 
In contrast, a higher vaccination rate is associated with 

consistently lower infection rates, as indicated by 𝜏𝜏 
values ranging from 0.7 to 1. It is apparent that the 
influence of the testing rate surpasses that of the 
vaccination rate. The most notable reduction in infection 
rates is noticed while shifting from a moderate testing rate 
(𝑝𝑝 = 0.5) to a high testing rate (𝑝𝑝 = 0.9), as evidenced by 
the prominent blue color gradient. This statement 
underscores the importance of employing robust testing 
methodologies to mitigate the transmission of diseases by 
promptly identifying cases and facilitating timely medical 
intervention. Vaccination can offer supplementary 
safeguarding in situations where testing capabilities are 
constrained but to a diminished degree. The link between 
the maximum number of affected individuals and 
vaccination and treatment rates is illustrated in Fig. 7(b). 
In instances where the treatment rate is elevated (𝜌𝜌 = 0.9), 
the prevalence of infections remains comparatively low, 
irrespective of the level of vaccination. 

On the contrary, the lack of vaccination does not 
adequately reduce the transmission of diseases in 
situations where the rate of treatment is high. As the 
treatment rate declines from 𝜌𝜌 = 0.5  to 𝜌𝜌 = 0.1 , a 
noticeable correlation between the vaccination rate and 
the incidence of sickness becomes apparent. There is a 
correlation between a decline in vaccination rates and a 
notable rise in infection rates, which aligns with a 
decrease in the rate of treatment. Vaccination provides 
additional protection in situations where the availability of 
treatment is limited. However, the total impact of the 
treatment rate remains more substantial. The link between 
the maximum number of infected individuals and testing 
and treatment rates is depicted in Fig. 7(c). When the 
testing rate is high (𝑝𝑝 = 0.9 ), the number of infections 

- 1504 -



EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 03, pp1498-1507, September, 2024 

 
remains relatively low, regardless of the treatment rates. 
The crucial element in effectively managing infections in 
this particular scenario is the use of rigorous testing 
protocols. 

Nevertheless, when exposed to a moderate level of 
testing with a chance of 0.5, the treatment rate has a 
discernible impact. As the treatment rate increases 
incrementally from 0 to 0.9, there is a gradual decline in 
the incidence of infections. However, it is important to 
acknowledge that the testing rate remains the most 
significant factor, particularly throughout the shift from 
moderate to high testing rates. 

In essence, the significance of a high testing rate lies in 
its pivotal role in facilitating timely identification and 
intervention, hence mitigating the spread of infections. 
The presence of alternative therapies offers 
supplementary assistance in situations when testing 
capabilities are constrained. In contrast, vaccination acts 
as a protective measure when diagnostic and treatment 
resources are inadequate. 

 
5.  Discussion 

The general study provides certain key insights across 
all analyses. One important insight is that the induction of 
immunity through vaccination plays a crucial role in 
forming herd immunity and lowering infection rates. 
Nevertheless, it is crucial to acknowledge that the 
marginal benefits derived from vaccination efforts begin 
to decline as the vaccination rate continues to increase. 
Once a specific threshold of vaccination rate is reached, 
the marginal increase in vaccination coverage does not 
result in a proportional decrease in the number of 
infections. This raises the question of whether investments 
in vaccine endeavors should be reassessed upon attaining 
this threshold. Another important takeaway is that the 
observed results regarding testing rates may seem 
contradictory at first, as without doing tests, the treatment 
rate becomes irrelevant. The importance of testing rates 
becomes evident only when the rate of treatment is also 
taken into active consideration. The results also highlight 
the importance of treatment adoption in individuals 
infected with the disease to manage disease transmission 
effectively. However, it is important to acknowledge an 
inherent constraint on the potential of greater treatment 
acceptance to reduce disease transmission effectively. The 
effectiveness of treatment diminishes gradually as the 
number of individuals choosing treatment increases. The 
observation above carries significant ramifications for 
policymakers and researchers in the field of public health 
as they develop measures to mitigate the spread of 
infectious illnesses. 

According to the findings presented in Fig. 3, it can be 
observed that the most favorable outcomes are observed 
when certain circumstances are met. Specifically, these 
conditions include a low transmission rate 𝛽𝛽, as well as 
moderate to high rates of vaccination efficiency 𝜂𝜂  and 
rate of vaccination 𝜏𝜏. Under these particular conditions, 

the effectiveness of vaccination in reducing the 
transmission of the disease has been established. Even in 
situations where the likelihood of transmission is minimal, 
implementing a vaccination method with moderate 
efficacy can nevertheless be highly successful in 
controlling the spread of diseases. The vaccination rate, 
when varies from moderate to high, ensures that a 
substantial section of the population attains immunity, 
thereby collectively reducing the occurrence of diseases 
and fatalities. 

Figure 5 illustrates the best situations under the 
combination of high values of treatment efficacy 𝛼𝛼𝑡𝑡 and 
treatment rate 𝜌𝜌, along with a low disease transmission 
potential 𝛽𝛽, which leads to reduced death rates. On the 
contrary, when 𝛽𝛽  is elevated, it becomes crucial to 
administer medication to reduce the likelihood of 
mortality. Moreover, an increased value of 𝜌𝜌  can 
potentially offset the impact of a moderate 𝛼𝛼𝑡𝑡  in cases 
when 𝛽𝛽  is diminished. The matter of coverage is of 
utmost importance as it relates to the allocation of unequal 
treatment. When the value of 𝛼𝛼𝑡𝑡  is somewhat high, 
specifically over 0.5, and the value of 𝜌𝜌  is also high, 
there is a constant reduction in mortality rates, resulting in 
the maximum advantages. 

Figure 6 illustrates the optimal circumstances, 
characterized by elevated 𝛼𝛼𝑡𝑡, 𝛼𝛼𝑣𝑣 and 𝜂𝜂 levels. In such 
scenarios, the effectiveness of vaccination is considerably 
enhanced, resulting in a noteworthy decrease in the 
prevalence of infections. The attainment of herd immunity 
is contingent upon the acquisition rate of immunity, which 
ensures that individuals are adequately protected against 
pathogens as they build immunity. The examination of Fig. 
7 highlights the favorable circumstances in which 
parameters 𝑝𝑝 , 𝜌𝜌 , and 𝜏𝜏  exhibit elevated values. 
Significantly, a change in the 𝑝𝑝 from 0.9 to 0.5 indicates 
a significant modification in infection dynamics, 
underscoring the necessity for heightened testing 
endeavors. 

 
6.  Conclusion 

The present study presents a novel epidemic model, the 
SVEIATRD model, that integrates the dynamics of 
vaccination, testing, and treatment interventions. The 
model provides useful insights into the complex 
relationship between human decision-making and public 
health initiatives designed to reduce the transmission of 
diseases. 

The analysis conducted emphasizes the crucial 
significance of vaccination in the establishment of herd 
immunity. However, it also highlights a point of saturation 
in the advantages of vaccination once a particular 
coverage rate is reached. The utilization of testing 
methods has been recognized as a crucial instrument for 
the timely identification of diseases and mitigating 
infection rates, surpassing the influence of treatment 
implementation. Nevertheless, the efficacy of increased 
diagnostic rates is limited by the scarcity of treatment 
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resources. The findings, as mentioned above, underscore 
the importance of upholding optimal immunization 
effectiveness, guaranteeing universal availability of 
testing, and offering sufficient treatment resources. 

The findings of our study indicate that in situations 
characterized by heightened transmission capacity, the 
implementation of comprehensive testing protocols and 
treatment measures becomes crucial. On the other hand, 
in scenarios characterized by a low probability of 
transmission, treatments with modest effectiveness can 
effectively manage and contain epidemics. This study 
highlights the importance of acquiring immunity through 
either the process of healing from an infection or through 
vaccination. 

Potential areas for future research could center on 
relevant evaluations of diseases, employing real-world 
data to validate and calibrate models. Additionally, the 
framework's adaptability enables the integration of 
intricate elements such as age distribution, social 
connections, geographical aspects, and resource 
limitations. In brief, our model provides practical insights 
that may be used to influence evidence-based 
policymaking regarding the allocation of resources in the 
face of competing tactics for controlling epidemics. 
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