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A B S T R A C T   

Surrogate-based microstructural optimization was applied to describe the relationship between local micro
structural patterns and particle damage in wrought 2024 aluminium alloy. A support vector machine was used to 
realise high-accuracy optimisation from a limited number of high-computational-cost image-based simulation 
results. The methodology integrated thoroughgoing microstructural quantification, a couple of coarsening pro
cesses, and surrogate modelling. The following three objective functions were defined: the maximum principal 
stress in particles, the equivalent plastic strain, and the stress triaxiality in the matrix. A number of design pa
rameters were comprehensively prepared that quantitatively expressed the size, shape, and spatial distribution of 
particles and pre-existing micro pores in numerous ways. The number of design parameters was then reduced 
from 86 to 4 for each objective function during the coarsening process. The surrogate model provided the de
pendency of particle damage for the size, shape, and spatial distribution of particles and micro pores in the form 
of a multi-dimensional response surface. It has been established that micro void formation can be described using 
the simple volume and surface area of particles through the elevation of particle stress and the increase in 
equivalent plastic strain in the matrix, and the spatial distribution of pre-existing micro pores is of crucial 
importance for micro void growth through the elevation of stress triaxiality in the matrix. The proposed material 
microstructure optimisation method provides relationships between complex local microstructural patterns and 
material properties that are not available from existing material development approaches. It is a computationally 
inexpensive and reasonable method that can optimise the complex and irregular microstructures of real materials 
with high efficiency and accuracy.   

1. Introduction 

One of the ultimate goals of materials science and engineering is to 
find a microstructure-property relationship that describes the optimal 
and weakest microstructural features. Although such investigations 
have been experimentally performed on a trial and error basis, it is very 
time consuming and impossible to find the optimal microstructure in a 
vast multi-dimensional design space. From the commencement of 
research on a new material to its practical application, it typically takes 
a long time, 10–20 years or more [1]. The trial-and-error approach of 
repeating the loop of material design, prototyping and testing not only 
requires a long period of time, but also has the problem that precise 
optimisation can never be reached. 

By the way, theoretical analysis based on a simplified model (e.g., 
irregular distribution of particles with complex morphologies simplified 
to a 2D quadrant with periodic boundary conditions) are usually only 
effective for qualitative understanding of general trends, and it is not 
realistic to pursue microstructural optimization in practical materials 
with complex microstructure [2,3]. A similar approach is the isometrical 
topology optimisation of periodic lattice materials [4]. Some of these 
utilise 2D or 3D finite elements as microstructures [5]. Such micro
structures can be fabricated in practice, e.g. by employing the additive 
manufacturing methods [6,7]. However, this study assumes the opti
misation of the microstructure of structural metals that have undergone 
normal manufacturing processes, such as casting and/or thermos- 
mechanical treatment, and does not cover the optimisation of special 
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materials. 
An alternative to the conventional modelling described above is the 

correspondence of various process and design variables to macroscopic 
material properties using the machine learning [8–10]. Data mining- 
based statistical modelling has been applied by employing tools such 
as artificial neural networks or Gaussian processes to quantify the in
fluence of variations of input variables such as the concentrations of 
alloying elements on an output such as strength and ductility, provided 
that sufficient data which comprises the boundaries of the whole design 
space has been provided. An example of this application is the rela
tionship between chemical composition and macroscopic properties in 
nickel-based superalloys [11–13]. With a sufficiently large number of 
data sets, a simple correspondence between material properties and 
various chemical compositions is achievable, albeit with considerable 
ambiguity. Furthermore, if materials are fabricated under various pro
cess conditions by varying such as temperature and time conditions and 
their macroscopic properties are evaluated, the optimum process con
ditions that maximise the macroscopic properties can be identified 
[14–16]. Thus, it is not difficult to simply obtain a statistical relationship 
between the values of various manufacturing conditions and macro
scopic properties. It is however not easy to ascertain the changes in 
microstructure when chemical compositions, process conditions, etc. are 
changed and to obtain a constitutive relationship between detailed 
microstructural features and the macroscopic properties that can be 
interpreted physically. In this case, optimisation in the true sense of the 
term cannot be achieved unless the complex and irregular microstruc
ture of the real materials, its variability, and complex spatial distribution 
can be taken into account. To the authors’ knowledge, few examples of 
such physical optimisation have been reported. For example, Sun et al. 
measured the volume fraction, average thickness, etc. of the α-phase of a 
Ti-6Al-4V alloy and determined the relationship with the strength and 
ductility of 54 specimens using an artificial neural network [8]. How
ever, only simplified microstructure-properties relationships, such as 
yield strength increasing with decreasing α-phase thickness, have been 
obtained, which can be understood within the scope of the present ac
ademic knowledge. This is far from the true microstructural optimisa
tion described above. 

Numerical simulations have also been applied to such issues. Simu
lation can be a powerful tool in that it can replace experiments and 
provide results in a short time. The simplest simulation tool is material 
modelling to build phenomenological constitutive models based on 
macroscopic experimental measurements. In this case, although 
modelling to account for microscopic slip and void initiation/growth is 
also possible, but microscopic behaviour is not modelled explicitly. If the 
microstructure is simplified to the limit by assuming geometrical peri
odicity, simulations are carried out using a combination of unit cells and 
periodic symmetry conditions. Numerical simulations of nano- and 
micro-scopic phenomena have also been widely attempted by utilising 
representative volume elements (RVEs) representing complex micro
structures. For RVEs, virtual microstructures are used in some cases, 
while others accurately reflect the 3D microstructure of real materials. 
The attempt called integrated computational materials engineering 
(ICME), which combines these with databases, machine learning, etc., 
aims at optimising the design of structural components from material 
design [17,18]. However, true microstructural optimisation cannot be 
achieved unless the irregular and heterogeneous microstructure of real- 
world materials is incorporated into the optimisation. In other words, 
although the influence of microstructure can be qualitatively assessed, it 
is difficult to accurately predict the macroscopic properties and behav
iour [19]. Moreover, the accuracy of those methods is not high enough 
to enable optimisation of the microstructure of complex and irregular 
practical materials. For example, Raβloff et al. investigated the rela
tionship between pores and fatigue properties of a Ti-6Al-4V alloy by 
employing the 3D crystal plasticity finite element analysis, with 307 
simulation executions for four models. Although they have succeeded in 
identifying some dominant factors, there are significant differences in 

trends from widely used empirical model [20]. 
In modern materials science, computational methods have emerged 

that can accurately model various material behaviours at different 
length scales. In particular, 3D image-based numerical simulations are 
becoming increasingly important, compared to the conventional nu
merical simulations that typically use simplified and symmetrized 
models or various homogenisation techniques [21,22]. In this respect, 
3D imaging modalities involving synchrotron X-ray micro- and nano- 
tomography techniques enable the creation of high-fidelity simulation 
models by directly converting 3D microstructural images into fine 3D 
meshes for numerical simulations [23–26]. A combination of appro
priate optimization methods with high-fidelity 3D image-based numer
ical simulations provides a systematic means for designing 
heterogeneous micro- and nano-structures with tailored macroscopic 
material responses. However, employing high-fidelity simulation 
models for microstructural optimization in practical materials is 
restrictive because optimization commonly requires large numbers of 
trials with many different large-scale models. Computation of a high- 
fidelity 3D simulation model is time-consuming and, therefore, 
computationally expensive [27,28]. The preparation of high-fidelity 3D 
image-based numerical models is also extremely time consuming due to 
mesh clean-ups, stitching, and debugging [29], which makes the nu
merical simulations computationally expensive. For example, the crea
tion of the image-based computer models in this study took 
approximately one week per model. Finally, the creation of all 15 
models took almost three months. It is clear that if a similar result were 
to be achieved simply by increasing the number of analysis models 
rather than the surrogate model analysis used in this study, it would take 
an unrealistically long time. 

The authors propose a methodology for optimizing the mechanical 
properties of structural metals by integrating a limited number of high- 
fidelity 3D image-based numerical simulations, their high-fidelity 
quantification and subsequent coarsening (i.e., a reduction in the 
number of microstructural design parameters), and the final optimisa
tion with surrogate modelling [30]. The need for the coarsening process 
is to reduce the number of design variables to the extent that the ac
curacy of the analysis is not compromised by coarsening, which ensures 
industrial accessibility by reducing the number of design variables to be 
used for material design. It is also linked to evaluation in three di
mensions or less so that the engineers (i.e., evaluator) can intuitively 
understand and make decisions, saving computational resources by 
shortening surrogate model calculation. In the proposed methodology 
[30], the support vector machine [31,32] was used with an infill sam
pling criterion [33], which effectively alleviated the computational 
burden by reducing the number of numerical trials needed to find the 
final solution. 

In the previous study, the effectiveness of the proposed technique 
was demonstrated and validated for optimising the size, shape, and 
spatial distribution of irregularly shaped Al2Cu particles that coexist 
with microscopic pores in wrought 2024 aluminium alloy [30]. A 
strategy to address the issue of microstructural optimisation in such 
particulate materials would be direct optimisation of the size and 
morphology with respect to individual particles. However, this would 
not be the most efficient approach if particle clusters or interactions 
among neighbouring particles are of crucial importance. In fact, in the 
previous research, most of the design parameters associated with par
ticle spatial distributions did not survive the coarsening processes, and 
the sole surviving design parameter on spatial distribution exhibited a 
relatively low correlation coefficient with the objective function on 
damage [30], which is contrary to the expectation that particle clus
tering is detrimental [34]. k-nearest neighbour’s algorithm and k-means 
clustering were employed to define average distance and local volume 
fraction values in each cluster to express particle clustering, which was 
then assigned to all particles that belonged to clusters [30]. However, 
this was not the most efficient approach because it was apparent that all 
the particles that belonged to a particle cluster were never equally 
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damaged. It was, therefore, inferred that particle spatial distribution and 
interaction effects should be more adequately considered. 

To solve the particle clustering problem, it was assumed in the pre
sent study that the macroscopic strength of a particulate material orig
inated from the in-situ strength of the weakest region of an appropriate 
finite size. Also, to fully capture the statistical nature of local damage 
events, normally a large number of data points (the computational re
sults) are needed to fill the design space. To reduce the number of 
computational models needed, optimization was carried out by 
combining a surrogate-based algorithm with an in-fill sampling criterion 
that had been constructed in the previous study [30]. The correlation 
between microstructural parameters and particle damage was evaluated 
comparatively with the single-particle optimization in the previous 
study. 

2. Methods for image-based finite element simulations and 
surrogate-based optimisation 

2.1. 3D modelling processes for finite element simulations 

The methodology for the surrogate-based optimization used in this 
study is summarized in Fig. S1. We performed an image-based numerical 
simulation with high-fidelity 3D models of the irregular and complex 
microstructures in Step 2 after capturing high-fidelity 3D images in Step 
1. 

Wrought 2024 aluminium alloy was assumed as the model material. 
The alloy contained irregularly shaped coarse Al2Cu particles and 
microscopic pores that were nucleated heterogeneously on Al2Cu par
ticles, as shown in Fig. 1. The micro pores had an average diameter of 
2.3 μm, a number density of 134,000/mm3, and a volume fraction of 

0.28 %. Al2Cu particles had an average diameter of 3.8 μm, a number 
density of 620,000/mm3, and a volume fraction of 3.9 % [35]. The 
details of the material are available elsewhere (Material HH of ref. [35]). 
A high-resolution 3D tomographic image of substantial spatial resolu
tion of 1.0 μm from past research was used, as was the case in the pre
vious paper [30]. The whole field of view was approximately 600 × 600 
× 600 μm. It is crucially important that the microstructural features to 
be analysed are captured with sufficient accuracy and fields of view. And 
in regard to the damage from the particles and micro pores of the ma
terial used, this condition was met. 

For the first step, we randomly selected the regions of interest (reg
ular cubes of 40 × 40 × 40 μm) for 3D image-based numerical models 
from the whole field of view, as shown in Fig. 1. The size of the unit box 
was determined so that a few particle clusters could easily fit inside it. 
The microstructural design parameters, which will be described later, 
were expected to reasonably cover a multi-dimensional space that was 
feasible. STL meshes of particles and micro pore surfaces were obtained 
after volume rendering and then divided into 3D using tetrahedral ele
ments (Fig. 1). In total, ten unit boxes (Region 6–15 in Fig. 3) were 
randomly selected from 360,000 possible microstructural patterns that 
were sampled by translating a regular cube unit box by 10 μm in all the x 
,y, and z directions in the 3D image. Some of the examples are shown in 
Fig. 2 (b)–(f); they correspond to Region 6–10 in Fig. 3. In order to 
predict the optimal or weakest microstructural pattern that could be 
located outside that of the practical material used for modelling, the 
microstructural design parameters should fundamentally be spread 
beyond the experimental data dispersion obtained from a specific real- 
world practical material in the design space. Fig. 2 (a) is of the region 
where the number density and volume fraction values of Al2Cu particles 
and micro pores are the closest to their average values in the whole field 

Fig. 1. This is a schematic illustration of preliminary 3D/4D imaging of a material test in a synchrotron radiation facility and subsequent preparation of a 3D image- 
based simulation model. 
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Fig. 2. (b)–(f) are 3D views of the five local regions (Region 6–10 in Figs. 4 and 5) that were used in the 3D image-based numerical simulation. Only micro pores and 
Al2Cu particles are displayed, which are represented in red and light blue, respectively. The underlying aluminium is not displayed. A regular hexahedron-shaped 
unit box with the dimensions 40 × 40 × 40 μm3 was randomly sampled in the whole field of view of the X-ray micro-tomography image, as shown in Fig. 1. Five of 
the fifteen microstructural patterns are shown here. (a) is the region where the number density and volume fraction values of both Al2Cu particles and micro pores are 
the closest to the average values for the whole field of view (number densities of 1.34 × 1014 and 6.20 × 1014 / m2 and volume fractions of 0.28 and 3.9 % for micro 
pores and particles, respectively). (a) was used as Region 5, as shown in Figs. 3 and 5. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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of view. It is shown as Region 5 in Fig. 3. Particles and micro pores can 
be intentionally copied or eliminated from Region 5 in order to change 
microstructural patterns beyond that of the model material used. Fea
tures that were eliminated were randomly selected. Intentionally added 
features were randomly selected and then randomly located and rotated. 
For Region 1–4 (Fig. 3), the density values of both particles and micro 
pores were made one third, halved, doubled, or tripled compared to 

Region 5. Fig. 3 summarizes the number, volume fraction, and average 
diameter of micro pores and particles in all of the fifteen models pre
pared. Local areas of 40 µm square containing particles and pores more 
than three times the average were actually present between the points of 
the samples used with a probability of 1.7 % and 5.8 % respectively. On 
the other hand, regions containing less than 1/3 of the average also 
existed with a probability of 11.6 % and 31.9 % for particles and pores 

Fig. 3. This shows the number, volume fraction, and average size of Al2Cu particles and micro pores for all the fifteen selected 3D microstructural patterns used for 
preparing 3D image-based simulation models and the quantities for the unit boxes (regular hexahedrons of 40 × 40 × 40 μm3). 
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respectively. It can therefore be seen that models with artificially 
increased or decreased particles and pores do not deviate from the real 
design space. The numbers of tetrahedral elements and nodes for Region 
5 in Fig. 2 (a) are 89,803 and 133,319, respectively, and those for the 
other models ranged within ± 5 % of those values. 

2.2. Image-based finite element simulations 

The Al2Cu particles and the aluminium matrix were assumed to be 
elastic and elasto-plastic, respectively. Young’s moduli of the particles 
and the matrix were assumed to be 69.0 and 105 GPa, respectively, and 
the Poisson ratios 0.33 and 0.34, respectively [36]. The elastic–plastic 
response of the 2024 aluminium was assumed to follow a stress–strain 
curve [37]. 

The commercial finite element simulation software Marc/Mentat 
was used to obtain stress/strain distributions in the 3D image-based 
numerical models. A uni-axial tensile strain of 5 % was applied be
tween the upper and lower surface planes of the 3D image-based nu
merical models. Additional details about the computations are available 
[37]. 

An example of the finite element simulation results as the distribu
tions of equivalent plastic strain on the whole and two magnified spe
cific cross-sections of Region 5 is shown in Fig. 4. Plastic strain 
accumulation was especially observed in the vicinity of Al2Cu particles 
around particle corners, as shown in Fig. 4 (b), together with internal 
stress elevation inside Al2Cu particles. Micro pores also accelerated the 
matrix flow, as shown in Fig. 4 (c), thereby promoting the strain accu
mulation around Al2Cu particles. The distributions of equivalent plastic 
strain, normal stress, and stress triaxiality were utilized to calculate 
three objective functions, as described in section 2.4. While the normal 
stress and stress triaxiality data were not obtained from the X-ray CT 
(hereafter XCT) experiments, the plastic strain data was. As was 
demonstrated in the companion paper [30], significant local variations 
in the three mechanical quantities were observed (Figs. 3 and S2 [30]), 
especially where coarse Al2Cu particles were irregularly shaped. 

2.3. Design parameters for surrogate-based optimization 

Initially, the quantification of microstructural features, such as size, 
shape, and spatial distribution, was performed by utilizing a consider
able number of design parameters, as shown in Step 3 of Fig. S1. All the 
design parameters used for quantification are listed in Table S1. A va
riety of morphological parameters were prepared to describe the shapes 
of particles and pores involving morphological complexity, such as 
orientation, aspect ratio, deviations from cube or sphere, connectivity, 
and surface complexity. Multiple parameters were also prepared to 
describe size and spatial distribution. The total number of design 

parameters was initially 43 for both particles and micro pores (9 pa
rameters for size, 24 for shape, and 10 for spatial distribution). Design 
parameters for size and shape were identical to those used in the com
panion paper, where the size, shape, and spatial distribution of indi
vidual particles were optimized [30]. 

In terms of size measurements, D expresses the volume equivalent to 
spherical diameter. V and S represent the volume and surface area that 
were measured after applying the Marching Cubes algorithm. L, W, and 
T were measured by creating the smallest rectangular bounding box that 
completely surrounded a micro pore or a particle, and they correspond 
to x ,y, and z in the global Cartesian coordinate system, respectively. In 
addition, B simply denotes the volume of the bounding box (B = L × W 
× T). Finally, G describes the so-called geodesic distances, which are the 
shortest continuous surface paths between the uppermost and lower
most points of the particles or pores. 

In terms of shape, f1 – f10 were calculated using L, W, T, V, S, and M, 
where M denotes the convexity properties obtained as the integral of the 
mean curvature of a particle or pore. The equations for calculating f1 – 
f10 are listed in Table S1 [29]. f1 – f3 stand for aspect ratios. o4 – o6 also 
stand for aspect ratios measured along the three principal axes. f10 is also 
an index for particle/pore elongation. f4 and f8 / f9 measure the de
viations from the spherical and cubic shape of a particle or pore, 
respectively. f5 – f7 stand for convexity properties. Similarly, C and E 
denote the mean curvature of an object and the Euler number, which 
describe the surface complexity and connectivity, respectively [29]. θ 
expresses the angle between the loading direction and the first principal 
axis [29]. 

The 3D version of moment invariants, which were first introduced by 
Sadjadi and Hall, were also used for describing the morphological fea
tures of the particles and pores [29,38]. The first moment invariants, p2, 
p3, and p4, define the central locations along the x ,y, and z directions, 
respectively. The second moment invariants, p5, p6, and p7, represent the 
deviation from the centre and describe the degree of spread in the voxel 
distribution. The third moment invariant, p8, defines skewness, which is 
a measure of the distortion of the voxel distribution. The fourth moment 
invariant, p9, defines kurtosis as a measure of tailedness. A 3D object can 
be described by the grey value distribution function, f (x, y, z). For a 
binary image, f (x, y, z) = 1 represents internal voxels that belong to an 
object and f (x, y, z) = 0 when they are outside an object. The 3D mo
ments of order n (=p + q + r), mpqr are defined for p, q, r = 0, 1, 2… as 
mpqr =

∑
x
∑

y
∑

xxpyqzrf(x, y, z). For n = 1 (the first-order moment in
variants), p2 = m100/m000 is along the x axis, p3 = m010/m000 along the y 
axis, and p4 = m001/m000 along the z axis. For n = 2 (the second-order 
moment invariants), p5 = (m200 +m020 +m002)/m5/3

000, p6 =
(
m2

200 +

m2
020 +m2

002 +2m2
110 +2m2

101 +2m2
011

)
/m10/3

000 , and p7 =
(
m200*m020* 

m002 − m002*m2
110 − m020*m2

101 − m200*m2
011 + 2*m100*m101*m011

)
/ m4

000. 

Fig. 4. This shows the magnified views of the output of the finite element analysis displayed on y-z virtual cross-sections. (a) is a part of the whole cross-section. (b) 
and (c) are enlarged views of A and B in (a), which show the strain distribution around the elongated Al2Cu particle and the particle cluster, respectively. 
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For n = 3, p8 =
(
m2

300 + m2
030 +m2

003 +3m2
120 +3m2

102 +3m2
012 +

3m2
021 +3m2

210 +3m2
210 +6m2

111
)
/m5

000. For n = 4, p9 = (m400 + m040 +

m004 +2m220 +2m202 +2m022)/m3
000. All of the moment invariants are 

invariant under translation and changes in scale and rotation. 
The majority of the design parameters for quantifying spatial dis

tribution were not the same as those used in the companion paper [30]. 
In that paper, the spatial distribution of individual particles was opti
mized by utilizing the k − nearest neighbourhood algorithm, with K 
meaning the clustering algorithm [30]. And the average distance and 
local volume fraction values within a cluster in which the particle of 
interest was embedded were assigned to the particle concerned. How
ever, in this study, spatial distribution patterns were quantified for each 
unit box. The k − nearest neighbourhood algorithm [29,39] was also 
utilized for k = 2, 3, and 5. The density for each unit box was simply 
defined as N / V, where N is the number of particles or pores in a unit 
box. G-function, G, is a cumulative nearest-neighbour function that 
measures the fraction of nearest-neighbour distances that are less than 
or equal to the distance t, as G = 1

N
∑N

i=1I(yi ≤ t), where yi is the distance 
of cell i to its nearest neighbour [29,40]. F-function, F, is similar to G- 
function except that the distance from each grid point, which was placed 
at regular intervals throughout the sample field, to its nearest neighbour 
cell was measured [29,41]. So F = 1

g
∑g

i=1I(yi ≤ t), where yi is the dis
tance of grid point i to the nearest cell. Spatial auto-correlation was also 
defined to measure the spatial dependence between data observed at 
different locations across the space. Global spatial auto-correlation, 
Global, is defined as Global =

∑N
i=1

∑N
j=1aij(xi − x)

(
xj − x

)
/

(S2∑N
i=1

∑N
j=1aij), where S2 = 1

N
∑N

i=1(xi − x)2, xi is the ith observed 

micro pore, and x = 1
N
∑N

i=1xi is the average of xi [42]. aij is the adjacency 
criterion defined as aij = 1 if location xi is adjacent to location xj, and aij 
= 0 if xi is not adjacent to xj. Geary’s C is based on the weighted sum of 
the square difference among objects, which is defined as Geary =

N
2
∑N

i=1

∑N
j=1

aij

∑N
i=1

∑N
j=1

aij(xi − xj)
2

∑N
i=1

(xi − x)2 [43]. Moran’s I is expressed similarly as 

Moran = N
2
∑N

i=1

∑N
j=1

aij

∑N
i=1

∑N
j=1

aij(xi − x)(xj − x)
∑N

i=1
(xi − x)2 [44]. Getis’s global, Getis, is 

defined by Getis =
∑N

i=1
∑N

j=1aij(t)xixj/
∑N

i=1
∑N

j=1xixj [45]. 
Although it seems to be excessive to express the morphological fea

tures of particles and micro pores, the majority of the design parameters 
with lower degrees of correlation were screened out later in the coars
ening process. A sufficient number of design parameters must be pre
pared so that a limited number of selected design parameters can 
accurately express the global trends of microstructure-property re
lationships. In addition, a sufficient number of 3D image-based numer
ical models must be prepared so that the design parameters cover a 
design space that is feasible for capturing the global trends of data 
dispersion. Fig. 3 shows that this has been realized in this study for 
particle and pore size and density. All the design parameters were 
normalized to be between 0 and unity so that there was a 99 % confi
dence interval for the frequency distribution in each parameter having 
unity, as demonstrated in Fig. S3 of the companion paper [30]. 

2.4. Objective functions for surrogate-based optimization 

Some objective functions were defined so that the contributions of 
particles and pores on ductile fractures were expressed as independent 
mathematical parameters. In this study, three objective functions, I1, I2, 
and I3, were defined in order to evaluate the damage initiation and early 
growth of particles, which are the sensitive indicators of fracture resis
tance for the onset of ductile fractures in aluminium alloy [30]. I1 I2, and 
I3 express the volume fractions of the regions in the unit boxes, where 
the maximum principal stress in Al2Cu particles, the equivalent plastic 
strain of the matrix aluminium in the vicinity of Al2Cu particles, and the 
stress triaxiality of the matrix in the vicinity of Al2Cu particles exceed 

their critical values, respectively. Actual critical values were set to be 
1000 MPa, 0.05, and 1.1 for I1 I2, and I3, respectively. It is reasonable to 
assume that internal stress increases inside Al2Cu particles where plastic 
strain is localized in the underlying matrix, which then causes particle 
fractures or interfacial debonding. I1 and I2 are, therefore, associated 
with the micro void formation process, whereas I3 is associated with 
micro void growth; high stress triaxiality causes the lateral expansion of 
micro voids [46]. Prior to the coarsening processes, all the objective 
functions and design parameters were normalized. The values of I1, I2, 
and I3 that were obtained after the execution of the 3D image-based 
numerical simulations for the fifteen models are shown in Fig. 5. 
Although I1 and I2 were associated with micro void formation from 
Al2Cu particles, the magnitude relationship between high I1 models 
(Region 1, 5, and 14) and very low I1 models (Region 3, 4, 8, 10, and 11) 
did not necessarily coincide with that for I2; I2 values for very low I1 
models varied widely between 0.02 and 0.22, and it seems there were 
more regions that were intermediate in I2 and between the two extremes 
than for I1. The regions that were susceptible to premature damage 
(Region 1, 5, 6, 14, and 15), which were predicted from I1 and I2, 
sometimes exhibited high I3 values (Region 5 and 14), while Region 15 
exhibited very low I3 values (0.00012). This implies that micro void 
formation and growth are caused by different mechanisms, i.e., the in
crease and decrease in plastic deformation for micro void formation and 
growth, respectively. It is also noteworthy that stress triaxiality distri
bution may drastically change after micro void formation. Therefore, it 
can be assumed that I3 values obtained from 3D image-based numerical 
simulations that did not consider damage nucleation and evolution, such 
as those performed in this study, are effective only for the very early 
stage of micro void growth. 

2.5. Surrogate-based optimization 

A combination of principal component analysis (hereinafter PCA) 
and global sensitivity analysis (hereinafter GSA) was applied to reduce 
the number of design parameters in Step 4, from which subsequent 
optimisation was performed effectively in Step 5, as shown in Fig. S1. 
PCA and GSA were utilized for eliminating similarities in the set design 
parameters and selecting important design parameters that had a high 
degree of correlation with I1 − I3, respectively. 

PCA is a popular linear dimensional reduction technique for data 
mining. Two or more design parameters that are close to each other form 
a small angle on a loading chart. The set of design parameters that is 
closer than a pre-determined threshold angle (i.e. 5◦) is eliminated 
leaving the design parameter with the longest distance from the origin 
having the strongest contribution. 

GSA is a technique for apportioning the uncertainty in objective 
functions to the uncertainty in each design parameter. GSA is applied for 
selecting a limited number of design parameters with high Pearson 
correlation coefficients after the number of design parameters is reduced 
in the first step by applying PCA. The Pearson correlation coefficient 
quantifies the effect of the parameters on the model. In this method, 
variables with large Pearson correlation values are considered more 
significant than those yielding small values. Values greater than 0.5 
generally indicate significant correlations. However, parameters with 
Pearson correlation values less than 0.5 can be analysed for possible 
confounding factors. 

The details of the coarsening process are described elsewhere [30]. 
For popular surrogate model algorithms, the support vector machine 

can be effectively utilized for high dimensional data sets with a limited 
number of sampling data sets [31]. In this study, a support vector ma
chine algorithm with an infill sampling criterion was introduced in Step 
5 (Fig. S2), which effectively alleviated the computational burden by 
reducing the number of 3D image-based numerical models required to 
find the solution with a high degree of reliability. 

Surrogate models are built using data drawn from expensive models 
(image-based finite element simulations) that are able to predict the 
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output at untried points in a design space. The support vector machine 
can effectively handle extremely high-dimensional data from a rela
tively small amount of sampling data [16], outperforming compared 
with other optimisation methods (e.g., artificial neural networks), 
resulting in significant reductions in computational costs. The support 
vector machines were constructed using the libsvm-mat-3.25–1 
Toolbox. In the proposed framework, the two common kernels (i.e., 
polynomial and Gaussian radial basis function) were used. In this paper, 
the support vector machine was used with the infill sampling criterion, 
which effectively alleviates computational burdens by further reducing 
the number of numerical trials needed to find the final solution. 

In order to roughly evaluate the output from the surrogate models, 

response surface methodology [47] was used to explore the relation
ships between each objective function and a set of explanatory design 
parameters that had survived the coarsening process. The remaining 
design parameters that had not been selected for drawing a response 
surface were kept constant at their average values. 

3. Coarsening and optimisation results 

3.1. Coarsening results 

The number of design parameters was reduced from 86 (43 each for 
both particles and micro pores) to 56 through the PCA process (Step 4 of 
Fig. S1). Fig. 6 shows loading charts plotted after all the 86 design pa
rameters were categorized according to design parameter type. Param
eter symbols with or without subscript “o” stand for design parameters 
for micro pores and Al2Cu particles, respectively. Fig. 7 shows the top 
ten design parameters for each objective function. Overall, 40 % (12 of 
the 30 design parameters shown) of the remaining design parameters 
were associated with micro pores. A high percentage of the design pa
rameters that denote particle size and shape survived (44.4 and 29.2 %, 
respectively), but only 10 % of the design parameters for particle spatial 
distribution did. On the other hand, only a low percentage of the design 
parameters that denote micro pore size and shape survived (11.1 and 
16.7 %, respectively), but half of the design parameters for pore spatial 
distribution did. It is interesting to note that almost no design parame
ters that describe spatial distribution survived in the companion paper, 
where individual particle morphology was optimised [30]. However, in 
this study, micro pore clustering very strongly affected I2 and I3 even 
more so when local microstructural patterns in a unit box were 
optimised. 

In general, the Pearson correlation coefficient r ranges between − 1 
and + 1, with positive values indicating positive relationships and vice 
versa. According to Evans, the strength of correlation is strong for r with 
values over 0.60 [48]. In the companion paper [30], r values ranged 
between 0.49 and 0.58, 0.32–0.41, and 0.20– 0.34 for the top four 
design parameters for I1, I2, and I3, respectively. According to Evans’ 
definition, this corresponds to a weak to moderate correlation. The 
reason why there was considerably stronger correlation in this study is 
the importance of local microstructural patterns that express particle/ 
particle interaction, particle/pore interaction, and the effects of parti
cle/pore clustering. It can be concluded that the optimisation method
ology adopted in this study for the aluminium alloy used is more 
reasonable than the individual particle optimisation of the previous 
study [30]. 

If the objective functions are compared, I1 and I2 (especially I1) were 
relatively high on average, while I3 was comparatively low. This was 
probably because I1 expresses the direct criterion for micro void for
mation through the maximum principal stress in particles, whereas I3 is 
a rather indirect criterion for void growth through the stress triaxiality 
of the matrix. I2 was intermediate in its level of relevancy and 
correlation. 

3.2. Optimisation results 

The top four design parameters were selected for each objective 
function: (V, S, B, C), (Getiso, V, S, f2o), (Densityo, Globalo, Getiso, Gearyo) 
were selected for I1, I2, and I3, respectively, as the sets of input design 
parameters for surrogate modelling, as shown in Step 5 Fig. S1. For all 
the objective functions, the values at the optimum pattern were almost 
zero, as can be read from Fig. 8 for I2. It has been verified that limiting 
the number of design variables hardly changes the resulting surrogate 
model. For example, this is illustrated by increasing the number of 
design variables from four to five, resulting in the locations of the 
weakest and optimum microstructures almost identical. Due to space 
limitations, only the results for I2 are shown hereafter. Comparison of 
the surrogate model and input computational results in this study shows 

Fig. 5. This shows the three objective functions for all the fifteen regions, 
which were obtained by employing the 3D image-based numerical simulation. 
I1 expresses the volume fraction of the regions in the unit boxes where the 
maximum principal stress exceeds the critical value in particles. I2 and I3 are the 
volume fractions of the regions in the unit boxes where the equivalent plastic 
strain (I2) and stress triaxiality (I3) exceed the critical values in the matrix. In 
essence, I1 and I2 / I3 express how Al2Cu particles and the matrix are susceptible 
to damage, respectively. With respect to the fracture process, I1 / I2 and I3 are 
associated with micro void formation and growth, respectively. 
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relatively good agreement, with an average of 0.58 in the surrogate 
model and 0.55 in the numerical results for I2. 

The 3D contour maps of the objective function I2 were illustrated 
using the surrogate model. Two of the four selected design parameters 
were used to illustrate 3D response surface curves, as shown in Fig. 8, 
and the remaining parameters were fixed at their average values. The 
optimal (highlighted in blue) and weakest (highlighted in red) micro
structural patterns are indicated by arrows in Fig. 8. The response sur
face exhibited the minima, where V and S were rather close to their 
minimum values, as shown in Table 1. The V value of 32.9 μm3 corre
sponded to the equivalent spherical diameter of 2.5 μm, and sphericity, 

which is usually expressed as π1/3(6V)2/3

S , was 0.81. This implies that the 

particles in the optimised unit cell were relatively small and exhibited 
rather simplified shapes. The reason why very small, perfectly spherical 
particles are not optimal in Fig. 8 is probably because the spatial reso
lution of the imaging experiments used in this study is 1 µm, which is 
relatively close to the optimal level predicted in the analysis. The f2o 
value of 1.01 implies that the pores were not so elongated, and the Getiso 
value of 0.278 implies that the micro pores exhibited rather moderate 
dispersion (i.e., not so uniform but also not so clustered). Of all the 
360,000 possible microstructural patterns that were sampled by trans
lating the regular cube unit box by 10 μm in the x ,y, and z directions in 
the 3D image, the unit cell that had the closest values in Getiso, V, S, and 
f2o was selected, as shown in Fig. 9. 

Fig. 6. This shows the principal component score distributions for every morphological category obtained by applying the principal component analysis technique. 
Parameter symbols with or without subscript “o” stand for design parameters for micro pores and Al2Cu particles, respectively. 
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In the previous study, the only design parameter associated with 
particle spatial distribution that survived was dm (the average distance 
within each cluster based on the K means method), which exhibited a 
low correlation coefficient (0.26 at the maximum) [30] that was con
trary to the expectation that particle clustering is detrimental [49]. It 
was concluded in the previous study that weak particles were identified 
to be coarse and probably did not cluster due to the size range of 

clustered particles and the relatively low internal stress in clustered 
particles because of the effects of interaction [30]. This may be mostly 
correct because design parameters associated with particle clustering 
disappeared (Fig. 7). The only parameter that survived was Density, 
which had a relatively low Pearson correlation coefficient (0.44). It is 
also noteworthy that of the 12 design parameters that survived to 
describe the three objective functions, half were associated with micro 
pores, and of these, five were associated with the spatial distribution of 
micro pores. This implies the importance of pre-existing micro pores for 
enhancing matrix plastic deformation and the elevation of stress triax
iality in the matrix. 

Aluminium manufacturers can control the mechanical properties of 
2024 aluminium alloy so that there are as many local regions as possible 
that have four design parameter values that are close to these values or, 
alternatively, that the weak microstructural patterns are eliminated as 
much as possible. It seems that the latter strategy is more realistic and 
efficient. High-resolution 3D tomographic imaging of 1.0 μm in sub
stantial spatial resolution is necessary to utilise the achievements of this 
study. Nowadays, high-throughput production XCT systems are avail
able for inspecting the microstructural features of structural materials in 
addition to the apparatus in laboratories and synchrotron radiation fa
cilities [29,34,50]. Interestingly, the results of the analysis show that 
microstructural patterns with homogeneous particle and pore distribu
tions were not necessarily the strongest. This means that design pa
rameters have mutual dependency and cannot vary by fixing the other 
parameters to be constant. For example, clustered particles are some
times small and rather spherical, whereas sparsely dispersed particles 
are sometimes coarse and irregularly shaped. 

The relationships between the complex local microstructural pat
terns and material properties obtained with the present approach are not 
available with existing material development approaches. This not only 
enables highly efficient and accurate optimisation of the complex and 
irregular microstructures of real materials, but also leads to seemingly 
unexpected and unanticipated discoveries, as described above, that 
could lead to dramatic improvements. 

A series of the techniques have been successfully applied to a range of 
materials engineering problems such as the characterisation of surface 
grain properties leading to intergranular hydrogen embrittlement 
cracking in 7000 series alloys, the characterisation of surface grain 
properties leading to fatigue crack initiation in titanium alloys and the 
characterisation of grain damage in aluminium due to hydrogen 
embrittlement [50–52]. 

4. Conclusion 

The surrogate-based microstructural optimization of structural 
metals was applied to describe the relationship between local micro
structural features and particle damage in wrought 2024 aluminium 
alloy with dispersed particles and micro pores. The support vector ma
chine was used with an infill sampling criterion for optimisation and was 
highly effective in analysing the limited number of data sets (the results 
of a 3D image-based numerical simulation). The methodology inte
grated thoroughgoing microstructural quantification, a couple of 
coarsening processes, and surrogate modelling. The study was intended 
to optimise local microstructural patterns, which are expressed as par
ticle/pore distributions in a regular hexahedron-shaped unit box with 
the dimensions 40 × 40 × 40 μm3. Appropriate objective functions were 
defined to assess particle damage as independent mathematical pa
rameters that were not experimentally measureable but were comput
able by employing 3D image-based numerical simulations. In addition, 
tens of design parameters were prepared, which quantitatively 
expressed the size, shape, and spatial distribution of Al2Cu particles and 
pre-existing micro pores. The number of design parameters was reduced 
from 86 to 4 for each objective function during the two-step coarsening 
process. The surrogate model provided the size, shape, and spatial dis
tribution of the particles and micro pores in the unit box as the weakest 

Fig. 7. This shows the results of the global sensitivity analysis, which represent 
the top ten design parameters with high Pearson correlation coefficients for 
each objective function. 
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and optimal (strongest) microstructural patterns together with their 
multi-dimensional distributions as forms of multi-dimensional response 
surfaces. 

Half of the design parameters that survived through the coarsening 
process were associated with micro pores, especially the spatial distri
bution of pre-existing micro pores. This suggests the importance of pre- 
existing micro pores in relation to particle damage due to the 

enhancement of matrix plastic deformation and the elevation of stress 
triaxiality in the matrix. It was also clarified that the simple volume and 
surface area of particles are important parameters to describe particle 
damage through the elevation of particle stress and the equivalent 
plastic strain in the matrix. The response surface showed that the par
ticles in optimised unit cells were relatively small with rather simple 
shapes and that micro pores exhibited rather moderate dispersion, 

Fig. 8. This shows the 3D response surfaces of objective function I2, which were drawn as 3D contour maps. Two of the top four design parameters were selected to 
show a couple of 3D design spaces, with the remaining two parameters fixed at their average values in each figure. 
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which implies that homogeneous particle/pore distributions are not 
necessarily the strongest. The optimised microstructural pattern in a 
unit cell was then visualised by sampling the local microstructural 
pattern that had design parameters closest to the optimal ones from the 
3D image of an actual material specimen. Correlation coefficients be
tween the selected design parameters for local microstructural patterns 
and particle damage were significantly higher than those for single- 
particle optimisation performed in the previous study. 

Conventional research has taken the average of particle size and 
shape or other microstructural features and used this as an indicator for 
improving material properties. In the previous report [30] it was argued 
that material properties can be efficiently improved by knowing the best 
and worst values of particle properties, rather than the average values, 
and designing materials to reduce patterns close to the worst values and 
increase those close to the best values of the material structure. In the 
present paper we take this further and have considered that optimisation 
can be achieved by examining the microstructural patterns of local re
gions in the material, knowing their worst and best patterns, removing 
the worst local patterns from the microstructure and guiding them to
wards the best local patterns, taking into account the interference effects 
of the microstructures. 

The methodology proposed in this paper enables presenting the 
weakest microstructural pattern and extracting the dominant factors 
from complex image-based data. It can provide new findings, insights, 
and reasonable interpretations of complex phenomena, leading to 
drastic improvements in the characteristics of materials through 
microstructural optimization. It is possible to move away from a con
ventional intuitive understanding of phenomena to a logical interpre
tation that is corroborated by the huge amounts of data. A 3D image- 
based numerical simulation utilises the particular microstructural fea
tures embedded in a single specimen, but in principle, it only leads to 
universal understanding after multiple repetitions. This is equivalent to 
testing a material multiple times. However, this is rarely realised due to 
the high computational costs. The methodology proposed in this paper 
compensates for such shortcomings and delivers the full potential of 3D 
image-based numerical simulations. By simply identifying a limited 
number of material design variables that are effective in controlling 
microstructure, and using them as indicators for limited and localised 
modification of the complex microstructure of real materials, significant 
improvements in macro-properties can be achieved. This is expected to 
lead to revolutionary improvements in the efficiency of materials design. 
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