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Abstract

3D LiDAR sensors are indispensable for the robust vi-
sion of autonomous mobile robots. However, deploying
LiDAR-based perception algorithms often fails due to a do-
main gap from the training environment, such as incon-
sistent angular resolution and missing properties. Exist-
ing studies have tackled the issue by learning inter-domain
mapping, while the transferability is constrained by the
training configuration and the training is susceptible to
peculiar lossy noises called ray-drop. To address the is-
sue, this paper proposes a generative model of LiDAR
range images applicable to the data-level domain trans-
fer. Motivated by the fact that LiDAR measurement is based
on point-by-point range imaging, we train an implicit im-
age representation-based generative adversarial networks
along with a differentiable ray-drop effect. We demonstrate
the fidelity and diversity of our model in comparison with
the point-based and image-based state-of-the-art genera-
tive models. We also showcase upsampling and restoration
applications. Furthermore, we introduce a Sim2Real appli-
cation for LiDAR semantic segmentation. We demonstrate
that our method is effective as a realistic ray-drop simulator
and outperforms state-of-the-art methods.

1. Introduction
A LiDAR sensor is a laser-based range sensor that can

measure the surrounding geometry as a 3D point cloud.
Compared to other depth cameras and radars, LiDAR sen-
sors cover a wide field of view and are also robust to lighting
conditions owing to their active sensing based on the pulsed
laser. Therefore, LiDAR-based 3D perception has become
an indispensable component of autonomous mobile robots
and vehicles.

In particular, semantic segmentation on LiDAR point
clouds [34, 35, 47, 48, 50, 53, 29] is one of the most im-
portant tasks in autonomous navigation, which identifies 3D
objects at the point level for traversability estimation. For
general point clouds, the most recent segmentation methods
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Figure 1. LiDAR range imaging (top) involves the missing points
spreading unevenly, called ray-drops. Our method enables us to
infer the ray-drop probability and the underlying complete scene
(middle) on the continuous image representation (bottom).

are based on PointNet [34] and PointNet++ [35], neural net-
work architectures designed to deal with the unordered na-
ture of point clouds. However, they have limitations regard-
ing computational speed [50] and memory requirements [3]
for large-scale point clouds and are often performed on a
reduced size. To further efficient training and inference, the
spherical projection has been exploited in the LiDAR seg-
mentation. In this approach, point clouds are represented as
a bijective 2D grid, a so-called range image (see Fig. 1 for
instance). So far, many studies [47, 48, 50, 53, 29] proposed
2D convolutional neural networks that perform point cloud
segmentation on this range image representation.

While the range image representation has improved the
processing efficiency, there are domain gap problems that
degrade the performance in deploying trained models. In
this paper, we argue two issues relating to ray-casting and
ray-dropping. The ray-casting issue is derived from the an-
gular configuration of emitted lasers. LiDAR sensors have
a wide variety of angular resolutions due to hardware con-
straints, which might bring spatial bias in training the seg-
mentation models. The ray-dropping issue is derived from



the phenomenon of laser reflection. While LiDAR sensors
are robust to day-and-night illumination changes, produced
range images involve quite a few missing points if the re-
flected laser intensity is too low due to scene-derived spec-
ular and diffuse reflection and light absorption. This artifact
is problematic in simulation-to-real (Sim2Real) segmenta-
tion tasks because the phenomenon is non-trivial to be re-
produced in a simulator. Some studies proposed LiDAR do-
main adaptation methods to address the ray-casting [23, 52]
and ray-dropping issues [48, 47, 53, 27].

In this work, we propose a generative model-based
method for LiDAR domain adaptation. Our method learns
the generative process of LiDAR range images along-
side the ray-casting and ray-dropping effects in an end-
to-end manner, based on generative adversarial networks
(GANs) [12]. The learned data priors can be used for map-
ping different domains. Our model builds upon the re-
cently proposed two paradigms for generative models: im-
plicit neural representation [41, 2] and lossy measurement
model [6, 17, 30]. Implicit neural representation is a contin-
uous and differentiable signal representation parameterized
by neural networks. For example, an image is represented
by a coordinate-based function and its resolution is deter-
mined by coordinate queries. Motivated by this scheme,
we aim to model the editable ray-casting process of Li-
DAR range images. The lossy measurement model is an
invertible function that simulates the stochastic signal cor-
ruption along the data generation. We aim to model the
scene-dependent ray-dropping in an unsupervised manner.

In Section 4.1, we first evaluate our model in terms
of generation fidelity and diversity compared to the point-
based and image-based state-of-the-art generative models.
Our model shows the best results in most standard im-
age/point cloud metrics. We also examine the validity of
feature-based metrics on LiDAR point clouds, motivated
by de facto standard assessment in the natural image do-
main [14]. We then showcase applications with our model
such as post-hoc upsampling and data restoration from
sparse depth observation. Finally, in Section 4.2, we con-
duct Sim2Real semantic segmentation by using our model
as a noise simulator. We demonstrate that our method pro-
duces realistic ray-drop noises and outperforms the state-of-
the-art LiDAR Sim2Real methods. In summary, our contri-
butions are as follows:

• We propose a novel GAN for LiDAR range images
simulating the ray-casting and ray-dropping processes.

• We showcase the utility of our model on the post-hoc
upsampling and data restoration.

• We apply our model to Sim2Real semantic segmen-
tation. We empirically show that our model produces
realistic ray-drop noises on simulation data and outper-
forms the state-of-the-art methods.

2. Related work

2.1. LiDAR domain adaptation

As in the field of natural images, the performance of Li-
DAR perception tasks also suffers from domain shift prob-
lems between the training and test environments [44] such
as by different sensor configurations, geography, weather
conditions, and simulation. We highlight the following two
cases focused on in this work.
Angular resolution. Sampling angular resolution is a non-
negligible property of LiDAR sensors, which determine the
density of 3D point clouds. To mitigate the gap, Langer et
al. [23] used pseudo LiDAR range images sampled from se-
quentially superimposed point clouds or meshes. However,
the synthesis quality may depend on the sequential density
of scans. Yi et al. [52] proposed voxel-based completion
to bridge the scan-wise discrepancy, while this approach is
designed for point-based perception methods. This paper
proposes a scan-wise transfer using GAN-based data prior
and shows some qualitative results.
Ray-drop noises. Ray-dropping occurs if the pulsed lasers
failed to reflect from measured objects. This phenomenon
is caused by complex physical factors such as mirror diffu-
sion, specular diffusion, light absorption, and range limits.
In the aspect of perception tasks, the ray-drop noises are
one of the important properties of real data [47, 48, 53, 27].
Some studies tackled simulating the ray-drop noises to
make the LiDAR simulator realistic. SqueezeSeg [47] pro-
posed to sample binary noises based on the pixel-wise fre-
quency computed from the real data. However, the averaged
noises cannot make object-wise effects so they might be far
from the actual distribution. To estimate ray-drop noises
from LiDAR range images, Zhao et al. [53] trained Cycle-
GAN [54] and Manivasagam et al. [27] trained U-Net [38].
However, those approaches cast the task as a binary classi-
fication based on a cross-entropy objective. As mentioned
by Manivasagam et al. [27], the cross-entropy training does
not guarantee the estimated probability is calibrated. We
hypothesize that such approximated noise simulation might
be suboptimal performance in Sim2Real tasks.

2.2. Deep generative modeling

In recent years, great progress has been achieved in gen-
erative models based on deep neural networks. In particu-
lar, a generative adversarial network (GAN) [12] has been
attracting a great deal of attention in the image domain due
to their sampling quality and efficiency [5]. As an exam-
ple of recent studies, Karras et al. [18] proposed ProGAN
for synthesizing mega-pixel natural images, and the gen-
eration quality has been significantly improved in a few
years [20, 21, 19]. Moreover, well-trained GANs can be
used as generative image priors for semantic manipulation
and data restoration [13, 37].



Implicit neural representation. A GAN has also taken
another step forward with implicit neural representation [2,
41]. Implicit neural representation is a method of contin-
uous signal representation using a coordinate-based neural
network. The typical architecture employs MLPs that re-
ceive arbitrary coordinate points and predict values such
as signed distances [31] for 3D shapes, colors [2, 41] for
2D images, and colors/density [39] for volumetric ren-
dering. This implicit scheme allows the models to learn
the resolution-independent representation even if trained
with discretized data such as images. CIPS [2] and INR-
GAN [41] incorporated the idea into image GANs. They
demonstrated that the models could control the resolution
to perform spatial interpolation and extrapolation. This pa-
per discusses the availability in modeling ray-casting.

Lossy measurement models. Training datasets are not al-
ways clean and can be problematic on training GANs. Since
the objective of GANs is to mimic a distribution of a dataset,
the learned generator space can also be noisy. To address
the issue, some studies [6, 17, 30] introduced a probabilisti-
cally invertible function into the generative process to learn
clean signals from only the noisy datasets. For instance on
multiplicative binary noises, Bora et al. [6] proposed Ambi-
entGAN and Li et al. [24] proposed MisGAN. Their noise
models are formulated with a signal-independent probabil-
ity, which does not meet the LiDAR’s signal-dependent bi-
nary noises. Kaneko and Harada [17] proposed NR-GAN
which can estimate the signal-dependent noise distribution;
however binary noises are not covered.

LiDAR applications. Although most generative models
have focused on the natural image datasets, several stud-
ies [7, 30] have begun to apply them to LiDAR data. Cac-
cia et al. [7] proposed the first application of deep genera-
tive models on LiDAR data. They trained the variational
autoencoders (VAEs) [22] on the range image represen-
tation. They also reported the visual results by a vanilla
GAN [36]. However, the distribution of LiDAR range im-
ages can be discrete due to the random ray-drop noises,
which is difficult to be represented by neural networks as a
continuous function. Motivated by the concept of the lossy
measurement models, Nakashima and Kurazume [30] pro-
posed DUSty incorporating the differentiable ray-drop ef-
fect into GANs to robustly train the LiDAR range images.
They employed straight-through Gumbel-Sigmoid distribu-
tion [26, 16] for modeling the LiDAR noises, so that the
model learns the discrete data distribution as a composite of
two modalities: an underlying complete depth and the cor-
responding uncertainty of measurement. Those two studies
empirically showed the availability of generative models on
LiDAR range images, while did not evaluate the effective-
ness on the actual perception tasks. In contrast, our paper
improves the generation quality and also provides the quan-
titative evaluation on Sim2Real semantic segmentation.
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Figure 2. A schematic diagram of LiDAR measurement and our
proposed generative model for 3D LiDAR data. We hypothe-
size that laser dropping occurs stochastically according to scene-
specific probabilities.

3. Method
Fig. 2 depicts the LiDAR measurement and our formu-

lation with deep generative models. Our aim is to learn the
LiDAR scene priors independent of angular resolution and
to leverage them for data-level domain transfer. To this end,
Section 3.1 first introduces a resolution-free implicit repre-
sentation of range images. In Section 3.2, we then present
our GAN based on the implicit representation and differen-
tiable ray-dropping effect. Finally, Section 3.3 introduces
an inference step which uses our learned GAN as generative
scene priors. We provide the implementation details in the
supplementary materials. Our code is available at https:
//github.com/kazuto1011/dusty-gan-v2.

3.1. Implicit representation of range images

LiDAR range images. While a general representation
of point clouds is a set of Cartesian coordinate points
{(px, py, pz)} [1, 34, 51], LiDAR point clouds can also be
represented as a bijective 2D grid [30, 7, 45, 53, 47, 48] due
to the measurement mechanism, range imaging. Suppose
that a LiDAR sensor emitting horizontal W pulsed lasers
for H elevation angles measures a distance d for each an-
gular position. Then all the distance values can be assigned
to a H ×W angular grid by spherical projection, where the
resultant representation is called a range image. Each pixel
has a set of sensor-dependent azimuth and elevation angles
Φ = (θ, ϕ) and the corresponding distance d. Therefore, an
arbitrary LiDAR scene {(px, py, pz)} can be seen as a set of
spherical coordinates {(θ, ϕ, d)} projected on the 2D grid.
Scenes as a function. The core idea of this paper is to rep-
resent the 3D scene by a function F mapping the spheri-
cal angular set to the distance: d = F (Φ). If the scene
can be represented in the continuous function space F , we
can reconstruct the scene with arbitrary resolution queries.
Furthermore, it is possible to express multiple scenes by in-
troducing parameters z that condition the function F . To
this end, we aim to build the function d = F (Φ, z) as a
deep generative model where the scene is instantiated by
the sensor-agnostic scene prior z and queried by the sensor-
specific angular set Φ to generate the LiDAR range images.

https://github.com/kazuto1011/dusty-gan-v2
https://github.com/kazuto1011/dusty-gan-v2
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Figure 3. Comparison of the baseline GANs and ours. The vanilla GAN [7] consists of the generator G and the discriminator D and
directly learns the distribution of raw range images xR. DUSty generator [30] disentangles the generator space as the range xd and
measurability xn (ray-drop probability) with the self-conditioned measurement model M . Our generator further introduces implicit neural
representation [41] so that the spatial resolution is not fixed by the generator but controlled by the external query Φ.

3.2. Generative range imaging

Generative adversarial networks. To introduce the latent
variable z that controls the scene, we build the function F
as a generative model. We employ a generative adversarial
network (GAN) [12], similar to prior work [30, 7]. A GAN
typically consists of two networks: a generator G and a dis-
criminator D. In image synthesis tasks, G maps a latent
variable z ∼ N(0, I) to an image xG = G(z), whereas D
tells the generated image xG from sampled real images xR.
The networks are trained in an alternating fashion by min-
imizing the adversarial objective, e.g., the following non-
saturating loss [12]:

LD = −Ex[logD(xR)]− Ez[log(1−D(G(z)))], (1)
LG = −Ez[logD(G(z))]. (2)

In this paper, the generator G is equivalent to the afore-
mentioned function F and the structure of xG is represented
by scene condition z and given coordinates Φ. Our GAN
builds upon INR-GAN [41], which was demonstrated on
natural images. INR-GAN first transforms the latent vari-
able z to disentangled style space w by MLPs and modu-
lates the network weights to synthesize images.
Lossy measurement model. LiDAR range images in-
volve many missing points caused by ray-dropping. In the
aspect of training GANs, the missing points prevent sta-
bility and fidelity of depth surfaces. To address this is-
sue, we combine our model with the ray-dropping formu-
lation proposed in DUSty [30]. They assumes the ray-
dropping phenomenon is stochastic and uses Bernoulli sam-
pling with self-conditioned probability. As outputs from the
generator G, DUSty first assumes a complete range image
xd ∈ RH×W and the corresponding ray-drop probability
map xn ∈ RH×W . Then, the final LiDAR measurement
xG is sampled from the complete xd according to a lossy
measurement mask m ∼ Bernoulli (xn). Since the sam-
pling m is non-differentiable, m is reparameterized with the
straight-through Gumbel-Sigmoid distribution [16] to esti-
mate the gradients. Note that the generator spaces xd and
xn do not have to be discrete distribution, while xG can pro-
duce discrete noises caused by ray-dropping. As in DUSty,
we convert each distance value xd into the inverse depth for
further stable training. In Fig. 3, we compare the vanilla
GAN [7], DUSty [30], and our proposed model.

Positional encoding for circular grid. In the fields of im-
plicit neural representation [41, 2], positional encoding is an
indispensable technique to represent high-frequency details
of output images, which transforms coordinates points to
high-dimensional feature space. In particular, Fourier fea-
tures [43] are the most popular encoding scheme in the im-
age domain where the coordinate Φ = (θ, ϕ) is transformed
by the following sinusoidal function:

PE(θ, ϕ) = sin([bθ, bϕ][θ, ϕ]
⊤), (3)

where bθ ∈ RD and bϕ ∈ RD are weight vectors which
control frequencies in encoded space, and θ, ϕ ∈ [−π, π]
are angular values determined by LiDARs. In natural image
applications, the weights can be set by various formula such
as a power of two [28], Gaussian samples [43], and learn-
able parameters [2, 41]. In our case, the weights should be
carefully initialized so that the encoding preserves the cylin-
drical structure of the angular input. First, we set the limit
value of output frequencies both for azimuth and elevation
inputs. We then uniformly sample bϕ within the determined
limit and sample bθ from a set of power of two.
Subgrid training. The sampled frequencies in positional
encoding are sparse in the horizontal direction. If the sub-
sequent blocks are overfitted with a small number of fixed
sampling points, post-hoc changes or upsampling in the an-
gular input may result in unexpected aliasing at interme-
diate layers. This is not compatible with our purpose to
control the generation format according to the sensor spec-
ification. To this end, we augment the angular inputs by a
random phase shift horizontally during training and trans-
late the output images in inverse direction for the number of
corresponding pixels.

3.3. Domain-agnostic inference

This section describes a method to reconstruct and com-
pensate for the arbitrary LiDAR measurement using GAN
inversion [49]. The GAN inversion is an inference task to
find the latent representation of the given data. The stan-
dard approaches for GAN inversion have two camps: auto-
decoding [37, 21] which optimizes the latent codes to match
the data, and training additional encoders [33] to estimate
the latent code directly. In this paper, we employ Pivotal
Tuning Inversion (PTI) [37], one of the latest auto-decoding
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Figure 4. Overview of our inference method based on PTI [37].
Step 1 optimizes the latent code w and step 2 fine-tunes weights Ω
of the generator G. The by-product xn can be used for Sim2Real
applications.

approaches. This section briefly introduce its steps along
with our designed optimization objective. Fig. 4 shows the
overview of our method.
Step 1: GAN inversion. As the latent representation, we
use the aforementioned style code w instead of z. Let x̂ and
m̂ are a target depth map and the corresponding ray-drop
mask. We first define the following objective to assess the
depth error:

Lrec =
∥m̂⊙ (1− xd(w,Φ;Ω)/x̂)∥1

∥m̂∥1
, (4)

where xd(w,Φ;Ω) is a generated depth map conditioned by
the latent code w, resolution query Φ, and generator weights
Ω. The objective Lrec measures the relative absolute error
normalized by the valid points in m̂. In this step, we com-
pute the matching code by ŵ = argminw Lrec.
Step 2: pivotal tuning. With the optimized ŵ, we can
generate a range image xG similar to the target x̂. This
step further minimize the minor appearance difference by
fine-tuning the generator weights Ω while freezing the pre-
optimized code ŵ to pivot on the fundamental structure.
We minimize the same objective with respect to Ω: Ω̂ =
argminΩ Lrec.

Since our masked objective Lrec relies on only measur-
able points, we can also apply the inference to restore par-
tially observed images. Moreover, we can obtain the by-
product xn by reconstructing simulation data as x̂, which
can be used to simulate the ray-drop noises.

4. Evaluation

4.1. Generation fidelity and diversity

Following the related studies on generative models, we
first evaluate fidelity and diversity of generated samples.
Dataset. We use the KITTI Raw dataset [11] since the
other popular releases such as KITTI Odometry [11] in-
clude missing artifacts by ego-motion correction [45]. The
dataset provides 22 trajectories of scans measured by the
Velodyne HDL-64E LiDAR, where each scan has 64 layers
vertically. For future derivative work, we use standard splits

defined by KITTI Odometry [11]1. The provided data are
sequences of Cartesian coordinate points ordered by angles.
We first chunk the ordered sequence into 64 sub-sequences,
where each represents one elevation angle. We then sub-
sample 512 points for each sub-sequence and stack them to
form a 64× 512 range image.
Baselines. We compare our model with two popular base-
lines of point-based generative models: r-GAN [1] and l-
WGAN [1]. r-GAN is a kind of GANs based on point
set representation, which consists of an MLP generator
and a PointNet [34] discriminator. l-WGAN first learns a
PointNet-MLP autoencoder and then performs adversarial
training with the additional MLPs to generate the bottle-
neck feature. We train l-WGAN autoencoder by measuring
the earth mover’s distance (EMD) between input and re-
construted point clouds. The size of LiDAR point clouds
is much larger than the typical benchmark for point-based
methods and the EMD distance calculation takes extremely
high computational cost both in training and evaluation. For
efficiency and fareness, we first downsample the LiDAR
point clouds to the conventional number of points 2048 by
farthest point sampling (FPS). We also compare with two
types of image-based generative models: a vanilla GAN [7]
and DUSty [30]. The vanilla GAN and DUSty share the
backbone design based on 4 × 4 transposed convolution,
while DUSty is adopted the ray-drop measurement model
explained in Section 3.2. Those models cannot change the
output resolution from the training configuration.
Point-based metrics. Following the related work on the
point-based generative models [1, 51, 30], we measured
four types of distributional similarities between the sets of
reference and generated point clouds, defined by Yang et
al. [51]: Jensen–Shannon divergence (JSD) for fidelity,
coverage (COV) for diversity, minimum matching distance
(MMD) for fidelity, and 1-nearest neighbor accuracy (1-
NNA) for both fidelity and diversity evaluation. To compute
the distance between point clouds for COV, MMD, and 1-
NNA, we used EMD.
Image-based metrics. Additionally, we computed the
sliced Wasserstein distance (SWD) [18] to measure the
patch-based image similarity for evaluating quality of the
inverse depth maps. SWD is computed based on 7 × 7
patches extracted from three level of image pyramids. For
all metrics, we report the mean scores over three runs with
different seeds.
Feature-based metrics. Existing evaluation metrics [51]
for synthesized point clouds is impracticable for large num-
ber of points due to the limited scalability of sample-to-
sample distance computation such as EMD. Nakashima et

1We use 18,329 scans for training (sequence 3 is not available), 4,071
scans for validation from “city”, “road”, and “residential” categories. We
define a test set by the remaining 18,755 scans since the correspondence is
not publicly available.
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Figure 5. Sanity checks of the Fréchet distance (FPD [40]) and
the squared MMD [4] on feature representation of LiDAR point
clouds. We applied additive Gaussian noises with a coefficient λ to
the KITTI point clouds (see A–E) and computed the metrics with
the clean original point clouds. All point clouds were encoded by
PointNet [34] with pre-trained or random weights.

al. [30] addressed the issue on LiDAR point clouds by sub-
sampling real and generated point clouds in evaluation. As
an alternative metrics, Shu et al. [40] proposed Fréchet
point cloud distance (FPD) as an analogy of FID [14]
which is the de facto standard metrics in the image do-
main. FPD first maps an arbitrary number of points to a
low-dimensional feature space by PointNet pre-trained on
ShapeNet [8], then measures the Fréchet distance between
the real and generated data distributions in the feature space.
Unlike the aforementioned point cloud metrics, even large-
scale point clouds such as LiDAR data can be calculated
without downsampling. Following that Heusel et al. [14]
evaluated the sensitivity of FID under various image dis-
turbances, we first confirm the validity of the off-the-shelf
PointNet on LiDAR point clouds. We apply additive Gaus-
sian noises with a coefficient λ to the KITTI training set
and compute FPD against the clean original training set.
On PointNet features, we also compute squared maximum
mean discrepancy (squared MMD) [4] which is also used in
the image domain as KID. Fig. 5 shows that as the strength
of the perturbation increases, both metrics reflect the dis-
similarity. The further results under various disturbance ef-
fects are provided in our supplementary material.
Quantitative comparison. Table 1 reports FPD and
squared MMD. We can see that our method outperformed
both the point-based and image-based baselines with large
margins. Table 2 reports SWD for image-based meth-
ods. Our method showed the best performance even in this
2D level assessment. Finally, Table 3 reports JSD, COV,
MMD, and 1-NNA. Except for JSD and MMD, the pro-
posed method showed the highest score. As for l-WGAN
showing the best in MMD, we believe this is due to the fact
that it optimizes EMD directly in training of the autoen-
coder. We provide a generated samples of all methods in
the supplementary materials.

Table 1. Quantitative comparison by distributional similarity of
PointNet features: FPD and MMD2.

2048 points 64× 512 (full)

Method FPD ↓ MMD2 ↓ FPD ↓ MMD2 ↓

r-GAN [1] 787.45 45.02 – –
l-WGAN [1] 129.35 10.65 – –

Vanilla GAN [7] 3629.36 671.14 3648.68 675.24
DUSty [30] 232.90 39.62 241.32 42.66
Ours 96.11 3.66 93.85 3.84

Table 2. Quantitative comparison by distributional similarity of in-
verse depth maps: sliced Wasserstein distance (SWD ↓).

Method 16× 128 32× 256 64× 512 Mean

Vanilla GAN [7] 0.397 0.371 0.746 0.505
DUSty [30] 0.353 0.353 0.768 0.491
Ours 0.378 0.278 0.611 0.422

Training set 0.257 0.207 0.765 0.410

Table 3. Quantitative comparison by distributional similarity of
point clouds: JSD×102, COV, MMD×102, and 1-NNA.

Method JSD ↓ COV ↑ MMD ↓ 1-NNA ↓

r-GAN [1] 21.73 0.013 17.51 1.000
l-WGAN [1] 4.91 0.324 8.62 0.896

Vanilla GAN [7] 10.31 0.290 12.34 0.986
DUSty [30] 3.00 0.375 9.41 0.898
Ours 3.04 0.388 9.12 0.892

Training set 2.80 0.362 0.765 0.890

Target x̂ 1× 2× 4×

Figure 6. LiDAR data upsampling. From left to right, the target
range image x̂ and our reconstruction results xd in 1×, 2×, and
4× resolutions. The bottom row shows bird’s-eye views of the
corresponding point clouds.

Original 8 out of 64 lines 10% points

Figure 7. LiDAR data restoration. From top to bottom, the target
range images x̂, our reconstruction results xd, and the ones with
rendered ray-drops xG.

Applications. Figs. 6 and 7 show upsampling and restora-
tion results, respectively. Both are obtained by our auto-
decoding method introduced in Section 3.3. From the rea-
sonable results, we consider our model successfully learned
the scene priors of LiDAR range images.



Table 4. Quantitative comparison of Sim2Real semantic segmentation results. We train SqueezeSegV2 [48] on GTA-LIDAR [48] (simula-
tion domain) and then evaluate precision (%, ↑), recall (%, ↑), and IoU (%, ↑) on KITTI-frontal [48] (real domain).

■ Car ■ Pedestrian

Config Training domain + Ray-drop prior Precision Recall IoU Precision Recall IoU mIoU

A Simulation 54.2 1.1 1.1 27.7 2.5 2.4 1.7
B Simulation + Global frequency 66.2 77.0 55.2 29.9 61.0 25.1 40.2
C Simulation + Pixel-wise frequency [48] 72.9 75.5 59.0 26.1 62.0 22.5 40.7
D Simulation + Auto-decoding w/ DUSty [30] 72.0 76.8 59.1 34.5 59.6 28.0 43.5
E Simulation + Auto-decoding w/ ours 74.8 87.0 67.3 28.8 67.1 25.2 46.3

F Real 78.7 86.5 70.1 66.5 18.0 16.5 43.3

Input depth Ground truth Config-A Config-C [48] Config-E (ours)

0m 20m 40m 60m 80m Background Car Pedestrian

Figure 8. Qualitative comparison of Sim2Real semantic segmentation results. We can see that ours (config E) reduced the false negative
on the car regions, as supported by the recall improvement in Table 4.

4.2. Sim2Real semantic segmentation

Model-based LiDAR simulators [47, 10] can produce
a large amount of annotated training data, while there is
an appearance gap against the real domain since the ray-
drop noises are ignored or approximated. Some studies ad-
dress the issue by leveraging the ray-drop frequency [47]
or learning inference networks [53, 27]. As addressed in
Section 3.3, our auto-decoding process can also generate a
ray-drop probability map xn by reconstructing valid points
in a given range image x̂. This motivates us to reproduce
the pseudo ray-drop noises on the simulated range images.
In this sections, we demonstrate the effectiveness of our
method on the Sim2Real semantic segmentation.
Datasets. We follow the experiment protocol by Wu et
al. [48] where a segmentation model is trained on the GTA-
LiDAR dataset [48] and evaluated on the 90◦ frontal sub-
set [48] of the KITTI dataset [11], hereinafter called KITTI-
frontal. GTA-LiDAR is composed of 120k in-game LiDAR
range images annotated with pixel-wise labels for car and
pedestrian classes. KITTI-frontal is composed of 10k real
range images subsampled from KITTI, which is also an-
notated for the same classes. KITTI-frontal contains 8,057
images for training and 2,791 images for testing.
Our approach. Before training the segmentation model,
we perform the auto-decoding on each sample of GTA-
LiDAR and obtain the corresponding ray-drop probability
map xn. At training phase, we sample Bernoulli noises
from xn and render the ray-drop noises on the fly.

Baselines. Our experiments are composed of two parts.
The first experiment compares five approaches with differ-
ent ray-drop priors, as listed in Table 4. Config-A is a base-
line without rendering ray-drop noises. In config-B, we
sample Bernoulli noises from global frequency computed
from all pixels in KITTI-frontal. Config-C is the approach
used by Wu et al. [48], where the noises are sampled from
pixel-wise frequency of KITTI-frontal. Finally, config-D
and config-E are the GAN-based auto-decoding approach.
Config-D uses DUSty [30], while config-E uses our pro-
posed GAN. Both models are pretrained on KITTI in Sec-
tion 4.1. For comparison, we also provide the oracle re-
sults trained on KITTI-frontal (config-F). We use Squeeze-
SegV2 [48] for the architecture of semantic segmentation.
To demonstrate the exclusive effect of noise rendering, we
do not use any other adaptation techniques used in Squeeze-
SegV2, such as learned intensity rendering, geodesic corre-
lation alignment, and progressive domain calibration. In the
second experiment, we compare our model (config-E) with
state-of-the-art domain adaptation methods: DAN [25],
CORAL [42], HoMM [9], ADDA [46], CyCADA [15], and
ePointDA [53]. ePointDA is a CycleGAN-based method
and closely related to us in that simulating ray-drop noises
on range images.

Results. Table 4 reports intersection-over-union (IoU) for
each class and the mean score (mIoU). Fig. 8 provides vi-
sual comparison of config-A without noises, config-C [48],
and our config-E. Although SqueezeSegV2 is already de-



Table 5. Sim2Real performance in comparison with state-of-the-art domain adaptation (DA) methods. Following the prior work, we report
precision (%, ↑), recall (%, ↑), and IoU (%, ↑) for each class. The scores of DAN [25], CORAL [42], HoMM [9], ADDA [46], and
CyCADA [15] are from the report by Zhao et al. [53].

DA† Input modality‡ ■ Car ■ Pedestrian

Method D F C R I M Precision Recall IoU Precision Recall IoU mIoU

SqueezeSegV2 [48]§ ✓ ✓ ✓ ✓ ✓ ✓ – – 57.4 – – 23.5 40.5
DAN [25] ✓ ✓ 56.3 76.4 47.8 20.8 68.9 19.0 33.4
CORAL [42] ✓ ✓ 56.5 82.1 50.2 26.0 50.3 20.7 35.5
HoMM [9] ✓ ✓ 59.4 85.2 53.9 26.2 66.8 23.2 38.6
ADDA [46] ✓ ✓ 56.7 83.5 50.7 24.7 58.5 21.0 35.9
CyCADA [15] ✓ ✓ ✓ 40.9 72.1 35.3 17.8 52.4 15.3 25.3
ePointDA [53]§ ✓ ✓ ✓ 73.4 81.9 63.4 29.4 56.0 23.9 43.7
ePointDA [53] ✓ ✓ ✓ 75.2 84.7 66.2 28.7 65.2 24.8 45.5
Ours (config-E)§ ✓ ✓ ✓ 74.8 87.0 67.3 28.8 67.1 25.2 46.3

† Category of domain adaptation (DA): D: data-level DA and/or F: feature-level DA.
‡ C: the Cartesian coordinates, R: depth, I: estimated intensity [48], M: a binary mask indicating either measured or missing points.
§ The same model architecture (SqueezeSegV2 [48]), but the different DA approach and input modality.

Target x̂ xG Target x̂ xG

x̂

xd

xG

KITTI-frontal GTA-LiDAR
(real domain) (simulation domain)

Figure 9. Auto-decoding examples by our method. We show the
targets x̂, the intermediate outputs xd, and the final outputs xG.

signed to reduce the ray-drop sensitivity, the performance
is extremely low without noise rendering (config-A). Sur-
prisingly, even simple rendering with the global frequency
(config-B) boosted all the metrics and its spatial extension
by config-C [47] brought subtle improvement. GAN-based
approaches (config-D and config-E) further improved the
results. In particular, our model (config-E) showed the best
mIoU and surpassed the results on real domain (config-F).
Fig. 9 shows the auto-decoded examples and Fig. 10 com-
pares rendered noises. We can see that our method success-
fully simulated instance-level ray-drops such as on the car
body and ego-vehicle shadows. In contrast, the results by
the global frequency and the pixel-wise frequency are ap-
proximated. Finally, Table 5 compares our results (config-
E) with state-of-the-art domain adaptation methods. De-
spite not applying any domain adaptation techniques other
than rendering noises, our model showed the best IoUs.

5. Conclusion
In this paper, we introduced a novel approach for learn-

ing data priors of 3D LiDAR data towards domain adap-
tation applications. Our key idea is to represent LiDAR

A: Simulated range image [48]

■ Car / ■ pedestrian labels

B: Global frequency

C: Pixel-wise frequency [47]

D: Auto-decoding w/ DUSty [30]

E: Auto-decoding w/ ours

0m 20m 40m 60m 80m

Figure 10. Qualitative comparison of noise rendering methods on
GTA-LiDAR [48].

range images by a coordinate-based generative model and
to learn clean data space through a pseudo-measurement
model. We designed our model based on state-of-the-art
GANs and demonstrated its effectiveness in the LiDAR do-
main. First, we evaluated the generation fidelity and diver-
sity of sampled data. Our model showed superior results
against the image-based and point-based baselines. We also
conducted a Sim2Real semantic segmentation using our
learned ray-drop priors. Our instance-level noise simulation
brought significant improvement qualitatively and quantita-
tively and outperformed state-of-the-art methods. The re-
sults revealed that rendering ray-drop noises is important
to mitigate a gap between the real and simulation domains.
We consider our sensor-agnostic scene representation has
the potential for cross-dataset tasks. Future work includes
domain adaptation between different LiDARs and mixing
accessible datasets for further training.
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Jose M. Álvarez. Invertible conditional gans for image edit-
ing. In Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS) workshop, 2016.

[34] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
PointNet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[35] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
Net++: Deep hierarchical feature learning on point sets in a
metric space. In Proceedings of the Advances in Neural In-
formation Processing Systems (NeurIPS), volume 30, 2017.

[36] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[37] Daniel Roich, Ron Mokady, Amit H. Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. ACM Transactions on Graphics (TOG), 42(1), 2022.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI), pages 234–241, 2015.

[39] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. GRAF: Generative radiance fields for 3d-aware im-
age synthesis. In Proceedings of the Advances in Neural In-
formation Processing Systems (NeurIPS), volume 33, pages
20154–20166, 2020.

[40] Dong Wook Shu, Sung Woo Park, and Junseok Kwon.
3d point cloud generative adversarial network based on
tree structured graph convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

[41] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elho-
seiny. Adversarial generation of continuous images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10753–10764, 2021.

[42] Baochen Sun and Kate Saenko. Deep CORAL: Correlation
alignment for deep domain adaptation. In Proceedings of the
European Conference on Computer Vision (ECCV) Work-
shops, pages 443–450, 2016.

[43] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. In Proceedings of the Advances in Neu-
ral Information Processing Systems (NeurIPS), volume 33,
pages 7537–7547, 2020.

[44] Larissa T Triess, Mariella Dreissig, Christoph B Rist, and
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Supplementary Material
A. Overview

This supplementary material summarizes implementa-
tion details of our model architectures and experiments in
Section B, detailed analysis of evaluation metrics in Sec-
tion C, generated examples of our method and baselines in
Section D, and Sim2Real semantic segmentation results in
Section E.

B. Implementation details
B.1. Models

Fig. 11 shows an overview of our proposed GAN frame-
work. We design the generator network based on INR-
GAN [41], which was proposed to generate natural images
in coordinate-based representation.
Generator. The generator is composed of a mapping net-
work and synthesis blocks as shown in Fig. 11a. The map-
ping network transforms the latent space z ∼ N(0, I)
into another representation, style space w, which modu-
lates the weights of the synthesis blocks Ω. The synthesis
blocks represent the function which returns inverse depth
xd and ray-drop probability xn given the specific angles
Φ = (θ, ϕ). The outputs xd and xn are then converted
to the final LiDAR image xG through the lossy measure-
ment model. Each synthesis block encodes the angular in-
puts to high-dimensional space to represent spatial bias us-
ing Fourier features [43]. Note that all operations in synthe-
sis blocks are pixel-independent while the set of angles Φ is
dowmsampled hierarchically to perform with a reasonable
computational cost as proposed in INR-GAN.
Discriminator. For the discriminator in Fig. 11c, we use the
same setup of DUSty [30] while replace the backbone with
StyleGAN2 [21]. We applied the separable blur filter [17]
to the discriminator inputs and modify all the kernels with
circular padding.

B.2. Training

We employed the adaptive discriminator augmentation
(ADA) [19] for all the image-based methods: vanilla GAN,
DUSty, and ours. The augmentation basically followed
the original pipeline by Karras et al. [19], but disabled the
steps of rotation and horizontal scaling that break the cir-
cular structure of range images. We also modified the inte-
ger/fractional translation into circulating behavior. We be-
lieve that it is required to explore the optimal augmentation
set for LiDAR range images, while the tuning remains for
future work.

As the adversarial objective, we employed the non-
saturating loss with a gradient penalty [21]. The penalty
coefficient was set to 1. All parameters were updated by

Adam optimizer for 25M iterations with a learning rate of
0.002 and a batch size of 48. Training were performed on
three NVIDIA RTX 3090 GPUs.

B.3. Computational cost of EMD

Earth mover’s distance (EMD) is one of the metrics mea-
suring the error between point clouds. Compared to the
other metrics such as chamfer distance, EMD reflects the
local details and the density distribution and is popular for
the assessment of point clouds. However, it is known that
computing EMD has an o(N3) complexity where N is the
number of points in 3D point clouds [32]. This is problem-
atic for our case using LiDAR point clouds, for instance, in
training point-based models such as l-WGAN [1] and com-
puting the standard evaluation metrics such as COV, MMD,
and 1-NNA [51]. In Fig. 12, we compute a pairwise dis-
tance of M = 10, 000 sets of N points, where N ranges
from 29 to 213 with a batch size of 256, and show the com-
putation time as a function of the number of points. Similar
to Nakashima et al. [30], we reduce the number of points to
conventional 2048 by farthest point sampling in conducting
experiments with point-based methods and evaluating the
point-based metrics.

B.4. Inference

For the inference application, we use the style code w
instead of the latent code z to gain reconstruction fidelity as
demonstrated in the related studies [21, 41, 2, 19, 37]. We
optimize the style code w for 500 iterations in the first step
(GAN inversion) and then optimize the generator weights
Ω for another 500 iterations for the second step (pivotal
tuning). We empirically set the learning rate for 0.05 and
0.0005 for the first and second steps, respectively.

C. Sanity check of evaluation metrics

For evaluating GANs, we used two types of distribu-
tional metrics on the PointNet representation: Fréchet dis-
tance [40] (named FPD for point clouds), squared maxi-
mum mean discrepancy (squared MMD) [4]. This section
aims to verify if the metrics can be used for evaluating Li-
DAR point clouds, since the metrics have been designed
for other domains. For instance, FPD [40] has been pro-
posed for evaluating ShepeNet [8] generation task where
each sample forms small-scale point clouds uniformly sam-
pled from CAD objects. Squared MMD [4] was used to ex-
tend Fréchet Inception distance (FID) [14] that is the stan-
dard metrics for an image generation task. In the image
domain, the metrics are known as Kernel Inception dis-
tance (KID) in tribute to the Inception feature extractor. For
the backbone of the feature extractor, we used the off-the-
shelf PointNet [34] provided by Shu et al. [40]. The Point-



Inverse depth Probability

Discriminator
(StyleGAN2)

Real data

Separable blur

Augment (ADA)

GAN loss

A
ll 

k
e

rn
e

ls
 a

re
 c

ir
c
u

la
te

d
 

h
o

ri
z
o

n
ta

lly

Lossy measurement model
(DUSty)

Synthetic data

Mod Linear

Leaky ReLU

Mod Linear

Leaky ReLUMod Linear

Mod Linear

Block (N+1)

Block (N-1)
Block N

Up 2x

ConcatenateFourier PE

!
Modulating weights

Multimodal outputs

Block 1

Block 2

Block 3

Block 4

Down 2x

Down 2x

Down 2x

Up 2x

Up 2x

Up 2x

Block 0

Down 2x Up 2x

Linear

Leaky ReLU

Normalize

Linear

Latent vector
"~$ 0, '

Leaky ReLU

M
a

p
p

in
g

 n
e

tw
o

rk

Style vector !

Scan angles (, ) Inv. depth *! Probability *"

*!
#, *"

#

Input OutputInput

Generator outputs

($ , )$

*!
$

*"
$

Synthesis blocks

(a) An overview of our generator (b) A detail of synthesis block (c) Discriminator
Figure 11. Building blocks of our proposed GAN framework.
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Figure 12. EMD computation time as a function of the number
of points. The conventional number of point cloud tasks is 2048
(dotted line), while our task uses 64×512 = 32, 768 points in full
setting.

Net backbone2 is pre-trained on the ShapeNet dataset and
used by the original FPD [40]. To verify if the score is de-
rived from learned features or architecture bias, we compute
the metrics using two PointNet encoders with pre-trained
weights and random weights. All metrics are computed be-
tween clean and disturbed sets of KITTI point clouds. In
Fig. 13, we provide the results under six types of distur-
bances; (a) additive Gaussian noises, (b) drop-in Gaussian
noises, (c) inflating coordinates, (d) yaw rotation, and (e,f)
translation in x/y directions. From the results, we can see
that both metrics reflect the distributional error if using the
pre-trained PointNet. We can also see that the metrics sensi-
tive to the translation changes in Fig. 13c–f. Although there
are scale gaps depending on the type of disturbance, the re-
sults are roughly similar to the sanity check of FID [14].
Therefore, we concluded that the two metrics can be used

2https://github.com/seowok/TreeGAN

to evaluate the generative models on LiDAR point clouds.

D. Generated examples
In Fig. 14, we provide uncurated sets of real and gen-

erated samples from image-based methods including ours.
Fig. 15 compares the results between ours and the most
closely related work, DUSty [30]. A close-up comparison
shows that baseline methods include checkerboard artifacts
and our method succeeded in expressing the smooth road
surface. In Fig. 16, we provide uncurated sets of real and
generated samples from point-based methods and ours. Our
method is superior in point density distribution and edges.
In Fig. 17, we show reconstruction examples by our auto-
decoding method. From the real data via the lossy mea-
surement, our model produced the smooth shapes and the
reasonable ray-drop probability maps. For instance, the ray-
drop probabilities have uncertainty on the object edges.

E. Sim2Real semantic segmentation
In Fig. 18, we show Sim2Real segmentation results on

KITTI-frontal [48]. All models are trained on GTA-LiDAR
while the ray-drop priors are different. We can see that our
method (config-E) greatly improved the false negative re-
gions of car classes.

https://github.com/seowok/TreeGAN
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(a) Additive Gaussian noises with a coefficient λ (b) Drop-in Gaussian noises for λ× 100 (%) of points
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(c) Inflating coordinates with a multiplicative factor λ (d) Clockwise yaw rotation with an angle λ (◦)

A B C D E

0.00 0.05 0.10 0.15 0.20
Disturbance factor 

0

200

400

600

800

A B
C

D

E
Fréchet distance (FPD)
Pretrained
Random

0.00 0.05 0.10 0.15 0.20
Disturbance factor 

0

50

100

150

A B
C

D

E
Squared MMD

Pretrained
Random

A B C D E

0.00 0.05 0.10 0.15 0.20
Disturbance factor 

0

500

1000

A B
C

D

E
Fréchet distance (FPD)

Pretrained
Random

0.00 0.05 0.10 0.15 0.20
Disturbance factor 

0

50

100

150

A B
C

D

E
Squared MMD

Pretrained
Random

(e) Translation in x direction by λ (f) Translation in y direction by λ
Figure 13. Disturbance sensitivity of four metrics: FPD [40] (Fréchet distance for point clouds) and squared maximum mean discrepancy
(squared MMD) [4]. We applied six types of disturbances to the KITTI point clouds with various strength (see A–E) and computed the
metrics with the clean original point clouds. All point clouds were encoded by PointNet [34] with pre-trained or random weights.
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Figure 14. Qualitative comparison of uncurated sets of generated samples in the image format (top) and the corresponding surface normal
maps (bottom). The surface normal maps are computed from projected Cartesian points.
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Figure 15. Qualitative comparison between DUSty [30] and ours. From top to bottom: generated point clouds, the final inverse depth maps
xG, the complete depth maps xd, and the ray-drop probability maps xn.

r-G
AN

l-W
G
AN

O
ur
s

Re
al

Figure 16. Qualitative comparison in bird’s eye views of real and generated point clouds.



Figure 17. Reconstruction examples by our auto-decoding method. For each group, from top to bottom, we show the target range image x̂
from KITTI [11], the generated inverse depth map xd, the generated ray-drop probability map xn, and the final output xG.
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Figure 18. Comparison of Sim2Real segmentation results in 2D range images. We compare three types of ray-drop priors from our
main paper. Config-A: GTA-LiDAR without ray-drop rendering. Config-C: GTA-LiDAR with Bernoulli noises from the pixel-wise
frequency [47]. Config-E (ours): GTA-LiDAR with Bernoulli noises from our auto-decoded ray-drop probability.


