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Abstract: Downtime, poor surface quality, excessive noise, dimension inaccuracy, and 
disproportionate tool wear are all negative effects of the regenerative chatter phenomena. On 
obtained audio signals generated during machining of Al-6061-T6, empirical mode decomposition 
(EMD) and local mean decomposition (LMD) techniques are performed, followed by rapid Fourier 
transform (FFT). In order to detect and evaluate chatter in its early stages, these decomposed signals 
are examined to extract tool chatter traits by analysing different statistical indicators such as kurtosis, 
absolute mean amplitude, impulse index, root mean square value, and so on. The Nakagami 
probability distribution is used to determine statistical indicator threshold limits. According to the 
results of the investigation, LMD is a more efficient technique than EMD. 

 
Keywords: Nakagami distribution; tool chatter; EMD; LMD; statistical parameters; non-

stationary signal processing. 
 

1.  INTRODUCTION 

Inhomogeneity of the workpiece causes regenerative 
chatter, resulting in an uneven cut surface 1). With each 
passing turning pass, the uneven waviness of the surface 
becomes more pronounced 2,3). When a tool goes from one 
profile to another during successive turning passes, it 
experiences a sudden jerk, causing tool vibration, which 
is commonly referred to as tool chatter 4). Figure 1 depicts 
a symmetric rendition of the wavy profile. The original 
surface of the workpiece before cutting is shown in Fig 1. 
During chatter initiation, the intermediate surface 
represents the workpiece's surface. The wavy surface 
formed by self-excited vibration is represented by the final 
surface. 

Fig. 1 Schematic representation of wavy profile 
 
Poor surface quality, high tool wear, and a reduced 

production rate are all consequences of regenerative 
chatter 5,6). As a result, it is critical for researchers to 

diagnose and reduce chatter in order to mitigate its 
negative impacts 7,8). Many studies have used in-process 
monitoring approaches, but others have favoured in-cycle 
monitoring techniques 9,10). 

In-process monitoring has various advantages over the 
other two systems since it may provide information and 
details at any point during the machining process 11,12,13). 
The contact type of monitoring and the non-contact type 
of monitoring are the two basic types of in-process 
monitoring 14,15). Researchers also discovered that 
captured raw chatter signals contain ambient noise, 
making it difficult to determine the exact nature of talk. To 
filter out these contaminations before the diagnosing tool 
chatters, a suitable signal processing mechanism must be 
implemented 16). The sensor and signal types gathered 
determine which filtering signal processing approach to 
use. Researchers have developed numerous signal 
processing algorithms for processing chatter signals in the 
previous decade, such as wavelet transform, empirical 
mode decomposition, and Hilbert transform 18,19). They 
discovered that while the EMD technique is quite effective 
in locating the chatter band, it is prone to modal aliasing, 
which occurs when an IMF comprises distinct time scales, 
or comparable time scales scattered across different IMFs 
20). As a result, identifying the specific buzz band is 
challenging. Furthermore, applying the Hilbert transform 
to the EMD decomposition results in in negative 
instantaneous frequency and serious end effect occurrence. 
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Smith's local mean decomposition technique was used to 
solve this problem to a considerable extent 21). LMD 
lowers the decomposition's end consequences and 
prevents the over-enveloping issue. LMD is a time–
frequency analysis approach that is more moderate than 
EMD 22,23). Its product functions include more frequencies, 
and the envelope data provides a significant quantity of 
chatter data. EMD and LMD techniques were used to 
process the audio chatter signals that were collected 24,25,26). 

The statistical indicators were then analysed for both 
notable IMFs and PFs in the next stage. These statistical 
indicators were also examined for recognising chatter 
features and the suitability of the EMD and LMD 
techniques for processing chatter signals. Furthermore, 
the acquired results were confirmed using a theoretical 
stability lobe diagram and were also used to determine the 
commencement of chatter. Based on the findings, it can be 
concluded that the LMD is superior to the EMD. 

 
2.  PROPOSED METHODOLOGY 

The process has been divided into four parts for easier 
understanding, as illustrated in Fig. 2. Machine, tool-
workpiece, and machining settings were all chosen in the 
initial stage. The microphone was used in the second stage 
to collect conversation signals. The recorded chatter 
signals were preprocessed using EMD and LMD, 
followed by the Fourier transform of IMFs and PFs, 
respectively, in the third stage to identify the mode largely 
responsible for chatter. Following that, statistical 
indicators for both important IMFs and PFs were analysed 
in the next stage. These statistical variables were also 
examined for chatter features and the   suitability of 
EMD and LMD for processing chatter signals. A 
theoretical stability lobe diagram is also used to verify the 
results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Outlay of the proposed methodology 

2.1  EXPERIMENTATION DETAILS 
Turning trials were carried out on the MTAB XL-

TURN CNC lathe in this study. Al-6061-T6 was chosen 
as the work material. A carbide insert TTS04 is used for 
the turning process. Figure 3 depicts the machining 
conditions used, as well as the input settings and 
microphone specifications. 

Fig. 2: Machining condition, input settings and microphone 
specifications 

 
2.2  THEORETICAL ANALYSIS 
2.2.1 Processing of acquired signals using Empirical 

mode decomposition (EMD) 
Ambient noise is contained in raw chatter signals, 

making it difficult to determine the true nature of chatter. 
Before the diagnosis tool chatter, the empirical mode 
decomposition (EMD) signal processing approach filters 
out these contaminations. Huang invented the EMD 
technique10. It took the chatter signals and decomposed 
them into intrinsic mode functions (IMFs). The algorithm 
of EMD has been described in Fig. 411. Simple oscillatory 
functions with variable amplitude and frequency are 
known as IMFs. These IMFs must meet the following 
requirements.: 

a. The number of IMF extrema and zero-crossings must 
be the same or differ by no more than one. 

b. The envelopes formed from the local extrema should 
have a mean value of zero. 

Fig. 3: Empirical mode decomposition steps 
 

Recognize all the extrema point ‘ki (t)’ of the signal ‘x(t)’

Create the upper envelope ‘kmax(t)’ and lower envelop 
‘kmin(t)’ using cubic spline

Recognize all the extrema point ‘ki (t)’ of the signal ‘x(t)’

u(t)= x(t)-m(t)     where, u(t)= mode function 
( must satisfy IMF’s conditions a and b)

a. The number of IMF’s extrema and the number of zero-crossings must be equal or differ at the 
most by one.

b. The mean value of the envelopes derived from the local extrema should be zero.

If u(t) satisfies these IMF conditions, then ‘hi(t)=u(t)’ 
refers to the IMF, where ‘i’ refers to the ‘ith’ IMF. 

residual signal r(t) = x(t) – hi(t)

max min( ) ( )( ) , where, 'm(t)' represents the mean
2

k t k tm t

1

1
( ) ( ) ( )

n

i n
i

x t h t r t

-1217-



Tool Chatter Diagnosis using EMD and LMD Techniques: A Comparative Study 

 
All conversation signals were demodulated into a number 
of IMFs using the EMD methods described above. Figure 
5 shows the Fast Fourier transform (FFT) of a critical IMF 
of one of the signals carrying chatter information. For all 
27 tests, these IMFs are investigated and the degree of 
chatter is assessed using statistical metrics 

Fig. 1 IMFs & FFTs at depth of cut =0.3 mm, spindle speed 
=2000 rpm, feed rate =40 mm/min. 

Several challenges arise when using the EMD approach 
to process signals. Due to a modal aliasing issue, it 
misinterpreted the chatter frequencies. This approach also 
fails to distinguish between closed and weak frequency 
signal components, as seen in Fig. 5. Because EMD has 
mode aliasing concerns in high frequency signals, which 
are typical of chatter signals, it is best suited for low 
frequency transmissions. As a result, the authors evaluated 
a new adaptive strategy, the LMD technique. The chatter 
signals were decomposed by LMD into a number of 
product functions, which are explained in the next section.  
  
2.2.2.  Processing of acquired signals using local mean 
decomposition (LMD) 

The signal processing technique of local mean 
decomposition (LMD) has been modified to filter out 
contaminations before the diagnosis tool chatter. Figure 6 
depicts the processes involved in the LMD approach. The 
critical PFs holding the chatter information were then 
designated using Fast Fourier Transform (FFT) as 
illustrated in Fig. 7. 

 

Fig. 6: Local mean decomposition steps 

Fig. 2 PFs & FFTs at depth of cut=0.3 mm, spindle 
speed=2000 rpm, feed rate=40 mm/min. 
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Marked red circle shows:
Mode aliasing, no clear peaks

  

Marked red circle shows:
cluster of chatter frequencies
with clear peaks
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Statistical chatter parameter’s analysis 
Large variations are visible in a short time during the 
transition from stable to chatter, and fluctuations rise 
progressively, which could be represented by time domain 
statistical chatter characteristics. The commencement of 
chatter is invariably accompanied by a shift in the 

frequency spectrum. Many statistical chatter metrics have 
been used in the chatter severity analysis. All indicator 
values for all 27 studies were determined using the 
statistical indicators indicated in Table 1. Table 2 displays 
the parameters derived for EMD-preprocessed signals, 
while Table 3 shows the parameters calculated for LMD-
preprocessed signals. 

 
Table 1. Indicators 

 
 

Feature name Expression Definition Effect 
Standard 
deviation 

2

n 1

1 ( )
N

x(t)
 

where x(t) = signal, N = length of signal, μ= 
mean  

Standard deviation represents the 
deviation of the signal from the 
mean . 

Higher the value, more 
will be the chatter 

Root mean 
square value 2

1

1( ) ( )
N

rms
n

x t x t
N  

where x(t) = signal, N = length of signal  

The signal's energy content is 
represented by the root mean 
square (RMS). When two 
independent sources of noise are 
combined, the RMS value equals 
the total of their respective RMS 
values. 

Higher the value, larger 
the chatter component 

Peak to peak 
value x(t)p= max(x(t)) - min(x(t) 

where x(t) = signal 

From crest to trough, the signal's 
peak to peak value is measured. 

The chatter will get 
more intense as the 
peak to peak value 
increases. 

Kurtosis index 

2

1

1 ( ( ) ( )
N

n

where

x t x t
N  

where x(t) = signal, N = length of signal  
= standard deviation 

Kurtosis is the measurement of a 
signal's peak-ness. Leptokurtic 
signals have a reasonably high 
peak, platykurtic signals have a flat 
top, and mesokurtic signals have a 
signal that is neither very peaked 
nor particularly flat-topped. 

If the value is 
leptokurtic, it indicates 
a lot of talk. If the 
number is mesokurtic, 
it suggests there is 
chatter but it isn't as 
intense. If the kurtosis 
value is platykurtic, the 
machining is stable. 

Waveform 
index 

1
( ) | ( ) |

nN  
xa(t) = absolute mean amplitude of the signal 
x(t) = signal, N = length of signal  

The waveform index is the ratio of 
the signal's RMS value to its 
absolute mean amplitude. 

The larger the chatter 
component, the higher 
the value. 

Peak index ( )i
rms

P
x t  

Where,xrms(t) = RMS value  , x(t) = signal 

The peak index is calculated as the 
ratio of the signal's greatest 
absolute value to its RMS value. 

The larger the chatter 
component, the higher 
the value. 

Impulse index max( ( ))
( )i
a

x tI
x t  

Where,xa(t)= absolute mean amplitude  
x(t) = signal 

The ratio of the signal's maximum 
absolute value to its absolute mean 
amplitude is the impulse index. 

The larger the chatter 
component, the higher 
the value. 

Margin index 1
( ) ( )

nN  
Where, xs(t) = root square amplitude of the 
signal  
x(t) = signal, N = length of signal 

The margin index is the ratio of the 
signal's greatest absolute value to 
its root square amplitude. 

The larger the chatter 
component, the higher 
the value. 

Absolute mean 
amplitude 1

1 ( )
N

n
AMA x t

N  

The absolute value of chatter 
amplitudes is averaged. 

The higher the AMA 
value, the more chatter 
components in the 
signal. 
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Table 2. Statistical indicators of prominent IMFs 

 
Figure. 7 and 8 depict the calculated values of statistical 

markers for EMD and LMD, respectively. to show the 
fluctuation in statistical characteristics with relation to the 
number of experiments The Nakagami probability 
distribution was utilised to set the statistical parameter 
thresholds in this strategy. The mean and standard 
deviation of the distributed data are here. The red line 
represents the statistical indicator's upper chatter threshold, 
while the green line represents the lower chatter threshold. 

For example, in Fig. 7 (a) root mean square value vs  
experiment number plot for IMF, the top and lower 
threshold values are 3.87 and 0.66, respectively. The red 
line is drawn at 3.87 and the green line is drawn at 0.66 in 
the same plot. The experiment number that falls below the 
green threshold line resembles stable machining 
(machining without noise), whereas the experiment 
number that falls over the red threshold line resembles 
unstable machining (machining with clatter). The 
threshold of the other statistical indicator was calculated 
in the same way. In addition, stability charts for the list  

 
of experiments labelled stable, moderate, and unstable 
have been developed, as shown in Tables 4 and 5 for EMD 
and LMD, respectively. The trials that were recognised as 
stable by each statistical indicator were then classified as 
common experiments. 
 
 
 
 
 
 

 

 

 

 

 
 

Exp. 
No. 

(d) 
mm 

(n) 
rpm 

(f) 
mm/min 

Standard 
deviation 

RMS 
value 

Peak-to-
peak value 

Kurtosis 
index 

Waveform 
index 

Peak 
index 

Impulse 
index 

Margin 
index 

Absolute 
mean 

amplitude 
1 0.2 1000 30 1.3 1.3 12.6 3.283 1.276 5.313 6.778 8.108 0.992 
2 0.2 1000 35 0.6 0.6 6.9 3.571 1.284 5.363 6.887 8.264 0.489 

3 0.2 1000 40 1.3 1.3 12.9 3.691 1.316 4.674 6.153 7.525 0.985 

4 0.2 1500 30 2 2 17.7 3.297 1.292 4.397 5.481 6.882 1.535 

5 0.2 1500 35 1.4 1.4 12.4 2.919 1.254 4.031 5.055 5.994 1.113 

6 0.2 1500 40 2 2 20.5 3.347 1.290 4.931 6.361 7.695 1.583 

7 0.2 2000 30 3.3 3.3 31.5 3.541 1.306 5.637 7.360 8.948 2.509 

8 0.2 2000 35 3.9 3.9 32.4 3.645 1.316 4.153 5.465 6.684 2.981 

9 0.2 2000 40 4.4 4.4 39.3 3.657 1.320 4.731 6.243 7.657 3.339 

10 0.3 1000 30 1.4 1.4 14.8 3.495 1.287 5.444 7.006 8.422 1.054 

11 0.3 1000 35 0.6 0.6 5.6 3.325 1.276 4.525 5.773 6.911 0.487 

12 0.3 1000 40 0.1 0.1 0.8 4.343 1.369 3.040 4.161 5.187 0.089 

13 0.3 1500 30 0.1 0.1 0.8 2.842 1.269 2.783 3.532 4.233 0.113 

14 0.3 1500 35 1.5 1.5 12.2 2.928 1.251 3.900 4.880 5.780 1.213 

15 0.3 1500 40 1.4 1.4 10.9 2.995 1.257 3.826 4.808 5.703 1.121 

16 0.3 2000 30 4.5 4.5 36.2 3.369 1.303 4.030 5.253 6.398 3.454 

17 0.3 2000 35 4.5 4.5 39.9 3.411 1.307 4.890 6.390 7.801 3.460 

18 0.3 2000 40 4.8 4.8 39 3.090 1.288 4.041 5.204 6.324 3.740 

19 0.4 1000 30 0.2 0.2 1.1 2.958 1.284 2.997 3.847 4.659 0.159 

20 0.4 1000 35 1.3 1.3 12.4 3.171 1.270 5.117 6.499 7.760 0.989 

21 0.4 1000 40 1.4 1.4 12.8 3.556 1.317 4.535 5.971 7.314 1.063 

22 0.4 1500 30 2.9 2.9 21 2.813 1.262 3.588 4.528 5.424 2.266 

23 0.4 1500 35 3 3 21.7 2.711 1.251 3.594 4.497 5.360 2.432 

24 0.4 1500 40 3 3 25.2 3.005 1.275 4.419 5.634 6.794 2.318 

25 0.4 2000 30 3.8 3.8 32.9 3.504 1.304 4.181 5.451 6.627 2.949 

26 0.4 2000 35 3.8 3.8 30.9 3.489 1.305 3.976 5.190 6.317 2.881 

27 0.4 2000 40 4.5 4.5 38.7 3.216 1.294 4.129 5.341 6.498 3.457 
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Table 1 Statistical indicators of prominent PFs 

 
Furthermore, these common tests were compared to the 
theoretical stability lobe diagram in order to determine the 
statistical indicator of which preprocessed technique 
signal predicts stability more exactly. Figure 9 depicts the 
hypothesised stability lobe diagram. The green-colored 
tests in Fig. 9 are stable since they are below the curve. 
However, the red-colored experiments are unstable. 
Furthermore, the blue colour has been utilised to 
symbolise investigations on the edge of stability. When 

comparing the stability predicted using signals 
preprocessed using two distinct approaches, it was 
discovered that the LMD forecast is more accurate than 
the EMD prediction. Experiments 3, 4, 6, 20, 21, 24, 25, 
26 should be stable/moderate stable, while experiments 1, 
2, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 
27 should be unstable, according to the results obtained 
using the EMD technique, as shown in Table 6. When 
compared to the stability lobe diagram, it was discovered 

Exp. 
No. 

(d) 
mm 

(n) 
rpm 

(f) 
mm/min 

Standard 
deviation 

RMS 
value 

Peak-
to-

peak 
value 

Kurtosis 
index 

Waveform 
index 

Peak 
index 

Impulse 
index 

Margin 
index 

Absolute 
mean 

amplitude 

1 0.2 1000 30 2.4 2.4 29.2 4.020 1.327 4.969 6.920 8.662 1.99 

2 0.2 1000 35 2.3 2.3 29.6 4.001 1.321 5.655 6.791 8.699 1.76 

3 0.2 1000 40 1.6 1.6 22.7 4.767 1.340 8.112 10.872 11.424 1.42 

4 0.2 1500 30 3.6 3.6 47.9 4.260 1.315 6.902 9.147 11.176 2.73 

5 0.2 1500 35 2.5 2.5 25.1 3.992 1.325 5.340 7.075 8.676 1.85 

6 0.2 1500 40 2.5 2.5 24.5 3.741 1.317 4.673 6.153 7.528 1.87 

7 0.2 2000 30 3.6 3.6 35.6 4.412 1.338 5.830 7.891 9.756 3.67 

8 0.2 2000 35 4.1 4.1 40.9 3.987 1.333 4.849 6.462 7.968 3.07 

9 0.2 2000 40 4.5 4.5 46.8 4.104 1.343 6.292 7.911 9.819 3.38 

10 0.3 1000 30 1.5 1.5 22.7 5.226 1.350 8.304 11.208 11.830 1.10 

11 0.3 1000 35 2.3 2.3 34.6 5.008 1.349 7.202 9.717 10.950 1.03 

12 0.3 1000 40 1.6 1.6 18.2 3.961 1.324 6.004 7.952 9.762 1.22 

13 0.3 1500 30 2.6 2.6 27.1 3.914 1.325 4.828 6.400 7.858 1.97 

14 0.3 1500 35 1.8 1.8 15.5 3.273 1.282 4.677 5.994 7.208 1.40 

15 0.3 1500 40 1.8 1.8 17.2 3.444 1.288 5.029 6.478 7.810 1.79 

16 0.3 2000 30 4.7 4.7 41.8 3.896 1.336 4.431 5.919 7.326 3.48 

17 0.3 2000 35 4.7 4.7 44.0 4.163 1.338 6.518 8.046 12.500 3.48 

18 0.3 2000 40 4.9 4.9 43.2 3.719 1.330 4.271 5.682 7.026 3.72 

19 0.4 1000 30 2.5 2.5 29.9 4.354 1.339 5.916 7.922 9.732 1.89 

20 0.4 1000 35 2.4 2.4 32.5 4.539 1.338 7.601 8.041 9.853 1.77 

21 0.4 1000 40 1.8 1.8 23.2 4.133 1.325 5.492 7.276 8.937 1.92 

22 0.4 1500 30 3.1 3.1 38.8 3.720 1.311 5.739 7.522 9.214 2.34 

23 0.4 1500 35 3.2 3.2 26.5 3.429 1.311 3.975 5.212 6.400 2.43 

24 0.4 1500 40 3.1 3.1 30.5 3.580 1.319 4.900 6.466 7.969 2.34 

25 0.4 2000 30 4.1 4.1 45.5 3.865 1.326 5.737 7.605 9.355 3.11 

26 0.4 2000 35 4 4.0 39.5 3.856 1.325 4.958 6.567 8.072 3.02 

27 0.4 2000 40 4.7 4.7 44.1 3.791 1.331 4.793 6.380 7.887 3.55 
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that experiments 25 and 26 are in the unstable region. As 
a result, the prediction is ineffective. The mode mixing 
phenomena is one of the reasons behind this failure. 
Because the chatter signal has non-monotonous behaviour, 
the EMD approach occasionally fails to extract accurate 
characteristics. As indicated in Table 7, the 
stable/moderate stable experiments obtained in the case of 
LMD are 1, 2, 4, 5, 6, 8, 13, 19, 20, 22, 24, 26, and the  

 
Fig. 3 Statistical parameters using EMD and thresholding 

using Nakagami distribution 

 
unstable experimental sets are 3, 4, 7, 9, 10, 11, 12, 14, 
15, 16, 17, 18, 21, 23, 25, 26, 27. When these 
stable/moderate stable trials were compared to the 
stability lobe diagram, it was discovered that all of the 
experiments were below the curve. As a result, the 
forecast is considerable. It's also worth noting that one of 
the tests designated as stable by LMD is located on the 
stability lobe diagram's boundary of stability. The 
influence of feed is the reason for the exception in 
forecast. The influence of feed is not taken into account 
in the stability lobe diagram. However, the feed has been 
taken into account in the experimental data. 
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Fig. 4 Statistical parameters using LMD and thresholding 
using Nakagami distribution 
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Table 2. Prediction of stable and unstable experimental runs for EMD pre-processed signal 

 
Table 3. Prediction of stable and unstable experimental runs for LMD pre-processed signal 

 
 
 
 
 
 

 

 

 

 

 

 

Statistical Indicator Stable Moderate Unstable 

RMS  
1, 2, 4, 5, 6, 7, 11, 13, 19, 20, 22, 23, 24, 
26 

8, 25 3, 9, 10, 12, 14, 15, 16, 17, 
18, 21, 27 

Peak to Peak  
1, 2, 5, 6, 7, 8, 11, 13, 19, 20, 22, 
23, 24, 26 

3, 4, 10, 16, 21 4, 9, 12, 14, 15, 17, 18, 25, 
27 

Absolute mean 
amplitude 

1, 2, 4, 5, 6, 8, 13, 15, 19, 20, 21, 
22, 23, 24, 26 

25 3, 7, 9, 10, 11, 12, 14, 16, 17, 
18, 27 

Standard deviation  
1, 2, 4, 5, 6, 7, 11, 13, 19, 20, 22, 
23, 24, 26 

8, 25 3, 9, 10, 12, 14, 15, 16, 17, 
18, 21, 27 

Impulse Index  
1, 2, 5, 7, 8, 9, 12, 13, 15, 18, 19, 
20, 21, 22, 24, 25, 26, 27 

4, 6, 14, 16 3, 4, 10, 11, 17, 23 

Kurtosis  
1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 16, 17, 
18, 19, 21, 22, 25, 26, 27 

20, 24 
3, 10, 11, 14, 15, 23 

Marginal Index 
1, 2, 5, 7, 8, 9, 12, 13, 15, 19, 20, 
21, 22, 24, 25, 26, 27 

4, 6, 16 3, 4, 10, 11, 14, 17, 18, 23 

Waveform Index 
1, 2, 4, 5, 6, 7, 8, 12, 13, 16, 17, 18, 
19, 20, 21, 24, 25, 26, 27 

22, 23 3, 9, 10, 11, 14, 15 

Peak Index 
1, 2, 5, 7, 8, 9, 12, 13, 15, 17, 18, 19, 20, 
21, 22, 24, 25, 26, 27 

4, 6, 14, 16 3, 10, 11, 23 

Common runs 1, 2, 5, 13, 19, 26 
4, 6, 8, 20, 22, 24 3, 4, 7, 9, 10, 11, 12, 14, 15, 

16, 17, 18, 21, 23, 25, 26, 27 

Statistical Indicator Stable Moderate Unstable 

RMS  
1, 3, 4, 5, 6, 7, 10, 14, 15, 20, 21, 22, 
23, 24 

8, 25, 26 2, 9, 11, 12, 13, 16, 17, 18, 19, 27 

Peak to Peak  
1, 3, 4, 5, 6, 7, 8, 10, 14, 15, 20, 21, 
22, 23, 24, 26 

2, 25 9, 11, 12, 13, 16, 17, 18, 19, 27 

Absolute mean 
amplitude 

1, 3, 4, 5, 6, 7, 10, 14, 15, 20, 21, 22, 
23, 24 

8, 25, 26 2, 9, 11, 12, 12, 16, 17, 18, 19, 27 

Standard deviation  
1, 3, 4, 5, 6, 7, 10, 14, 15, 20, 21, 22, 
23, 24 

8, 25, 26 2, 9, 11, 12, 13, 16, 17, 18, 19, 27 

Impulse Index  
3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 
17, 18, 21, 24, 25, 26, 27 

20, 22, 23 1, 2, 12, 13, 19 

Kurtosis  
1, 2, 4, 6, 7, 10, 11, 16, 17, 18, 20, 21, 
25, 26, 27 

3, 5, 8, 9, 14, 15, 19, 24 12, 13, 22, 23 

Marginal Index 
3, 4, 5, 6, 8, 9, 11, 14, 15, 16, 18, 21, 
24, 25, 26, 27 

17, 20, 22, 23 1, 2, 7, 10, 12, 13, 19 

Waveform Index 
1, 2, 4, 6, 7, 10, 11, 13, 16, 17, 18, 19, 
20, 24, 25, 26, 27 

3, 8, 9, 21, 22 5, 12, 14, 15, 23 

Peak Index 
3, 4, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 
21, 24, 25, 26, 27 

20, 22, 23 1, 2, 9, 10, 12, 13, 19 

Common runs 4, 6 3, 20, 21, 24, 25, 26 
1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 22, 23, 27  
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Table 4 Chatter prediction based on EMD 

 
No 

chatter 
Moderate 

chatter 
High chatter 

Experimen
tal runs 

4, 6 
3, 20, 21, 
24, 25, 26 

1, 2, 5, 7, 8, 9, 
10, 11, 12, 13, 
14, 15, 16, 17, 
18, 19, 22, 23, 

27 

Table 5 Chatter prediction based on LMD 

 
No 

chatter 
Moderate 

chatter 
High chatter 

Experimen
tal runs 

1, 2, 5, 
13, 19, 

26 

6, 8, 20, 22, 
24 

3, 4, 7, 9, 10, 
11, 12, 14, 15, 
16, 17, 18, 21, 
23, 25, 26, 27 

Fig. 5: Theoretical stability lobe diagram 
 
3.  Conclusions 

The current study focuses on diagnosing tool chatter by 
acquiring audio chatter signals and pre-processing them 
using adaptive signal processing techniques. Furthermore, 
a comparison of the two adaptive approaches has been 
presented, with the following major findings: 

1. The obtained raw chatter signals can be preprocessed 
using both EMD and LMD approaches. However, 
because to the phenomena of mode mixing, EMD 
sometimes fails to display the precise properties. 

2. LMD has an advantage over EMD in that it can more 
precisely forecast the commencement of chatter by 
ignoring incipient amplitude changes in the signal. 

3. Both approaches detect a buzz frequency of roughly 
200 Hz. This indicates that chatter occurs at roughly 
200 Hz for the specified set of cutting conditions. 

4. The results also reveal that under the specified set of 
cutting settings and according to the defined 
experimental design. It is safe to undertake 
experiments 1, 2, 4, 5, 6, 8, 13, 19, 20, 22, 24, and 
26. 

 
The proposed methodology could serve as a guideline 

for researchers/machinists in terms of online monitoring 
and predicting which tests will not have chatter. The effect 
of feed can be considered in the near future for improved 
results. 

Fig. 6 Threshold of Chatter Index for online chatter detection 

Funding: There has been no funding for this project from 
any organisation. 
 

References 
1) Filippov A, Nikonov AY, Rubtsov V, et al. Vibration and 

acoustic emission monitoring the stability of peakless 
tool turning: Experiment and modeling. 246: 224-234 
(2017). 

2) Gupta P and Singh B. Investigation of Tool Chatter 
Features at Higher Metal Removal Rate Using Sound 
Signals. Acoustics Australia: 1-8 (2020). 

3) J. Munoa, X. Beudaert, Z. Dombovari, Y. Altintas, E. 
Budak, C. Brecher, G. Stepan, Chatter suppression 
techniques in metal cutting, CIRP Annals, (65) 785-
808, (2016). doi:10.1016/2016.06.004 

4) I. Mancisidor, A. Pena-Sevillano, Z. Dombovari, R. 
Barcena, J. Munoa, Delayed feedback control for 
chatter suppression in turning machines, 
Mechatronics, (63) 102276, (2019). 
doi:10.1016/2019.102276 

5) N. Weake, M. Pant, A. Sheoran, A. Haleem, and H. 
Kumar, “Optimising parameters of fused filament 
fabrication process to achieve optimum tensile 
strength using artificial neural network,” 
EVERGREEN Joint Journal of Novel Carbon 
Resource Sciences & Green Asia Strategy, 7 (3) 373–
381 (2020). https://doi.org/10.5109/4068614 

6) H. Han, M. Hatta, and H. Rahman, “Smart ventilation 
for energy conservation in buildings,” EVERGREEN 
Joint Journal of Novel Carbon Resource Sciences & 
Green Asia Strategy, 6 (1) 44–51 (2019). 
doi:10.5109/2321005. 

7) Gupta P and Singh B. Exploration of tool chatter in 
CNC turning using a new ensemble approach (2021). 

8) Huang NE, Shen Z, Long SR, et al. The empirical mode 
decomposition and the Hilbert spectrum for nonlinear 
and non-stationary time series analysis. Proceedings 
of the Royal Society of London A: mathematical, 
physical and engineering sciences. The Royal Society, 
903-995 (1998). 

0 5 10 15 20 25 30 35

Time (Sec.)

0.5

0.75

1

C
ha

tt
er

 In
de

x

Unstable regime

Moderate regime

Stable regime

Time (7.1 sec.)

-1225-



Tool Chatter Diagnosis using EMD and LMD Techniques: A Comparative Study 

 
9) M. Wan, J. Feng, Y.-C. Ma, W.-H. Zhang, Identification 

of milling process damping using operational modal 
analysis, International Journal of Machine Tools and 
Manufacture, (122) 120-131, (2017). 

10) Y. Yang, W.-H. Zhang, Y.-C. Ma, M. Wan, Chatter 
prediction for the peripheral milling of thin-walled 
workpieces with curved surfaces, International 
Journal of Machine Tools and Manufacture, (109) 36-
48 (2016). doi:10.1016/2017.06.006 

11) G. Quintana, J. Ciurana, Chatter in machining 
processes: A review, International Journal of Machine 
Tools and Manufacture, (51) 363-376, (2011). 
doi:10.1016/2011.01.001 

12) T.N. Dief, and S. Yoshida, “System identification for 
quad-rotor parameters using neural network,” 
EVERGREEN Joint Journal of Novel Carbon 
Resource Sciences & Green Asia Strategy,, 3 (1) 6–
11 (2016). doi:10.5109/1657380. 

13) M.A. Berawi, S.A.O. Siahaan, Gunawan, P. Miraj, and 
P. Leviakangas, “Determining the prioritized victim 
of earthquake disaster using fuzzy logic and decision 
tree approach,” EVERGREEN Joint Journal of Novel 
Carbon Resource Sciences & Green Asia Strategy, 7 
(2) 246–252 (2020). doi:10.5109/4055227. 

14) Maamar A, Bouzgarrou BC, Gagnol V, et al. Time 
domain stability analysis for machining processes. 
Advances in Acoustics and Vibration. Springer, 77-88 
(2017). 

15) S. P. Dwivedi, N.K. Maurya, M. Maurya, Assessment 
of Hardness on AA 2014/Eggshell composite 
Produced Via Electromagnetic Stir Casting Method, 
EVERGREEN Joint Journal of Novel Carbon 
Resource Sciences & Green Asia Strategy, 6 (06), 
285-294 (2019). https://doi.org/10.5109/2547354 

16) M. Maurya, N. K. Maurya, V. Bajpai, Effect of SiC 
Reinforced Particle Parameters in the Development 
of Aluminium Based Metal Matrix Composite, 
EVERGREEN Joint Journal of Novel Carbon 
Resource Sciences & Green Asia Strategy, 6(3), 200-
206 (2019). doi.org/10.5109/2349295 

17) Quintana G and Ciurana J. Chatter in machining 
processes: A review. International Journal of Machine 
Tools and Manufacture (51) 363-376, (2011). 

18) Sandoval S, Bredin M and De Leon PL. Using Linear 
Prediction to Mitigate End Effects in Empirical Mode 
Decomposition. 2018 IEEE Global Conference on 
Signal and Information Processing (GlobalSIP). 
IEEE, 281-285 (2018). 

19) Shrivastava Y, Singh B and Sharma AJMTP. 
Identification of Chatter in Turning Operation using 
WD and EMD. (5), 23917-23926 (2018). 

20) Siddhpura M, Siddhpura A and Paurobally R. Chatter 
stability prediction for a flexible tool-workpiece 
system in a turning process. The International Journal 
of Advanced Manufacturing Technology (92), 881-
896 (2017). 

21) Zaida H, Bouchelaghem AM and Chehaidia SE. 

Experimental Study of Tool Wear Evolution during 
Turning Operation Based on DWT and RMS. Defect 
and Diffusion Forum. Trans Tech Publ, 392-405 
(2021). 

22) H. Sosiati, Y. A. Shofie, A. W. Nugroho,Tensile 
Properties of Kenaf/E-glass Reinforced Hybrid 
Polypropylene (PP) Composites with Different Fiber 
Loading, EVERGREEN Joint Journal of Novel 
Carbon Resource Sciences & Green Asia Strategy, 05, 
(2) 1-5 (2018). https://doi.org/10.5109/1936210 

23) A. K. Srivastava, S. P. Dwivedi, N. K. Maurya, Manish 
Maurya, 3D visualization and topographical analysis 
in turning of hybrid MMC by CNC lathe SPRINT 
16TC made of BATLIBOI, EVERGREEN Joint 
Journal of Novel Carbon Resource Sciences & Green 
Asia Strategy, 07, (02), 202-208, (2020) 
https://doi.org/10.5109/4055217 

24) R. Rafal, L. Pawel, K. Krzysztof, K. Bogdan, W. Jerzy, 
Chatter identification methods on the basis of time 
series measured during titanium superalloy milling, 
International Journal of Mechanical Sciences, 
(99),196-207 (2015). doi:10.1016/2015.05.013 

25) C. Liu, L. Zhu, C. Ni, The chatter identification in end 
milling based on combining EMD and WPD, The 
International Journal of Advanced Manufacturing 
Technology, (91), 3339-3348 (2017). 
doi:10.1007/00170-017-0024-8 

26) Zhang Z, Li H, Meng G, et al. Chatter detection in 
milling process based on the energy entropy of VMD 
and WPD. International Journal of Machine Tools and 
Manufacture (108), 106-112 (2016). 

 
 
 
 

-1226-


