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Abstract: Downtime, poor surface quality, excessive noise, dimension inaccuracy, and
disproportionate tool wear are all negative effects of the regenerative chatter phenomena. On
obtained audio signals generated during machining of Al-6061-T6, empirical mode decomposition
(EMD) and local mean decomposition (LMD) techniques are performed, followed by rapid Fourier
transform (FFT). In order to detect and evaluate chatter in its early stages, these decomposed signals
are examined to extract tool chatter traits by analysing different statistical indicators such as kurtosis,
absolute mean amplitude, impulse index, root mean square value, and so on. The Nakagami
probability distribution is used to determine statistical indicator threshold limits. According to the
results of the investigation, LMD is a more efficient technique than EMD.

Keywords: Nakagami distribution; tool chatter; EMD; LMD; statistical parameters; non-

stationary signal processing.

1. INTRODUCTION

Inhomogeneity of the workpiece causes regenerative
chatter, resulting in an uneven cut surface V. With each
passing turning pass, the uneven waviness of the surface
becomes more pronounced >¥. When a tool goes from one
profile to another during successive turning passes, it
experiences a sudden jerk, causing tool vibration, which
is commonly referred to as tool chatter 9. Figure 1 depicts
a symmetric rendition of the wavy profile. The original
surface of the workpiece before cutting is shown in Fig 1.
During chatter initiation, the intermediate surface
represents the workpiece's surface. The wavy surface
formed by self-excited vibration is represented by the final
surface.
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Fig. 1 Schematic representation of wavy profile
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Poor surface quality, high tool wear, and a reduced
production rate are all consequences of regenerative
chatter 9. As a result, it is critical for researchers to

diagnose and reduce chatter in order to mitigate its
negative impacts "¥. Many studies have used in-process
monitoring approaches, but others have favoured in-cycle
monitoring techniques *'9).

In-process monitoring has various advantages over the
other two systems since it may provide information and
details at any point during the machining process 1213,
The contact type of monitoring and the non-contact type
of monitoring are the two basic types of in-process
monitoring '3, Researchers also discovered that
captured raw chatter signals contain ambient noise,
making it difficult to determine the exact nature of talk. To
filter out these contaminations before the diagnosing tool
chatters, a suitable signal processing mechanism must be
implemented '®. The sensor and signal types gathered
determine which filtering signal processing approach to
use. Researchers have developed numerous signal
processing algorithms for processing chatter signals in the
previous decade, such as wavelet transform, empirical
mode decomposition, and Hilbert transform %!, They
discovered that while the EMD technique is quite effective
in locating the chatter band, it is prone to modal aliasing,
which occurs when an IMF comprises distinct time scales,
or comparable time scales scattered across different IMFs
200 As a result, identifying the specific buzz band is
challenging. Furthermore, applying the Hilbert transform
to the EMD decomposition results in in negative
instantaneous frequency and serious end effect occurrence.

-1216-



EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 02, pp1216-1226, June, 2024

Smith's local mean decomposition technique was used to
solve this problem to a considerable extent 2". LMD
lowers the decomposition's end consequences and
prevents the over-enveloping issue. LMD is a time—
frequency analysis approach that is more moderate than
EMD 2223 _ Its product functions include more frequencies,
and the envelope data provides a significant quantity of
chatter data. EMD and LMD techniques were used to
process the audio chatter signals that were collected 242529,
The statistical indicators were then analysed for both
notable IMFs and PFs in the next stage. These statistical
indicators were also examined for recognising chatter
features and the suitability of the EMD and LMD
techniques for processing chatter signals. Furthermore,
the acquired results were confirmed using a theoretical
stability lobe diagram and were also used to determine the
commencement of chatter. Based on the findings, it can be
concluded that the LMD is superior to the EMD.

2. PROPOSED METHODOLOGY

The process has been divided into four parts for easier
understanding, as illustrated in Fig. 2. Machine, tool-
workpiece, and machining settings were all chosen in the
initial stage. The microphone was used in the second stage
to collect conversation signals. The recorded chatter
signals were preprocessed using EMD and LMD,
followed by the Fourier transform of IMFs and PFs,
respectively, in the third stage to identify the mode largely
responsible for chatter. Following that, statistical
indicators for both important IMFs and PFs were analysed
in the next stage. These statistical variables were also
examined for chatter features and the suitability of
EMD and LMD for processing chatter signals. A
theoretical stability lobe diagram is also used to verify the
results.

Stage 1
Selsction of
CNC Lathe
Toal -
& Teol: Catbide Iiserts
Work piece TTS04
Work-piece : AT
6061-T6
Stage?
Experimentations
Sigral aquisition

Stage 4 Evaluation of Statistical

‘ Post pracessiug | | Eadicatoas for IMFs Indicatars forPFs

‘ Bvalwtion of Siatistical |

Validation w.r.t Prediction of
theoretical S LD Chatter orset

Fig. 1: Outlay of the proposed methodology

2.1 EXPERIMENTATION DETAILS

Turning trials were carried out on the MTAB XL-
TURN CNC lathe in this study. Al-6061-T6 was chosen
as the work material. A carbide insert TTS04 is used for
the turning process. Figure 3 depicts the machining
conditions used, as well as the input settings and
microphone specifications.

Specification of Microphone

Model AHUJA AGN-480
Specialty Dynamic Unidirectional Migophone
Frequency Response  $0-10.000 Hz

Sensitivity 2.0 mV/Pa
Impedance 600 7

Overall Length 470 mm

Tnput parameters and their levels

Fig. 2: Machining condition, input settings and microphone
specifications

S. No. Parameters Level 1 Level 2 Level 3
8 Depth of cut, d (mm) 02 . 0.4
2 Spindle speed. n (rpm) 1000 1500 2000
3 Feed. f(mm/min) 30 35 40

2.2 THEORETICAL ANALYSIS

2.2.1 Processing of acquired signals using Empirical
mode decomposition (EMD)

Ambient noise is contained in raw chatter signals,
making it difficult to determine the true nature of chatter.
Before the diagnosis tool chatter, the empirical mode
decomposition (EMD) signal processing approach filters
out these contaminations. Huang invented the EMD
technique'®. It took the chatter signals and decomposed
them into intrinsic mode functions (IMFs). The algorithm
of EMD has been described in Fig. 4''. Simple oscillatory
functions with variable amplitude and frequency are
known as IMFs. These IMFs must meet the following
requirements.:

a. The number of IMF extrema and zero-crossings must

be the same or differ by no more than one.

b. The envelopes formed from the local extrema should

have a mean value of zero.

‘ Recognize all the extrema point ‘k; (t)” of the signal ‘x(t)’ ‘

Create the upper envelope k. (t)” and lower envelop
“Kmin(t)’ using cubic spline

‘ Recognize all the extrema point ‘k; (1)’ of the signal “x(t)” ‘

‘m )= ke m(1) ; Jemind)

,where, 'm(t)' represents the mean
v
u(t)= x(t)-m(t)  where, u(t)= mode function
('must satisfy IMF’s conditions a and b)

a.  The number of IMF’s extrema and the number of zero-crossings must be equal or differ at the
most by one.
b.  The mean value of the envelopes derived from the local extrema should be zero.

v
‘ If u(t) satisfies these IMF conditions, then *h(ty=u(t) ‘

refers to the IMF, where ‘0" refers to the ‘i IMF.
v
‘ residual signal 1(t) = x(t) — hy(t) ‘
v

x(t)= fh,(t) +rt)

Fig. 3: Empirical mode decomposition steps
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All conversation signals were demodulated into a number
of IMFs using the EMD methods described above. Figure
5 shows the Fast Fourier transform (FFT) of a critical IMF
of one of the signals carrying chatter information. For all
27 tests, these IMFs are investigated and the degree of
chatter is assessed using statistical metrics
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Fig. 1 IMFs & FFTs at depth of cut
=2000 rpm, feed rate =40 mm/min.

=0.3 mm, spindle speed

Several challenges arise when using the EMD approach
to process signals. Due to a modal aliasing issue, it
misinterpreted the chatter frequencies. This approach also
fails to distinguish between closed and weak frequency
signal components, as seen in Fig. 5. Because EMD has
mode aliasing concerns in high frequency signals, which
are typical of chatter signals, it is best suited for low
frequency transmissions. As a result, the authors evaluated
a new adaptive strategy, the LMD technique. The chatter
signals were decomposed by LMD into a number of
product functions, which are explained in the next section.

2.2.2. Processing of acquired signals using local mean
decomposition (LMD)

The signal processing technique of local mean
decomposition (LMD) has been modified to filter out
contaminations before the diagnosis tool chatter. Figure 6
depicts the processes involved in the LMD approach. The
critical PFs holding the chatter information were then
designated using Fast Fourier Transform (FFT) as
illustrated in Fig. 7.

sigmal “ x(¢)”
i
Identify all the extrema points * ,()° from original signal * x(¢)”
+
Local mean 70¢) = i-(t)+;-'+l(t) & Amulitud po Bi{t) = | ) +;+-(t)l
of two successive extrema. Where, i = ]12,,,,,N —1 { N = number of extrema}

Caleulate smooth continuous local mean function () and amplitude envelope function be(r)
By taking the moving averaging of n(f) and b(f)

!

vult) = x(t) —m, (F)and 7, (6) = %, () / B, (2)

Where r (1) & a pure frequency modulated signal, fluctuates between -1to 1.

'
Instantanecus phase &(f) = arccos(rit)) &i fi Fil e 1 dbé
2r dt
]
PE @)= blt)ru(®)
New signal= x(£)— PF,(t)
i
The envelop signal bi(t) = ()b (?). ... . us(E) :ﬂb..(t)
=
Where limbnp(f) =1 and g is the number of iterations
=
v
Repeat all the above steps with new signal to denve pf (£), pf,(£), - until the last sgmal
becomes monotonic
i

L)
xlt)= "y PR(D) +vd1)
[}

PR PE,0) i)

PF()

Fig. 6: Local mean decomposition steps
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Fig. 2 PFs & FFTs at depth of cut=0.3 mm, spindle
speed=2000 rpm, feed rate=40 mm/min.
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Statistical chatter parameter’s analysis

Large variations are visible in a short time during the
transition from stable to chatter, and fluctuations rise
progressively, which could be represented by time domain
statistical chatter characteristics. The commencement of

frequency spectrum. Many statistical chatter metrics have
been used in the chatter severity analysis. All indicator
values for all 27 studies were determined using the
statistical indicators indicated in Table 1. Table 2 displays
the parameters derived for EMD-preprocessed signals,
while Table 3 shows the parameters calculated for LMD-

chatter is invariably accompanied by a shift in the

preprocessed signals.

Table 1. Indicators

Feature name

Expression

Definition

Effect

square value

Xr'ms(t) = ’% Z x(t)2

where x(t) = signal, N = length of signal

represented by the root mean
square  (RMS).  When
independent sources of noise are

two

combined, the RMS value equals
the total of their respective RMS
values.

Standard c= \/LZ(X('[) -’ Standard deviation represents the | Higher the value, more
deviation N3 deviation of the signal from the | will be the chatter
where x(t) = signal, N = length of signal, p= | mean .
mean
Root mean The signal's energy content is | Higher the value, larger

the chatter component

Peak to peak

From crest to trough, the signal's

The chatter will get

n=1

- =\/%ﬁ((x(r)—%)z

where x(t) = signal, N = length of signal
O = standard deviation

signal's peak-ness. Leptokurtic
signals have a reasonably high
peak, platykurtic signals have a flat
top, and mesokurtic signals have a
signal that is neither very peaked

nor particularly flat-topped.

value x(t)p= max(x(t)) - min(x(t) peak to peak value is measured. more intense as the
where x(t) = signal peak to peak value

increases.
Kurtosis index where Kurtosis is the measurement of a | If the value is

leptokurtic, it indicates
a lot of talk. If the
number is mesokurtic,
it suggests
chatter but it isn't as

there is

intense. If the kurtosis
value is platykurtic, the
machining is stable.

Xrms (t )

Where,xms(t) = RMS value , x(t) = signal

ratio of the signal's greatest

absolute value to its RMS value.

Waveform =l The waveform index is the ratio of | The larger the chatter

index Xa(t) = absolute mean amplitude of the signal | the signal's RMS value to its | component, the higher
x(t) = signal, N = length of signal absolute mean amplitude. the value.

Peak index = The peak index is calculated as the | The larger the chatter

component, the higher
the value.

Impulse index

Max(x(7))
[ =————=
Xu(t )
Where,xa(t)= absolute mean amplitude
x(t) = signal

The ratio of the signal's maximum
absolute value to its absolute mean
amplitude is the impulse index.

The larger the chatter
component, the higher
the value.

Margin index

\N o= J
Where, xs(t) = root square amplitude of the
signal
x(t) = signal, N = length of signal

The margin index is the ratio of the
signal's greatest absolute value to
its root square amplitude.

The larger the chatter
component, the higher
the value.

Absolute mean
amplitude

AMA = %g|x(t)|

The absolute value of chatter
amplitudes is averaged.

The higher the AMA
value, the more chatter
components in the
signal.
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Table 2. Statistical indicators of prominent IMFs

Exp. | (d) (n) ® Standard | RMS Peak-to- Kurtosis | Waveform | Peak | Impulse | Margin Absolute
No. | mm | rpm | mm/min | deviation | value | peak value index index index index index am‘gﬁ;ﬁ de
1 | 02 | 1000 30 1.3 13 12.6 3.283 1276 | 5313 | 6.778 | 8.108 0.992
2 | 02 | 1000 35 0.6 0.6 6.9 3.571 1.284 5363 | 6.887 | 8.264 0.489
3 | 0.2 | 1000 40 13 1.3 12.9 3.691 1316 | 4674 | 6.153 | 7.525 0.985
4 | 02 | 1500 30 2 2 17.7 3.297 1292 | 4397 | 5.481 | 6.882 1.535
5 | 02 | 1500 35 1.4 1.4 12.4 2.919 1.254 | 4031 | 5.055 | 5.994 1113
6 | 02 | 1500 40 2 2 20.5 3.347 1290 | 4931 | 6361 | 7.695 1.583
7 | 02 | 2000 30 3.3 3.3 31.5 3.541 1.306 | 5.637 | 7.360 | 8.948 2509
8 | 0.2 | 2000 35 3.9 3.9 324 3.645 1316 | 4.153 | 5465 | 6.684 2.981
9 | 0.2 | 2000 40 4.4 4.4 39.3 3.657 1320 | 4731 | 6243 | 7.657 3.339
10 | 0.3 | 1000 30 1.4 1.4 14.8 3.495 1287 | 5.444 | 7.006 | 8.422 1.054
11 | 0.3 | 1000 35 0.6 0.6 5.6 3.325 1276 | 4525 | 5.773 | 6911 0.487
12 | 0.3 | 1000 40 0.1 0.1 0.8 4.343 1.369 | 3.040 | 4.161 | 5.187 0.089
13 | 0.3 | 1500 30 0.1 0.1 0.8 2.842 1269 | 2.783 | 3.532 | 4.233 0.113
14 | 03 | 1500 35 1.5 1.5 12.2 2.928 1.251 3.900 | 4.880 | 5.780 1.213
15 | 0.3 | 1500 40 1.4 1.4 10.9 2.995 1.257 3.826 | 4.808 | 5.703 1121
16 | 0.3 | 2000 30 45 4.5 36.2 3.369 1.303 | 4.030 | 5253 | 6.398 3.454
17 | 0.3 | 2000 35 4.5 4.5 39.9 3.411 1.307 4.890 | 6.390 | 7.801 3.460
18 | 0.3 | 2000 40 4.8 4.8 39 3.090 1.288 4.041 | 5204 | 6.324 3.740
19 | 0.4 | 1000 30 0.2 0.2 1.1 2.958 1.284 | 2997 | 3.847 | 4.659 0.159
20 | 0.4 | 1000 35 13 13 12.4 3.171 1270 | 5117 | 6.499 | 7.760 0.989
21 | 0.4 | 1000 40 1.4 1.4 12.8 3.556 1317 4535 | 5971 | 7.314 1.063
22 | 0.4 | 1500 30 2.9 2.9 21 2.813 1262 | 3.588 | 4.528 | 5.424 2.266
23 | 0.4 | 1500 35 3 3 21.7 2711 1.251 3.594 | 4.497 | 5.360 2432
24 | 0.4 | 1500 40 252 3.005 1.275 4419 | 5634 | 6.794 2318
25 | 0.4 | 2000 30 3.8 3.8 329 3.504 1.304 | 4.181 | 5.451 | 6.627 2.949
26 | 0.4 | 2000 35 3.8 3.8 30.9 3.489 1.305 3.976 | 5.190 | 6.317 2.881
27 | 0.4 | 2000 40 4.5 4.5 38.7 3.216 1294 | 4129 | 5341 | 6.498 3.457

Figure. 7 and 8 depict the calculated values of statistical
markers for EMD and LMD, respectively. to show the
fluctuation in statistical characteristics with relation to the
number of experiments The Nakagami probability
distribution was utilised to set the statistical parameter
thresholds in this strategy. The mean and standard
deviation of the distributed data are here. The red line
represents the statistical indicator's upper chatter threshold,
while the green line represents the lower chatter threshold.

For example, in Fig. 7 (a) root mean square value vs
experiment number plot for IMF, the top and lower
threshold values are 3.87 and 0.66, respectively. The red
line is drawn at 3.87 and the green line is drawn at 0.66 in
the same plot. The experiment number that falls below the
green threshold line resembles stable machining
(machining without noise), whereas the experiment
number that falls over the red threshold line resembles
unstable machining (machining with clatter). The
threshold of the other statistical indicator was calculated
in the same way. In addition, stability charts for the list

of experiments labelled stable, moderate, and unstable
have been developed, as shown in Tables 4 and 5 for EMD
and LMD, respectively. The trials that were recognised as
stable by each statistical indicator were then classified as
common experiments.
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Table 1 Statistical indicators of prominent PFs

Exp. (d) (n) ® Standard | RMS P::)‘-k - Kurtosis | Waveform Peak Impulse | Margin Absolute
No. | mm | rpm | mm/min | deviation | value peak index index index index index me.an
value amplitude
1 | 021000 30 2.4 24 1 292 | 4000 1327 | 4969 | 6920 | 8.662 1.99
2 [ 02]1000]| 35 2.3 23 1 296 | 4001 1321 | 5655 | 6791 | 8.699 1.76
3 |02 ]1000]| 40 1.6 1.6 | 227 | 4767 1340 | 8.112 | 10.872 | 11.424 1.42
4 [ 021500 30 3.6 3.6 | 479 | 4260 1315 | 6902 | 9.147 | 11.176 2.73
5 | 021500 | 35 2.5 25 | 251 | 3992 1325 | 5340 | 7.075 | 8.676 1.85
6 | 021500 | 40 2.5 2.5 | 245 | 3741 1317 | 4673 | 6.153 | 7.528 1.87
7 | 022000 30 3.6 36 | 356 | 4412 1338 | 5830 | 7.891 | 9.756 3.67
8 | 022000 35 4.1 41 | 409 | 3987 1333 | 4849 | 6462 | 7.968 3.07
9 | 022000 40 45 45 | 468 | 4104 1343 | 6292 | 7911 | 9819 3.38
10 | 03 | 1000 | 30 15 L5 1 227 | 526 1350 | 8.304 | 11.208 | 11.830 1.10
1 | 03 |1000]| 35 2.3 2.3 | 346 | 5008 1349 | 7202 | 9.717 | 10.950 1.03
12 | 03 ] 1000 | 40 1.6 L6 | 182 | 3961 1324 | 6.004 | 7.952 | 9.762 1.22
13 | 03 ] 1500 | 30 2.6 2.6 | 27.1 | 3914 1325 | 4828 | 6400 | 7.858 1.97
14 | 03 ] 1500 | 35 1.8 L8 | 155 | 3773 1282 | 4677 | 5994 | 7.208 1.40
15 | 03 ] 1500 | 40 1.8 L8 | 172 | 3444 1288 | 5.029 | 6478 | 7.810 1.79
16 | 0.3 | 2000 | 30 4.7 47 | 418 | 3896 1336 | 4431 | 5919 | 7.326 348
17 | 03 | 2000 | 35 4.7 47 | 440 | 4163 1338 | 6.518 | 8.046 | 12.500 3.48
18 | 03 | 2000 | 40 4.9 49 | 432 | 3719 1330 | 4271 | 5.682 | 7.026 3.72
19 | 0.4 | 1000 | 30 2.5 2.5 | 299 | 4354 1339 | 5916 | 7.922 | 9.732 1.89
20 | 04 | 1000 | 35 2.4 24 | 325 | 4539 1338 | 7.601 | 8.041 | 9.853 1.77
21 | 04 | 1000 | 40 1.8 1.8 | 232 | 4133 1325 | 5492 | 7276 | 8.937 1.92
22 | 04 | 1500 | 30 3.1 3.1 1 388 | 3720 1311 | 5739 | 7522 | 9.214 2.34
23 | 04 | 1500 | 35 32 32 265 | 3429 1311 | 3975 | 5212 | 6.400 243
24 | 04 | 1500 | 40 3.1 3.1 305 | 3580 1319 | 4900 | 6.466 | 7.969 2.34
25 | 0.4 2000 30 4.1 41 | 455 | 3865 1326 | 5737 | 7.605 | 9.355 3.11
26 | 0.4 | 2000 | 35 4 4.0 | 395 | 33856 1325 | 4958 | 6.567 | 8.072 3.02
27 | 04 | 2000 | 40 4.7 47 | 441 | 3791 1331 | 4793 | 6380 | 7.887 3.55

Furthermore, these common tests were compared to the
theoretical stability lobe diagram in order to determine the
statistical indicator of which preprocessed technique
signal predicts stability more exactly. Figure 9 depicts the
hypothesised stability lobe diagram. The green-colored
tests in Fig. 9 are stable since they are below the curve.
However, the red-colored experiments are unstable.
Furthermore, the blue colour has been  utilised to
symbolise investigations on the edge of stability. When

comparing the stability predicted using signals
preprocessed using two distinct approaches, it was
discovered that the LMD forecast is more accurate than
the EMD prediction. Experiments 3, 4, 6, 20, 21, 24, 25,
26 should be stable/moderate stable, while experiments 1,
2,5,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23,
27 should be unstable, according to the results obtained
using the EMD technique, as shown in Table 6. When
compared to the stability lobe diagram, it was discovered
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that experiments 25 and 26 are in the unstable region. As
a result, the prediction is ineffective. The mode mixing
phenomena is one of the reasons behind this failure.
Because the chatter signal has non-monotonous behaviour,
the EMD approach occasionally fails to extract accurate
characteristics. As indicated in Table 7, the
stable/moderate stable experiments obtained in the case of
LMDare 1,2,4,5,6, 8,13, 19, 20, 22, 24, 26, and the
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Fig. 3 Statistical parameters using EMD and thresholding
using Nakagami distribution

unstable experimental sets are 3, 4, 7, 9, 10, 11, 12, 14,
15, 16, 17, 18, 21, 23, 25, 26, 27. When these
stable/moderate stable trials were compared to the
stability lobe diagram, it was discovered that all of the
experiments were below the curve. As a result, the
forecast is considerable. It's also worth noting that one of
the tests designated as stable by LMD is located on the
stability lobe diagram's boundary of stability. The
influence of feed is the reason for the exception in
forecast. The influence of feed is not taken into account
in the stability lobe diagram. However, the feed has been
taken into account in the experimental data.
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Table 2. Prediction of stable and unstable experimental runs for EMD pre-processed signal

Statistical Indicator | Stable Moderate Unstable
RMS 1,2,4,5,6,7,11,13,19,20,22,23,24, | 8,25 3,9, 10, 12, 14, 15, 16, 17,
26 18, 21, 27
Peak to Peak 1,2, 5,6, 7,8, 11, 13, 19, 20, 22, | 3, 4, 10, 16, 21 4,9, 12, 14, 15, 17, 18, 25,
caictorea 23, 24, 26 27
Absolute mean | 1, 2, 4, 5, 6, 8, 13, 15, 19, 20, 21, | 25 3,7,9,10, 11, 12, 14, 16, 17,
amplitude 22, 23, 24, 26 18, 27
Standard deviati 1, 2, 4, 5,6, 7,11, 13, 19, 20, 22, | 8, 25 3,9, 10, 12, 14, 15, 16, 17,
ancard Geviation 1 93 94, 26 18, 21, 27
1,2, 5,7,8,9, 12, 13, 15, 18, 19, | 4, 6, 14, 16
Impulse Index 20, 21, 22, 24, 25, 26, 27 3, 4,10, 11, 17, 23
. 1,2,4,5,6,7,8,9,12, 13, 16, 17, | 20,24
Kurtosis 18, 19, 21, 22, 25, 26, 27 3, 10, 11, 14, 15, 23
. 1, 2,5,7,8,9, 12, 13, 15, 19, 20, | 4, 6, 16
Marginal Index 21,99, 24, 25, 26, 27 3, 4,10, 11, 14, 17, 18, 23
1,2,4,5,6,7,8,12,13,16, 17, 18, | 22, 23
Waveform Index 19, 20, 21, 24, 25, 26, 27 3,9, 10, 11, 14, 15
1,2,5,7,8,9,12,13,15,17,18, 19,20, | 4, 6, 14, 16

Peak Index

21,22, 24,25,26,27

3,10, 11, 23

Common runs

1,2,5,13,19, 26

4,6, 8, 20, 22, 24

3,4,7,9,10, 11, 12, 14, 15,
16, 17, 18, 21, 23, 25, 26, 27

Table 3. Prediction of stable and unstable experimental runs for LMD pre-processed signal

Statistical Indicator Stable Moderate Unstable
RMS 1,3,4,5,6,7,10, 14,15, 20,21, 22, 8, 25,26 2,9,11,12,13,16,17,18,19,27
23,24
1,3,4,5,6,7,8, 10, 14, 15, 20, 21,
Peak to Peak 22.23.24,26 2,25 9,11,12, 13,16, 17,18, 19,27
Absollute mean | 1,3,4,5,6,7,10, 14, 15, 20, 21, 22, 8.25.26 2.9.11,12,12.16.17. 18, 19,27
amplitude 23,24
Standard deviation ;’33’23’ 3,6,7,10, 14, 15,20, 21, 22, 8, 25,26 2,9,11,12,13,16,17,18,19,27
3,4,5,6,7,8,9,10, 11, 14, 15, 16,
Impulse Index 17.18. 21, 24, 25, 26, 27 20, 22,23 1,2,12,13,19
. 1,2,4,6,7,10,11, 16,17, 18, 20, 21,
Kurtosis 25, 26,27 3,5,8,9,14,15,19,24 12,13,22,23
. 3,4,5,6,8,9, 11, 14, 15, 16, 18, 21,
Marginal Index 24.25.26.27 17,20, 22,23 1,2,7,10,12,13, 19
1,2,4,6,7,10,11,13,16,17,18, 19,
Waveform Index 20,24, 25,26, 27 3,8,9,21,22 5,12, 14, 15,23
Peak Index 3,45,6,7,8, 11,14, 15,16, 17, 18, 20, 22,23 1,2,9,10,12, 13,19

21,24, 25, 26,27

Common runs

4,6

3,20, 21,24, 25,26

1,2,5,7,8,9,10, 11, 12, 13, 14,
15,16, 17, 18, 19, 22, 23, 27
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Table 4 Chatter prediction based on EMD

No Moderate

High chatter
chatter chatter

1,2,5,7,8,9,
10, 11,12, 13,

Experimen 3,20,21,
4,6 14,15, 16, 17,

tal runs 24,25,26
18,19, 22, 23,

27

Table 5 Chatter prediction based on LMD

No Moderate

High chatter

chatter chatter
3,4,7,9, 10,

1,2,5,

Experimen 13.19 6, 8,20, 22, 11,12, 14, 15,
tal runs ;6 ’ 24 16,17, 18,21,
23,25,26,27

* Stable
- Unstable

Limiting depth of cut[mm]

[¢=0-2, RPM=2000

@02, RPM=1500
=02, RPM=1000

1000

400 700 1300 1600 1900

Spindle speed [RPM]

2200

Fig. 5: Theoretical stability lobe diagram

3. Conclusions

The current study focuses on diagnosing tool chatter by
acquiring audio chatter signals and pre-processing them
using adaptive signal processing techniques. Furthermore,
a comparison of the two adaptive approaches has been
presented, with the following major findings:

1. The obtained raw chatter signals can be preprocessed
using both EMD and LMD approaches. However,
because to the phenomena of mode mixing, EMD
sometimes fails to display the precise properties.

2. LMD has an advantage over EMD in that it can more
precisely forecast the commencement of chatter by
ignoring incipient amplitude changes in the signal.

3. Both approaches detect a buzz frequency of roughly
200 Hz. This indicates that chatter occurs at roughly
200 Hz for the specified set of cutting conditions.

4. The results also reveal that under the specified set of
cutting settings and according to the defined
experimental design. It is safe to undertake
experiments 1, 2, 4, 5, 6, 8, 13, 19, 20, 22, 24, and
26.

The proposed methodology could serve as a guideline
for researchers/machinists in terms of online monitoring
and predicting which tests will not have chatter. The effect
of feed can be considered in the near future for improved
results.

Chatter Index

Unstable regime

075 |

M/’
Time (7.1 sec.)

Moderate regime
05 | ¢

Stable regime

I I L I I I I
0 5 10 15 20 25 3 35

Time (Sec.)

Fig. 6 Threshold of Chatter Index for online chatter detection
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