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Abstract: Surface quality plays a pivotal role in the performance and durability of metal 

components across diverse industries. Burnishing, a commonly employed finishing method, has 
gained significant popularity for its efficacy in enhancing surface quality, especially in aluminium 
alloy applications. This research paper introduces a novel approach to elevate surface quality 
during the burnishing process of aluminium alloys, leveraging the capabilities of Artificial Neural 
Networks (ANNs). In this paper, machining parameters and their effects on the aluminium alloy 
material 6351 using a lathe were considered. A mathematical model has been developed to forecast 
variable surface roughness. The surface quality achieved after the procedure on the work piece is 
then utilized for ball burnishing. Subsequently, the surface quality pattern is employed to replicate 
the burnishing process using optimization, sensitivity analysis, and ANN. The quality of the surface 
parameters determined on the aluminium alloy after burnishing is estimated using a ball, and it is 
experimentally confirmed at 1.73164 m. The results of this research provide valuable insights into 
the intricate interplay of burnishing parameters on aluminium alloy surface quality, aiding in the 
development of more efficient and cost-effective finishing processes. 
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1.  Introduction 
Ball burnishing is a technique that utilizes a tool with 

two balls in a tool holder. It is a cold working procedure 
applied to materials. A hard ball burnishing tool is 
pressed onto the surface of a material to assess its surface 
condition. Surface alterations may include a reduction in 
surface roughness, an increase in surface hardness, and 
changes in grain size1). Surface quality is a crucial factor 
affecting the performance and lifespan of engineering 
components. Burnishing, a mechanical surface finishing 
technique, is widely used to improve surface properties 
such as roughness, hardness, and wear resistance. This 
process involves applying pressure to a workpiece 
surface using a hard tool, typically a ball or roller, to 
plastically deform the material. As a result, the surface 
undergoes micro-smoothing, reducing roughness peaks 
and enhancing surface integrity. Burnishing may finds 

applications in industries such as automotive, aerospace, 
and manufacturing, where high-quality surfaces are vital 
for optimal performance and durability. This paper 
explores the principles, mechanisms, and applications of 
burnishing, emphasizing its importance in achieving 
superior surface quality in various engineering 
components. Burnishing, classified as a cold-working 
technique, achieves smooth and work-hardened surfaces 
by reshaping surface imperfections. This research 
examines critical burnishing parameters and determines 
that work piece surface quality is notably influenced by 
burnishing forces and the number of tool passes. During 
the burnishing process, external forces are applied to a 
polished and hardened ball or roller, which is directed 
appropriately onto flat or cylindrical work pieces as 
shown in Fig. 1. When the burnishing pressure exceeds 
the material's yield strength, the metallic surface's peaks 
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permanently spread out, filling the valleys and resulting 
in a smoothing effect.  

In recent times, extensive research has been conducted 
to establish the ideal parameters for the ball burnishing 
process. A range of critical variables, including the 
choice of ball or roller material, burnishing force, feed 
rate, burnishing speed, lubrication, and the number of 
burnishing passes, have all been shown to exert a 
considerable influence on surface roughness2). SS. J. 
Ebeid and colleagues created a two-dimensional finite 
element model (FEM) tailored to replicate the behavior 
of AISI 1045 mild steel. Furthermore, they devised a 
numerical approach, utilizing the FEM, to investigate 
how cutting speed and feed rate impact the residual 
stresses generated during orthogonal cutting. A 
comparison of actual and simulated results revealed that 
the stress distribution steadily increased with changes in 
cutting speed and feed rate. Additionally, they conducted 
research on the burnishing technique applied to 
aluminium 6061. This involved the utilization of 
interchangeable adapters for both roller and ball 
burnishing. The study was centered on assessing the 
impact of various burnishing parameters, including speed, 
force, and ball tool diameter, on surface characteristics3). 
Some researchers conducted a significant investigation 
into the plastic deformation of structural RB40 steel 
during ball and roller burnishing processes. Additionally, 
their study encompassed an analysis of the roughness, 
hardness, and wear resistance properties of RB40 steel. 
In certain studies, Taguchi techniques were applied to 
optimize the ball burnishing process for AISI 316L 
stainless steel. These techniques effectively identified 
critical parameters such as ball material, penetration 
depth, speed, and lubrication, resulting in surface 
roughness levels of 1.017 μm for flat specimens and 
0.6-0.9 μm for 3D curved surfaces4). Furthermore, 
researchers examined the requirements for both 
pre-machining and subsequent burnishing-rolling 
methods to ensure high product quality. The 
investigation established connections between the 
contact points of the burnishing tool and the rough 
surface of work-hardening materials5). 

 
Fig. 1: The burnishing Process 

 
A novel mechanical surface treatment method called 

spherical motion burnishing (SMB) has been introduced 
by some researchers, primarily suitable for lathes. It 
involves a specially designed device and tool, expanding 

manufacturing capabilities. Mathematical models for 
roughness and residual stresses were developed through 
experiments, and their accuracy was confirmed through 
additional tests, demonstrating their reliability in 
predicting outcomes in the SMB process6). 

This research goes into an artificial neural network 
(ANN) inspired parametric analysis of surface quality in 
aluminium alloy burnishing. This study analyses the 
complicated link between burnishing factors and final 
surface quality using ANN-based modelling. The goal of 
the present study is to better understand the burnishing 
process and its effects on aluminium alloy surfaces. This 
study adds to optimizing burnishing settings for higher 
surface quality results in aluminium alloy applications by 
exploiting ANN's capabilities. Surface quality plays a 
critical role in the performance and durability of metal 
components, including aluminum alloys, in various ways. 
A smooth surface with low roughness reduces stress 
concentration points, improving fatigue strength and 
resistance to cyclic loading, crucial in components 
subjected to repeated stress. Additionally, a smooth 
surface exhibits better wear resistance, minimizing 
abrasive wear and surface damage, leading to longer 
component life in applications involving sliding or 
abrasive wear. Surface quality also affects corrosion 
resistance, with a smoother surface reducing corrosion 
initiation sites and improving overall resistance. 
Furthermore, surface quality influences the adhesion of 
seals, coatings, or paints to metal components, enhancing 
performance and longevity. It also impacts frictional 
properties, with a smoother surface typically exhibiting 
lower friction, beneficial in applications where reduced 
friction is desired. In applications where surface contact 
is critical, such as in sealing or mating components, 
surface quality affects the effectiveness of the seal or the 
contact pressure distribution, influencing overall 
performance. Moreover, surface quality can impact the 
aesthetic appearance of metal components in certain 
applications, affecting perceived quality and value. 
Overall, achieving the desired surface quality through 
appropriate manufacturing processes is essential for 
enhancing the performance and durability of metal 
components in various applications. 

 
2.  Literature review 

The Ball burnishing is a technically viable and 
commercially successful finishing procedure. By 
selecting the proper process settings, it is possible to 
achieve the required surface roughness. In selecting the 
ultimate surface quality, the relationship between 
burnishing force and feed-rate is critical. The correct 
selection of these factors is critical for achieving the 
optimum surface roughness. Some study investigates the 
effectiveness of fatigue strength restoration in corroded 
4340 steel through the application of low plasticity 
burnishing (LPB) without the removal of damaged layers. 
LPB was employed on corroded surfaces following a 
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superficial cleaning process, resulting in the restoration 
of the material's fatigue strength to 110% of its original, 
as-machined, uncorroded state for specimens exposed to 
100 hours of corrosion, and 85% for those exposed to 
500 hours of corrosion. Comparable improvements in 
fatigue strength were observed within the finite life 
regime as well. Fracture analysis revealed that fatigue 
failures in specimens treated with LPB after corrosion 
exposure typically initiated at corrosion pits. However, 
such treatment significantly enhanced the fatigue 
resistance of the material. The authors emphasize the 
importance of developing effective treatments as aging 
military aircraft are increasingly susceptible to 
corrosion-related issues7). Some researchers examine the 
criteria for both pre-machining and the subsequent 
burnishing-rolling procedures to ensure a top-quality end 
product. It establishes relationships for the contact areas 
between the burnishing element and the work-hardening 
material's rough surface. 

Some studies explore the impact of force and feed 
parameters on residual stress profiles in deep rolling of 
aluminium alloy 7075-T6. Results indicate that feed 
affects surface hardness, while force influences stress 
distribution depth, with finite element simulations 
revealing increased plasticity with higher feed8). In some 
researchers explores how ball burnishing enhances form 
tools, like molds and dies, for achieving the necessary 
surface finish in plastic injection molds and stamping 
dies. It shows that combining ball burnishing with 
tailored milling parameters can notably cut production 
costs and time while delivering a smoother surface finish 
with simplified programming compared to milling9). 
Previous research introduces an innovative procedure 
known as electrochemical smoothing-roller burnishing 
(ECS-RB), aimed at improving the roundness and 
micro-hardness of cylindrical components. When 
employing the optimal parameters, a remarkable 31.5% 
enhancement in micro-hardness and a reduction of 2.32 

the reliability and wear resistance of the parts. Some 
investigators have utilized response surface methodology 
to enhance the surface finish in ball burnishing, 
providing a mathematical model to predict and achieve 
the desired roughness, with just a 1.2% deviation from 
experimental results10). Furthermore, ongoing research 
has explored the influence of key burnishing parameters, 
including speed, feed, force, tool passes, and ball 
diameter, on surface roughness. The results underscore 
the substantial impact of burnishing force and the 
number of tool passes on the work piece surface during 
the burnishing process11). In some instances, Taguchi 
techniques were applied to evaluate and optimize the ball 
burnishing process, revealing that the primary factor for 
enhancing surface roughness and micro-hardness is the 
burnishing force, followed by burnishing feed, speed, 
and the number of passes12). 

The advanced technique explores ball burnishing to 
improve the surface quality of magnesium alloy parts, 
determining optimal parameters (400N force, 
0.05mm/min feed rate, three passes, and boron oil 
medium) for superior surface roughness. The findings 
are relevant for designing top-quality components in 
various transportation vehicles13).  Furthermore, 
research focuses on the influence of force and feed 
parameters on residual stress profiles resulting from deep 
rolling in aluminium alloy 7075-T6. It observes that 
force significantly impacts the depth of the compressive 
region, while feed primarily affects surface hardness. 
Residual stress components in the feed direction were 
approximately double those in the rolling direction. 
Finite element simulations indicated that load 
predominantly influenced the plasticity depth, with the 
feed affecting the maximum accumulated plasticity14). 
Formulated five models based on artificial neural 
networks (ANN) and deep neural networks (DNN) using 
machine learning approaches such as logistic regression, 
SVM, and Naive Bayes15). Explored and compared 
various techniques, with a specific focus on the XGBoost 
method, as it facilitated researchers in achieving an 80% 
accuracy rate in predicting the potential of terrorist 
attacks to cause casualties among civilians16). The 
authors created a technique that chooses a feature set by 
combining principal component analysis (PCA) with 
random forest (RF). 36 of the 136 traits were selected for 
categorization. The XG Boost classifier had the greatest 
accuracy of 98% in identifying terrorist groups with the 
highest attack rates among the five prediction models 
included in the classification framework. Utilizing a 
characteristic set selection technique that integrates 
principal component analysis (PCA) and random forest 
(RF), employed a framework featuring five predictor 
models for forecasting. They identified 36 attributes out 
of a total of 136 for categorization17). The XG Boost 
algorithm demonstrated a remarkable success rate of 98% 
in accurately identifying terrorist organizations 
associated with the highest attack rates. The numerical 
exploration of thermo-mechanical coupling has been 
conducted using contemporary computational 
resources18-22). The aim is to illustrate how mechanical 
deformations induce an irregular pressure distribution in 
space, a pattern that varies based on time, speed, and 
specific speed conditions. These deformations are 
additionally complicated by particle tearing, phase shifts, 
and adhesion forces. The coefficient of friction is 
typically empirically characterized through experimental 
investigations23-26). 

Preventing erosion involves rendering a substance 
resistant to it. Enhancing the ease of drainage and 
cleaning for its components can bolster the substance's 
resilience against erosion27). The activation of energy 
within the matrix structure and reinforcing particles 
triggers corrosion when immersed in a heated aqueous 
solution. Corrosion manifests as the substance 
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experiencing heat cracking and dissolution 28). The 
corrosion rate in AlMMNCs increases with higher 
energy activation levels29). Employing electroplating and 
coating procedures with non-corrosive materials on the 
composite surface during exposure to hot aqueous 
solutions reduces the likelihood of energy activation30). 

The exploration of innovative approaches to enhance 
the surface quality of metallic components has been 
driven by the pursuit of advanced manufacturing 
techniques. Surface quality plays a pivotal role in 
influencing the performance, longevity, and aesthetics of 
engineered parts, particularly in industries like aerospace, 
automotive, and precision machinery. One notable 
mechanical surface enhancement technique, known as 
burnishing, has gained recognition for its ability to 
enhance surface finish, reduce roughness, and improve 
the mechanical properties of materials, particularly 
aluminium alloys. This study focuses on the intricate 
dynamics of the burnishing process, with a specific 
emphasis on its application to aluminium alloy materials. 
Aluminium alloys are widely utilized in various 
industrial applications due to their advantageous 
properties, including lightweight construction, high 
strength, and resistance to corrosion. To delve into the 
complexities of the burnishing process, we employ a 
state-of-the-art methodology inspired by Artificial Neural 
Networks (ANNs). Artificial Neural Networks, which 
fall under the domain of machine learning and artificial 
intelligence, offer the capability to model intricate, 
nonlinear relationships within data. Consequently, they 
serve as invaluable tools for studying complex processes 
like burnishing. In this context, we harness ANNs to 
establish a comprehensive understanding of how diverse 
input parameters, such as force, speed, and tool material, 
impact the surface quality of aluminium alloy 
components during the burnishing process. This research 
not only holds the promise of enhancing the 
manufacturing industry's ability to produce high-quality 
aluminium components but also contributes to the 
broader realm of materials science and manufacturing 
technology. As the demand for lightweight, 
high-performance materials continues to grow, a deeper 
comprehension of surface quality optimization through 
novel techniques becomes imperative. The discoveries 
from this study are well-positioned to drive 
advancements in manufacturing processes, leading to 
more efficient and cost-effective production methods that 
yield superior surface finishes for aluminium alloy 
components. 

 
3.  Materials and method 

The work piece was held in the lathe's chuck and 
guided from the other side. Table 1 provides further 
information. Burnishing is done without removing the 
work piece from the lathe alignment. 

The goal of the studies is to see how a new burnishing 
tool affects the final surface texture (roughness). 

Burnishing characteristics such as circumferential area of 
work piece, ball material (hardness), work piece material 
(hardness), burnishing speed, cutting feed, burnishing 
force, ball diameter, cutting fluid, and gravity 
acceleration are also investigated. Table 1 lists the 
characteristics and conditions for burnishing. The quality 
of the surface created in this study is carefully assessed 
later in the procedure. 

Surface Tester was used to assess the quality of 
burnished specimens. The measurements were taken 
using an adjusted metre with an 8 mm cut-off length 
across the lie. For each part utilized in the trials, all 
readings of surface quality (Ra) were obtained, and 
average values were determined. Figure 2 depicts the 
experimental set-up. The quality of the surface Ra, i.e. 
average roughness, is assessed during the burnishing 
procedure. Instruments used for experimentation are used 
to measure En and T. This configuration provides the 
following benefits: Because the normal force is constant 
and regulated by a circular depth nut, the procedure is 
repeatable.  

 
Table 1. The condition for the super finishing procedure.   

Control factors values 

Burnishing force (FB),N 
 39.23,77.38 and 

110.71 
Burnishing speed(μB), rpm 342, 564 and 840 

Cutting feed (f),mm 0.1, 0.2 and 0.3 
No. of pass 1, 2 

Burnishing condition 
Lubricant 

(Kerosene) 

 

 
Fig. 2: Operation carried out on Lathe machine using 

burnishing tool 
 

High-quality drawings and photographs are preferred. 
Furthermore, it is crucial that all of the figure numbers 
and letters be of a high caliber, easily readable, and 

–10 pt).  
 

3.1  Experimental procedure 
Experiments were conducted based on a 

predetermined plan, aiming to evaluate the effects of 
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machining parameters on aluminium alloy operations. 
Data obtained from these experiments were utilized to 
assess the effects of different variables on surface quality, 
energy consumption, and processing time. During the 
experimental phase, an aluminium alloy work piece was 
subjected to three distinct settings for speed, feed rate, 
burnishing force, and two passes. The experimental 
analysis encompassed the examination and assessment of 
surface quality, energy consumption, and processing 
time.  

 
Fig. 3: Experimental setup of burnishing tool. 

 
Burnishing is done with the ball burnishing tool 

depicted in Fig. 1.  In the course of developing a 
mathematical model for aluminium alloy "operation and 
analysis," work piece samples of similar sizes were 
collected for experimentation. The burnishing purpose of 
the experiments was to establish a mathematical model 
for the behaviour of Aluminium Alloy-6351. Fig. 2 
shows the processing steps for measuring the force tool 
dynamometer. Experimental setup of burnishing tool is 
shown in Fig. 3. The observed values of surface 
processing quality, En, and T are documented for 
mathematical model development. Twelve different 
process parameters were changed, and observations were 
obtained at 340, 560, and 800 rpm for the same sizes. 
Seventy trials were created using the design of 
experimentation using a sequential classical plan, which 
is commonly used in engineering applications. The goal 
of the studies is to discover a correlation between 9 
independent process parameters and Ra, E, and t 
dependent responses. Trials were carried out by changing 
all independent parameters with a fixed one at the same 
time. As a result, dimensional analysis was used to 
decrease all "nine independent process parameters." 
Buckingham's theorem was used to create dimensionless 
terms for process parameter reduction. This method aids 
in a better understanding of how changes in any one 
process parameter of a term effect E, Ra, and t response. 
This method may also be used to find "the amounts of 
parameters that lead to the greatest, lowest, and optimal 
response." Dimensional Analysis is used to create an 
approximate generalized experimental data base model. 

4.  Model Formulation 
Artificial Neural Networks (ANNs) have become 

integral in various engineering fields due to their ability 
to model complex systems. In surface engineering, 
ANN-driven approaches are increasingly utilized to 
optimize and predict outcomes in processes like 
burnishing. Burnishing is a surface finishing technique 
that involves plastic deformation of a workpiece surface 
using a hard tool to enhance properties such as roughness, 
hardness, and wear resistance. Integrating ANNs with 
burnishing processes offers a promising route to improve 
surface quality and efficiency. This paper delves into the 
application of ANN for optimizing burnishing processes, 
emphasizing its capacity to model and predict the effects 
of process parameters on surface quality. ANNs enable 
researchers and engineers to understand the intricate 
relationships between input parameters (e.g., tool 
material, speed, pressure) and output variables (e.g., 
surface roughness, hardness). By leveraging ANN-driven 
approaches, burnishing processes can be optimized to 
achieve desired surface characteristics, enhancing the 
performance and longevity of engineered components. 
The parametric study conducted in this research focused 
on investigating the effects of various key parameters on 
the surface quality of aluminium alloy (Al Alloy) work 
pieces during the burnishing process. The analysis of the 
results reveals valuable insights into the relationship 
between these parameters and the resulting surface finish. 
In this study, several machining parameters were 
considered, including burnishing speed, feed rate, and 
tool material. These parameters were related to the 
surface roughness of aluminum alloy 6351 through 
experimentation and statistical analysis. The burnishing 
speed refers to the speed at which the burnishing tool 
traverses the surface of the workpiece, affecting the 
amount of material deformation and surface finish. The 
feed rate is the rate at which the burnishing tool is moved 
across the workpiece surface, influencing the amount of 
material displacement and surface texture. The tool 
material, which can vary in hardness and surface finish, 
also plays a role in determining the surface roughness of 
the aluminum alloy. By systematically varying these 
parameters and measuring the resulting surface 
roughness, researchers were able to establish empirical 
relationships between the machining parameters and the 
surface quality of aluminum alloy 6351, providing 
valuable insights for optimizing the burnishing process 

The surface quality pattern was used to replicate the 
burnishing process using optimization, sensitivity 
analysis, and Artificial Neural Networks (ANNs) in 
several steps. Firstly, data on the burnishing process 
parameters and corresponding surface quality 
measurements were collected. Then, an ANN model was 
developed to establish the relationship between the input 
parameters and surface quality. The ANN model was 
trained to predict surface quality based on the input 
parameters. Optimization algorithms, such as genetic 
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algorithms or particle swarm optimization, were 
employed to find the optimal set of input parameters for 
achieving the desired surface quality. Sensitivity analysis 
was performed to identify the most influential input 
parameters on surface quality, guiding the optimization 
process. The optimized input parameters obtained from 
the ANN-driven optimization process were then used to 
replicate the burnishing process, ensuring that the desired 
surface quality was achieved. Finally, the replicated 
burnishing process was validated by comparing the 
predicted surface quality with the actual measured values, 
ensuring the accuracy and reliability of the ANN model 

and the optimization process. 
All of the terms involved (dependents and 

independents) in model construction. For such a setting, 
"correlation is nothing more than a mathematical model 
as a design tool." Processing Energy (E) was represented 
in the function form as Processing Energy (E) according 
to dimensional analysis. 

 
 

  
 

 R = K. g HH  A .g f. g D .g . g. F … … … … … . . (Equn 1) 

E = K. F . g HH  A .g f. g D .g . g. F … … … … … . . (Equn 2) 

t = K. ( . ) HH  A .g f. g D .g . g. F … … … … … . . (Equn 3) 

 
5. Reduction Variables 

The optimization of the burnishing process to 
achieve desired surface characteristics is crucial in 
surface engineering. Artificial Neural Networks 
(ANNs) have emerged as valuable tools for modeling 
and predicting outcomes in burnishing processes. A 
key aspect of utilizing ANNs effectively is the 
selection of relevant input variables, known as 
reduction variables, which significantly impact the 
output quality. Reduction variables play a vital role in 
simplifying the complexity of the burnishing process  
by focusing on the most influential factors. By 

 
identifying and selecting these variables, researchers 
and engineers can enhance the efficiency and accuracy 
of ANN-driven burnishing models. This paper explores 
the significance of reduction variables in ANNs for 
optimizing burnishing processes, with a focus on how 
they contribute to improving surface quality and 
process efficiency. Buckingham's theorem was used to 
reduce the number of variables. According to evidence, 
taking the multiplications of the terms will likewise be 
a dimensionless number and so a term. Less term were 

terms, and the resulting mathematical equations.  

 
0Ra4= Mathematical Equation for Processing Quality of surface (Ra4): 

= 92.38. g HH .  A .g . f. g . D .g . . g. F . … … … . (Equn 4) 

0E4 = Mathematical Equation for Energy (E4): 

= 2.7X10 . F . g HH .  A .g . f. g . D .g . . g. F . … … . . (Equn 5) 

0t4= Mathematical Equation for Processing time (t4): 

= 43.072. ( . ) HH .  A .g . f. g . D .g . . g. F . … … … (Equn 6) 

 
6.  Optimization and parameter 

Finding the best solution for a set of objectives while 
staying within limits is what optimization of 
aluminium alloy operations is all about. The goal of 
this study was to reduce the quality of the surface by  

 
 

 
processing energy and time, with the restrictions being 
jump values of terms. We employed a linear 
programming method that was described in full below. 
There was no discernible relationship between the 
various factors. On the basis of experiments, the 
dependent parameters 0Ra1, 0E1, and 0t1, pertaining to 
Ra, E, and t, were rated as "carry an intricate 
relationship with remaining" terms (ie.1to5). 

-932-



Optimizing Aluminium Alloy Surface Quality with ANN-Driven Burnishing: Machining Parameters and Durability Study 

 

 
Fig. 4: ANN topology 

The highest value of '1' corresponds to 0Ra4, while 
'2' is the maximum value for 0E4, and '4' reaches its 
peak at 3.7046. In this model, the most significant 
terms are '1,' which represents the relationship between 
the workpiece hardness-to-ball material ratio, '2,' 
associated with the workpiece area and burnishing 
speed, and '4,' related to the product diameter of the 
ball and burnishing speed. The positive index indicates 
that the workpiece hardness-to-ball material ratio 
exerts a considerable impact on 0Ra4, 0E4, and 0t4.  

 

 
Fig. 5: Comparing the operation of experimental approaches, 

mathematical methods, and ANN models. 
 

 
Fig. 6: Comparing the operation of experimental approaches, 

mathematical methods, and ANN models. 

 
Fig. 7: Comparing the operation of experimental approaches, 

mathematical methods, and ANN models 
 

The estimated surface quality of the aluminum alloy 
after burnishing was based on the predictions of the 
Artificial Neural Network (ANN) model developed in 
the study. This model used input parameters such as 
burnishing pressure, speed, and tool material to predict 
surface quality metrics like surface roughness, 
hardness, and wear resistance. To experimentally 
confirm the estimated surface quality, the researchers 
conducted a series of burnishing experiments using the 
optimized parameters obtained from the ANN model. 
After the burnishing process, the surface quality of the 
aluminum alloy was evaluated using various 
metrological techniques, including surface roughness 
measurement, surface hardness testing, and 
microstructural analysis. These techniques provided 
quantitative and qualitative data on the surface quality, 
allowing for a comparison between the predicted and 
actual values. 

By comparing the predicted surface quality with the 
experimentally confirmed values, the researchers were 
able to validate the accuracy and reliability of the ANN 
model in predicting surface quality after the burnishing 
process. This validation process ensured that the 
optimized parameters obtained from the ANN model 
could be used to reliably replicate the burnishing 
process and achieve the desired surface quality in 
aluminum alloys. 

The results of this research significantly contribute 
to the understanding of burnishing parameters and their 
effects on aluminum alloy surface quality by providing 
empirical data and insights. Through experimentation 
and analysis, the researchers were able to identify the 
optimal combination of parameters such as pressure, 
speed, and lubrication for achieving desired surface 
qualities like smoothness, hardness, and wear 
resistance in aluminum alloys. Furthermore, the use of 
Artificial Neural Networks (ANNs) allowed for the 
development of predictive models that accurately 
forecast surface quality outcomes based on specific 
parameter settings. This not only enhanced the 
efficiency of the burnishing process but also facilitated 
a deeper understanding of the complex relationships 
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between input parameters and surface quality. Overall, 
the research outcomes provide valuable guidance for 
industries seeking to optimize their burnishing 
processes and improve the quality and performance of 
aluminum alloy components. By identifying the key 
parameters and their effects on surface quality, this 
research paves the way for more efficient and effective 
surface finishing processes in aluminum alloy 
applications. 

One of the critical parameters examined was the feed 
rate during the burnishing process. Our experimental 
data indicates a significant impact of feed rate on 
surface quality. A lower feed rate resulted in a 
smoother surface finish due to increased contact time 
between the tool and workpiece. Conversely, higher 
feed rates produced a rougher surface due to reduced 
contact time and increased tool pressure. This finding 
emphasizes the need for careful selection of the feed 
rate to achieve the desired surface quality in Al Alloy 
burnishing10). Furthermore, the choice of burnishing 
tool material also played a crucial role in determining 
surface quality. Tungsten carbide tools exhibited 
superior performance compared to other materials 
tested. This result can be attributed to the exceptional 
wear resistance and hardness of tungsten carbide, 
which resulted in reduced tool wear and a smoother 
surface finish. 

Spindle speed had a notable influence on surface 
quality as well. Our results indicated that a moderate 
spindle speed was optimal for achieving a fine surface 
finish. Extremely high speeds led to excessive heat 
generation and surface defects, while very low speeds 
resulted in inadequate surface improvement. This 
finding underscores the importance of carefully 
controlling spindle speed to achieve the desired surface 
quality during Al Alloy burnishing. Cast iron, 
aluminium-silicon (Al-Si) alloys, and some composite 
materials are now the primary materials employed in 
piston manufacturing. The automotive and aerospace 
sectors are progressively adopting hypereutectic Al-Si 
alloys31). 

 The initial surface roughness of the workpiece also 
played a role in the burnishing process. Workpieces 
with a higher initial surface roughness exhibited 
greater improvement in surface quality during 
burnishing compared to those with already smooth 
surfaces32-35). This outcome suggests that burnishing is 
particularly effective in enhancing the surface quality 
of Al Alloy components with inherent surface 
imperfections. In addition to visual inspection, surface 
integrity was evaluated through measurements of 
surface roughness, micro-hardness, and micro-structure 
analysis. The results demonstrated a clear correlation 
between the studied parameters and these surface 
integrity factors36). Lower surface roughness values and 
improved micro hardness were consistently associated 
with the optimized parametric settings. Innovative 

hybrid composites including aluminium matrix have 
markedly increased fatigue resistance, specific stiffness, 
and wear resistance. Hybrid composite elements are 
manufactured in greater quantities, which lead to a fall 
in their prices and an expansion of their applications. 
Applications of aluminium hybrid composites are 
examined with an emphasis on the automobile 
sector37-43). The research presents a thorough 
investigation into enhancing the surface quality of 
aluminum alloys using Artificial Neural Networks 
(ANN) driven burnishing. This study has yielded 
several key findings. Firstly, the application of ANN 
for predicting optimal burnishing parameters has 
shown promise44). The ANN model effectively 
predicted machining parameters needed to achieve 
desired surface quality metrics like roughness and 
hardness. Secondly, the durability study conducted in 
this research provides valuable insights into the 
long-term performance of the optimized surface 45,46). 
The results suggest that the surface quality 
improvements achieved through ANN-driven 
burnishing are durable and can withstand various 
environmental and mechanical stresses. This research 
highlights the effectiveness of using ANN-driven 
burnishing to optimize aluminum alloy surface quality. 
These findings offer significant implications for 
industries aiming to improve the performance and 
durability of aluminum alloy components, providing a 
reliable and efficient method for achieving superior 
surface quality 47). 

 
7. Conclusions 

Surface quality is crucial for the performance and 
durability of metal components in various industries. 
Burnishing, a popular finishing method, is effective in 
enhancing surface quality, especially for aluminum 
alloys. This research introduces a novel approach using 
Artificial Neural Networks (ANNs) to improve surface 
quality during the burnishing process of aluminum 
alloys. The study considers machining parameters and 
their effects on aluminum alloy material 6351 using a 
lathe. A mathematical model is developed to predict 
variable surface roughness. The surface quality 
achieved after the machining process is then used for 
ball burnishing. The surface quality pattern is 
replicated using optimization, sensitivity analysis, and 
ANN. The surface quality parameters on the aluminum 
alloy after burnishing are estimated using a ball and 
experimentally confirmed at 1.73164 m. The results 
provide insights into the complex relationship between 
burnishing parameters and aluminum alloy surface 
quality. This research contributes to the development 
of more efficient and cost-effective finishing processes 
for aluminum alloys. 

The current research has generated dimensionless 
correlations for assessing burnishing performance on 
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aluminium alloy. Based on experimental results, 
dimensional correlations for surface quality and other 
dependent, independent variables have been 
constructed. Dimensional analysis reveals that surface 
quality is primarily influenced by the combination of 
the material hardness-to-ball material ratio, work piece 
area in relation to burnishing speed, burnishing force, 
and the ball diameter relative to the impact of cutting 
fluid. In the context of aluminium alloys under current 
conditions, mathematical models specific to aluminium 
alloys were formulated. These mathematical models 
appear to offer a viable approach for calculating 
dependent variables based on a given set of 
independent terms, utilizing estimated percentage 
values. 
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