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Abstract: Landmines are underground explosive devices that explode when humans, vehicles, 
or animals pass them. Manual landmine detection is dangerous, time-consuming, and limited in 
difficult terrain. Mobility, flexibility to different terrains, precision, and real-time data processing are 
essential for landmine detection robots (LDR). Advanced sensor fusion and machine learning 
methods improve detection accuracy. Real-time data processing allows fast analysis and decision-
making for mine detection and safe demining. Remote operation and autonomous functionalism 
improve these robots' productivity and safety, reducing human exposure to dangerous locations. The 
various kinds of LDR are described and illustrated in this article. The design considerations that 
render these robots appropriate for these duties have been prioritized. The necessary components and 
methods for autonomous navigation have been examined in light of the landmine detection 
mechanism and technologies.  

 
Keywords: Landmine Detection Robot; Navigation; GPS; Vision Camera; All Terrain Robot. 

 

1.  Introduction  
Landmines are hidden explosive charges strategically 

used in military operations to hinder enemy advancement 
by causing injuries rather than immediate fatalities. In 
times of war, buried landmines play a crucial role, posing 
significant threats even after the conflict's end, 
particularly for civilians. Landmines remain a persistent 
problem in 78 nations, presenting a formidable challenge 
for mobile autonomous robots designed for the tasks of 
detection and removal 1 . These deadly devices not only 
endanger soldiers but also have severe implications for 
agricultural lands, water reservoirs, and the development 
of roads near borders. Landmines are triggered by various 
mechanisms, often relying on the weight of an object to 
set them off.  Depending on the type, these explosives 
may require a minimum pressure of nine kilograms, 
buried at depths of 10 to 40 mm. Their strategic placement 
in patterns, such as the Zigzag pattern, aims to impede 
enemy movements and divert them into ambush zones 2 . 
The process of clearing mines is extremely hazardous, 
with statistics showing that for every 5,000 mines 
removed, one person is killed, and two others are injured. 

Removing these mines can be exceptionally costly, as it 
may take 50 times the original mine's price to eliminate 
each one safely 3 .  Startling statistics from the United 
Nations reveal that over 100 million landmines are hidden 
underground across 60 countries, resulting in a tragic toll 
of 10,000 deaths and 20,000 injuries annually 4 . 
Removing these landmines from affected areas 
traditionally involves extensive human labor, time, and 
effort. Trained animals have been utilized in the demining 
process to verify and clear affected regions. Mobile 
autonomous robots have emerged as a potential solution 
due to their lower error rates, resilience to environmental 
conditions, and higher accuracy compared to humans. 
Mobile robots for landmine detection have been 
developed and utilized in the last few decades. Such as 
HUMI a six-wheeled robot (HUMI – Robot for 
Humanitarian Demining) based on the Ackermann 
Geometry for movement in rough terrain, for landmine 
detection and removal. A comprehensive research survey 
has been conducted to explore various landmine detection 
technologies, including electromagnetic induction, 
ground-penetrating radar, nuclear quadrupole resonance, 
Infrared (IR), hyperspectral methods, and Electric 
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impedance tomography 5 . 

 
2.  Robot Design 

Robot vehicles exhibit diverse characteristics that allow 
for their classification based on various parameters. These 
parameters include their type of locomotion, the mode of 
operation, and the terrain they navigate. In terms of 
locomotion, robots may be equipped with wheels, tracks, 
legs, or a combination of these, influencing their mobility 
and adaptability to different environments 6 . Many 
current designs incur high costs, but certain robot designs 
can be rendered cost-effective when tailored for small-
scale applications and testing purposes 7 . 

The mode of operation further distinguishes robot 
vehicles, with a primary division into autonomous and 
non-autonomous categories. Autonomous robots operate 
independently, relying on sensors, algorithms, and 
artificial intelligence to make decisions and navigate their 
surroundings 8 . On the other hand, non-autonomous 
robots require external guidance or control from human 
operators. 
 
2.1  All-Terrain Robots  

Terrain adaptability is a crucial aspect of the design and 
functionality of robotic vehicles, referring to their ability 
to navigate and operate effectively across different types 
of landscapes and environmental conditions 9 . A robot's 
terrain adaptability is determined by its capacity to handle 
variations in surfaces, obstacles, and inclines that may be 
encountered during its tasks. Robots with high terrain 
adaptability are equipped with features such as specialized 
wheels, tracks, or legs, as well as advanced sensor systems 
for environmental perception 10 . This adaptability allows 
them to excel in diverse terrains, including rough, uneven, 
or challenging environments like mountains, forests, 
deserts, and urban landscapes.  

Wheels play a crucial role in achieving traction on 
rough terrains. Off-road tires are commonly employed in 
many robots for enhanced performance in challenging 
environments. In contrast, applications such as flying 
robots, swarm robotics, and mobile robots often utilize 
omni-directional wheels to enable versatile and precise 
movement 11 . 

All-terrain robots embody an impressive fusion of 
technological innovation and adaptability, purpose-built 
to effortlessly traverse diverse landscapes. These versatile 
machines feature robust suspension systems and advanced 
sensor suites, including LiDAR and cameras, enabling 
them to navigate through rough, uneven, and challenging 
terrains with ease 12 . From rocky surfaces to dense forests, 
these robots showcase exceptional mobility and agility, 
proving indispensable in applications like search and 
rescue missions and planetary exploration. Their 
articulated chassis and adaptive features empower them to 
dynamically surmount obstacles, demonstrating resilience 
in the face of unpredictable environmental conditions. The 

versatility of all-terrain robots extends beyond conquering 
various landscapes; it lies in their capacity to operate 
autonomously, and efficiently executing tasks in 
environments where human access might be limited or 
hazardous. As technological advancements persist, these 
robots play a pivotal role in extending the reach of 
exploration, disaster response, and scientific research to 
new frontiers. Moreover, the independent suspension 
systems implemented in All-terrain robots can operate 
individually, providing adaptability when traversing 
uneven terrains, as discussed in 13 .  

Engineers and researchers employ Finite Element 
Analysis (FEA) for a detailed examination of the 
structural and mechanical behavior of all-terrain vehicles. 
FEA offers insights into stress distribution, deformation, 
and potential failure points, facilitating design 
optimization for robust performance across diverse 
terrains 14 . 

 
2.2  Mode of Operation  

The mode of operator refers to how a robotic system is 
controlled or operated, delineating the level of human 
involvement in guiding or overseeing the machine's 
actions. There are two primary modes of operator control: 
autonomous, and teleoperated. Many roboticists leverage 
ROS (Robot Operating System) as middleware to achieve 
both autonomous and manual control, employing various 
control devices, including gaming consoles 15 . 

 
2.2.1  Autonomous 

In autonomous mode, the robot functions 
independently without direct human intervention. It relies 
on a combination of pre-programmed algorithms and real-
time sensor data to make decisions and navigate its 
environment. Autonomous robots are capable of 
performing tasks without continuous input from a human 
operator, making them well-suited for applications such as 
automated exploration, agriculture, and search and rescue.  

The utilization of autonomous systems in Automated 
Guided Vehicles (AGVs) significantly diminishes labor 
intensities 16 .  
 
2.2.2  Teleoperated/ Manuel Operate 

Teleoperated mode involves the remote control of the 
robot by a human operator. The operator uses a connected 
device to send commands to the robot, guiding its 
movements and actions in real-time. This mode is 
particularly useful in scenarios where human judgment 
and dexterity are essential, such as in hazardous 
environments 17 . 

 
2.3  Wheeled Robots 

Robot vehicles can be classified according to their 
mobility, a classification primarily influenced by the type 
of wheels employed. The selection of wheels is contingent 
upon the particular demands of the robot's designated 
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purpose and the nature of the terrain it is engineered to 
traverse. Below are various classifications of robot 
vehicles based on their wheel configurations. Wheeled 
robots are autonomous machines specifically crafted to 
navigate surfaces by employing motorized wheels as their 
primary mode of propulsion. The classification of a 
wheeled robot is based on the number of wheels it 
possesses, encompassing categories such as two-wheel, 
four-wheel, six-wheel, and so on. 

 
2.3.1  Two-Wheel Robot 

Due to its inherent ability to balance itself and adeptly 
navigate around holes and small obstacles, a two-wheel 
robot possesses a significant advantage when traversing 
on terrain. 

 
2.3.2  Four-Wheel Robot 

Four-wheel robots commonly referred to as a wheeled 
mobile robot (WMR), represents a robotic platform 
characterized by the use of four wheels for its mobility. 
These robots exhibit a diverse range in size, spanning 
from compact hobbyist platforms to larger and more 
advanced industrial or research-oriented robots. Four-
wheel robots commonly feature a square or rectangular 
frame, incorporating two wheels on each side of the 
chassis. The wheels are typically powered by electric 
motors, which may be either brushed or brushless, 
depending on the specific application 18 . 

Numerous 4-wheel robots employ a differential drive 
system. They are allowing independent control of the 
wheels on each side. This facilitates turning by adjusting 
the speed of the wheels on either side. 

 
2.3.3  Six-wheel Robot 

A six-wheel robot, often referred to as a hexapod or 
hexarotor, is a robotic platform equipped with six wheels 
for mobility. This configuration provides enhanced 
stability 19  and adaptability, enabling these robots to 
navigate over uneven terrain, stairs, and obstacles. Similar 
to 4-wheel robots, hexapods may use a differential drive 
system, allowing them to turn by varying the speed of the 
wheels on each side. 

 
2.4  Tracked Robots 

Tracked robots are robotic vehicles equipped with 
continuous tracks instead of wheels for mobility. Tracks 
provide stability on uneven terrain and enhance traction, 
allowing tracked robots to navigate through mud, sand, 
snow, and other challenging environments. 

Tracked robots are well-suited for outdoor and rough 
terrain applications, including rocky landscapes, 
construction sites, and disaster-stricken areas. Tracked 
robots can often carry heavier payloads compared to 
wheeled robots, making them suitable for tasks requiring 
equipment or sensors with substantial weight.

2.5  Hybrid Robots (wheel track) 
Hybrid robots, integrating both wheel and track systems, 

present a distinctive fusion of benefits by merging the 
stability and efficiency associated with wheels and the 
terrain adaptability offered by tracks. This innovative 
design enables the robot to dynamically adjust its 
locomotion method in response to the encountered terrain. 
When navigating smooth surfaces, the robot can leverage 
wheels for optimal efficiency, while it seamlessly switches 
to tracks for negotiating rough or uneven terrains.  

Equipped with an array of sensors including cameras, 
LiDAR, and proximity sensors, the robot can intelligently 
assess the terrain, facilitating the automatic determination 
of the optimal mode of locomotion. Wheeled mobile 
robots have become a preferred choice due to their 
significant advantages over alternative locomotion types 
like legged or tracked systems 20 . The appeal of wheeled 
robots lies in their simple mechanical structure, which 
facilitates ease of design and maintenance. Furthermore, 
they are highly energy-efficient, conserving power and 
ensuring longer operational duration. Wheeled robots are 
known for their agility, achieving impressive speeds that 
enable swift and efficient traversal across a variety of 
terrains. Another notable advantage is their inherent 
stability, which contributes to smoother and safer 
navigation. This stability is precious when operating in 
unpredictable or challenging environments. Moreover, 
wheeled mobile robots offer a level of control simplicity 
that streamlines their operation and maintenance. As a 
result, these characteristics collectively position wheeled 
mobile robots as a practical and effective choice for 
various applications, including autonomous landmine 
detection. 

The decision control system manages the robot's 
decision-making processes. However, the linchpin of the 
system's autonomous navigation is the sensor component, 
with LIDAR serving as the pivotal element for perceiving 
and comprehending the robot's environment. This sensory 
input is paramount for the robot's ability to navigate and 
respond intelligently to its surroundings 21 . A bio-mimetic 
robot like the hexapod robot is an excellent choice for 
fulfilling complex movement requirements 22 . 
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Table 1. Design and Mechanisms Overview 

Author’s Name Mechanisms for Locomotion Advantages Future Improvements 
P. Kopacek et al. 1  Six-wheeled robot with 

Ackermann geometry 
-Asymmetric wheelbase enables 
equal weight distribution. 
-Uniform weight distribution 
with individual wheel drive 

-Need improvements in 
driving capability in dense 
vegetation. 

A. Mohammad et al. 4  Combination of two bogie 
mechanisms with differential gear 
drive 

-Suspension is use to improve 
stability of system 
-Uniform distribution of the 
load on each wheel 

-Improvements in design of 
robot to enhanced durability 
 

Z. Li et al. 6  The transformable track 
mechanism with driving wheels 

-self-adaptive mechanism for 
locomotion 
-Overcoming obstacle of 
different height by wheels and 
track   

-Future work related to the 
obstacle-negotiating 
performance 
of the robot 

B. Hamed et al. 8  parallel wheeled-differential drive 
method with two driving wheels 

-Minimum size of robot 
- Mechanism is capable for fast 
locomotion  

-Changes in autonomy of 
robot and weight reduction is 
required  

J. Zhao et al. 9  Wheel-legged hybrid robot -Robot with wheel and leg 
combine structure 
-Vehicle adapts the variety of 
complex road conditions 

-Improvements related to 
structural design as it requires 
high control ability 

A. Verma et al. 10  Rocker bogie suspension and 
differential drive mechanism  

-System with spring 
suspensions  
-Design is simpler and more 
reliable 

-Design improvements 
needed aims to increase the 
payload 
 

C. Kannan et al. 18  Four-wheel-drive transmission 
for all terrain vehicle 

- Four-wheel driveline has high 
performance on rough terrain 
-Two drive modes such as four-
wheel drive and two-wheel 
drive. 

-Further innovations include 
the introduction of actuators 
to engage the shifting 
mechanism. 

M. P. Mann et al. 19  Six-wheel robot with Rocker 
bogie mechanism 

-Analysis of dynamic stability 
of rocker bogie vehicle 
-Dynamic stability measure 
used for the maximum 
allowable speed of the vehicle. 

- Future analysis with 
complex tire-soil interaction 
model of robot 

P. Santana et al. 20  Four-wheel robot with 
Ackermann steering method. 

-Multiple locomoting modes 
-Characteristic of high mobility 
enables low friction 

-Improvements in the all-
terrain capability of robot 
 

S. Pecolt et al. 23  Rocker bogie suspension and 
differential drive mechanism 

-Efficient and cost-effective 
mechanical construction 
-Individual wheel drive   

-Required Materials with high 
Strength  

V.S. Panwar et al. 24  Four-wheeled drive for floor 
cleaning robot 

-It has a simple mechanical 
structure. 
-Four-wheel drive with 
capability to move on wet and 
dry surfaces 

-Further improvements can 
lead to compact design of 
robot. 

 
3.  Autonomous Navigation 

 The concept of autonomous navigation is fundamental 
to the success of robotics in a wide range of applications 
including landmine detection 25 . Autonomous robots 
equipped with the ability to navigate independently 
without human intervention offer significant advantages 
in terms of efficiency and adaptability. Autonomous 
Mobile Robots (AMRs) have revolutionized various 

industries by their ability to autonomously create maps of 
their environments and navigate while efficiently 
avoiding obstacles 26 . 

 
3.1  Sensors 

In the realm of landmine detection, the application of 
autonomous navigation is particularly significant. A 
central challenge in the development of AMRs is the 
selection of appropriate sensors like GPS, LiDAR, 
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Camera etc. for autonomous navigation. The sensors play 
a pivotal role in perceiving the robot's surroundings and 
providing real-time data for decision making. Designing a 
robot for outdoor environments presents unique 
challenges, as the mechanics of the robot must contend 
with environmental stresses and the unpredictable 
conditions inherent to outdoor settings. This reality 
necessitates a more complex mechanical design in 
comparison to robots built for indoor use. The ability to 
navigate autonomously in outdoor environments is a core 
challenge faced by developers in the field. 

 

Fig. 1: Sensors used in Navigation System 

 
3.1.1  LiDAR 

LiDAR (Light Detection and Ranging) technology is a 
critical component in robotic navigation systems, 
providing invaluable information for accurate 27  and 
efficient movement in various environments. LiDAR 
sensors emit laser beams and measure the time it takes for 
the light to bounce back after hitting objects, creating 
detailed 3D maps of the surroundings 28 . In terms of 
navigation, LiDAR enables the precise detection of 
obstacles, allowing robots to perceive and navigate 
through complex terrains with a high level of accuracy 29 . 
These sensors excel in challenging environments, such as 
low-light conditions or situations with limited visibility. 
The 3D mapping capabilities of LiDAR contribute to 
obstacle avoidance 30 31 , path planning, and localization, 
providing robots with a comprehensive understanding of 
their surroundings. This technology is particularly 
valuable for autonomous vehicles, drones, and robots 
operating in environments where visual information alone 
may be insufficient 32 . LiDAR’s ability to generate real-
time, detailed maps enhances the safety and reliability of 
robotic navigation, making it an integral component in 
advancing the autonomy and adaptability of robotic 
systems. 

 
3.1.2  Camera 

Cameras play a pivotal role in robotic navigation by 
providing crucial visual information those aids in 
perceiving 33  and interpreting the surroundings. These 
sensors serve as the “eyes” of a robot, capturing real-time 
images or video feeds that are then processed by 
sophisticated computer vision algorithms 34 . In the 

context of navigation, cameras contribute to tasks such as 
obstacle detection 35 , terrain analysis, and path planning. 
High-resolution cameras enable the robot to identify and 
recognize objects, obstacles, and landmarks, empowering 
it to make informed decisions about its movement and 
trajectory. Depth-sensing cameras 36 37 , utilizing 
technologies like stereoscopic vision or time-of-flight, 
enhance the robot's spatial awareness. This capability 
helps the robot gauge distances and navigate through 
three-dimensional spaces. Additionally, cameras can be 
instrumental in localization, aiding the robot in 
understanding its position relative to its surroundings. 
Whether it's an autonomous vehicle discerning road 
features or a planetary rover exploring unfamiliar terrain, 
the information gathered by cameras serves as a 
fundamental component for the successful navigation of 
robotic systems across diverse and dynamic environments 
38 . 

 
3.1.3  GPS 

Incorporating GPS technology into outdoor settings 
represents a crucial step forward in enhancing 
autonomous navigation capabilities 39 . The integration of 
GPS stands as a significant advancement for robots 
operating in challenging terrains. By integrating GPS 
technology into the robot's toolkit, it gains highly precise 
localization allowing for the pinpointing of exact 
geographical coordinates 40 . This level of accuracy is 
indispensable for critical operations such as landmine 
detection 41 , and removal. Furthermore, GPS plays a 
pivotal role in accurately marking the locations of 
detected landmines 42 , ensuring the safe and efficient 
execution of removal procedures. The seamless fusion of 
GPS technology with the robot's autonomous operation 
further fortifies its effectiveness, making it an 
indispensable tool in the ongoing mission to clear 
landmines from hazardous terrains. The Global 
Positioning System (GPS) serves as the preeminent global 
navigation satellite system (GNSS) 43 , operating through 
a constellation of approximately 24 to 32 medium earth 
orbit (MEO) satellites. These satellites emit highly 
accurate microwave signals, facilitating the establishment 
of precise current location, time, and velocity of a GPS 
receiver 44 . Operating at the speed of light, the receiver 
computes distance and position based on the arrival time 
of signals. While creating maps for high-speed vehicles 
necessitates costly, high-end sensors and substantial effort, 
low-speed applications often do not require detailed maps. 
Leveraging open-source software development kits 
(SDKs) and readily available satellite maps on the internet 
provides a practical and economical solution for guiding 
mobile vehicles through extensive, unfamiliar areas.  In 
scenarios where high precision is essential, integrating 
consumer-grade GPS receivers with online maps offers a 
cost-effective alternative for navigating large-scale, 
uncharted terrains. 

NAVIGATION

LIDAR

CAMERA

GPS
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Table 2. Sensors used in navigation system by authors. 

Authors Sensor Description 
S. Pecolt et al. 23  Camera Camera is used for capturing images or videos of the 

surroundings, which can be useful for monitoring, exploration, 
or data collection purposes. 

S. Pan et al. 29  RPLIDAR-A1 LiDAR scan the environment and construct a point cloud map 
A. Krishnan et al. 36   Kinect depth camera Depth camera provide rich and accurate 3D information about 

the environment 
C. Marcu and L. Tamas 42  Camera 

GPS 
Camera images are used to identify key points on the robot 
track, such as landmarks or intersections and GPS provide the 
corresponding coordinates of those points. 

C. M. Revanth et al. 45  LiDAR LiDAR scans the environment and SLAM creates a map. 
J. Beck et al. 46  LiDAR 

Camera 
Lidar is used for scanning environment and camera capture 
visual data in the form of video or image 

R. Krishnamoorthi et al. 47  Camera 
LiDAR 

Camera used to identify road features such as lanes, signs, and 
traffic lights. lidar is used to create accurate 3D maps of the 
environment and provide precise distance measurements. 

J. Godoy et al. 48  Camera 
LiDAR 

Camera is used for tasks such as lane detection, traffic sign 
recognition, and object classification. lidar is used for 
collecting high-resolution, three-dimensional information about 
the surrounding environment. 

S. Harapanahallia et al. 49  Camera Camera is used for obstacle detection and avoidance. Lidar is 
used for map creation. 

3.2  Navigation Algorithms 
Navigation algorithms in autonomous systems play a 

crucial role in enabling devices, robots, and vehicles to 
determine their position, motion 50 , plan routes and 
navigate through environments without human 
intervention. These algorithms often rely on a 
combination of sensors, computational techniques, and 
decision-making processes to achieve their goals. 

 
3.2.1  Mapping Algorithms 

Mapping algorithms are pivotal in robotic and 
autonomous navigation, enabling robots to comprehend 
and maneuver through their surroundings effectively. 
Simultaneous Localization and Mapping (SLAM) is a 
foundational technique that facilitates the creation of maps 
in unknown 51 , and known environments while 
simultaneously determining the robot's position within 
them 52  53 . SLAM algorithms integrate data from diverse 
sensors like cameras, LIDAR, IMU, and wheel encoders, 
employing techniques such as feature extraction, 
matching, data association, and probabilistic filtering for 
trajectory estimation and map construction 54 55 . Grid-
based mapping divides environments into grids 56 , 
maintaining probabilities or semantic information for each 
cell 57 , while feature-based mapping focuses on 
extracting distinct features from sensor data to represent 
the environment. Topological mapping emphasizes 
topological relationships between regions or landmarks, 
while semantic mapping integrates semantic information 
like object categories or room labels. Deep learning-based 
mapping leverages techniques like CNNs 58 , and RNNs to 
process sensor data directly 59  60 , extracting meaningful 

representations for mapping tasks. These algorithms 
continually evolve with technological advancements, with 
the choice of algorithm depending on the robot's sensing 
capabilities, computational resources, and application 
requirements. 
 
3.2.2  Localization Algorithms 

Localization algorithms are pivotal in robotic and 
autonomous navigation systems, allowing robots to 
determine their position within an environment. The 
Kalman Filter, a recursive estimation algorithm, combines 
noisy sensor measurements with a dynamic system model 
to estimate the system's state. Its extended version, the 
Extended Kalman Filter (EKF) 61 , is adept at handling 
nonlinear systems, making it suitable for various robotic 
localization tasks. Particle Filter, also known as Monte 
Carlo Localization (MCL), represents the posterior 
probability distribution of the robot's pose using weighted 
particles, making it effective in non-Gaussian and 
nonlinear environments. Graph-Based SLAM 
(GraphSLAM) formulates localization as a graph 
optimization task, estimating the robot's trajectory and 
landmark positions by optimizing the graph structure 
based on sensor measurements. Scan Matching 
Techniques, such as the Iterative Closest Point (ICP) 
algorithm, align consecutive sensor scans to estimate the 
robot's motion and update its pose accurately. The choice 
of localization algorithm hinges on factors such as sensor 
suite, computational resources, accuracy requirements, 
and environmental conditions, emphasizing the need for 
selecting the most suitable algorithm for specific robotic 
navigation tasks. 
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3.2.3  Path Planning Algorithm 

Path planning algorithms are pivotal in robotic and 
autonomous navigation, allowing robots to navigate from 
their current position to a desired destination while 
avoiding obstacles 62 , and adhering to constraints. 
Dijkstra's Algorithm is a classic choice, efficiently finding 
the shortest path in weighted graphs, albeit it can be 
computationally expensive. Rapidly-exploring Random 
Tree (RRT) and Probabilistic Roadmap (PRM) are 
sampling-based algorithms, with RRT rapidly exploring 
high-dimensional spaces and PRM precomputing a graph 
of connectivity to quickly find feasible paths. Dynamic 
Programming algorithms, such as the Bellman-Ford 
algorithm, offer optimal solutions by breaking down 
problems into simpler subproblems. Potential Field 
Methods model robot motion as an interplay of attractive 
forces toward the goal and repulsive forces from obstacles, 
enabling reactive navigation in dynamic environments. 
A* Algorithm, on the other hand, combines the benefits of 
Dijkstra's Algorithm and greedy best-first search by using 
a heuristic function to guide the search towards the goal 
efficiently. The choice of path planning algorithm depends 
on factors like robot kinematics, environment complexity, 
computational resources, and real-time constraints, 
underscoring the need for selecting 
 the most suitable algorithm for specific robotic 
navigation tasks. 

 
3.2.4  Optimization Algorithm 

Optimization algorithms are fundamental to robotic and 
autonomous navigation, providing solutions for optimal 

paths, efficient decision-making, and improved 
performance. Ant Colony Optimization (ACO), inspired 
by ant foraging behavior 63 , is a metaheuristic algorithm 
applied to combinatorial optimization problems 64 . In 
robotic navigation, ACO aids in tasks like path planning, 
and trajectory optimization, simulating ants' pheromone 
trails to discover shorter paths over time. Differential 
Evolution (DE), another significant algorithm, is a 
population-based technique used for continuous and 
discrete optimization 65 . DE iteratively perturbs and 
combines candidate solutions within a population, 
converging towards global optima in robotic navigation 
tasks such as trajectory optimization and parameter tuning. 
Teaching-Learning-Based Optimization (TLBO), 
modeled after classroom teaching processes, refines 
candidate solutions by simulating knowledge transfer 
among learners and a teacher. TLBO is effective for path 
planning, trajectory optimization, and control parameter 
tuning in robotic navigation systems. Fuzzy Logic, an 
additional paradigm, handles imprecise or uncertain data 
in decision-making processes. It complements 
optimization algorithms by providing robust reasoning 
capabilities, particularly useful in navigating dynamic 66  
and uncertain environments. These algorithms 
collectively empower robots to navigate complex 
environments efficiently, optimize trajectories, and make 
informed decisions 67 , enhancing their ability to explore 
and interact effectively with surroundings. Optimization 
algorithms, such as the Genetic Algorithm, are employed 
to optimize the shortest route, showcasing their role as 
effective tools in route optimization 68 .

 
Table 3. Algorithms used in navigation system by authors. 

Authors Algorithms Description 

A. Sabiha et al. 31  Teaching–Learning-Based 
Optimization (TLBO) algorithm 

TLBO is used for online path planning. 

K. Tsiakas et al. 51  Normal Distributions Transform 
(NDT) SLAM, OpenStreetMap 

NDT-SLAM is used for map generation and 
OpenStreetMap is used for global path planning.  

O. Khan et al. 53  SLAM, Z-Number-Based Fuzzy 
Logic 

SLAM is used for creating map of environment and Z-
Number-Based Fuzzy Logic is used for path planning, 
obstacle avoidance, and decision-making. 

T. Kim et al. 56  RTAB-Map 
A* algorithm 

RTAB-Map is used for mapping and localization 
simultaneously with RGB-D camera data. Modified A* 
algorithm is used for path planning.  

B. Guerreiro 61  SLAM In this article SLAM algorithm is used for creating map in 
GPS-denied environments.  

E. Martinez-Soltero and J. 
Hernandez-Barragan 65  

Differential Evolution (DE) 
algorithm 

DE is used for finding the best path in a complex 
environment based on sensor data. 

Q. Zou et al. 69  SLAM, Gmapping, 
Cartographer. 

In this article SLAM is used for mapping. Gmapping and 
Cartographer both are used for localization. 

M. Munoz-Banon et al. 70  Naive-Valley-Path (NVP), 
OpenStreetMap (OSM). 

NVP is used for local path planning and obstacle avoidance 
and OSM is used for global path planning. 

F. Rovira-Mas et al. 71  Augmented Perception Obstacle This algorithm is used to map using lidar and ultrasonics. 
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Map (APOM) 

Q. Xu et al. 72  SLAM_GMapping, A* 
algorithm 

SLAM_GMapping algorithm is used for creating 
environment map. A* algorithm is used for path planning. 

V. Panwar et al. 73  
 

Generalised Regression Neural 
Network (GRNN) 

GRNN is used for motion planning and control of an E-
puck robot among scattered obstacles. 

V. Panwar et al. 74  Multi-Objective Genetic 
Algorithm 

Multi-Objective GA used to control the velocity of a two-
wheeled robot. This approach allows the robot to navigate 
smoothly while avoiding obstacles.  

S. Singh et al. 75  The Sunflower Optimization 
Algorithm (SFO) 

The Sunflower Optimization Algorithm (SFO) is used for 
motion control and planning of a wheeled robot. SFO is 
inspired by sunflowers capturing solar radiation. 

A. Pandey et al. 76  Particle Swarm Optimization 
(PSO), 
Feedforward Neural Network 
(FNN) 

PSO is used to optimize and fine-tune the feedforward 
neural network (FNN) for obstacle avoidance FNN used to 
controls the differential drive of the Pioneer P3-DX 
wheeled robot. 

V. Panwar et al. 77  Multi-Objective Particle Swarm 
Optimization (MPSO) 
algorithm 

The MPSO algorithm minimizes wheel velocities, allowing 
the robot to cover less distance and reach its goal faster. 

4.  Landmine Detection  
The accurate landmine detection and precise 

localization of landmines are the core of any effective 
landmine detection and removal strategy. A multitude of 
techniques are currently employed in the field of landmine 
detection, each offering unique advantages and challenges. 

These include methods such as electromagnetic 
induction, ground penetrating radar (GPR), nuclear 
quadrupole resonance, infrared (IR) imaging, 
hyperspectral methods, and electric impedance 
tomography. Among these, the use of electromagnetic 
induction sensors has gained prominence due to their 
accessibility and cost-effectiveness. The critical factor 
that significantly influences the performance of a metal 
detector for landmine detection is the distance between the 
sensor head and the ground. By precisely adjusting this 
gap between the landmine and the sensor head, it becomes 
possible to enhance the metal detector's detection 
capabilities and overall performance. Ground Penetrating 
Radar (GPR) undoubtedly excels in landmine detection, 
providing a robust means of identifying buried objects 
with precision. Some advanced landmine detection 
systems employ a dual-sensor approach, with the metal 
detector as the primary sensor for detecting metal-
containing objects, typically associated with landmines, 
and the GPR as the secondary sensor for target 
identification. However, the challenge of unwanted 
scattered waves presents itself in this configuration, 
potentially degrading the quality of GPR data and 
complicating its analysis. Mitigating this interference is 
pivotal for achieving accurate and reliable landmine 
detection results, prompting ongoing research into 
advanced signal processing techniques to optimize the 
performance of these dual-sensor systems 78 . Enhancing 
the accuracy of landmine detection involves sensor fusion, 
the integration of multiple sensor techniques to achieve 
improved detection rates, reduced false alarms, enhanced 

discrimination capabilities, and robust algorithms, with a 
particular focus on anti-personnel landmine (APL) 
detection. Various sensor fusion algorithms, both decision 
level and feature-based, are employed to combine data 
from different sensors, ultimately leading to a more 
effective and reliable landmine detection system. Feature-
fusion techniques, exemplified by the depth-fusion 
approach, leverage features and confidence values from 
sensors to optimize algorithm settings, contributing to the 
system's ability to perform well in real minefields and 
controlled environments 79 . In its highly sensitive mode, 
the MD-3003B1 landmine detector exhibits an impressive 
level of sensitivity, capable of detecting even tiny metallic 
pins as small as 15 mm in size. This heightened sensitivity 
is particularly valuable when used for the detection of 
landmines, as it ensures that even the smallest metallic 
components do not go unnoticed. However, it's worth 
noting that in its low sensitivity mode, the detector is 
optimized to respond primarily to larger metal objects, 
making it adaptable to various detection requirements. 
Nonetheless, when the mission involves landmine 
detection, the highly sensitive mode proves to be the most 
suitable and effective choice 80 . A number of researchers 
have endeavored to address the issue of limited sensor 
range by developing systems to effectively control the 
range of landmine detectors. These efforts aim to 
overcome the challenges associated with short detection 
distances, enhancing the overall performance and 
effectiveness of the detection technology 81 . 
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Fig. 2: Landmine detection technology usage in landmine 
detection robots  

In the realm of landmine detection, a new generation 
metal detector has emerged— the “Beat Balance” (bb). 
This innovative detector combines Beat Frequency 
Operation (BFO) and Induction Balance (IB) principles, 
creating a hybrid solution for enhanced sensitivity. By 
integrating the strengths of both BFO and IB, the “Beat 
Balance” detector proves effective in identifying both 
metallic and non-metallic landmines 82 . Figure 2 displays 
the distribution of landmine detection technologies used 
in research studies.  

 

Table 4. Landmine detection technologies overview.
Author’s Approach Pros Drawbacks Surface contact 

requirement 
P. Kopacek et al. 1  Electromagnetic 

induction (metal 
detector) 

Effective for metallic mines.  
Interfacing with Wideband 
frequency domain sensors can 
improve detection by 60%. 
Cost effective compare to other 
technologies. 

False alarm rate due 
to large number of 
metallic particles. 
Limited for metallic 
mines. 

Not required 
L. Robledo et al. 5  
A. Kunaraj et al. 33   
F. Albert et al. 83  

K. Nandakumar et 
al. 2  

Inductive proximity 
sensor 

Non-invasive and effective metal 
object detection. 

Limited for metallic 
mines. 

Not required 

L. Robledo et al. 5  Ground penetrating 
radar (GPR) 

Detection of plastic landmines 
possible. 

Inhomogeneous 
subsoil may cause a 
great number of false 
alarms 

Not required  
L. Bossi et al. 37  
N. Nambiar et al. 84  

L. Robledo et al.  
5  

 

Nuclear quadrupole 
resonance 

No static magnetic field is needed Radio frequency 
interference may 
reduce efficiency 

Not required 

 Infrared and 
hyperspectral methods 

Fast detection Performance is 
depended on 
environmental 
conditions 

Not required 

 Electric impedance 
tomography (EIT) 

Allows detection of metallic and 
non-metallic mines  

Conductivity affects 
the working in dry 
soil or rocky surfaces. 

Required 

 X-ray backscatter 
(XBT) 

Scatter signal tied to material 
density, requires single-sided 
access. 

Limited to the depth 
of mines. 

Not required 

 Acoustic and seismic 
systems 

Low false alarm rate, suitable for 
antitank mine detection 

Low Speed and less 
detection range. 

Not required 

B. Hamed et al. 8  Pulse Induction 
Detection (PID) 

Two side coils enhance the mine 
scanning area.  
Less expensive. 

Limited to metallic 
mines. 

Not required 

M. Neela et al. 78  GPR with metal 
detector. 

Enhances target identification 
while also detecting both metallic 
and non-metallic mines. 

The sensor should be 
in close proximity to 
the mine. 

Not required 

A. Ebada et al. 85  Biological methods Possesses the potential to 
effectively lower the false alarm 
rate, enhancing the reliability of 
the system in minimizing 
erroneous alerts. 

Understanding the 
chemical and physical 
principles that govern 
the sensor is essential. 

Not required. 

Metal Detection

GPR

GPR + Metal Detection

PID

Other
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5.  Conclusion 

This review study provides an overview of landmine 
detection robots, supported by Table 1's designs and 
processes and Table 2's navigation system sensors. A 
review of the algorithms that were investigated by the 
authors may be found in Table 3. Whereas, in Table 4, 
authors list landmine detection devices studied. 
Landmines' extensive impact on humans and the 
environment necessitates urgent research and 
development. Automated navigation, sensor integration, 
and machine learning can improve landmine detection 
efficiency, safety, and precision. Landmine detection 
robots are being improved to make demining safer and 
more efficient through advances in materials, sensing 
technologies, and artificial intelligence. 
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