
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Real-World Autonomous Driving Control: An
Empirical Study Using the Proximal Policy
Optimization (PPO) Algorithm

Zhao, Peng
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Yuan, Zhongxian
Faculty of Environment and Life, Beijing University of Technology

Thu, Kyaw
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Miyazaki, Takahiko
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

https://doi.org/10.5109/7183372

出版情報：Evergreen. 11 (2), pp.887-899, 2024-06. 九州大学グリーンテクノロジー研究教育センター
バージョン：
権利関係：Creative Commons Attribution 4.0 International

EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 02, pp887-899, June, 2024

Real-World Autonomous Driving Control: An Empirical
Study Using the Proximal Policy Optimization (PPO)

Algorithm

Peng Zhao1,*, Zhongxian Yuan2, Kyaw Thu1, Takahiko Miyazaki1
1Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan

2Faculty of Environment and Life, Beijing University of Technology, China

E-mail: zhao.peng.488@s.kyushu-u.ac.jp

(Received December 7, 2023; Revised April 16, 2024; Accepted April 24, 2024).

Abstract: This article preprocesses environmental information and use it as input for the

Proximal Policy Optimization (PPO) algorithm. The algorithm is directly trained on a model vehicle

in a real environment, allowing it to control the distance between the vehicle and surrounding objects.

The training converges after approximately 200 episodes, demonstrating the PPO algorithm's ability

to tolerate uncertainty, noise, and interference in a real training environment to some extent.

Furthermore, tests of the trained model in different scenarios reveal that even when the input

information is processed and does not provide a comprehensive view of the environment, the PPO

algorithm can still effectively achieve control objectives and accomplish challenging tasks.

Keywords: Reinforce Learning; Proximal Policy Optimization; Autonomous Driving

1. Introduction

In the field of autonomous driving control, there are

three control categories based on the different ways of

processing environmental information: indirect

perception, direct perception, and behavior reflex(end-to-

end) 1,2). Indirect perception controls vehicles through

classification and induction of the environment; behavior

reflex requires no processing of environmental

information; and direct perception lies between the two,

controlling vehicles by processing partial environmental

information. With the development and application of

machine learning technologies, the latter two methods are

gradually demonstrating their advantages in simplifying

systems and reducing computational resource

requirements, potentially replacing the more complex

indirect perception approach.

With the enhancement of computational capabilities,

deep learning has experienced rapid advancement, finding

successful applications in diverse fields such as

agriculture3,4), architecture5), and road traffic

management6,7). Further, the integration of deep learning

with reinforcement learning, which embodies a

methodology capable of autonomous strategy learning,

has facilitated the application of reinforcement learning in

increasingly complex environments. This synergy of deep

learning and reinforcement learning, often referred to as

deep reinforcement learning, has demonstrated successful

applications across multiple domains 8–10). Particularly in

areas such as path planning11–13) and motion control14–16)

for unmanned device control, reinforcement learning

exhibits significant potential due to its advantage of not

requiring prior model construction. However, in

autonomous driving applications, reinforcement learning

still faces certain limitations. Currently, many studies on

reinforcement learning in autonomous driving control are

limited to training in simulated environments14,17,18). The

simulation-reality gap, arising from differences between

real-world and simulated scenarios, restricts the

application of well-trained reinforcement learning

algorithms in actual settings19,20). Additionally, the design

of reward functions is a key factor constraining the

development of reinforcement learning in autonomous

driving control21).

With the development of policy-based reinforcement

learning methods, reinforcement learning has become

more suitable for addressing continuous action space

problems. However, many researchers still tend to use

value-based reinforcement learning algorithms, such as

DDQN, to solve continuous action space control problems.

In 2017, OpenAI introduced the Proximal Policy

Optimization (PPO) algorithm22), which, due to its lower

reward function requirements and low dependency on

algorithm parameters, shows tremendous application

potential in the field of autonomous driving control.

In this paper, we employ the PPO algorithm to control

vehicles by obtaining limited environmental information,

aiming to verify the robustness and generalization ability

-887-

EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 02, pp887-899, June, 2024

of the PPO algorithm under input information constraints.

Furthermore, both the training and testing of this study are

conducted on actual physical models, attempting to train

algorithms in real-world environments, and exploring the

feasibility of an alternative solution for applying

reinforcement learning algorithms from simulated to real-

world environments.

2. Relative Works

Following the birth of the DQN algorithm, which

combines Q-learning with deep learning, and the

surpassing of human performance in the game of Go by

AlphaGo, which was trained using the DQN algorithm,

reinforcement learning has entered a rapid development

stage. From value-based Q-learning algorithms, such as

DQN, DDQN, Dueling-DQN, and D3QN, to policy

optimization-based algorithms, such as PG, Actor-Critic,

DDPG, TRPO, and PPO, these methods have found

mature applications in various fields, including gaming,

robot control, finance, and decision support. In particular,

the policy optimization-based algorithms have shown

outstanding capabilities in handling continuous action

spaces, making them more promising in various

continuous action application scenarios.

In recent years, scholars have been studying the

application of reinforcement learning to the field of

autonomous driving. Wolf23) and Lillicrap24) successfully

implemented vehicle control in simulations using

reinforcement learning algorithms, while Kendall25)

successfully achieved real vehicle motion control using

reinforcement learning. However, the models established

by reinforcement learning have a "black box"

characteristic, which makes it difficult to fine-tune the

model in response to emerging problems. On the other

hand, real-world driving conditions are diverse, and

current technological means cannot collect data for all

scenarios, leading to simulation-based reinforcement

learning models that may not be well-suited to all driving

conditions. Therefore, improving the generalization

ability of the model and addressing the simulation-reality

gap are urgent issues to be solved. Consequently, in the

field of behavior reflex (end-to-end) autonomous driving

solutions, academia is more focused on discussing how to

build better algorithms to mitigate or solve the

aforementioned problems.

Bojarski26) and Kim27) proposed using the extraction of

convolutional layer feature maps and highlighting salient

objects, as well as using a visual attention model, to solve

the problem of how deep neural networks understand

environmental information. Wenshuai Zhao20) and B Ravi

Kiran21) summarized the current solutions to the

simulation-reality gap in their articles. Researchers are

mainly exploring autonomous driving control by

employing different algorithms or improving existing

algorithms. Zhu M14) and others proposed a new velocity

control during car following model and compared it with

an adaptive cruise control (ACC) algorithm based on

model predictive control (MPC). Chen et al.28) proposed a

human-in-the-loop deep reinforcement learning method,

which improves the deep neural network reward model

through fuzzy evaluations provided by human drivers.

Liang et al.29) aimed to enhance the exploration efficiency

of the DDPG algorithm in high-dimensional action spaces

by using expert data to constrain the action space,

ensuring that the algorithm always explores within

feasible regions.

The direct perception method proposed in paper1) pre-

processes environmental information to some extent,

thereby avoiding the "black box" problem in

reinforcement learning and significantly reducing the

training cost of reinforcement learning algorithms. The

feasibility of training vehicles using this method on real

objects, as well as the impact of this method on the

robustness and generalization of the algorithm, are the

topics of investigation and discussion in this paper.

3. Methodology

3.1 Policy-based Reinforcement Learning

Algorithm

Reinforcement learning can be divided into two types

of algorithms: value-based algorithms and policy-based

algorithms. From a fundamental perspective, value-based

algorithms require reward output as a prerequisite for

policy optimization. Each action is represented using its

corresponding action value. However, action values

cannot be mapped to a single distribution, thus hindering

the agent's ability to output continuous actions. Policy-

based algorithms use a policy function to output actions,

which can be mapped to a distribution. Actions are

represented using action probabilities, making them well-

suited for continuous action spaces (high-dimensional). In

the actual operation of vehicles, changes in speed and

direction are not determined by only a few specific speed

and angle values. For example, there are countless speed

values between 0 and 1 m/s, and similarly, there are

countless steering angles between 0° and 45°. Therefore,

when apply-ing reinforcement learning to vehicle control,

policy-based algorithms have advantages.

The purpose of policy gradient algorithm is to find the

optimal policy without using the Q-function. This

algorithm optimizes the policy function 𝜋(𝑎|𝑠) by

adjusting the parameters 𝜃 , such that it becomes

𝜋(𝑎|𝑠; 𝜃) . Given a sequence of state-action pairs =
𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑙 , 𝑎𝑙 , the objective function of policy

gradient is:

𝐽(𝜃) = 𝐸(∑ 𝑅(𝑠𝑙 , 𝑎𝑙)
𝑙
𝑙=0 ; 𝜋𝜃) = ∑ 𝑃(𝑟 𝜏; 𝜃)𝑅(𝜏) (1)

Here, 𝑅(𝜏) = ∑ 𝑅(𝑠𝑙 , 𝑎𝑙)
𝑙
𝑙=0 represents the return of

the sequence, and 𝑃(𝜏; 𝜃) represents the probability of

the sequence.

When solving with gradient ascent, we have:

-888-

Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm

𝜃 = 𝜃 + 𝛼∇𝜃𝐽(𝜃) (2)

Taking the derivative of 𝐽(𝜃) with respect to 𝜃 yields:

∇𝜃𝐽(𝜃) = ∑ 𝑃(𝑟 𝜏; 𝜃)∇𝜃𝑙𝑜𝑔𝑃(𝜏; 𝜃)𝑅(𝜏) (3)

After sampling m trajectories, the policy gradient can be

approximated by the average of the experiences:

∇𝜃𝐽(𝜃) =
1

𝑚
∑ ∇𝜃𝑙𝑜𝑔𝑃(𝜏; 𝜃)𝑅(𝜏)𝑚

𝑖=1 (4)

The likelihood of each sequence 𝜏 is:

𝑃(𝜏; 𝜃) = ∏ 𝑃(𝑠𝑖+1
𝑖 |𝑠𝑡

𝑖 , 𝑎𝑡
𝑖)𝜋0(𝑎𝑡

𝑖 |𝑠𝑡
𝑖)𝑙

𝑡=0 (5)

where 𝑃(𝑠𝑖+1
𝑖 |𝑠𝑡

𝑖 , 𝑎𝑡
𝑖) represents the dynamics,

independent of the parameter 𝜃 . Substituting it into (4)

yields:

∇𝜃𝐽(𝜃) =
1

𝑚
∑ (∑ ∇𝜃𝑙𝑜𝑔𝜋0

𝑙
𝑡=0 (𝑎𝑡

𝑖 |𝑠𝑡
𝑖)𝑅(𝜏𝑖))𝑚

𝑖=1 (6)

The policy gradient has a large variance, making it

impossible to extract every action during action sampling.

A constant baseline b is typically introduced to reduce

variance:

∇𝜃𝐽(𝜃) =
1

𝑚
∑ (∑ ∇𝜃𝑙𝑜𝑔𝜋0

𝑙
𝑡=0 (𝑎𝑡

𝑖 |𝑠𝑡
𝑖)𝑅(𝜏𝑖) − 𝑏)𝑚

𝑖=1 (7)

The value of 𝑏 can be obtained by taking the derivative

of the variance with respect to 𝑏 and setting it to zero.

According to the PG principle, the pseudocode of the PG

algorithm can be represented as follows:

Fig. 1: Pseudocode of the PG algorithm.

According to the policy gradient method, the parameter

update equation can be written as:

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 + 𝛼∇𝜃𝐽 (8)

Here, 𝛼 is the step size of the update, which directly

determines the quality of the new policy. If 𝛼 is

inappropriate, the updated policy may be worse, resulting

in a worse learning process. To ensure that the new policy

can make the reward function monotonically non-

decreasing and prevent the learning process from

deteriorating, the Trust Region Policy Optimization

(TRPO) algorithm was proposed. In TRPO, the Kullback-

Leibler (KL) divergence is used to add a trust region

constraint to the policy gradient method, ensuring that the

difference between the new and old policies is small .

The reward function for a state-action sequence 𝜏 can

be expressed as:

𝜂(𝜋) = 𝐸𝜏|𝜋[∑ 𝛾𝑡𝑟(𝑠𝑡)∞
𝑡=0] (9)

If the new policy is 𝜋′ and it is better than the old policy,

the expected reward of 𝜋′ can be defined as:

𝜂(𝜋′) = 𝜂(𝜋) + 𝐸𝑠0,𝑎0,…𝜋′[∑ 𝛾𝑡𝐴𝜋(∞
𝑡=0 𝑠𝑡 , 𝑎𝑡)] (10)

Here, 𝐴𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉𝜋(𝑠) is the

advantage function, where 𝑄𝜋(𝑠𝑡 , 𝑎𝑡)is the action-value

function, and 𝑉𝜋(𝑠) is the value function. 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) −
𝑉𝜋(𝑠) represents the advantage of the action-value

function over the current value function.

By using the all-state rewriting equation 10, we obtain:

𝜂(𝜋′) = 𝜂(𝜋) + ∑ 𝜌𝜋′(𝑠)𝑠 ∑ 𝜋′(𝑎|𝑠)𝐴𝜋(𝑠, 𝑎)𝑎 (11)

Here, 𝜌 is the discount visitation frequency. 𝜌𝜋′(𝑠) =
𝑃(𝑠0 = 𝑠) + 𝛾𝑃(𝑠1 = 𝑠) + 𝛾2𝑃(𝑠2 = 𝑠) + ⋯. To ensure

that the policy is monotonically non-decreasing, we need

to ensure that ∑ 𝜋′(𝑎|𝑠)𝐴𝜋(𝑠, 𝑎)𝑎 is non-negative. We

introduce a local approximation as:

𝐿(𝜋′) = 𝜂(𝜋) + ∑ 𝜌𝜋(𝑠)𝑠 ∑ 𝜋′(𝑎|𝑠)𝐴𝜋(𝑠, 𝑎)𝑎 (12)

In the use of visitation frequency 𝜌𝜋 in 𝐿(𝜋′) , the

change in visitation frequency due to a change in policy is

ignored, and the approximation error of the advantage

function is also neglected. When using conservative policy

iteration, the new policy 𝜋𝑛𝑒𝑤(𝑎|𝑠)is determined by the

following equation:

𝜋𝑛𝑒𝑤(𝑎|𝑠) = (1 − 𝛼)𝜋𝑜𝑙𝑑(𝑎|𝑠) + 𝛼𝜋′(𝑎|𝑠) (13)

Here, 𝜋𝑛𝑒𝑤 represents the new policy and 𝜋𝑜𝑙𝑑

represents the old policy. Furthermore, 𝜋′ =
𝑎𝑟𝑔𝑚𝑎𝑥𝜋′𝐿𝜋𝑜𝑙𝑑

(𝜋′). Thus, we have:

𝜂(𝜋′) ≥ 𝐿𝜋(𝜋′) − 𝐶𝐷𝐾𝐿
𝑚𝑎𝑥(𝜋, 𝜋′) (14)

Here, 𝐶 is the penalty coefficient and 𝐷𝐾𝐿
𝑚𝑎𝑥represents

the KL divergence between the new and old policies. To

ensure that the expected long-term reward 𝜂

monotonically increases, we only need to maximize the

right-hand side of Equation 14. Introducing a parameter𝜃

to replace the policy 𝜋, with 𝜃𝑜𝑙𝑑 representing the policy

to be improved, we have:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃 [𝐿𝜃𝑜𝑙𝑑
(𝜃) − 𝐶𝐷𝐾𝐿

𝑚𝑎𝑥(𝜃𝑜𝑙𝑑 , 𝜃) (15)

If the penalty coefficient 𝐶 is too large, the step size

will be too small, which affects the update speed.

Therefore, a constraint can be added to the KL divergence:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃 𝐿𝜃𝑜𝑙𝑑
(𝜃)

sucn that 𝐷𝐾𝐿
𝑚𝑎𝑥(𝜃𝑜𝑙𝑑 , 𝜃) ≤ 𝛿 (16)

-889-

EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 02, pp887-899, June, 2024

Introducing the average KL divergence to simplify

𝐷𝐾𝐿
𝑚𝑎𝑥:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃 𝐿𝜃𝑜𝑙𝑑
(𝜃)

such that 𝐷𝐾𝐿

𝜌𝜃𝑜𝑙𝑑̅̅ ̅̅ ̅̅ ̅̅
(𝜃𝑜𝑙𝑑 , 𝜃) ≤ 𝛿 (17)

Expanding L yields the objective function expressed as:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃 𝐸𝑠𝜋𝜃𝑜𝑙𝑑
, 𝑎𝜋𝜃𝑜𝑙𝑑

[
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑜𝑙𝑑
(𝑎|𝑠)

] 𝐴𝜋𝜃𝑜𝑙𝑑
(𝑠, 𝑎)

such that

𝐸𝑠𝜋𝜃𝑜𝑙𝑑
[𝐷𝐾𝐿(𝜋𝜃𝑜𝑙𝑑

(· |s)| |𝜋𝜃𝑜𝑙𝑑
(𝜋𝜃𝑜𝑙𝑑

(· |s))] ≤ 𝛿 (18)

The pseudocode of the TRPO algorithm can be

represented as follows:

Fig. 2: Pseudocode of the TRPG algorithm.

The TRPO algorithm is a constrained optimization

problem in which the average KL divergence between the

new and old policies must be smaller than δ. However, the

TRPO algorithm requires significant computational effort

to perform constrained optimization using conjugate

gradient calculations. In response, the OpenAI team

proposed an improved method called Proximal Policy

Optimization (PPO) algorithm.

In the PPO algorithm, the constraint is replaced with a

penalty term , avoiding the need for conjugate gradient

calculations. The new objective function can be expressed

as follows:

𝐿𝐶𝑃𝐼(𝜃) = 𝐸𝑡̂[𝑟𝑡(𝜃)𝐴𝑡̂] (19)

where 𝐿𝐶𝑃𝐼 represents conservative policy iteration,

𝐴𝑡̂ is the advantage function, and𝑟𝑡(𝜃) =
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑜𝑙𝑑
(𝑎|𝑠)

 is the

probability ratio between the new and old policies.

Maximizing 𝐿 results in significant policy updates,

which can increase variance. Therefore, a penalty is

introduced to penalize larger policy updates. The modified

objective function is:

𝐿𝐶𝑃𝐼(𝜃) = 𝐸𝑡̂[𝑚𝑖𝑛 𝑟𝑡(𝜃)𝐴𝑡̂ , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡̂]
(20)

The penalty term clips 𝑟𝑡(𝜃) within the interval[1 −
𝜖, 1 + 𝜖] to reduce its impact on the objective function.

The pseudocode of the PPO algorithm can be

represented as follows:

Fig. 3: Pseudocode of the PPO algorithm.

3.2 Control target

The purpose of this paper is to implement vehicle

control based on the PPO algorithm, which sets a goal for

the vehicle to reach using control commands generated by

the PPO algorithm. The paper uses a laser radar to scan

the surrounding environment of the vehicle and obtain its

relative position in the environment. Based on the

collected position information, the PPO algorithm is used

to control the distance d' between the vehicle and the

surrounding objects, that is, to automatically approach the

object when the distance between the vehicle and the

object exceeds a certain threshold d, and to automatically

move away from the object when the distance is less than

the threshold d, as shown in Fig. 4.

Fig. 4: Control target.

The PPO algorithm controls the movement of the

vehicle (away from or closer to the object) based on the

collected position information. The environment

information obtained consists of information about the

points on the environment objects. An environment object

is made up of many points, and the distance information

in different points' information of the same object does not

vary greatly. However, due to the width of the

environment object, there can be significant differences in

the angle information of different points' information. If

the relative angle between the vehicle and the

environment object is required, it can cause serious

interference to the PPO algorithm. Therefore, when

maintaining a certain distance between the vehicle and the

environment object, no requirements are made on the

angle relationship between the vehicle and the

environment object. Only the distance information of the

environment object is used to calculate rewards to train

the algorithm, and the angle information is only used to

-890-

Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm

help the algorithm determine the approximate angle

position of the current environment object and to assist the

algorithm in selecting a direction of motion.

3.3 Training method

The iteration method of the PPO algorithm based on the

collected environment information is shown in Fig. 5. At

time 𝑡1, the laser radar obtains the distance information

of the environment object, 𝑑𝑡1
 , which is input into the

PPO algorithm to obtain control command A, and the

vehicle runs while saving 𝑑𝑡1
 to the reward function.

After the vehicle runs, the laser radar obtains the distance

information 𝑑𝑡2
, which is input into the reward function

to calculate the reward obtained by the control command

A issued by the PPO algorithm at time 𝑡1. The obtained

reward is used to evaluate the control effect, and the

evaluation result is input into the PPO algorithm. The

algorithm will improve and optimize according to the

evaluation result and issue a new control command B

based on 𝑑𝑡2
 , which makes the vehicle run again. This

completes one training process of the PPO algorithm.

By continuously running the vehicle and training the

PPO algorithm, when the re-ward calculated based on the

reward function converges, it is considered that the PPO

algorithm has completed its training.

During actual algorithm training, the vehicle is

randomly placed in any position in the environment as the

start of training. Once the training begins, the vehicle's

movement will not be interfered with in any way, allowing

it to run completely autonomously. This is be-cause the

reward calculated by the reward function and the

instructions issued by the PPO algorithm are extremely

sensitive to the position information scanned by the radar

at the current and previous moments. If there is any human

interference during the vehicle's operation, it will affect

the convergence speed of the algorithm and may even

prevent the algorithm from converging, making it

impossible to complete the algorithm training.

In this paper, the aforementioned method will be

employed to train the algorithm in the environment

depicted in Fig. 6. The rationale for training in a real-

world environment is to more accurately reflect the

challenges and uncertainties present in the real world. All

objects in the figure, except for the vehicle, are considered

environmental objects. During the training process, the

vehicle is allowed to explore the environment freely

without any interference, which contributes to the

development of better generalization capabilities and

robustness for the algorithm when faced with complex

environments and uncertain-ties in the real world.

Fig. 6: Training environment

Fig. 5: Iteration method.

-891-

EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 02, pp887-899, June, 2024

4. Experiment and data processing

4.1 Device

The main computing platform used in this study is the

Jetson Nano, a small GPU computing platform developed

by NVIDIA specifically for robots. Its main parameters

are presented in Table 1.

Table 1. Parameters of Jetson Nano.

Item Parameters

CPU 4 Core ARM A57 @1.43GHz

GPU 128 Core Maxwell

472 GFLOPs（FP16）

Memory 4 GB 64 bit LPR4 25.6GB/s

Storage 16 GB eMMC

The RPLIDAR A1 LIDAR sensor, responsible for

collecting environmental information, has its main

parameters presented in Table 2. The vehicle's main power

is pro-vided by two DC motors, while its steering function

is provided by a servo motor. The DC motors and servo

motor are directly controlled by an STM32

microcontroller (STM32F103VET6), which together

form the power platform.

The relationship between the environmental

information collection device, the main computing

platform, and the power platform is illustrated in Fig. 7.

After the l LIDAR sensor collects environmental

information, the information is sent to the computing plat-

form for processing. The computing platform then sends

instructions to the power plat-form's control core, which

further processes the received instructions to make the

servo and motors run, ultimately resulting in the

movement of the vehicle.

Table 2. Parameters of RPLIDAR A1.

Item Parameters

Measurement range 0.15m-12m

Scanning angle 0°-360°

Measurement resolution <0.5mm

Angular resolution <=1°

Single measurement time 0.5ms

Measurement frequency >=4000Hz

Scanning frequency 5.5Hz

4.2 Method of processing environmental

information.

The information collection method of the LiDAR is

shown in Fig. 8. During each scan of the surrounding

environment, the LiDAR simultaneously scans the

positions of environmental objects at 360 angles. Each

position information consists of distance data describing

the distance between the environmental object and the

vehicle, and angle data describing the angular position of

the object relative to the vehicle. If the data is not

processed, the PPO algorithm processes at least 720 pieces

of data in a single iteration, significantly increasing the

algorithm's computational complexity and training time.

To reduce the computational complexity of the PPO

algorithm and accelerate training speed, the in-formation

Fig. 7: Devices.

-892-

Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm

collected by the LiDAR needs to be preprocessed. Under

the control objective, only the distance to the closest

object in the environment and its corresponding angle

need to be obtained. After filtering the distance

information, only the position information of the nearest

object is input into the PPO algorithm.

4.3 Algorithm Settings

The action space refers to the angular velocity and

linear velocity of vehicle movement. The advantage of the

PPO algorithm lies in its support for continuous output

actions. Therefore, the action space is set within a certain

range, taking into account both radar detection and

algorithmic calculation delays. The vehicle's movement

speed should not be too fast. Therefore, the range of linear

velocity for vehicle movement is [-0.2m/s, 0.2m/s], and

the range of angular velocity is [-0.2rad/s, 0.2rad/s]. The

ranges of linear velocity and angular velocity constitute

the action space of the PPO algorithm.

When the action command is a linear velocity of 0.2m/s

and an angular velocity of 0.2rad/s, the vehicle will move

as shown in Fig. 9.

Fig. 9: Diagram of vehicle movement.

The control target is to maintain a certain distance, d,

between the vehicle and environmental objects. In this

chapter, 𝑑 is set to 0.3m. The algorithm's control

commands are evaluated based on the reward value

computed by determining whether the distance between

the vehicle and environmental objects at each time step is

closer to 𝑑. The maximum reward is obtained when the

current distance, 𝑑′ , between the vehicle's current

position and the environmental object is 0.3m.

Table 3 shows the reward function settings. Due to the

measurement error of the lidar, the optimal reward range

is limited to between 0.3m and 0.34m. The maximum

reward is obtained at 0.3m-0.32m, and a fault tolerance

interval is set between 0.32m-0.34m. This setting makes

Table 3. Reward function.

𝑑
Movement Reward

(𝑟𝑑)

Time Punishment

(𝑟𝑡)
Total Reward

0.3𝑚 < 𝑑′ ≤ 0.32𝑚 10 - 10

0.2𝑚 < 𝑑′ < 0.3𝑚 (𝑑′ − 𝑑′′) × 20
0.2 × (𝑑′ − 𝑑′′)

𝑎𝑏𝑠(𝑡′ − 𝑡′′)
 𝑟𝑑 + 𝑟𝑡

0.34𝑚 < 𝑑′ −(𝑑′ − 𝑑′′) × 20
−0.2 × (𝑑′ − 𝑑′′)

𝑎𝑏𝑠(𝑡′ − 𝑡′′)
 𝑟𝑑 + 𝑟𝑡

𝑑′ < 0.2𝑚 -0.9-(𝑑′ − 𝑑′′) × 5 - 𝑟𝑑

Fig. 8: Environmental information collection method.

-893-

EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 02, pp887-899, June, 2024

the rewards obtained by the vehicle clearer. 𝑑′ denotes

the distance between the vehicle and environmental target

at the current step, while 𝑑′′ denotes the distance

between the vehicle and environmental target at the

previous step. 𝑡′ denotes the absolute time of the system

at the current step, while 𝑡′′ denotes the absolute time of

the system at the previous step.

In this task, it is desired to encourage the algorithm to

take more favorable actions by setting the maximum

reward value to be greater than the penalty value (negative

reward). Therefore, the maximum reward value is set to

10, while the maximum penalty value is around -1.

Moreover, due to the algorithm's running speed and the

vehicle's linear velocity, 𝑎𝑏𝑠(𝑑′ − 𝑑′′) is usually less

than 0.1. Therefore, different coefficients are used in

different situations to amplify (𝑑′ − 𝑑′′) and balance its

weight in the reward calculation process.

To avoid collisions between the vehicle and

environmental objects, the minimum distance between the

vehicle and environmental objects is set to 0.2m. If the

algorithm's control command causes the vehicle to move

to a position where 𝑑′ is less than the minimum distance,

a very large penalty will be given, regardless of how the

vehicle moves. If 𝑑′ is greater than 𝑑𝑚𝑖𝑛 and has not yet

reached the optimal distance 𝑑, the movement reward 𝑟𝑑

will be given based on 𝑑′ − 𝑑′′ (where 𝑑′′ ′ is the

distance between the vehicle and the environmental object

in the previous control step) to judge whether 𝑑′ is

approaching the control target. Additionally, to promote

algorithm exploration and prevent the algorithm from

falling into local optima, a time penalty 𝑟𝑡 is added. The

reward function calculates the penalty based on the

distance traveled and the time between steps.

What’s more, due to measurement errors or control

commands that cause the vehicle to almost not move,

there may be situations where 𝑟𝑑 = 0 . Therefore, an

additional term is added to give a penalty once 𝑟𝑑 = 0, to

encourage the algorithm to move the vehicle.

The episodic approach is adopted to accelerate the

convergence speed of the algorithm. The reward obtained

within an episode and the total return will be saved, and

when the vehicle's running meets certain conditions, it is

considered as completing an episode. After completing

multiple episodes, the reward data within these episodes

will be used to iteratively update the algorithm. The

specific process is shown in Fig. 10. When the distance

between the vehicle and environmental objects is exactly

d, or when the number of instructions (i.e., steps) issued

by PPO reaches a certain value 𝑛, regardless of the

vehicle's position, it is considered as completing an

episode.

Fig. 10: Illustration of the algorithm updating process

Other parameter settings are shown in Table 4. The

maximum number of steps per episode is set to 50 steps,

and the algorithm will be iteratively updated once every

1000 steps, which is one round of updates.

Table 4. Parameter Settings.

Item Meaning Value

lr Learning Rate 0.0003

Betas
Optimizer

Hyperparameters
(0.9，0.99)

Gamma
Reward Discount

Factor
0.99

K_epochs ------ 50

update_timestep ------- 1000

max_timesteps ------ 50

eps_clip
Clipping

Parameters
0.2

5. Result and discussion

5.1 Training Result

Figure 11 shows the change in total reward per episode

after 400 episodes, during which the algorithm

experienced approximately 14 iterations of updates based

on the algorithm parameters. The gray line represents the

real data of the average reward per episode, while the

black line represents the result after exponential

smoothing of the real data. It can be seen that after about

-894-

Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm

200 episodes, the average reward per episode was always

at the maximum value of the reward function. This

indicates that the algorithm has con-verged, and at this

point, the algorithm has experienced approximately four

iterations of updates.

Fig. 11: Training result.

To further illustrate the algorithm training process, we

observe the reward obtained by the algorithm for each step

of the episode 3, episodes 60-62, and episodes 137-145,

which represent the beginning, middle, and late stages of

the training process, respectively, as shown in Fig. 12.

(a)

(b)

(c)

Fig. 12: Rewards of rounds: (a) Rewards for each step of the

episode 3; (b) Rewards for each step of episodes 60-62; (c)

Rewards for each step of episodes 137-145

It can be seen that in the episode 3, which represents the

beginning of the training stage, the algorithm was only

exploring, and the reward value was fluctuating. In the

middle stage of the training process (episodes 60-62), the

algorithm quickly reached the maximum reward in

episode 60, indicating that the algorithm had gradually

learned how to achieve the control goal through different

instructions. However, after maintaining the goal for one

episode (episode 61), the algorithm achieved the goal

within 50 steps of episode 62, indicating that the algorithm

had not yet completed its training. In the late stage of the

algorithm training (episodes 137-145), it can be seen that

the algorithm can achieve the goal with a small number of

steps in a single episode, and can continue to maintain the

goal over multiple episodes. This indicates that the

algorithm has mastered the relationship between different

instructions and control objectives, and the algorithm is

close to convergence.

5.2 Validation and discussion

The Figure 13 shows the trajectory of the trained model

when the environ-mental objects are approaching and

moving away from the vehicle, indicating that the vehicle

can achieve the control objectives set under the control of

the PPO algorithm. Moreover, the vehicle can also achieve

the control objectives in complex environments, as shown

where the vehicle is stuck between two obstacles, and the

vehicle must turn to get out of the situation. Note that due

to the limitations of the environmental information in the

following figure. Figure 14(a) shows a scenario where a

large obstacle exists on the right side of the vehicle and a

small obstacle is present in front of it. This means that no

matter whether the vehicle moves forward or backward,

the processed environmental information always tells the

algorithm that the vehicle is in a state of being close to the

environmental object. The escape method can only move

the vehicle to the left and away from the obstacles or move

it to the left and forward to bypass the obstacle in front.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 6 11 16 21 26 31 36 41 46

R
ew

ar
d

s

Steps

Episod 3

-1.2

0.8

2.8

4.8

6.8

8.8

10.8

1 6 11 16 21 26 31 36 41 46 51 56 61

R
ew

ar
d

s

Steps

Episods 60-62

Episod 60 Episod 62

Episod 61

-0.4

1.6

3.6

5.6

7.6

9.6

11.6

1 4 7 10 13 16 19 22

R
ew

ar
d

s

Steps

Episods 137-145

Episod 137 Episods 138-145

-895-

EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 02, pp887-899, June, 2024

Fig. 13: Vehicle's motions.

 (a) (b)

Fig. 14: Different environmental: (a) A large obstacle on the right side of the vehicle and a small obstacle in

front; (b) Vehicle stuck between two obstacles.

-896-

Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm

algorithm can only obtain the environ-mental information

(a)

(b)

Fig. 15: Vehicle's motions under Fig. 14(a): (a) Vehicle's motions; (b) Selected vehicle motions.

(a)

(b)

Fig. 16: Vehicle's motion under Fig. 14(b): (a) Vehicle's motions; (b) Selected vehicle motions.

-897-

EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 02, pp887-899, June, 2024

Figure 14(b) shows a scenario where the vehicle is

stuck between two obstacles, and the vehicle must turn to

get out of the situation. Note that due to the limitations of

the environmental information acquisition method, the

closest to the vehicle at each time, and cannot obtain the

overall environmental information.

Figures 15 and 16 respectively illustrate the vehicle's

motions under the circum-stances depicted in Fig. 14 (a)

and Fig. 14 (b). It is evident that the vehicle does not

overcome challenging situations through a one-off

movement process. Instead, it achieves its goal only after

a certain amount of back-and-forth movement. The

number of these oscillatory movements varies depending

on the environment.

This is because, to simplify computation, certain

treatments and definitions were applied to the

environmental information in this study. Only the

coordinates closest to the vehicle are input into the PPO

algorithm. Therefore, the PPO algorithm cannot fully

obtain the surrounding environmental information of the

vehicle. Consequently, in the initial stage of operation, the

PPO algorithm does not know how to resolve such

challenging situations. However, after performing a series

of actions, the PPO algorithm continuously evaluates the

entire policy under the current situation and makes

adjustments, ultimately selecting the most beneficial

policy. For instance, it may choose to move left and

forward in the case of challenging situation (a). This

policy evaluation partially compensates for the

algorithm's inability to obtain a comprehensive view of

the environmental information, thereby enabling the

algorithm to control the vehicle to undertake more

complex tasks.

6. Conclusions

In this study, the PPO algorithm was directly trained in

a real-world environment, aiming to avoid the limitations

of simulating real environments in virtual settings. In the

course of actual training, the algorithm is required to

tackle a variety of challenges including sensor precision,

execution of the algorithm, and latency in control

commands. Nevertheless, the experimental results

indicates that the PPO algorithm is capable of effective

training and demonstrates rapid convergence. This

suggests that the PPO algorithm does not require strict

environmental conditions and input data during the

training process, and can tolerate a certain degree of

uncertainty, noise, and interference in the training

environment.

When trained in a real-world environment, the PPO

algorithm can enable the vehicle to achieve control

objectives effectively. Notably, in the application

environment of this study, the vehicle can only obtain the

nearest environmental information at each time step.

Nevertheless, the PPO algorithm can still generate optimal

policies to achieve goals when dealing with challenging

situations. This indicates that the PPO algorithm has good

robustness and generalization capabilities.

In summary, the PPO algorithm demonstrates strong

robustness during the training process, as well as good

generalization and robustness in practical applications for

vehicle motion control tasks. Its rapid convergence,

adaptability, and ability to achieve control objectives in

the face of training environment uncertainty, noise, and

interference highlight the potential of the PPO algorithm

for widespread practical ap-plications. Future work may

consider extending the algorithm to more complex

environments or incorporating more input information,

such as depth maps or vehicle motion state data, for

training.

References

1) C. Chen, A. Seff, A. Kornhauser, and J. Xiao,

“DeepDriving: Learning Affordance for Direct

Perception in Autonomous Driving,” 2015.

http://deepdriving.cs.princeton.edu.

2) ZHANG Xinyu, GAO Hongbo, and ZHAO Jianhui,

“Overview of deep learning intelligent driving meth-

ods,” Journal of Tsinghua University (Science and

Technology), 58(4) 438–444 (2018).

3) M. Ayundyahrini, Danar Agus Susanto, H.

Febriansyah, Fariz Maulana Rizanulhaq, and Gama

Hafizh Aditya, “Smart farming: integrated solar water

pumping irrigation system in thailand,” Evergreen, 10

(1) 553–563 (2023). doi:10.5109/6782161.

4) K. Sujatha, N.P.G. Bhavani, V.S. George, T.K. Reddy,

N. Kanya, and A. Ganesan, “Innovation in agricul-

ture industry by automated sorting of rice grains,”

Evergreen, 10 (1) 283–288 (2023).

doi:10.5109/6781076.

5) A. Arunika, J.F. Fatriansyah, and V.A. Ramadheena,

“Detection of asphalt pavement segregation using

machine learning linear and quadratic discriminant

analyses,” Evergreen, 9 (1) 213–218 (2022).

doi:10.5109/4774236.

6) H.K. Chaudhary, K. Saraswat, H. Yadav, H. Puri, A.R.

Mishra, and S.S. Chauhan, “A real time dynamic

approach for management of vehicle generated

traffic,” Evergreen, 10(1) 289–299 (2023).

doi.org/10.5109/6781078

7) P. Panwar, P. Roshan, R. Singh, M. Rai, A.R. Mishra,

and S.S. Chauhan, “DDNet- a deep learning ap-

proach to detect driver distraction and drowsiness,”

Evergreen, 9 (3) 881–892 (2022).

doi:10.5109/4843120.

8) V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J.

Veness, M.G. Bellemare, A. Graves, M. Riedmiller,

A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.

Wierstra, S. Legg, and D. Hassabis, “Human-level

control through deep reinforcement learning,” Nature,

518 (7540) 529–533 (2015).

doi:10.1038/nature14236.

-898-

Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm

9) D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre,

G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman, D.

Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T.

Lillic-rap, M. Leach, K. Kavukcuoglu, T. Graepel,

and D. Hassabis, “Mastering the game of go with

deep neural networks and tree search,” Nature, 529

(7587) 484–489 (2016). doi:10.1038/nature16961.

10) K. Arulkumaran, A. Cully, and J. Togelius,

“Alphastar: An evolutionary computation

perspective,” in: GECCO 2019 Companion -

Proceedings of the 2019 Genetic and Evolutionary

Computation Conference Companion, Association

for Computing Machinery, Inc, 2019: pp. 314–315.

doi:10.1145/3319619.3321894.

11) C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced

planning for autonomous vehicles using

reinforcement learning and deep inverse

reinforcement learning,” Rob Auton Syst, 114 1–18

(2019). doi:10.1016/j.robot.2019.01.003.

12) J. Xin, H. Zhao, D. Liu, and M. Li, “Application of

deep reinforcement learning in mobile robot path

plan-ning,” in: Proceedings - 2017 Chinese

Automation Congress, CAC 2017, Institute of

Electrical and Elec-tronics Engineers Inc., 2017: pp.

7112–7116. doi:10.1109/CAC.2017.8244061.

13) S. Aradi, “Survey of deep reinforcement learning for

motion planning of autonomous vehicles,” IEEE

Transactions on Intelligent Transportation Systems,

23 (2) 740–759 (2022).

doi:10.1109/TITS.2020.3024655.

14) M. Zhu, Y. Wang, Z. Pu, J. Hu, X. Wang, and R. Ke,

“Safe, efficient, and comfortable velocity control

based on reinforcement learning for autonomous

driving,” Transp Res Part C Emerg Technol, 117

(2020). doi:10.1016/j.trc.2020.102662.

15) G. Chen, Y. Lu, X. Yang, and H. Hu, “Reinforcement

learning control for the swimming motions of a bea-

ver-like, single-legged robot based on biological

inspiration,” Rob Auton Syst, 154 (2022).

doi:10.1016/j.robot.2022.104116.

16) T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M.

Loskyll, J.A. Ojea, E. Solowjow, and S. Levine,

“Resid-ual reinforcement learning for robot control,”

in: 2019 International Conference on Robotics and

Automa-tion (ICRA), IEEE, 2019: pp. 6023–6029.

17) J. Chen, B. Yuan, and M. Tomizuka, “Model-free

deep reinforcement learning for urban autonomous

driving,” (2019). http://arxiv.org/abs/1904.09503.

18) J. Chen, S.E. Li, and M. Tomizuka, “Interpretable

end-to-end urban autonomous driving with latent

deep reinforcement learning,” IEEE Transactions on

Intelligent Transportation Systems, 23 (6) 5068–5078

(2022). doi:10.1109/TITS.2020.3046646.

19) R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B.

Dresp-Langley, “Deep reinforcement learning for the

control of robotic manipulation: a focussed mini-

review,” Robotics, 10 (1) 1–13 (2021).

doi:10.3390/robotics10010022.

20) W. Zhao, J.P. Queralta, and T. Westerlund, “Sim-to-

real transfer in deep reinforcement learning for robot-

ics: a survey,” (2020).

doi:10.1109/SSCI47803.2020.9308468.

21) B.R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A.A.A.

Sallab, S. Yogamani, and P. Perez, “Deep reinforce-

ment learning for autonomous driving: a survey,”

IEEE Transactions on Intelligent Transportation

Systems, 23 (6) 4909–4926 (2022).

doi:10.1109/TITS.2021.3054625.

22) J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov, “Proximal policy optimization algo-

rithms,” (2017). http://arxiv.org/abs/1707.06347.

23) P. Wolf, C. Hubschneider, M. Weber, A. Bauer, J.

Hartl, F. Durr, and J.M. Zollner, “Learning how to

drive in a real world simulation with deep Q-

Networks,” in: IEEE Intelligent Vehicles Symposium,

Proceedings, Institute of Electrical and Electronics

Engineers Inc., 2017: pp. 244–250.

doi:10.1109/IVS.2017.7995727.

24) T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez,

Y. Tassa, D. Silver, and D. Wierstra, “Continuous

control with deep reinforcement learning,” (2015).

http://arxiv.org/abs/1509.02971.

25) A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-

M. Allen, V.-D. Lam, A. Bewley, and A. Shah,

“Learn-ing to drive in a day,” in: 2019 International

Conference on Robotics and Automation (ICRA),

IEEE, 2019: pp. 8248–8254.

26) M. Bojarski, P. Yeres, A. Choromanska, K.

Choromanski, B. Firner, L. Jackel, and U. Muller,

“Explaining how a deep neural network trained with

end-to-end learning steers a car,” (2017).

http://arxiv.org/abs/1704.07911.

27) J. Kim, and J. Canny, “Interpretable Learning for

Self-Driving Cars by Visualizing Causal Attention,”

2017.

28) J. Chen, T. Wu, M. Shi, and W. Jiang, “PORF-ddpg:

learning personalized autonomous driving behavior

with progressively optimized reward function,”

Sensors (Switzerland), 20 (19) 1–19 (2020).

doi:10.3390/s20195626.

29) X. Liang, T. Wang, L. Yang, and E. Xing, “CIRL:

Controllable Imitative Reinforcement Learning for

Vi-sion-based Self-driving,” n.d.

-899-

