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Abstract: This article preprocesses environmental information and use it as input for the 

Proximal Policy Optimization (PPO) algorithm. The algorithm is directly trained on a model vehicle 

in a real environment, allowing it to control the distance between the vehicle and surrounding objects. 

The training converges after approximately 200 episodes, demonstrating the PPO algorithm's ability 

to tolerate uncertainty, noise, and interference in a real training environment to some extent. 

Furthermore, tests of the trained model in different scenarios reveal that even when the input 

information is processed and does not provide a comprehensive view of the environment, the PPO 

algorithm can still effectively achieve control objectives and accomplish challenging tasks.  
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1. Introduction

In the field of autonomous driving control, there are 

three control categories based on the different ways of 

processing environmental information: indirect 

perception, direct perception, and behavior reflex(end-to-

end) 1,2). Indirect perception controls vehicles through 

classification and induction of the environment; behavior 

reflex requires no processing of environmental 

information; and direct perception lies between the two, 

controlling vehicles by processing partial environmental 

information. With the development and application of 

machine learning technologies, the latter two methods are 

gradually demonstrating their advantages in simplifying 

systems and reducing computational resource 

requirements, potentially replacing the more complex 

indirect perception approach. 

With the enhancement of computational capabilities, 

deep learning has experienced rapid advancement, finding 

successful applications in diverse fields such as 

agriculture3,4), architecture5), and road traffic 

management6,7). Further, the integration of deep learning 

with reinforcement learning, which embodies a 

methodology capable of autonomous strategy learning, 

has facilitated the application of reinforcement learning in 

increasingly complex environments. This synergy of deep 

learning and reinforcement learning, often referred to as 

deep reinforcement learning, has demonstrated successful 

applications across multiple domains 8–10). Particularly in 

areas such as path planning11–13) and motion control14–16) 

for unmanned device control, reinforcement learning 

exhibits significant potential due to its advantage of not 

requiring prior model construction. However, in 

autonomous driving applications, reinforcement learning 

still faces certain limitations. Currently, many studies on 

reinforcement learning in autonomous driving control are 

limited to training in simulated environments14,17,18). The 

simulation-reality gap, arising from differences between 

real-world and simulated scenarios, restricts the 

application of well-trained reinforcement learning 

algorithms in actual settings19,20). Additionally, the design 

of reward functions is a key factor constraining the 

development of reinforcement learning in autonomous 

driving control21). 

With the development of policy-based reinforcement 

learning methods, reinforcement learning has become 

more suitable for addressing continuous action space 

problems. However, many researchers still tend to use 

value-based reinforcement learning algorithms, such as 

DDQN, to solve continuous action space control problems. 

In 2017, OpenAI introduced the Proximal Policy 

Optimization (PPO) algorithm22), which, due to its lower 

reward function requirements and low dependency on 

algorithm parameters, shows tremendous application 

potential in the field of autonomous driving control. 

In this paper, we employ the PPO algorithm to control 

vehicles by obtaining limited environmental information, 

aiming to verify the robustness and generalization ability 
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of the PPO algorithm under input information constraints. 

Furthermore, both the training and testing of this study are 

conducted on actual physical models, attempting to train 

algorithms in real-world environments, and exploring the 

feasibility of an alternative solution for applying 

reinforcement learning algorithms from simulated to real-

world environments. 

2. Relative Works

Following the birth of the DQN algorithm, which 

combines Q-learning with deep learning, and the 

surpassing of human performance in the game of Go by 

AlphaGo, which was trained using the DQN algorithm, 

reinforcement learning has entered a rapid development 

stage. From value-based Q-learning algorithms, such as 

DQN, DDQN, Dueling-DQN, and D3QN, to policy 

optimization-based algorithms, such as PG, Actor-Critic, 

DDPG, TRPO, and PPO, these methods have found 

mature applications in various fields, including gaming, 

robot control, finance, and decision support. In particular, 

the policy optimization-based algorithms have shown 

outstanding capabilities in handling continuous action 

spaces, making them more promising in various 

continuous action application scenarios. 

In recent years, scholars have been studying the 

application of reinforcement learning to the field of 

autonomous driving. Wolf23) and Lillicrap24) successfully 

implemented vehicle control in simulations using 

reinforcement learning algorithms, while Kendall25) 

successfully achieved real vehicle motion control using 

reinforcement learning. However, the models established 

by reinforcement learning have a "black box" 

characteristic, which makes it difficult to fine-tune the 

model in response to emerging problems. On the other 

hand, real-world driving conditions are diverse, and 

current technological means cannot collect data for all 

scenarios, leading to simulation-based reinforcement 

learning models that may not be well-suited to all driving 

conditions. Therefore, improving the generalization 

ability of the model and addressing the simulation-reality 

gap are urgent issues to be solved. Consequently, in the 

field of behavior reflex (end-to-end) autonomous driving 

solutions, academia is more focused on discussing how to 

build better algorithms to mitigate or solve the 

aforementioned problems. 

Bojarski26) and Kim27) proposed using the extraction of 

convolutional layer feature maps and highlighting salient 

objects, as well as using a visual attention model, to solve 

the problem of how deep neural networks understand 

environmental information. Wenshuai Zhao20) and B Ravi 

Kiran21) summarized the current solutions to the 

simulation-reality gap in their articles. Researchers are 

mainly exploring autonomous driving control by 

employing different algorithms or improving existing 

algorithms. Zhu M14) and others proposed a new velocity 

control during car following model and compared it with 

an adaptive cruise control (ACC) algorithm based on 

model predictive control (MPC). Chen et al.28) proposed a 

human-in-the-loop deep reinforcement learning method, 

which improves the deep neural network reward model 

through fuzzy evaluations provided by human drivers. 

Liang et al.29) aimed to enhance the exploration efficiency 

of the DDPG algorithm in high-dimensional action spaces 

by using expert data to constrain the action space, 

ensuring that the algorithm always explores within 

feasible regions. 

The direct perception method proposed in paper1) pre-

processes environmental information to some extent, 

thereby avoiding the "black box" problem in 

reinforcement learning and significantly reducing the 

training cost of reinforcement learning algorithms. The 

feasibility of training vehicles using this method on real 

objects, as well as the impact of this method on the 

robustness and generalization of the algorithm, are the 

topics of investigation and discussion in this paper. 

3. Methodology

3.1  Policy-based Reinforcement Learning 

Algorithm 

Reinforcement learning can be divided into two types 

of algorithms: value-based algorithms and policy-based 

algorithms. From a fundamental perspective, value-based 

algorithms require reward output as a prerequisite for 

policy optimization. Each action is represented using its 

corresponding action value. However, action values 

cannot be mapped to a single distribution, thus hindering 

the agent's ability to output continuous actions. Policy-

based algorithms use a policy function to output actions, 

which can be mapped to a distribution. Actions are 

represented using action probabilities, making them well-

suited for continuous action spaces (high-dimensional). In 

the actual operation of vehicles, changes in speed and 

direction are not determined by only a few specific speed 

and angle values. For example, there are countless speed 

values between 0 and 1 m/s, and similarly, there are 

countless steering angles between 0° and 45°. Therefore, 

when apply-ing reinforcement learning to vehicle control, 

policy-based algorithms have advantages.  

The purpose of policy gradient algorithm is to find the 

optimal policy without using the Q-function. This 

algorithm optimizes the policy function 𝜋(𝑎|𝑠)  by 

adjusting the parameters 𝜃 , such that it becomes 

𝜋(𝑎|𝑠; 𝜃) . Given a sequence of state-action pairs =
𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑙 , 𝑎𝑙  , the objective function of policy

gradient is: 

𝐽(𝜃) = 𝐸(∑ 𝑅(𝑠𝑙 , 𝑎𝑙)
𝑙
𝑙=0 ; 𝜋𝜃) = ∑ 𝑃(𝑟 𝜏; 𝜃)𝑅(𝜏)  (1)

Here, 𝑅(𝜏) = ∑ 𝑅(𝑠𝑙 , 𝑎𝑙)
𝑙
𝑙=0  represents the return of

the sequence, and 𝑃(𝜏; 𝜃) represents the probability of 

the sequence. 

When solving with gradient ascent, we have: 

-888-



Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm 

𝜃 = 𝜃 + 𝛼∇𝜃𝐽(𝜃)       (2)

Taking the derivative of 𝐽(𝜃) with respect to 𝜃 yields: 

∇𝜃𝐽(𝜃) = ∑ 𝑃(𝑟 𝜏; 𝜃)∇𝜃𝑙𝑜𝑔𝑃(𝜏; 𝜃)𝑅(𝜏)   (3) 

After sampling m trajectories, the policy gradient can be 

approximated by the average of the experiences: 

∇𝜃𝐽(𝜃) =
1

𝑚
∑ ∇𝜃𝑙𝑜𝑔𝑃(𝜏; 𝜃)𝑅(𝜏)𝑚

𝑖=1      (4) 

The likelihood of each sequence 𝜏 is: 

𝑃(𝜏; 𝜃) = ∏ 𝑃(𝑠𝑖+1
𝑖 |𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 )𝜋0(𝑎𝑡

𝑖 |𝑠𝑡
𝑖)𝑙

𝑡=0    (5)

where 𝑃(𝑠𝑖+1
𝑖 |𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 )  represents the dynamics,

independent of the parameter 𝜃 . Substituting it into (4) 

yields: 

∇𝜃𝐽(𝜃) =
1

𝑚
∑ (∑ ∇𝜃𝑙𝑜𝑔𝜋0

𝑙
𝑡=0 (𝑎𝑡

𝑖 |𝑠𝑡
𝑖)𝑅(𝜏𝑖))𝑚

𝑖=1 (6) 

The policy gradient has a large variance, making it 

impossible to extract every action during action sampling. 

A constant baseline b is typically introduced to reduce 

variance: 

∇𝜃𝐽(𝜃) =
1

𝑚
∑ (∑ ∇𝜃𝑙𝑜𝑔𝜋0

𝑙
𝑡=0 (𝑎𝑡

𝑖 |𝑠𝑡
𝑖)𝑅(𝜏𝑖) − 𝑏)𝑚

𝑖=1 (7) 

The value of 𝑏 can be obtained by taking the derivative 

of the variance with respect to 𝑏 and setting it to zero. 

According to the PG principle, the pseudocode of the PG 

algorithm can be represented as follows: 

Fig. 1: Pseudocode of the PG algorithm. 

According to the policy gradient method, the parameter 

update equation can be written as: 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 + 𝛼∇𝜃𝐽      (8) 

Here, 𝛼 is the step size of the update, which directly 

determines the quality of the new policy. If 𝛼 is 

inappropriate, the updated policy may be worse, resulting 

in a worse learning process. To ensure that the new policy 

can make the reward function monotonically non-

decreasing and prevent the learning process from 

deteriorating, the Trust Region Policy Optimization 

(TRPO) algorithm was proposed. In TRPO, the Kullback-

Leibler (KL) divergence is used to add a trust region 

constraint to the policy gradient method, ensuring that the 

difference between the new and old policies is small . 

The reward function for a state-action sequence 𝜏 can 

be expressed as: 

𝜂(𝜋) = 𝐸𝜏|𝜋[∑ 𝛾𝑡𝑟(𝑠𝑡)∞
𝑡=0 ]    (9) 

If the new policy is 𝜋′ and it is better than the old policy, 

the expected reward of 𝜋′ can be defined as: 

𝜂(𝜋′) = 𝜂(𝜋) + 𝐸𝑠0,𝑎0,…𝜋′[∑ 𝛾𝑡𝐴𝜋(∞
𝑡=0 𝑠𝑡 , 𝑎𝑡)] (10)

Here, 𝐴𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉𝜋(𝑠)  is the 

advantage function, where 𝑄𝜋(𝑠𝑡 , 𝑎𝑡)is the action-value

function, and 𝑉𝜋(𝑠) is the value function. 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) −
𝑉𝜋(𝑠)  represents the advantage of the action-value

function over the current value function. 

By using the all-state rewriting equation 10, we obtain: 

𝜂(𝜋′) = 𝜂(𝜋) + ∑ 𝜌𝜋′(𝑠)𝑠 ∑ 𝜋′(𝑎|𝑠)𝐴𝜋(𝑠, 𝑎)𝑎  (11)

Here, 𝜌 is the discount visitation frequency. 𝜌𝜋′(𝑠) =
𝑃(𝑠0 = 𝑠) + 𝛾𝑃(𝑠1 = 𝑠) + 𝛾2𝑃(𝑠2 = 𝑠) + ⋯. To ensure

that the policy is monotonically non-decreasing, we need 

to ensure that ∑ 𝜋′(𝑎|𝑠)𝐴𝜋(𝑠, 𝑎)𝑎  is non-negative. We

introduce a local approximation as: 

𝐿(𝜋′) = 𝜂(𝜋) + ∑ 𝜌𝜋(𝑠)𝑠 ∑ 𝜋′(𝑎|𝑠)𝐴𝜋(𝑠, 𝑎)𝑎  (12)

In the use of visitation frequency 𝜌𝜋  in 𝐿(𝜋′) , the

change in visitation frequency due to a change in policy is 

ignored, and the approximation error of the advantage 

function is also neglected. When using conservative policy 

iteration, the new policy 𝜋𝑛𝑒𝑤(𝑎|𝑠)is determined by the

following equation: 

𝜋𝑛𝑒𝑤(𝑎|𝑠) = (1 − 𝛼)𝜋𝑜𝑙𝑑(𝑎|𝑠) + 𝛼𝜋′(𝑎|𝑠)  (13)

Here, 𝜋𝑛𝑒𝑤  represents the new policy and 𝜋𝑜𝑙𝑑

represents the old policy. Furthermore, 𝜋′ =
𝑎𝑟𝑔𝑚𝑎𝑥𝜋′𝐿𝜋𝑜𝑙𝑑

(𝜋′). Thus, we have:

𝜂(𝜋′) ≥ 𝐿𝜋(𝜋′) − 𝐶𝐷𝐾𝐿
𝑚𝑎𝑥(𝜋, 𝜋′)   (14) 

Here, 𝐶 is the penalty coefficient and 𝐷𝐾𝐿
𝑚𝑎𝑥represents

the KL divergence between the new and old policies. To 

ensure that the expected long-term reward 𝜂 

monotonically increases, we only need to maximize the 

right-hand side of Equation 14. Introducing a parameter𝜃 

to replace the policy 𝜋, with 𝜃𝑜𝑙𝑑 representing the policy

to be improved, we have: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃   [𝐿𝜃𝑜𝑙𝑑
(𝜃) − 𝐶𝐷𝐾𝐿

𝑚𝑎𝑥(𝜃𝑜𝑙𝑑 , 𝜃)  (15)

If the penalty coefficient 𝐶 is too large, the step size 

will be too small, which affects the update speed. 

Therefore, a constraint can be added to the KL divergence: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃            𝐿𝜃𝑜𝑙𝑑
(𝜃)

sucn that     𝐷𝐾𝐿
𝑚𝑎𝑥(𝜃𝑜𝑙𝑑 , 𝜃) ≤ 𝛿  (16)
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Introducing the average KL divergence to simplify 

𝐷𝐾𝐿
𝑚𝑎𝑥:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃  𝐿𝜃𝑜𝑙𝑑
(𝜃)

such that      𝐷𝐾𝐿

𝜌𝜃𝑜𝑙𝑑̅̅ ̅̅ ̅̅ ̅̅
(𝜃𝑜𝑙𝑑 , 𝜃) ≤ 𝛿  (17)

Expanding L yields the objective function expressed as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜃   𝐸𝑠𝜋𝜃𝑜𝑙𝑑
, 𝑎𝜋𝜃𝑜𝑙𝑑

[
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑜𝑙𝑑
(𝑎|𝑠)

] 𝐴𝜋𝜃𝑜𝑙𝑑
(𝑠, 𝑎) 

such that 

𝐸𝑠𝜋𝜃𝑜𝑙𝑑
[𝐷𝐾𝐿(𝜋𝜃𝑜𝑙𝑑

(· |s)| |𝜋𝜃𝑜𝑙𝑑
(𝜋𝜃𝑜𝑙𝑑

(· |s))] ≤   𝛿 (18)

The pseudocode of the TRPO algorithm can be 

represented as follows: 

Fig. 2: Pseudocode of the TRPG algorithm. 

The TRPO algorithm is a constrained optimization 

problem in which the average KL divergence between the 

new and old policies must be smaller than δ. However, the 

TRPO algorithm requires significant computational effort 

to perform constrained optimization using conjugate 

gradient calculations. In response, the OpenAI team 

proposed an improved method called Proximal Policy 

Optimization (PPO) algorithm. 

In the PPO algorithm, the constraint is replaced with a 

penalty term , avoiding the need for conjugate gradient 

calculations. The new objective function can be expressed 

as follows: 

𝐿𝐶𝑃𝐼(𝜃) = 𝐸𝑡̂[𝑟𝑡(𝜃)𝐴𝑡̂]  (19)

where 𝐿𝐶𝑃𝐼  represents conservative policy iteration,

𝐴𝑡̂ is the advantage function, and𝑟𝑡(𝜃) =
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑜𝑙𝑑
(𝑎|𝑠)

 is the

probability ratio between the new and old policies. 

Maximizing 𝐿  results in significant policy updates, 

which can increase variance. Therefore, a penalty is 

introduced to penalize larger policy updates. The modified 

objective function is: 

𝐿𝐶𝑃𝐼(𝜃) = 𝐸𝑡̂[𝑚𝑖𝑛 𝑟𝑡(𝜃)𝐴𝑡̂ , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡̂]
(20) 

The penalty term clips 𝑟𝑡(𝜃) within the interval[1 −
𝜖, 1 + 𝜖] to reduce its impact on the objective function. 

The pseudocode of the PPO algorithm can be 

represented as follows: 

Fig. 3: Pseudocode of the PPO algorithm. 

3.2  Control target 

The purpose of this paper is to implement vehicle 

control based on the PPO algorithm, which sets a goal for 

the vehicle to reach using control commands generated by 

the PPO algorithm. The paper uses a laser radar to scan 

the surrounding environment of the vehicle and obtain its 

relative position in the environment. Based on the 

collected position information, the PPO algorithm is used 

to control the distance d' between the vehicle and the 

surrounding objects, that is, to automatically approach the 

object when the distance between the vehicle and the 

object exceeds a certain threshold d, and to automatically 

move away from the object when the distance is less than 

the threshold d, as shown in Fig. 4. 

Fig. 4: Control target. 

The PPO algorithm controls the movement of the 

vehicle (away from or closer to the object) based on the 

collected position information. The environment 

information obtained consists of information about the 

points on the environment objects. An environment object 

is made up of many points, and the distance information 

in different points' information of the same object does not 

vary greatly. However, due to the width of the 

environment object, there can be significant differences in 

the angle information of different points' information. If 

the relative angle between the vehicle and the 

environment object is required, it can cause serious 

interference to the PPO algorithm. Therefore, when 

maintaining a certain distance between the vehicle and the 

environment object, no requirements are made on the 

angle relationship between the vehicle and the 

environment object. Only the distance information of the 

environment object is used to calculate rewards to train 

the algorithm, and the angle information is only used to 
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help the algorithm determine the approximate angle 

position of the current environment object and to assist the 

algorithm in selecting a direction of motion. 

3.3  Training method 

The iteration method of the PPO algorithm based on the 

collected environment information is shown in Fig. 5. At 

time 𝑡1, the laser radar obtains the distance information

of the environment object, 𝑑𝑡1
 , which is input into the

PPO algorithm to obtain control command A, and the 

vehicle runs while saving 𝑑𝑡1
  to the reward function.

After the vehicle runs, the laser radar obtains the distance 

information 𝑑𝑡2
, which is input into the reward function

to calculate the reward obtained by the control command 

A issued by the PPO algorithm at time 𝑡1. The obtained

reward is used to evaluate the control effect, and the 

evaluation result is input into the PPO algorithm. The 

algorithm will improve and optimize according to the 

evaluation result and issue a new control command B 

based on 𝑑𝑡2
 , which makes the vehicle run again. This

completes one training process of the PPO algorithm. 

By continuously running the vehicle and training the 

PPO algorithm, when the re-ward calculated based on the 

reward function converges, it is considered that the PPO 

algorithm has completed its training. 

During actual algorithm training, the vehicle is 

randomly placed in any position in the environment as the 

start of training. Once the training begins, the vehicle's 

movement will not be interfered with in any way, allowing 

it to run completely autonomously. This is be-cause the 

reward calculated by the reward function and the 

instructions issued by the PPO algorithm are extremely 

sensitive to the position information scanned by the radar 

at the current and previous moments. If there is any human 

interference during the vehicle's operation, it will affect 

the convergence speed of the algorithm and may even 

prevent the algorithm from converging, making it 

impossible to complete the algorithm training. 

In this paper, the aforementioned method will be 

employed to train the algorithm in the environment 

depicted in Fig. 6. The rationale for training in a real-

world environment is to more accurately reflect the 

challenges and uncertainties present in the real world. All 

objects in the figure, except for the vehicle, are considered 

environmental objects. During the training process, the 

vehicle is allowed to explore the environment freely 

without any interference, which contributes to the 

development of better generalization capabilities and 

robustness for the algorithm when faced with complex 

environments and uncertain-ties in the real world. 

Fig. 6: Training environment

Fig. 5: Iteration method. 
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4. Experiment and data processing

4.1  Device 

The main computing platform used in this study is the 

Jetson Nano, a small GPU computing platform developed 

by NVIDIA specifically for robots. Its main parameters 

are presented in Table 1. 

Table 1. Parameters of Jetson Nano. 

Item Parameters 

CPU 4 Core ARM A57 @1.43GHz 

GPU 128 Core Maxwell 

472 GFLOPs（FP16） 

Memory 4 GB 64 bit LPR4 25.6GB/s 

Storage 16 GB eMMC 

The RPLIDAR A1 LIDAR sensor, responsible for 

collecting environmental information, has its main 

parameters presented in Table 2. The vehicle's main power 

is pro-vided by two DC motors, while its steering function 

is provided by a servo motor. The DC motors and servo 

motor are directly controlled by an STM32 

microcontroller (STM32F103VET6), which together 

form the power platform. 

The relationship between the environmental 

information collection device, the main computing 

platform, and the power platform is illustrated in Fig. 7. 

After the l LIDAR sensor collects environmental 

information, the information is sent to the computing plat-

form for processing. The computing platform then sends 

instructions to the power plat-form's control core, which 

further processes the received instructions to make the 

servo and motors run, ultimately resulting in the 

movement of the vehicle. 

Table 2. Parameters of RPLIDAR A1. 

Item Parameters 

Measurement range 0.15m-12m 

Scanning angle 0°-360° 

Measurement resolution <0.5mm 

Angular resolution <=1° 

Single measurement time 0.5ms 

Measurement frequency >=4000Hz 

Scanning frequency 5.5Hz 

4.2  Method of processing environmental 

information. 

The information collection method of the LiDAR is 

shown in Fig. 8. During each scan of the surrounding 

environment, the LiDAR simultaneously scans the 

positions of environmental objects at 360 angles. Each 

position information consists of distance data describing 

the distance between the environmental object and the 

vehicle, and angle data describing the angular position of 

the object relative to the vehicle. If the data is not 

processed, the PPO algorithm processes at least 720 pieces 

of data in a single iteration, significantly increasing the 

algorithm's computational complexity and training time. 

To reduce the computational complexity of the PPO 

algorithm and accelerate training speed, the in-formation 

Fig. 7: Devices. 
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collected by the LiDAR needs to be preprocessed. Under 

the control objective, only the distance to the closest 

object in the environment and its corresponding angle 

need to be obtained. After filtering the distance 

information, only the position information of the nearest 

object is input into the PPO algorithm. 

 

4.3  Algorithm Settings 

The action space refers to the angular velocity and 

linear velocity of vehicle movement. The advantage of the 

PPO algorithm lies in its support for continuous output 

actions. Therefore, the action space is set within a certain 

range, taking into account both radar detection and 

algorithmic calculation delays. The vehicle's movement 

speed should not be too fast. Therefore, the range of linear 

velocity for vehicle movement is [-0.2m/s, 0.2m/s], and 

the range of angular velocity is [-0.2rad/s, 0.2rad/s]. The 

ranges of linear velocity and angular velocity constitute 

the action space of the PPO algorithm. 

When the action command is a linear velocity of 0.2m/s 

and an angular velocity of 0.2rad/s, the vehicle will move 

as shown in Fig. 9. 

 
Fig. 9: Diagram of vehicle movement. 

 

The control target is to maintain a certain distance, d, 

between the vehicle and environmental objects. In this 

chapter, 𝑑  is set to 0.3m. The algorithm's control 

commands are evaluated based on the reward value 

computed by determining whether the distance between 

the vehicle and environmental objects at each time step is 

closer to 𝑑. The maximum reward is obtained when the 

current distance, 𝑑′ , between the vehicle's current 

position and the environmental object is 0.3m. 

Table 3 shows the reward function settings. Due to the 

measurement error of the lidar, the optimal reward range 

is limited to between 0.3m and 0.34m. The maximum 

reward is obtained at 0.3m-0.32m, and a fault tolerance 

interval is set between 0.32m-0.34m. This setting makes 

Table 3. Reward function. 

𝑑 
Movement Reward 

(𝑟𝑑) 

Time Punishment 

(𝑟𝑡) 
Total Reward 

0.3𝑚 < 𝑑′ ≤ 0.32𝑚 10 - 10 

0.2𝑚 < 𝑑′ < 0.3𝑚 (𝑑′ − 𝑑′′) × 20 
0.2 × (𝑑′ − 𝑑′′)

𝑎𝑏𝑠(𝑡′ − 𝑡′′)
 𝑟𝑑 + 𝑟𝑡 

0.34𝑚 < 𝑑′ −(𝑑′ − 𝑑′′) × 20 
−0.2 × (𝑑′ − 𝑑′′)

𝑎𝑏𝑠(𝑡′ − 𝑡′′)
 𝑟𝑑 + 𝑟𝑡 

𝑑′ < 0.2𝑚 -0.9-(𝑑′ − 𝑑′′) × 5 - 𝑟𝑑 

 

 
Fig. 8: Environmental information collection method. 
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the rewards obtained by the vehicle clearer. 𝑑′ denotes

the distance between the vehicle and environmental target 

at the current step, while 𝑑′′  denotes the distance

between the vehicle and environmental target at the 

previous step. 𝑡′ denotes the absolute time of the system

at the current step, while 𝑡′′ denotes the absolute time of

the system at the previous step. 

In this task, it is desired to encourage the algorithm to 

take more favorable actions by setting the maximum 

reward value to be greater than the penalty value (negative 

reward). Therefore, the maximum reward value is set to 

10, while the maximum penalty value is around -1. 

Moreover, due to the algorithm's running speed and the 

vehicle's linear velocity, 𝑎𝑏𝑠(𝑑′ − 𝑑′′)  is usually less

than 0.1. Therefore, different coefficients are used in 

different situations to amplify (𝑑′ − 𝑑′′) and balance its

weight in the reward calculation process.  

To avoid collisions between the vehicle and 

environmental objects, the minimum distance between the 

vehicle and environmental objects is set to 0.2m. If the 

algorithm's control command causes the vehicle to move 

to a position where 𝑑′ is less than the minimum distance,

a very large penalty will be given, regardless of how the 

vehicle moves. If 𝑑′ is greater than 𝑑𝑚𝑖𝑛 and has not yet

reached the optimal distance 𝑑, the movement reward 𝑟𝑑 

will be given based on 𝑑′ − 𝑑′′  (where 𝑑′′ ′ is the

distance between the vehicle and the environmental object 

in the previous control step) to judge whether 𝑑′  is

approaching the control target. Additionally, to promote 

algorithm exploration and prevent the algorithm from 

falling into local optima, a time penalty 𝑟𝑡 is added. The

reward function calculates the penalty based on the 

distance traveled and the time between steps. 

What’s more, due to measurement errors or control 

commands that cause the vehicle to almost not move, 

there may be situations where 𝑟𝑑 = 0 . Therefore, an

additional term is added to give a penalty once 𝑟𝑑 = 0, to

encourage the algorithm to move the vehicle. 

The episodic approach is adopted to accelerate the 

convergence speed of the algorithm. The reward obtained 

within an episode and the total return will be saved, and 

when the vehicle's running meets certain conditions, it is 

considered as completing an episode. After completing 

multiple episodes, the reward data within these episodes 

will be used to iteratively update the algorithm. The 

specific process is shown in Fig. 10. When the distance 

between the vehicle and environmental objects is exactly 

d, or when the number of instructions (i.e., steps) issued 

by PPO reaches a certain value 𝑛, regardless of the 

vehicle's position, it is considered as completing an 

episode. 

Fig. 10: Illustration of the algorithm updating process 

Other parameter settings are shown in Table 4. The 

maximum number of steps per episode is set to 50 steps, 

and the algorithm will be iteratively updated once every 

1000 steps, which is one round of updates. 

Table 4. Parameter Settings. 

Item Meaning Value 

lr Learning Rate 0.0003 

Betas 
Optimizer 

Hyperparameters 
(0.9，0.99) 

Gamma 
Reward Discount 

Factor 
0.99 

K_epochs ------ 50 

update_timestep ------- 1000 

max_timesteps ------ 50 

eps_clip 
Clipping 

Parameters 
0.2 

5. Result and discussion

5.1  Training Result 

Figure 11 shows the change in total reward per episode 

after 400 episodes, during which the algorithm 

experienced approximately 14 iterations of updates based 

on the algorithm parameters. The gray line represents the 

real data of the average reward per episode, while the 

black line represents the result after exponential 

smoothing of the real data. It can be seen that after about 
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200 episodes, the average reward per episode was always 

at the maximum value of the reward function. This 

indicates that the algorithm has con-verged, and at this 

point, the algorithm has experienced approximately four 

iterations of updates. 

 
Fig. 11: Training result. 

 

To further illustrate the algorithm training process, we 

observe the reward obtained by the algorithm for each step 

of the episode 3, episodes 60-62, and episodes 137-145, 

which represent the beginning, middle, and late stages of 

the training process, respectively, as shown in Fig. 12. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 12: Rewards of rounds: (a) Rewards for each step of the 

episode 3; (b) Rewards for each step of episodes 60-62; (c) 

Rewards for each step of episodes 137-145 

 

It can be seen that in the episode 3, which represents the 

beginning of the training stage, the algorithm was only 

exploring, and the reward value was fluctuating. In the 

middle stage of the training process (episodes 60-62), the 

algorithm quickly reached the maximum reward in 

episode 60, indicating that the algorithm had gradually 

learned how to achieve the control goal through different 

instructions. However, after maintaining the goal for one 

episode (episode 61), the algorithm achieved the goal 

within 50 steps of episode 62, indicating that the algorithm 

had not yet completed its training. In the late stage of the 

algorithm training (episodes 137-145), it can be seen that 

the algorithm can achieve the goal with a small number of 

steps in a single episode, and can continue to maintain the 

goal over multiple episodes. This indicates that the 

algorithm has mastered the relationship between different 

instructions and control objectives, and the algorithm is 

close to convergence. 

 

5.2  Validation and discussion 

The Figure 13 shows the trajectory of the trained model 

when the environ-mental objects are approaching and 

moving away from the vehicle, indicating that the vehicle 

can achieve the control objectives set under the control of 

the PPO algorithm. Moreover, the vehicle can also achieve 

the control objectives in complex environments, as shown 

where the vehicle is stuck between two obstacles, and the 

vehicle must turn to get out of the situation. Note that due 

to the limitations of the environmental information in the 

following figure. Figure 14(a) shows a scenario where a 

large obstacle exists on the right side of the vehicle and a 

small obstacle is present in front of it. This means that no 

matter whether the vehicle moves forward or backward, 

the processed environmental information always tells the 

algorithm that the vehicle is in a state of being close to the 

environmental object. The escape method can only move 

the vehicle to the left and away from the obstacles or move 

it to the left and forward to bypass the obstacle in front.  
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Fig. 13: Vehicle's motions. 

   (a)                          (b) 

Fig. 14: Different environmental: (a) A large obstacle on the right side of the vehicle and a small obstacle in 

front; (b) Vehicle stuck between two obstacles. 
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algorithm can only obtain the environ-mental information 

(a) 

(b) 

Fig. 15: Vehicle's motions under Fig. 14(a): (a) Vehicle's motions; (b) Selected vehicle motions. 

(a) 

(b) 

Fig. 16: Vehicle's motion under Fig. 14(b): (a) Vehicle's motions; (b) Selected vehicle motions. 
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Figure 14(b) shows a scenario where the vehicle is 

stuck between two obstacles, and the vehicle must turn to 

get out of the situation. Note that due to the limitations of 

the environmental information acquisition method, the 

closest to the vehicle at each time, and cannot obtain the 

overall environmental information. 

Figures 15 and 16 respectively illustrate the vehicle's 

motions under the circum-stances depicted in Fig. 14 (a) 

and Fig. 14 (b). It is evident that the vehicle does not 

overcome challenging situations through a one-off 

movement process. Instead, it achieves its goal only after 

a certain amount of back-and-forth movement. The 

number of these oscillatory movements varies depending 

on the environment. 

This is because, to simplify computation, certain 

treatments and definitions were applied to the 

environmental information in this study. Only the 

coordinates closest to the vehicle are input into the PPO 

algorithm. Therefore, the PPO algorithm cannot fully 

obtain the surrounding environmental information of the 

vehicle. Consequently, in the initial stage of operation, the 

PPO algorithm does not know how to resolve such 

challenging situations. However, after performing a series 

of actions, the PPO algorithm continuously evaluates the 

entire policy under the current situation and makes 

adjustments, ultimately selecting the most beneficial 

policy. For instance, it may choose to move left and 

forward in the case of challenging situation (a). This 

policy evaluation partially compensates for the 

algorithm's inability to obtain a comprehensive view of 

the environmental information, thereby enabling the 

algorithm to control the vehicle to undertake more 

complex tasks. 

6. Conclusions

In this study, the PPO algorithm was directly trained in 

a real-world environment, aiming to avoid the limitations 

of simulating real environments in virtual settings. In the 

course of actual training, the algorithm is required to 

tackle a variety of challenges including sensor precision, 

execution of the algorithm, and latency in control 

commands. Nevertheless, the experimental results 

indicates that the PPO algorithm is capable of effective 

training and demonstrates rapid convergence. This 

suggests that the PPO algorithm does not require strict 

environmental conditions and input data during the 

training process, and can tolerate a certain degree of 

uncertainty, noise, and interference in the training 

environment. 

When trained in a real-world environment, the PPO 

algorithm can enable the vehicle to achieve control 

objectives effectively. Notably, in the application 

environment of this study, the vehicle can only obtain the 

nearest environmental information at each time step. 

Nevertheless, the PPO algorithm can still generate optimal 

policies to achieve goals when dealing with challenging 

situations. This indicates that the PPO algorithm has good 

robustness and generalization capabilities. 

In summary, the PPO algorithm demonstrates strong 

robustness during the training process, as well as good 

generalization and robustness in practical applications for 

vehicle motion control tasks. Its rapid convergence, 

adaptability, and ability to achieve control objectives in 

the face of training environment uncertainty, noise, and 

interference highlight the potential of the PPO algorithm 

for widespread practical ap-plications. Future work may 

consider extending the algorithm to more complex 

environments or incorporating more input information, 

such as depth maps or vehicle motion state data, for 

training. 
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