Plasma control system of QUEST and fast plasma shape recognition with Machine Learning

Hasegawa, Makoto Research Institute for Applied Mechanics, Kyushu University

QUEST group

https://hdl.handle.net/2324/7183078

出版情報:pp.1-15, 2023-02-01. 九州大学応用力学研究所高温プラズマ理工学研究センター バージョン: 権利関係:

Contents

- Motivation for fast plasma shape recognition
- Introduction to plasma control system of QUEST
- Dataset for machine learning
- Machine learning model structure and data processing
- Prediction results from the model
- Model validity and experimental application
- Summary

Motivation for fast plasma shape recognition

- For **steady-state operation** with QUEST, particle control and heat load control are important.
- In order to perform these controls, it is necessary to control the position and shape of the plasma and maintain the **divertor configuration**, and **fast recognition of plasma shape** is also required.
- Generally, equilibrium calculations are used to recognize plasma shapes, but the calculation load is high and time consuming (~sec).

Purpose:

Creation of a model that enables **fast plasma shape recognition**.

- Creation of a huge data set for equilibrium calculations
- Machine learning with **neural network model**

Advanced Fusion Research Center

Procedure to form a divertor configuration

- $(0 \rightarrow 1)$: Stable startup of plasma current using PF26 with large decay index
- $(1) \rightarrow (2)$: High elongation configuration by pushing from the outside with PF17 and pulling up and down with PF35 coils.
- $2 \rightarrow 3$: **Divertor configuration** by pushing from the inside with PF4 coils and detaching plasma from vacuum vessel

The PF4 coil current is kept within a range where the vertical position is controllable.

Center

Introduction to plasma control system of QUEST

Two PXI systems are connected by reflective memory to form one plasma control system.

Ν	ame	Value
0	S	LabVIEW Realtime OS
С	ontrol frequency	4 kHz
In	nput Items	TF&PF currents, magnetics (Hall sensors), visible, etc.
C	ontrol Items	TF coil, PF coils, Particle fuel, Heating power

Installed location of hall sensors

 Z sensor(±1600G) Triaxial sensor (±220G) (±1600G in TF) z=+800mm czn800 +400mm czp400 ozp400 0mm ozm000 czp000 -400mm ozm400 czm400 -800mm czm800 ozm800

Purpose of QUEST project: achievement of **steady state operation** using high-temperature walls.

Installation of Hall sensors *outside the vessel* that allows **steady magnetic measurement**.

> (left): prototype sensor (below): current triaxial sensor

Preparing dataset for machine learning

PF colls: PF17: $-8.0 \sim 0.0 \text{ kA}$ PF26: $-8.0 \sim 0.0 \text{ kA}$ PF4: $-8.0 \sim 0.0 \text{ kA}$ PF351: $0.0 \sim 8.0 \text{ kA}$ PF352: $0.0 \sim 8.0 \text{ kA}$

Equilibrium calculation are executed with parameters,^{1.5} which are randomly extracted from these ranges.

Out of 95,000 pieces of data, 3,900 pieces of data converged with limiter or diverter configuration.

(L) z

Total data points: \sim 39000

Neural network regression is used to recognize the plasma shape.

Model of neural network

Neural network regression is used to recognize the plasma shape.

Model of neural network

Number of input: 13 (5 PF currents, 8 hall sensors) Number of output: 15 (Ip, 4 shape parameters, and 5 points (R, z)) Hidden layer: 2 layers

Nodes per layer: 32 nodes

Forward propagation of neural network

• Weighting factor: $w_{j,k}^{(i)}$

from k-th node of (i-1)-th layer to j-th node of i-th layer

- Propagated value: $v_j^{\prime(i)} = \sum_k w_{j,k}^{(i)} v_k^{(i-1)}$ to j-th node of i-th layer
- Output value: $v_j^{(i)} = \phi(v_j'^{(i)})$

of j-th node of i-th layer

v

(*\phi*: activation function)

For 2 hid ϕ : Rectv' is used

For 2 hidden layers, ϕ : Rectified Linear Unit (ReLU) is used

Model of neural network

Number of input: 13 (5 PF currents, 8 hall sensors) Number of output: 15 (Ip, 4 shape parameters, and 5 points (R, z)) Hidden layer: 2 layers Nodes per layer: 32 nodes

Data pre-processing before machine learning

0. Prepare data set

1. Normalization

Normalize to the value per unit PF coil current.

Normalization Factor *nf* = Sum of 5 PF abs. coil currents

$$\left(nf = \sum_{i=1}^{5} |I_{PFi}|\right)$$

Normalize values: 5 PF coils, 8 hall sensors, Ip

 $(ex. I_{PFi_normalized} = I_{PFi}/nf)$

2. Standardization

• Standardize all parameters so that the mean is zero and the standard deviation is one.

Reason:

•

- To make all weighting factors similar in size.
- To evaluate all outputs with equal importance.

$$z = \frac{x - \mu}{\sigma}$$

x: original param.
z: standardized param.
 μ : mean of x
 σ : std. dev. of x

Typical data processing steps for machine learning

- Prepare dataset 0.
- Normalization to value per unit PF current.
- Split all data into training data and test data at a ratio of 8:2
- Standardization of training and test data from statistical information of training data 3.
- Adjustment of the weighting factors to make the MSE loss function smaller using test data
- Repeat step 4 until the test data loss value is sufficiently small 5.
- Evaluate the accuracy of model using de-standardized test data 6.

History of loss value

• Train

• Test

0.26

0.25

Prediction accuracy of trained model for representative points

Evaluation of the prediction accuracy of representative points (right point, top point, magnetic axis, and etc.).

Prediction accuracy of trained model for Ip & shape parameters

- Although the deviation of Ip appears large from the plot, the standard deviation is sufficiently small.
- The deviation of κ and δ is about 5 % from the typical range (κ : 1 ~ 2, δ : 0 ~ 2).

O-SHU UNIVERSITY EXPERIMENT WITH STEADY-STATE SPHERICAL TOKAMAK Advanced Fusion Research Center

12

Evaluation of model validity etc.

Calculation time for prediction

The time taken to normalize, standardize, and predict was evaluated.

Calculation condition

- Batch processing

 (265ms to predict 7835 of data)
 ⇒ 34 usec/data
- Call python language directly (not a compiler language)

Detailed time evaluation is required. However, it seems to be fully applicable to real-time shape recognition, since the calculation speed is **sufficiently fast**.

Normalization Factor *nf* = Sum of 5 PF abs. coil currents

the following normalization is performed.

Normalize to the value per unit PF coil current.

• Normalize values:

Normalization issues

5 PF coils, 8 hall sensors, Ip

l sensors, Ip ($ex. I_{PFi normalized} = I_{PFi}/nf$)

Case 1.				
Ip: 100kA	$\times 1/100$			
PF17: 1.0kA				
PF26: 1.0kA				

Case 2. Ip: 1kA PF17: 0.01kA PF26: 0.01kA

As mentioned earlier, to reduce the amount of the dataset,

The data in these two cases are **treated as the same data** by this normalization.

 $\left(nf = \sum_{i=1}^{5} |I_{PFi}|\right)$

- This normalization is useful for the plasma shape recognition with a small amount of dataset.
- It cannot be applied when dealing with plasma pressure, beta value, etc.

Other methods are being considered to account for other equilibrium quantities.

Difference between measured and equilibrium values of Bz

- Equilibrium cal. to obtain the inner limiter configuration.
 - Outer hall sensors: match well
 - Inner hall sensors: systematic difference

Large positive: 3 Small positive: 2, 4 Small negative: 1, 5

- This suggests that there is a local toroidal current near the Hall sensors, namely current profile in the z direction.
- The difference between the measured and the calculated values appears to depend on the value of Bz.
 - Machine learning to recognize the plasma shape needs to take these systematic differences into consideration.

14

Summary

- Using Deep Neural Network (DNN), plasma shapes can be predicted quickly and with high accuracy.
- It is necessary to consider new methods that handle not only plasma shape but also plasma pressure, beta value, etc.
- For practical applications, it is necessary to incorporate the effect of local toroidal current distributed in the z direction.

