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Abstract

Wireless gesture recognition (GR) sensing systems, which leverage Wi-Fi
Channel State Information (CSI) signals, have emerged as foundational
technologies with profound implications for cutting-edge applications. These
systems offer distinct advantages over traditional methods, such as vision-
based and wearable sensors, due to their wide accessibility, user-friendliness,
and incorporation of robust privacy protection mechanisms. Nevertheless,
the current Wi-Fi CSI tools present certain limitations, including restricted
device support, hardware compatibility issues, complex setup procedures,
constrained data processing capabilities, and a lack of official support and
updates.

In response to the aforementioned challenges, our research endeavors to
address them through two specific applications: enabling communication
between quadriplegic individuals and others, and monitoring workers’ moods
using gesture recognition. To attain these goals, we explicitly employ the
ESP32 microcontroller, selected solely for its hardware compatibility, compact
dimensions, energy efficiency, and cost-effectiveness. These features render
the ESP32 well-suited for scenarios characterized by limited power and
memory resources. Our work introduces three innovative and cost-efficient
systems that not only demonstrate feasibility for real-world deployment but
also exhibit robustness across diverse environmental conditions.

We begin by introducing the Wi-Nod system as a key component of a novel
communication system tailored for individuals with quadriplegia. Wi-Fi CSI
is utilized to encode Morse symbols, with head down and right motions
representing dot and dash, respectively, and head left motion representing
the new symbol, space. To establish distinct signatures for each head motion,
the system employs Short Time Fourier Transform (STFT). Furthermore, a
learning model based on the inception module is implemented to improve
classification accuracy and diversity user robustness.
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Next, we propose HeMoFi4Q which is the extention of the Wi-Nod system.
HeMoFi4Q introduces a new communication method based on the combi-
nation between different Wi-Nod classified blocks to make the 26-alphabet
characters. It utilizes Wi-Fi CSI waveforms to passively track head motions
and derive distinctive gesture signatures for each character. Employing a
real wheelchair and an ESP32 microcontroller, our approach diverges from
previous HAR CSI systems by addressing domain-independent challenges
in multi-human environments. Drawing inspiration from few-shot learning
algorithms, we enhance location robustness by integrating samples from
unseen environments during the learning phase. Our focus on domain in-
dependence involves studying the impact of amplitude and phase features,
leading to improved recognition accuracy with minimal samples.

In addition to the quadriplegia communication systems, we introduce a pas-
sive desk body gesture recognition system aiming to autonomously identify
the mood of a worker. Here, this system incorporates a multiple input multi-
ple output (MIMO) configuration, employing three ESP32 microcontrollers
sharing a common channel to enhance the reliability and robustness of data
transmission. Additionally, the calibrated phase variations in the wavelet
domain are fed into a straightforward machine learning model. This system
aims to develop an on-desk body gesture recognition system on a single
chip.

We conducted comprehensive experiments to evaluate the performance of
the aforementioned three systems individually. The results demonstrated
significant advancements in environmental robustness, particularly in multi-
human context environments that closely resemble real-world scenarios.
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Introduction
1

1.1 Background

Sensing technologies serve as the fundamental building blocks for numerous
fields in modern society. Applications such as smart homes [1, 2], human
behavior analysis [3, 4], human identification [5, 6], healthcare systems [7,
8], self-driving cars [9, 10], and others heavily rely on diverse sensing tech-
nologies for their operation and functionality. These technologies serve as
the cornerstone for progress and innovation in various domains, enhancing
convenience, efficiency, and security in our lives. Notably, sensing approaches
utilizing computer vision and wearable sensors have demonstrated signifi-
cant potential, benefiting from advancements in image processing and the
capabilities of wearable sensor technology. The advancements in image
processing methodologies have facilitated the emergence of computer vision-
based sensing methods, including infrared and depth image sensors [11,
12, 13]. These approaches have garnered significant interest owing to their
acceptable recognition accuracy and superior detection capabilities. However,
camera-based systems require good lighting conditions and raise privacy con-
cerns and bad performance in non Line-of-Sight (non-LOS) scenarios. On the
other hand, wearable sensor-based systems [14, 15, 16] offer a lightweight
and cost-effective solution. Nevertheless, they can be problematic if the user
forgets to wear them, particularly in healthcare applications.

However, the implementation of these techniques in real-world scenarios
poses challenges such as privacy concerns, limited coverage, and user incon-
venience. Therefore, in this thesis, our objective is to tackle the challenges
of privacy concerns and user inconvenience that arise when implementing
sensing technologies in real-world scenarios. To address these issues, we
present novel approaches in the healthcare domain that leverage Wi-Fi signals
from low-cost microcontrollers. The aim is to develop an advanced gesture
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recognition system capable of passively detecting head and body gestures in
diverse locations, particularly in multi-human context environments. This
innovative approach holds promise for practical applications in healthcare
and offers potential solutions to the aforementioned challenges. This chapter
introduces the research by presenting the research problems, objectives, and
significance.

1.2 Research Problem and Questions

In recent years, there has been a significant surge in the development of Wi-Fi
CSI-based sensing systems for passive Human Activity Recognition (HAR) and
gesture recognition. However, these systems face limitations that hinder their
practicality in real-world scenarios, despite some studies showing promise in
addressing domain shift adaptation.

One notable limitation revolves around the reliance on open-source CSI tools
developed by Halperin et al. [17] and Atheros CSI Tool [18] in existing
Wi-Fi CSI-based HAR and gesture recognition systems. While widely used,
these tools possess certain drawbacks, including limited device support and
hardware compatibility, complex setup processes, limited data processing
capabilities, and a lack of official support and updates.

Moreover, previous HAR CSI systems have attempted to address the challenge
of environmental robustness by employing deep learning techniques such as
few-shot learning. However, these systems struggle to adapt to real-world
environments due to their tailored nature, primarily designed for specific
user settings. This limitation becomes even more apparent when faced with
the complexities posed by multi-human contexts within the sensing area.

The research problem under investigation involves addressing the limitations
of existing Wi-Fi CSI-based systems in device support, hardware compatibility
issues, complex setup procedures, and handling dynamic objects within the
sensing area. The current focus on single-user environments neglects the
real-world scenarios where users are present amidst multiple individuals.
The challenge lies in developing techniques that can effectively disregard
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scattering signals from surrounding people while extracting meaningful
patterns solely from the target user.

The primary objective of this thesis is to address these limitations to improve
the robustness and reliability of Wi-Fi CSI signals in practical sensing ap-
proaches. The aim is to enable the system to effectively handle real-world
environments and expand the generalization and applicability of Wi-Fi signals
in detecting different activities from various users in diverse multi-human
context environments.

To achieve this, the thesis will address the following research questions:

RQ1 How can the Wi-Fi CSI system extract target user patterns while effec-
tively filtering out scattering signals from surrounding individuals in a
multi-human context?

RQ2 How can a general Wi-Fi CSI system be developed to detect gestures
despite variations in their execution by different users?

RQ3 What approaches can be employed to configure ESP32 as a Multiple-
Input Multiple-Output (MIMO) system, thereby increasing subcarrier
resolution and enhancing overall system performance?

RQ4 How can signal interference and collisions be mitigated to ensure
reliable Wi-Fi CSI sensing using ESP32 in a MIMO configuration?

1.3 Research Objectives

The primary objective of this thesis is to address the above questions and
tackle the challenges associated with the deployment of Wi-Fi CSI sensing
systems in diverse real-world environments with multiple human contexts.
The research aims to develop robust and generalizable Wi-Fi CSI systems
capable of handling the inherent dynamics and variability of such environ-
ments by investigating and developing techniques to address the variability
of working conditions in real-world environments, enabling the Wi-Fi CSI
system to adapt and perform reliably across different locations and contexts.
To achieve this objective, the thesis will focus on two specific gesture use
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cases: communication with quadriplegia and workers’ mood recognition, uti-
lizing the low-cost ESP32 microcontroller. These use cases have been selected
due to their potential impact on improving the quality of life for individuals
with quadriplegia and enhancing workers’ mental well-being. The ESP32
CSI toolkit is utilized in a Single-Input Single-Output (SISO) configuration
for a quadriplegia communication system and in a MIMO configuration for
tracking a worker’s mood and emotions.

The thesis objectives can be summarized as follows:

O1 Explore methods to handle the variability of target users within the
multi-human context, ensuring accurate gesture recognition and
communication for individuals with quadriplegia. Introduce Wi-
Nod system that employs Wi-Fi CSI to detect Morse symbols, including
dot, dash, and a new symbol called space, through head nodding
gestures using time-frequency features. Evaluate the robustness of the
system concerning user and session diversity in a fixed location with
surrounding individuals.

O2 Investigate techniques for addressing location diversity within a
multi-human context, while minimizing the reliance on extensive
data labeling from unseen environments. This objective involves
the development and evaluation of HeMoFi4Q, a novel sign language
system built upon the Wi-Nod system. HeMoFi4Q aims to facilitate
communication with quadriplegia patients by recognizing all 26 letters
of the alphabet using Morse code and head movements within diverse
spatial contexts. The objective focuses on achieving robust and accurate
recognition of gestures in real-world scenarios, without the need for
large amounts of labeled data specific to each location.

O3 Develop a MIMO configuration for ESP32 to enhance subcarrier
resolution and enable precise tracking of on-desk gestures. Develop
a contactless method to recognize a worker’s mood based on body
gestures using Wi-Fi CSI signals while the worker is situated at their
desk. This objective focuses on extracting phase variations in the
wavelet domain to mitigate interference and collisions of Wi-Fi CSI
signals. By accomplishing this objective, the aim is to improve the
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performance and reliability of the Wi-Fi CSI sensing system for on-desk
gesture recognition.

O4 Evaluate the robustness and generalizability of the developed Wi-Fi CSI
system through comprehensive experimental studies and comparisons
with existing approaches, taking into account key performance metrics
such as gesture recognition accuracy and system reliability.

1.4 Research Significance

The importance of this study is to maximize the potential of Wi-Fi CSI across
diverse applications, with a specific focus on head gestures and body gestures
as primary use cases. The main objective is to enhance the robustness of
Wi-Fi CSI in real-world settings by introducing innovative techniques and ap-
proaches. One of the main challenges we address is the impact of multipath
propagation on Wi-Fi CSI. In real-world environments, signal reflections and
multipath effects caused by obstacles and reflections can distort CSI measure-
ments. To overcome this, algorithms and signal processing techniques are
proposed to effectively mitigate the negative effects of multipath propagation.
This ensures more accurate and reliable CSI analysis. Another important
aspect to investigate is the issue of location diversity. Real-world scenarios
often involve multiple locations with unique characteristics and layouts. This
presents challenges in training models and achieving consistent performance
across diverse locations. To address this, we develop novel methodologies
that adapt Wi-Fi CSI models to different environments, enhancing their gen-
eralization capabilities. Furthermore, we explore the complexities that arise
in multi-human context environments. In such scenarios, the presence of
multiple individuals introduces interference and signal variability in Wi-Fi
CSI measurements. To tackle these challenges, we introduce techniques that
enable more effective utilization of Wi-Fi CSI in multi-human contexts.

Each chapter’s significance within this thesis is outlined as follows:

1. The significance of the Wi-Nod system lies in its ability to generalize
the Wi-Fi CSI for different users in a real-life scenario. It leverages
the frequency domain to mitigate environmental noise and scatter from
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multiple individuals by generating signatures based on micro-head
movements for Wi-Nod symbols. Verifying user and session diversity in
a multi-human context environment provides valuable insight into the
system’s performance and adaptability.

2. The significance of HeMoFi4Q system lies in its approach to sim-
ulate real-world scenarios more accurately and comprehensively,
facilitating a thorough exploration of the system’s effectiveness in
diverse environments. By employing the amplitude time domain as
base signals and applying the efficient channel attention (ECA) model,
this system aims to extract the most unique features for each character,
thereby improving symbol recognition performance.

3. Set ESP32 microcontroller in a MIMO configuration and overcome
signal interference and collisions. We have built the MIMO config-
uration for ESP32, enabling an increase in subcarrier resolution for
tracking on-desk gestures. By extracting phase variations in the wavelet
domain, this system aims to mitigate interference and collisions of
signals, leading to improved performance and reliability.

1.5 Thesis Organization

The organization of this thesis is shown in Fig. 1.1. The remaining sections
of this dissertation are organized as follows:

• Chapter 2: Fundamentals and Background: In this chapter, the fun-
damental concepts related to the background of the dissertation are
introduced. This provides the necessary groundwork for understanding
the subsequent chapters.

• Chapter 3: Overview of Wi-Fi CSI for Gesture Recognition: This chapter
provides a comprehensive overview of various Wi-Fi CSI techniques
used for gesture recognition tasks. It explores the existing literature
and discusses the different approaches and methodologies employed in
this field.
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Figure 1.1: The overall challenges and objectives of the thesis are summarized.
Chapter 4 provides a foundational understanding of existing Wi-Fi CSI
systems and highlights the limitations associated with current CSI tools.
In Chapter 5, the thesis introduces the Wi-Nod system, which addresses
the issue of user diversity in the context of Wi-Fi CSI. Chapters 6 and 7
are dedicated to addressing the challenge of location diversity within
a multi-context environment. Chapter 6 presents a novel system that
effectively integrates a limited amount of data from previously unseen
environments. Chapter 7 focuses on the implementation of the ESP32
microcontroller in a MIMO configuration.
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• Chapter 4: Leveraging public Wi-Fi CSI sign language gesture dataset
to improve location diversity with single user environment. In this
chapter, we focus on the contributions and challenges of a significant
use case that aims to enhance the quality of life for deaf people using a
publicly available dataset of Wi-Fi CSI sign language gestures.

• Chapter 5: Wi-Nod System for Head Nodding Recognition: Chapter
4 delves into the Wi-Nod system, which focuses on recognizing head
nodding gestures using Wi-Fi CSI. The system is designed to provide
communicative support for quadriplegics. This chapter explores tech-
niques and methodologies to accommodate the varying characteristics
and behaviors of different users within the system.

• Chapter 6: HeMoFi4Q: Morse Communication Based on Wi-Fi and Head
Motion for Quadriplegia with Environmental Robustness: a new sign
language based on the previous Wi-Nod system is introduced, enabling
communication with quadriplegia patients. The chapter specifically
investigates the recognition of all 26 letters of the alphabet using Morse
code and head movements within diverse spatial contexts. Additionally,
this chapter aims to mitigate the scarcity of labeled data and the distri-
bution shift problem, enhancing the generalizability of the Wi-Fi CSI
system.

• Chapter 7: Tracking On-Desk Gestures Based on Wi-Fi CSI on Low-
Cost Microcontroller: addresses the contactless tracking of on-desk
gestures for recognizing worker’s moods. The research focuses on the
implementation of the ESP32 microcontroller in a MIMO configuration
and explores how Wi-Fi CSI can be utilized to track gestures performed
on a desk surface and infer the mood of the worker.

• Chapter 8: Conclusion and Future Directions: concludes the contribu-
tions of the thesis and outlines the future directions for practical Wi-Fi
CSI-based sensing systems. Specifically, it focuses on the challenges that
need to be addressed in real-world manufacturing environments. The
chapter provides a summary of the key findings and suggests potential
areas for future research.
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Fundamental Concepts
2

2.1 Radio Frequency based Sensing
Techniques

In recent years, radio signal-based approaches have garnered significant
interest from researchers across various disciplines, particularly in the field
of occupancy detection. These approaches leverage the characteristics of RF
signals to enable a range of applications, including but not limited to Gesture
Recognition (GR), HAR, and human counting. Several radio-based tech-
nologies have been explored for these purposes, such as Bluetooth Low
Energy (BLE) transmissions, frequency shift radars, and Wi-Fi signals from
access points.

Radio signals offer unique advantages for sensing and detection due to their
ability to propagate through the environment and interact with objects and
individuals in their path. By analyzing the properties of received RF signals,
valuable information can be extracted to infer occupancy, monitor human
activities, detect gestures or count the number of individuals in a given
space.

2.1.1 Bluetooth Low Energy based systems

Bluetooth Low Energy (BLE) [19, 20] transmissions have gained popularity
as a radio-based technology for human behavior recognition and healthcare
applications. BLE-enabled devices, such as smartphones or wearable devices,
emit periodic signals that can be detected and utilized to determine the
presence of individuals within a specific area. These signals exhibit distinct
characteristics that enable accurate occupancy detection. However, BLE has
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a relatively limited range compared to Wi-Fi signals. While BLE can typically
reach up to 100 meters in an open space, its range can be significantly
reduced in environments with obstacles or interference. This range limitation
can restrict the coverage area for BLE-based sensing applications.

2.1.2 Radio Frequency Identification based systems

Radio Frequency Identification (RFID) [21] is an active radio frequency sens-
ing technique that is widely employed for object identification and tracking
purposes. The technology involves the use of tags, also known as transpon-
ders, and readers. These tags consist of a microchip and an antenna, enabling
them to both receive and transmit radio frequency signals. On the other
hand, readers emit radio frequency signals and establish communication
with the tags. When a tag enters the range of a reader, it captures the emit-
ted signal and utilizes it to power itself. Subsequently, the tag responds by
transmitting its unique identification information back to the reader. This
process allows for the identification and tracking of objects equipped with
RFID tags. Wang et al. [22] introduced RF-IDraw system, which employs
off-the-shelf RFID readers and tags for capturing in-air hand gestures to
interact with a device. The RF-IDraw system utilizes the concept of a virtual
touch screen, where hand gestures are interpreted as if they were touching a
physical surface. The system achieved a character recognition rate of 97.3%
and a word recognition accuracy of 88%. However, RFID systems typically
exhibit relatively shorter range capabilities, typically spanning up to a few
meters. The achievable range is contingent upon the specific tags and readers
employed, as the performance characteristics can vary. Factors such as the
power output of the reader and the sensitivity of the tag’s receiver impact
the effective range of an RFID system.

2.1.3 Radar based systems

In recent years, there has been a notable expansion in the application of radar
for recognition tasks. Radar-based HAR approaches [23] offer advantages
over vision-based methods due to radar’s insensitivity to lighting conditions
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and weather disturbances. As individuals move, the speeds and Doppler
frequencies of different body parts vary over time, providing distinctive signa-
tures that can be captured by radar. Radar-based sensing system operates on
the principles of electromagnetic reflection and transmission. These systems
employ radio frequency signals transmitted and received by transceiver an-
tennas to detect and analyze the interactions between the signals and objects
present in the surrounding environment.

mmWave Radar

Recently, millimeter Wave (mmWave)-based radar systems have found ap-
plications in health monitoring and HAR applications due to their large
frequency range, from 30 GHZ to 300 GHZ, and small size. By leveraging the
unique characteristics of mmWave signals, such as their ability to penetrate
certain materials and provide detailed range and velocity information, these
systems enable non-intrusive monitoring of vital signs and movement pat-
terns. Among the mmWave radar systems, Frequency-Modulated Continuous-
Wave Radar (FMCW) radar [24] is the most commonly employed method
in the existing literature. FMCW radar utilizes variations in the time taken
for the carrier frequency to shift, known as Time of Flight (ToF), to measure
distances. It accomplishes this by mapping the differences in time to the
shifts of the carrier frequency. This approach facilitates the measurement of
ToF, which represents the time it takes for a wireless signal to travel from the
transmitter to the human body being reflected and back to the receiver.

Sun et al. [25] employed mmWave radar technology in their research on
fall detection. They leveraged the capabilities of mmWave radar, combined
with the Long Short-Term Memory (LSTM) model, to preserve the tempo-
ral features necessary for accurate fall detection. In their study, Sun et al.
recognized the significance of temporal information in detecting falls, as it
provides crucial context and helps distinguish falls from other activities or
movements. To address this, they integrated the LSTM model with mmWave
radar data, allowing for the capture of sequential and time-dependent pat-
terns associated with falls. mBeats [26] is a robot equipped with a mmWave
radar system designed for obtaining periodic heart rate measurements across
various user poses. The authors aimed to address the challenge of obtaining

2.1 Radio Frequency based Sensing Techniques 11



accurate and continuous heart rate measurements, particularly when users
are in different poses or positions.

Ultra Wide Band based systems

Ultra Wide Band (UWB) technology in radio frequency sensing refers to a
form of communication that utilizes a significantly larger effective bandwidth,
surpassing 500 MHz. This wide bandwidth allows for the transmission of
substantial amounts of data over short distances. UWB radar, in particular,
leverages a series of quick, short pulses that occupy the entire available
bandwidth. One advantage of UWB radar is its insensitivity to the multi-path
effect, which is caused by signal reflections and interference from differ-
ent paths. The high-time resolution of UWB radar mitigates the impact of
multi-path effects, resulting in more accurate and reliable sensing. This
characteristic makes UWB radar a robust choice for various applications.
In [27], the authors utilized UWB radar signals from a sensor in combina-
tion with Wi-Fi Channel State Information (CSI) measurements obtained
through Universal Software Radio Peripheral (USRP) devices to develop a
system for lip reading under mask-wearing scenarios. By exploiting the radar
signals and integrating them with CSI measurements and leveraging Deep
Learning (DL) models, the system achieved lip reading recognition accuracy
of more than 80%.

In spite of the favorable aspects of radar technology, its broader implementa-
tion faces challenges due to the comparatively higher cost associated with
it. This cost barrier arises from the requirement for customized hardware,
which tends to be expensive. Consequently, when assessing the feasibility and
practicality of deploying radar technology, particularly in scenarios involving
large-scale applications or cost-sensitive environments, the cost factor must
be thoroughly taken into account.

2.1.4 Wi-Fi based sensing systems

Generally speaking, the techniques discussed above entail additional burdens
in terms of complex hardware installation and diverse maintenance require-
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ments. These limitations necessitate the development of a cost-effective and
non-intrusive solution capable of capturing human body movements during
daily activities.

In recent years, there has been a surge of interest in leveraging Wi-Fi-based
techniques for human activity sensing. This growing trend can be attributed
to the widespread adoption of Wi-Fi technology in various home and office
environments. With the proliferation of smart devices such as smartphones,
smart TVs, smart thermostats, and home security systems, wireless intercon-
nectivity through Wi-Fi has become pervasive.

Wi-Fi signals are emitted by Commercial-Of-The-Shelf (COTS) access points
and typically possess a substantial coverage range, extending up to tens
of meters within indoor environments. These broadcast signals interact
with the surrounding environment, including objects and human bodies. By
monitoring the changes in the received Wi-Fi signals, it becomes possible to
capture and interpret human body movements.

Two signal descriptors associated with Wi-Fi signals have emerged as key
metrics for quantifying the variations in the received signal. These descriptors
are known as Received Signal Strenght Indicator (RSSI) and CSI. In the
subsequent sections, we will delve into a comprehensive explanation of these
descriptors, elucidating their characteristics and significance in the context
of Wi-Fi signal analysis.

RSSI based methods

RSSI serves as a commonly available metric in a wide range of COTS Wi-Fi
devices. When a target object exists within the transmission range of a Wi-Fi
transmitter and receiver, it introduces fluctuations in the received signal
power due to reflections. These variations in signal power are captured and
quantified through RSSI values. RSSI essentially quantifies the path loss
within the received Wi-Fi signals, relative to a specific distance. The Log
Distance Path Loss Model (LDPL) model [28], as depicted by Equation (2.1),
can be employed to estimate this relationship.

P (d) = P (d0) + 10γ log( d

d0
) + Xδ (2.1)
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where P (d) represents the RSSI measurement, which serves as an indicator
of the path loss at a given distance d and is expressed in Decibel (dB), P (d0)
corresponds to the path loss at the reference distance d0, γ represents the
path loss exponent, which characterizes the attenuation of the signal with
increasing distance. Additionally, Xδ denotes a zero-mean normal noise
component caused by flat fading, which introduces random variations in
the received signal strength. RSSI, as a coarse-grained metric, provides a
single path loss value per packet, making it suitable for various applications
such as indoor localization [29] and crowd estimation [30]. Abdelnasser
et al. proposed a WiGest [31], which leverages the fluctuations in signal
strength values, specifically RSSI values, induced by hand movements. The
primary objective of the WiGest system is to track the gestures made by a
user’s hand in the vicinity of their mobile device, eliminating the need for
physically holding it, and translating these variations into specific actions.
The WiGest system achieves a recognition accuracy of 87.5% when utilizing
a single access point, and this accuracy improves to 96% when employing
three access points within the sensing environment.

However, the efficacy of RSSI-based systems diminishes notably in intricate
sensing areas, thus rendering it an unreliable metric.

CSI based methods

The utilization of RSSI-based approaches for reliable human activity sensing
is often limited due to their low granularity. In contrast, CSI serves as a fine-
grained metric capable of capturing more intricate details within the sensing
area. Fig. 2.1 provides an overview of the multipath effect arising from both
static and dynamic objects. The figure demonstrates that static objects such
as walls, floors, and furniture give rise to reflections, while dynamic objects,
such as human movements, cause scattering. These multipath phenomena
collectively contribute to the measurement of CSI waveforms. In contrast
to the RSSI metric, CSI comprises a complex set of values encompassing
both amplitude and phase information for multiple Orthogonal Frequency
Division Modulation (OFDM) subcarriers. The wireless channel exhibits
unique multipath fading effects on each subcarrier, which is determined by
its slightly varying center frequency. When considered collectively, these
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Figure 2.1: Visualization of the multipath propagation effect in RF signals

subcarriers offer a comprehensive representation of the characteristics of the
wireless channel.

2.2 Fundamental Concepts of CSI

In recent years, there has been a notable increase in the utilization CSI mea-
surements in various applications related to HAR. The existing literature has
demonstrated successful implementations of CSI measurements in diverse
HAR domains, including device-free indoor localization [32], smoking detec-
tion [33], action recognition [34], gesture recognition [35, 36], and crowd
counting [37]. In this section, we provide an introduction to the background
knowledge of CSI, exploring its fundamental concepts and principles.
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2.2.1 CSI Base Signals

As previously mentioned, CSI serves as a metric that characterizes the proper-
ties of the wireless communication channel. It encompasses the variations in
signal reflection and scattering encountered along the transmission path be-
tween the Transmitter (Tx)- Receiver (Rx). CSI is derived from Channel Fre-
quency Response (CFR) and extracted from each subcarrier within the OFDM
system which mathematically expressed in the frequency domain as shown
in Equation (2.2).

Y (f, t) = H(f, t) × X(f, t) + N (2.2)

where H(f, t) denotes the complex matrix of CSI for different subcarriers
with frequency f at time t. Y (f, t) and X(f, t) represent the received and
transmitted signals, respectively. N is a noise vector.

Typically, the H matrix records the the amplitude attenuation, ||H i(f)||, and
phase response, ˆ∠H i(f), of each ith subcarrier frequency at time t.

ˆHi(f) = ˆ∥Hi(f)∥ ∗ ej ˆ∠Hi(f) (2.3)

The amplitude of CSI provides information about the signal’s power decay as
it traverses through the environment, while the phase reflects the changes in
the signal’s phase due to different path lengths and reflections. By analyzing
the variations in the amplitude, phase, or both, it becomes possible to detect
and track human movements in a passive manner. When a human moves
within the sensing area, the reflected signals from their body create variations
in the received CSI amplitude and phase. These variations can be attributed
to the changes in the path length and the scattering effects caused by the
human’s presence. By monitoring and analyzing these variations over time,
it becomes feasible to discern different types of human movements, such as
walking, running, or gestures, without requiring the individual to carry any
specific devices or wear any sensors. Through a thorough analysis of the vari-
ations in CSI amplitude, phase, or a combination of both, referred to as CSI
base signals, it becomes feasible to extract resilient and discriminative pat-
terns that are uniquely associated with different forms of movement. These
patterns encapsulate valuable information and can be effectively utilized as
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features within diverse learning tasks, enabling the development of accurate
models for movement recognition and other related applications.

2.2.2 CSI Noises

In the realm of passive sensing systems, CSI emerges as a more robust Wi-Fi
metric when compared to RSSI. Nevertheless, the efficacy of CSI is not
immune to the influence of various noise sources, including environmental
factors, hardware synchronization issues, and interference signals. To better
understand the impact of noise on CSI measurements, it is essential to
categorize these perturbations into two distinct types: CSI amplitude noise
and CSI phase noise.

CSI amplitude noise

The outliers in the raw CSI amplitude primarily arise due to the presence
of environmental noises, as well as fluctuations resulting from transmission
power changes and transmission rate adaptation. The environmental noises
encompass a wide range of factors, including multipath propagation, inter-
ference from neighboring devices, and electromagnetic interference from
various sources. These external influences contribute to the inherent insta-
bility in the amplitude of CSI values. Additionally, changes in transmission
power and transmission rate adaption, which occur dynamically in wireless
communication systems, further contribute to the observed large variations
in CSI amplitude. One widely employed approach to mitigate this issue is
the utilization of a low-pass filter. This method aims to selectively remove
high-frequency noise originating from the environment while preserving the
low-frequency components relevant to gestures or movements of interest. By
employing a low-pass filter, the undesired high-frequency variations can be
attenuated, enabling the extraction and analysis of the desired low-frequency
components associated with the specific activities being monitored.
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CSI phase noise

It is well known that the measured phase of CSI exhibits a significant amount
of randomness due to Carrier Frequency Offset (CFO), Sampling Frequency
Offset (SFO), and Symbol Timing Offset (STO). These offsets introduce phase
shifts in the raw CSI measurements, leading to the observed randomness in
the phase values.

1. Carrier Frequency Offset (CFO): CFO occurs due to slight frequency
variations among the subcarriers in the transmitter-receiver link. The
lack of synchronization between the clocks of the sender and receiver
results in a uniform phase offset being introduced across all subcarriers.

2. Sampling Frequency Offset (SFO) and Sampling Time Offset (STO):
SFO and STO originating from the Analog-to-Digital Converter (ADC)
in the receiver, introduces distinct phase offsets to individual subcar-
riers within the OFDM system. This dependence on the subcarrier
index results in varying phase shifts across different subcarriers. It is
important to note that these offsets manifest in both the frequency and
time domains, and that the SFO and STO exhibit a linear relationship
with each subcarrier.

The measured CSI phase can be expressed as in Equation 2.4 [38]

ˆ∠Hi(f) = ∠Hi(f) + 2π
mi

N
× δt + γ + Z (2.4)

where ˆ∠Hi(f) and ∠Hi(f) represent the raw and actual CSI phase, respec-
tively. δt denotes the time lag due to SFO and STO and miis the subcarrier
index of the ith subcarrier. The value ofN is set to 64, representing the
discrete Fourier Transform. γ is the unknown phase offset resulting from
CFO. Z denotes the presence of measurement noise.
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General Approach
3

3.1 System Overview

The general framework for HAR utilizing Wi-Fi CSI encompasses four fun-
damental modules: CSI data collection, base signal extraction, signal pre-
processing, and a learning model as shown in Fig. 3.1. In this chapter, we
will delve into each stage, providing a comprehensive overview. Additionally,
we will discuss various gesture recognition systems and the challenges they
present, which we aim to address in this thesis.

CSI Data Collection

Nexmon Tool

Base Signal Extraction

Intel 5300 NIC 

Atheros NIC

ESP32 Tool

Amplitude+ Phase

CSI Amplitude

CSI Phase

Signal Preprocessing

Signal Compression

Time Domain

Frequency Domain

Algorithms Model

Learning Algorithms

Modeling Algorithms

Figure 3.1: General approach overview.

3.2 CSI Data Collection

Wi-Fi CSI serves as a valuable source of data that captures information about
the impact of surrounding objects and motions on the multi-path propagation
of wireless signals. In the process of collecting CSI waveforms, the Long
Training Symbol (LTS) serves as a crucial component of the communication
process. The transmitter transmits LTS, which contains predefined informa-
tion for each subcarrier, enabling the receiver to estimate CSI by comparing
the original LTS with the received LTS [39]. Within OFDM technology, sub-
carriers play a crucial role in transmitting data over the wireless channel.
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There are three types of subcarriers: null subcarriers, pilot subcarriers, and
data subcarriers. Null subcarriers, also known as zero subcarriers, are unused
subcarriers intentionally inserted to act as a guard against interference from
adjacent channels. Their primary purpose is to mitigate the impact of interfer-
ence and ensure reliable communication within the allocated frequency band.
Pilot subcarriers, on the other hand, are not utilized for conveying modulated
data. Instead, they serve as reference signals for channel measurements and
synchronization between the transmitter and receiver. These pilot subcarriers
employ a predetermined data sequence and introduce additional overhead to
the channel due to their dedicated purpose. The specific Physical Layer (PHY)
standard and the allocated bandwidth determine the total number of subcar-
riers that can be utilized for transmission. The remaining subcarriers, apart
from the null and pilot subcarriers, are referred to as data subcarriers. In
the context of 802.11ac, these data subcarriers exploit the same modulation
format as specified by the standard. They are responsible for carrying the
encoded information and transmitting it over the wireless channel, enabling
the effective transmission of data in an OFDM-based system.

Various tools are employed to record CSI waveforms in the sensing area, each
offering distinct advantages and limitations. In this section, we provide a
comprehensive overview of the most commonly used tools for capturing CSI
waveforms, shedding light on their respective strengths and weaknesses.

3.2.1 Intel 5300 NIC

While Wi-Fi technology has incorporated CSI since the IEEE 802.11n stan-
dard, it is important to note that not all commercially available Wi-Fi cards
provide access to CSI data. Among the tools commonly employed for CSI
measurements, the 802.11n CSI Tool [40] has emerged as the most widely
utilized [35]. This tool utilizes Intel 5300 Wi-Fi cards to report compressed
CSIs from 802.11n-compatible Wi-Fi networks. It offers C scripts and MAT-
LAB source code that facilitate CSI measurements and subsequent processing.
In terms of the specific capabilities of the Intel WiFi Link 5300 Network
Interface Card (NIC), it exports CSI information for only 30 out of the total
56 subcarriers for each antenna, assuming a 20MHz bandwidth. The applica-
bility of the 802.11n CSI Tool, which is widely employed for Wi-Fi CSI based
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approaches, is limited to older Intel 5300 NIC. However, the availability and
acquisition of these NICs can be challenging due to their outdated nature.

3.2.2 Atheros NIC

The Atheros CSI Tool [18] is an open source CSI tool. One of its key fea-
tures is the ability to extract comprehensive PHY wireless communication
information from Atheros Wi-Fi NIC. It offers the capability to capture un-
compressed CSI utilizing Qualcomm Atheros WiFi cards. When considering a
20MHz, 40MHz WiFi channel, this tool provides access to 52 and 114 CSI
subcarriers, respectively.

Despite the presence of a substantial community focused on Atheros NIC in
the context of Wi-Fi CSI sensing [41] due to its high CSI resolution, certain
issues have been encountered that affect the accuracy and reliability of CSI
measurements using these NIC. One such issue arises when employing
a configuration with one transmitter and two receiver antennas. In this
scenario, the system mistakenly reports the existence of two transmitter
antennas, leading to the generation of noise on an antenna that, in reality,
does not exist. Consequently, the CSI measurements obtained for this non-
existent antenna are misleading and can adversely impact subsequent analysis
and interpretation. Another issue manifests when utilizing a setup comprising
three transmitter antennas and two receiver antennas. In this case, the system
fails to accurately estimate the CSI data, resulting in a consistent sinusoidal
shape in the obtained measurements. This deviation from the expected CSI
behavior poses challenges in accurately capturing and representing the true
characteristics of the wireless channel, hindering the reliability of subsequent
analyses and conclusions.

3.2.3 Nexmon Tool

The Nexmon CSI Tool [42] has revolutionized the extraction of CSI from
various devices such as Raspberry Pi 3B+ and 4B, Google Nexus 5, and select
routers. One notable advantage of the Nexmon tool is its ability to support
multiple transmit-receive antenna configurations, enabling up to 4x4 MIMO.
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An important feature of the Nexmon CSI Tool is its customizable CSI col-
lection filters, which allow researchers to extract relevant CSI specifically
from chosen transmitters. Unlike other tools, it does not necessitate the
suppression of complete CSI data, offering greater flexibility and precision in
the extraction process. Furthermore, Nexmon provides a configuration option
to assign a distinct interface solely for monitoring frames on the Raspberry Pi,
once configured on the host. This facilitates targeted monitoring and analysis
of specific frames, enhancing the precision and efficiency of the research pro-
cess [43]. In terms of technical capabilities, the Nexmon CSI Tool supports
bandwidth utilization of up to 80 MHz, enabling the extraction of CSI from
242 subcarriers out of a total of 256. This heightened CSI resolution per
packet contributes to enhanced fidelity and granularity in capturing wireless
channel characteristics.

Despite its continuous refinement, it is noteworthy that the adoption of the
Nexmon CSI Tool remains limited, primarily due to the restricted range of
supported devices and the scarcity of available information. These factors
pose challenges to its widespread usage within the research community.

3.2.4 ESP32 Tool

The current state-of-the-art Wi-Fi Channel State Information (CSI)-based
systems employed in HAR, head detection, and gesture recognition rely on
open-source CSI tools developed by Halperin et al.[17], Atheros[18], and
the Nexmon CSI Tool [42]. Despite their widespread usage, these tools are
associated with certain limitations, including restricted device support and
hardware compatibility, intricate setup procedures, limited data processing
capabilities, and a lack of official support and updates. Addressing the
challenges of Wi-Fi CSI sensing systems necessitates the development of a
small, low-power, memory-efficient, cost-effective, and compatible CSI tool,
capable of handling noisy CSI values in multi-human contexts and extracting
informative base signal variations related to head motions.

In this regard, the ESP32 unit [44] emerges as a microcontroller with a
single system-on-a-chip architecture, integrating multiple components, such
as the processing unit, memory, and communication interfaces, onto a single
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Figure 3.2: CSI vector for each t packet in ESP32 system

chip. Notably, it exhibits characteristics of low power consumption and
cost-effectiveness, making it a viable option for the proposed research.

Utilizing OFDM for wireless signal transmission, the ESP32 module employs
64 narrowband subcarriers, with 12 of them designated as null subcarriers
and the remaining 52 serving as data subcarriers.

The CSI data collected by the ESP32 node is represented as a complex matrix
with dimensions of l × m, where l represents the number of packets and m

represents the number of subcarriers as illustrated in Figure 3.2.

Our proposed systems in this thesis rely on the ESP32 toolkit, which serves
as the main tool for CSI recording. Notably, the ESP32 toolkit possesses
advantageous qualities, including low power consumption, user-friendly
operation, and portability, making it a standalone CSI solution. Furthermore,
the ESP32 toolkit eliminates the need for specific hardware compatibility or
device support as it functions as both a transmitter and receiver. It supports
the IEEE802.11n protocol and achieves a data rate of up to 150 Mbps at 2.4
GHz.

Table 3.1 summarizes the main differences between the existing CSI tools.

Table 3.1: Comparison between different CSI tools

CSI Tool Devices/ NIC Data subcarriers MIMO Device Support
802.11n CSI Tool [40] Intel 5300 Wi-Fi cards 30 ✓ ×
Atheros CSI Tool [18] Qualcomm Atheros WiFi cards 52 or 114 ✓ ×
Nexmon CSI Tool [42] Raspberry Pi 3B+ and 4B, Google Nexus 5 242 ✓ ×
ESP32 Tool [44] ESP32 microcontroller 52 × ✓
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3.3 Base Signal Extraction

The extraction and analysis of variations in CSI amplitude, phase, or a
combination of both are crucial components of sensing systems based on
Wi-Fi CSI approaches. These variations provide valuable insights into the
dynamics of wireless signals and enable the system to accurately detect and
recognize various activities.

3.3.1 Amplitude

The amplitude of CSI in RF sensing methods represents the quantification of
signal power attenuation caused by multi-path fading. In a sensing area, any
motion within the human affects the propagation of wireless signals, leading
to variations in the received signal’s amplitude. This unique relationship
between amplitude change and motion characteristics enables the detection
and quantification of movements using amplitude measurements. Numerous
studies [35, 37] have demonstrated the effectiveness of amplitude for activity
recognition, highlighting its sensitivity across a wide range of movements.

3.3.2 Phase

The phase measurements capture the relative distance and direction of signal
propagation. By examining changes in phase, the study of [45] can depict
signal variations and infer corresponding motion patterns. It is important
to note that phase is periodic compared to amplitude and is susceptible to
influences from device clock and carrier frequency. Therefore, the calibration
of phase measurements is necessary to mitigate noise and ensure accurate
extraction of motion and distance information.

3.3.3 Amplitude and Phase

Leveraging both amplitude and phase measurements can enhance the sen-
sitivity and accuracy of activity recognition [36]. While amplitude and
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phase individually exhibit sensitivity to small movements in the physical
environment, they do not directly provide spatial information, such as the
spatial location of multiple movements or individuals in a three-dimensional
physical space. Therefore, the combination of amplitude and phase measure-
ments can improve the overall performance of activity recognition systems
by incorporating spatial information into the analysis.

3.4 Signal Preprocessing

In general, raw CSI waveforms is subject to various influencing factors.
One significant factor is the presence of a multi-path channel, commonly
encountered in indoor environments, where signal reflections from multi-
ple reflectors generate differently delayed versions of the signal that reach
the receiver alongside the direct-path signal. This multi-path phenomenon
introduces phase shifts and can result in constructive or destructive interfer-
ence among the signal components, thereby affecting the accuracy of CSI
estimation.

In addition to the multi-path channel, the accuracy of CSI estimation is influ-
enced by various other factors, including processing operations performed
by the receiver and transmitter, as well as hardware and software errors
as mentioned in Chapter 2.2.2. These factors collectively contribute to the
overall uncertainty and variability observed in the recorded CSI values.

Because of the above limitations, raw CSI values cannot be directly utilized
as inputs to classification or detection models. They can significantly impair
the performance of recognition systems. Therefore, appropriate techniques
for noise mitigation and preprocessing of CSI data are necessary to improve
the effectiveness of recognition systems in practical scenarios.

3.4.1 Time Domain

The most common filters applied to remove the amplitude noises and outliers
in the time domain are sliding windows and Hampel filter.
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Sliding window filter

Environmental noises introduce high-frequency disturbances, resulting in
outliers within the CSI amplitude data. To address this issue and achieve a
smoother representation of CSI amplitude, sliding window filters are com-
monly employed.

Sliding window filters operate by applying a window of a specific size to the
raw amplitude data and applying a designated function within this window
region. Two widely used filters for noise removal are the Moving Average
and Median Filters.

The Moving Average Filter [46] replaces each data point with the average
value of its neighboring data points within the sliding window. This filter
effectively reduces high-frequency noises by smoothing out the variations
caused by outliers. The choice of window size and the use of multiplying
factors can further adjust the weights assigned to the neighboring data points.
For instance, exponentially Weighted Moving Average (eWMA) assigns higher
weights to recent data points, resulting in a greater emphasis on recent
trends.

On the other hand, the Median Filter [47] replaces each data point with the
median value of its neighboring data points within the sliding window. This
filter is particularly effective in removing outliers, as the median value is less
sensitive to extreme values compared to the mean value used in the Moving
Average Filter.

Hampel filter

The Hampel filter is employed in the many CSI-based approaches [48, 49]
for identifying outliers within the base signals.

For each value x in the base signals, a window is constructed, consisting of x

and a specified number k/2 of neighboring points on each side. The median
of this window is then computed. Subsequently, the standard deviation of x

with respect to its window median is calculated using the Median Absolute
Deviation (MAD) method.
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To determine whether a value should be considered an outlier, a predefined
threshold is established. If the difference between x and the median exceeds
a specified number of MAD, the value is identified as an outlier. In such cases,
the value is replaced by the median.

In essence, the Hampel Identifier declares discrete values as outliers if they
lie outside the interval [µ - γσ, µ+ γσ], where µ represents the median, σ

denotes the MAD, and γ is a parameter dependent on the application. The
default value for γ is three, although it can be customized based on specific
requirements.

3.4.2 Frequency Domain

The use of these signal transform techniques makes the time-frequency
domain particularly important in the context of micro-movement recognition.
This approach investigates the variations and dynamics of CSI across different
frequencies, providing valuable insights into the underlying patterns and
changes that occur over time.

Fast Fourier Transform (FFT)

The FFT technique is extensively employed to identify prominent frequencies
within a given signal. By utilizing FFT, distinct dominant frequencies present
in the signal are effectively extracted. Additionally, FFT can be combined with
a Lowpass Filter (LPF) to mitigate high-frequency noise components resulting
from the sensing environment, enhancing the quality of the signal.

In certain applications, such as human motion detection and breathing
estimation, specific target signals within desired frequency ranges are of
interest. This is achieved by employing Bandpass Filters (BPFs) alongside
FFT. Applying BPFs isolates signals within particular frequency bands that
are associated with different human activities.

FFT can be calculated as in Equation 3.1

x[k] =
N∑

n=1
x[n] × e

−j2πkn
N (3.1)
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where k and N represent the frequency index and signal size, respectively.

Short Time Fourier Transform (STFT)

STFT provides a time-frequency representation of a signal, allowing for the
analysis of frequency components at different time intervals. This is particu-
larly useful in applications where the signal’s frequency content changes over
time, such as in dynamic environments or when analyzing non-stationary
signals. Moreover, STFT excels in providing localized frequency information
by employing a windowing function on segmented portions of the signal.
Through this approach, changes in frequency content within specific time
intervals can be accurately identified, offering a more comprehensive under-
standing of the signal’s behavior and dynamics. Furthermore, STFT exhibits
a high frequency resolution by utilizing shorter window sizes. This feature
proves beneficial in detecting closely spaced frequency components within
the signal. By leveraging a shorter window, STFT enables the identifica-
tion and distinction of these fine-grained frequency components, enhancing
the precision of the analysis. STFT can be mathematically expressed as in
Equation 3.2

x(t, k) =
∞∑

n=−∞
x[n]w[n − t]e−jkn (3.2)

where t and k represent the time and frequency index, respectively. w is a
window function. There are various window functions, such as the rectan-
gular, Hamming, Hanning, and Blackman windows, which offer different
characteristics and trade-offs, affecting parameters such as main lobe width,
side lobe suppression, and spectral resolution. The choice of window function
should align with the specific requirements and considerations of the analysis
at hand.

Discrete Wavelet Transform (DWT)

STFT encounters a trade-off between time and frequency resolution. While
STFT excels in identifying frequency components, it lacks the ability to
precisely locate the timing of frequency changes. However, an alternative
approach, namely the Wavelet Transform, offers advantages in terms of both

28 Chapter 3 General Approach



frequency and time resolution. With Wavelet Transform, low-frequency sig-
nals can be analyzed with high frequency resolution, while high-frequency
signals benefit from good time resolution. This characteristic makes Wavelet
Transform suitable for analyzing signals with varying frequency content over
time. Furthermore, the output of the Discrete Wavelet Transform (DWT) can
be directed to a wavelet filter, enabling noise removal and enhancing the
quality of the signal. This filtering process aids in preserving the relevant
information while reducing unwanted noise components. In addition, DWT
exhibits robustness in different scenarios and surpasses the Doppler phase
shift method in terms of mobility information preservation. This quality
makes DWT a valuable tool [50], particularly when dealing with dynamic en-
vironments or situations where movement is involved. The DWT transforms
the time-domain signal into the wavelet domain, decomposing it into wavelet
detail and approximate coefficients. These coefficients are calculated through
down-sampling convolutional equations, as expressed in Eq. 3.3 [51]:

Ym,low[n] =⇓ Q

 ∞∑
j=−∞

X[j] × g[n − j]


Ym,high[n] =⇓ Q

 ∞∑
j=−∞

X[j] × h[n − j]
 (3.3)

where Ym,low[n] and Ym,high[n] represent the approximation and detail coef-
ficients, respectively, j denotes the frequency index, X[j] is the input signal,
⇓Q[·] is a downsampling filter, g[n] and h[n] are a low-pass and high-pass
filter, respectively [51].

3.4.3 Signal Compression

Signal compression plays a crucial role in reducing the dimensionality of
the data and removing redundant and irrelevant information present in the
raw CSI measurements across various domains. For CSI values, there are
similarities between the adjacent subcarriers. Consequently, the primary
objective of the compression stage is to extract relevant information related
to movement while minimizing redundancy. By achieving this, the time
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consumption and model complexity during the learning phase are reduced,
thereby enhancing the efficiency of the subsequent classification task.

Principal Component Analysis (PCA), Singular Value Decomposition (SVD),
and Independent Component Analysis (ICA) are the common signal com-
pression techniques. PCA depends on an orthogonal linear transformation
approach, where the covariance matrix is computed to generate principal
components. The principal components are then ranked based on their
corresponding eigenvalues, with the top components containing the most sig-
nificant information. By preserving these top components and discarding the
rest, data compression can be achieved. However, one notable drawback of
PCA is its reliance on linear projections, which may not align with the nature
of CSI signals. As a result, significant information loss can occur, rendering
the compressed data less representative of the original signal. SVD calculates
the singular values to capture uncorrelated features with maximum variance
from the original data. SVD components are orthogonal linear the same as
PCA. While ICA changes the data from high dimensional to low space by
finding the statistically independent features from the original data which
are not ranked or linear.

3.5 Algorithms Model

The main objective of this stage is to find the function that maps the CSI
signals to perform the classification task. In this section, we will provide
a brief overview of the commonly used algorithms for Wi-Fi CSI sensing
approaches to estimate the mapping function.

3.5.1 Modeling Algorithms

In modeling algorithms, the system models the preprocessed CSI signals
by theoretical models based on physical theories. These models encompass
concepts such as the Fresnel Zone Model, Angle of Arrival (AoA), Angle of De-
parture (AoD), ToF, Amplitude Attenuation, Phase Shift, and Doppler Spread.
As discussed previously in Chapter 2.2, CSI serves as a highly sensitive metric

30 Chapter 3 General Approach



that characterizes the communication channel through the analysis of param-
eters such as amplitude attenuation and phase shift. These parameters are
influenced by various factors, including the distance between the transmitter
and receiver, as well as multipath effects including radio reflection, refraction,
absorption, and scattering. The wireless signal amplitude attenuation by the
LoS path can be expressed as follows:

pr

pt

= DtDr(
λ

4πd
)2, d >> λ (3.4)

where pr and pt are the received and transmitted signal amplitude. Dt and
Dr represent the directivity of the transmitter and receiver antennas, while
λ denotes the carrier wavelength. The distance between the transmitter
and receiver is represented by d. In practical environments, the presence of
static and dynamic objects within the sensing area introduces phase shifts,
which arise from the time delays associated with each propagation path.
Furthermore, the phase shift is influenced by Doppler effects when the
transmitter is in motion towards the receiver. These factors contribute to
increased randomness in the actual phase of the CSI.

P
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Figure 3.3: The illustration of Fresnel Zone Model [39].

The amplitudes and phases of CSI are influenced by the propagation of radio
waves along multiple paths. The Fresnel Zone Model offers a framework for
dividing the space surrounding the transmitter and receiver into concentric
prolate ellipsoidal regions known as Fresnel Zones. The radius of the nth
Fresnel Zone can be computed as illustrated in Figure 3.3. This model
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elucidates how radio signals propagate and interact with objects within the
Fresnel Zone regions, resulting in deflected signals that traverse multiple
paths before reaching the receiver. The amplitude attenuation and phase
shift incurred by these deflected signals, contingent upon the path length,
contribute to constructive or destructive effects at the receiver [39].

Regarding CSI-based tracking and localization applications, AoA and ToF are
two prominent models. These models characterize the amplitude attenuation
and phase shift of multipath channels in terms of directions and distances. To
estimate AoA and ToF [52, 53], phase shifts or time delays are derived from
CSI measurements obtained through an antenna array. The Multiple Signal
Classification (MUSIC) algorithm is widely employed for AoA estimation. It
leverages the eigenvalue decomposition of the covariance matrix derived
from CSI measurements [54]. By computing the orthogonal steering vectors
to the eigenvectors, MUSIC calculates the AoA values.

3.5.2 Learning Algorithms

The effectiveness of a HAR system relies not only on the quality of the CSI
waveforms but also on the choice of an appropriate learning model. The most
common Machine Learning (ML) algorithms used for the CSI recognition and
classification tasks are Naïve Bayes, Support Vector Machine (SVM), decisions
tree, ensemble methods, linear regression, and K-Nearest Neighbor (KNN).
However, it is important to note that the effectiveness of ML algorithms
heavily relies on the quality of the hand-crafted features extracted from the
CSI data. Feature extraction methods for CSI data can be divided into two
main types: those based on statistical analysis and those based on signal
compression techniques.

The Naive Bayes algorithm [55] is a probabilistic approach commonly used
for classification tasks. It operates by calculating the conditional probabilities
of various activities. Naive Bayes can extract continuous features from real-
time applications. Furthermore, Naive Bayes demonstrates effectiveness in
dealing with high-dimensional CSI data.

SVM [56] aims to find the best hyperplane that effectively separates samples
of different classes. SVM investigates the CSI signatures corresponding to
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each activity, maps them into points in a space, and classifies into a class
based on which side of the gap they fall on. SVM employs a kernel function
to capture complex relationships for accurate recognition.

RF is an effective classification method specifically designed to handle high-
dimensional datasets. It achieves this by compressing the data into more
meaningful and informative features. The fundamental principle behind
the RF model lies in the creation and integration of decision trees. Each
decision tree contributes a vote towards a particular category, and the final
class is determined by the majority vote across all the trees in the forest.
Recently, DL algorithms have gained significant prominence across various
domains, including computer vision, Natural Language Processing (NLP),
speech recognition, and text and music generation. DL can automatically
learn optimal features from data, which has led to its widespread adoption.
Common DL algorithms include Convolutional Neural Network (CNN), recur-
rent neural networks such as LSTM, generative models, and self-supervised
learning approaches. However, these algorithms do face challenges related
to memory complexity, and they typically require a large amount of labeled
data to enhance model performance.

CNN is a deep learning model that utilizes supervised training. Its primary
layers consist of the convolutional layers, pooling (subsampling) layers,
activation function, and fully connected layers for classification purposes.
The convolutional layer automatically extracts local spatial features. It utilizes
a set of k kernels (filters) with a specific size, which are convolved with the
input data to produce feature maps. The activation function, a nonlinear
function, is applied to the generated feature maps. Common activation
functions include Sigmoid, tanh, Rectified Linear Unit (ReLU), and leaky-
ReLU. Two types of pooling layers are commonly used to reduce the size of
feature maps: average pooling and max pooling. Lastly, the fully connected
layer combines all the learned features from the previous layers. It enables
the sharing of these features in the classification process.

Recurrent Neural Network (RNN) handles the time-series data since it
extracts the temporal dependencies from the input. However, RNNS often
encounter challenges with the vanishing and exploding of gradient descent
problems, particularly when dealing with long input sequences. To tackle
this issue, there are new RNN models such as LSTM and Gated Recurrent
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unit (GRU) are evaluated to solve the problem of vanishing and exploding
gradients. LSTM approach can handle long-term dependencies within data
when sufficient data and computational resources are available. The main
idea of LSTM models is the existence of a memory cell state that generates
meaningful and relevant outputs. LSTM architecture consists of three gates:
the forget gate, the input gate, and the output gate. The forget gate is
responsible for determining which information from the past should be
discarded. The input gate determines which values from the current input
should be used to update the new state of the LSTM. The output gate
determines the output of the LSTM model based on the input data and the
memory stored within the cell. GRU extracts the temporal dependency from
time series datasets. Compared to LSTM model, the GRU model comprises
two essential gates: the update gate and the reset gate. The update gate is
the combination of the forget and input gates which determines the extent to
which previous information from past time steps should be propagated into
the future. On the other hand, the reset gate is the combination of the cell
state and hidden state which determines the extent to which past information
from the previous state should be forgotten.

Initially employed in image processing applications, the attention model
has become increasingly relevant in the field of radio frequency sensing.
The underlying concept of the attention mechanism involves selectively
focusing on specific regions of input during the recognition task, allowing for
improved performance. By integrating the attention model [57] with other
deep learning approaches, it becomes possible to assign different weights to
different features based on their relative importance.

In contrast to supervised learning models, Generative Adversarial Network
(GAN) seeks to generate synthetic data that closely appears real data through
a game between its generator and discriminator models [58]. Recently, GAN
is used for tackling the CSI environmental diversity problem [59, 60] since
it can capture the distribution of the input data and generate more labeled
samples from a well-trained generator model. For domain-adversarial train-
ing, GAN can capture the changes of the new domain to extract the domain-
invariant patterns for the seen and unseen environments.

Variational autoencoder (VAE) is a generative method that maps the data
based on its distribution to a multivariate latent space based on a stochastic
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variational inference [61]. VAE has been employed for various CSI based
approaches like CSI compression [62] and CSI-based localization [63].

Few Shot Learning (FSL) is an efficient learning approach that requires
only a small amount of training samples per class. It applies contrastive or
prototypical learning techniques to enable effective learning with minimal
data [64]. In one-shot learning which achieves acceptable results, the net-
work trains on one sample per category. Yang et al. [65] introduced a SiaNet
which is a gesture recognition system by leveraging few-shot learning using
Siamese network.

3.6 Evaluation Metrics

In this thesis, we adopted two metrics to evaluate the performance of various
models for our proposed systems, namely, the accuracy (ACC) and macro-
averaged F1-score (F1-score). Accuracy is defined as the total number of
correct predictions divided by total number of predictions. The F1-score
represents the harmonic mean of two measures (precision and recall). It is a
range of numerical values from 0 to 1, where the worst and best values are
0 and 1, respectively. The performance metrics are calculated by following
equations from Equation 3.5 and Equation 3.8:

Accuracy = (TP + TN)
(TP + FP + TN + FN) (3.5)

Recall = TP

TP + FN
(3.6)

Precision = TP

TP + FP
(3.7)

F1 − score = 2 × Recall × Precision

Recall + Precision
(3.8)

where True Positive (TP) refers to the model’s accurate identification for the
positive class, whereas True Negative (TN) refers to the negative predicted
and actual values. False Negative (FN) represents the cases when the actual
is positive and the model classified them as negative while False Positive
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(FP) represents the cases where the actual is negative and the predicted is
positive.

3.7 CSI-based Sensing Approaches

In [66], the authors presented a driver’s face localization system based on the
variance of CSI amplitude and phase, with the aim of detecting distraction
and fatigue activity. It consists of three modules: CSI preprocessing, feature
extraction, and classification. The noise removal techniques employed are
the Butterworth filter for amplitude and linear transformation for phase. The
feature set includes mean, standard deviation, median absolute deviation,
maximum peaks, 25th percentile, and 75th percentile, which are fed to the
classification module. The system utilizes the KSVM classifier, which com-
bines the advantages of SVM and KNN and achieves a recognition accuracy
of over 91%.

The WiHead system [67] is a system that utilizes wireless signals to measure
human head orientation in various directions, including yaw, roll, pitch, and
their combinations, for obtaining feedback in online courses. It uses 56
subcarriers at 2.4 GHz with the Atheros CSI extractor tool to retrieve phase
and amplitude, which are then filtered and calibrated to eliminate noise
and unpredictability. The filtered data is then sent to a PCA method for
dimensional reduction. Additionally, WiHead developed a CNN model that
achieved recognition accuracy of 90% for three different head motion angles:
pitch, roll, and yaw.

In [68], the authors utilized the CSI waveforms from ESP32 microcontroller
to track the head motions. They aim to estimate the student’s engagement in
online courses based on their head movements. CSI amplitude is extracted
and preprocessed via Hampel filter, discrete wavelet transforms and smoothed
by Savitzky-Golay. After that, the filtered amplitude is fed to the XGBoost
(XGB) model for the classification task which achieved 98% recognition
accuracy.

Palipana et al. [69] introduced the FallDeFi system, which aims to detect falls
by utilizing robust features that can withstand changes in the environment.
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The system employs the amplitude of CSI as the fundamental signal. To
mitigate the impact of environmental noise, a LPF is applied. Subsequently, a
noise filtering technique based on DWT is employed. This filtering process ef-
fectively eliminates in-band noise while preserving important high-frequency
components and minimizing signal distortions. Furthermore, PCA is utilized
for stream uncorrelation and selection. This step aids in reducing redundancy
and selecting the most informative components, which are then fed as input
to a SVM for fall detection. Notably, the FallDeFi system demonstrated an
80% recognition accuracy even when the environment changes.

Yousefi et al. presented a human activity recognition system [70]. The
authors recorded CSI waveforms, namely UT-HAR, using Intel 5300 CSI in
one location for seven daily human activities with 5000 samples. For dimen-
sionality reduction, the authors applied PCA to the normalized amplitude.
After that, STFT is calculated to generate the spectrogram fed to a LSTM
network to perform the classification task. Zheng et al. [71] introduced
Widar which is a gesture recognition system. The main objective is to build a
domain robust system. The authors collected 43,000 samples for 22 gesture
categories from multiple locations employing the Intel 5300 NIC tool with
three Tx and three Rx. To preserve the gesture-related features, the velocity
of the collected CSI was calculated. Subsequently, a CNN-GRU model was
employed as a classifier to compress the data, extract spatial features using
convolutional layers, and capture temporal dependencies from the result-
ing feature maps. Widar3.0 achieved 92.7% and over 82% in-domain and
cross-domain recognition accuracy.

Yang et al. [72] proposed AutoFi system which transfers knowledge from ran-
domly collected CSI samples into human gait recognition. The AutoFi frame-
work addressed the identified gaps by introducing a novel self-supervised
learning approach. This approach utilized contrastive learning and mutual
information to enhance the transferability of the framework. Additionally,
a geometric structural loss is developed to further improve the framework’s
ability to adapt to different downstream tasks. AutoFi demonstrated success-
ful cross-task transferability in the field of WiFi sensing. Notably, it achieved
automatic WiFi sensing in new environments without the need for prior data
collection. The AutoFi system was implemented and validated its robustness
and effectiveness. Furthermore, simulations conducted using publicly avail-
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able datasets, such as Widar [71] and UT-HAR [70], demonstrate that AutoFi
outperforms existing domain adaptive systems.

WiGRUNT [73] is a gesture recognition system that leverages the attention
mechanism to tackle a domain shift problem. The authors applied their
proposed method on Widar [71] dataset. The CSI ratio technique is applied
to remove the phase offset. The main idea behind CSI ratio is to calculate
the ratio of the CSI measurements between two adjacent receiving antennas
as calculated in Equation 3.9.

Hq(f, t) = Hi(f, t)
Hi+1(f, t) (3.9)

, where Hi(f, t) is the complex CSI matrix for the ith antenna. After that,
the actual phase P = ∠Hq(f, t) can be extracted from Hq(f, t). To extract
spatial-temporal features from the CSI phase tensor, WiGRUNT utilized the
ResNet network as a backbone. Additionally, dual attention stages were
incorporated to focus on extracting the most relevant features for gestures
while disregarding features related to the sensing environment. Notably,
WiGRUNT achieved recognition rates of over 93% and 83% with and without
pretraining using the ImageNet dataset, respectively.

In [74], Wang et al. introduced CAUTION which is a user identification
system that tackles the domain shift problem by leveraging FSL technique.
The authors recorded the CSI measurements using the Atheros tool with
one transmitter antenna and a three-antenna receiver from two different
locations. Firstly, the authors extracted the amplitude and fed it to the
convolutional network to compress the data and extract the spatial filter. The
compressed features were fed to a prototypical network for few shot learning.
It achieved over 87% accuracy in the worst scenario.

Gao et al. [75] introduced a gesture recognition system called WiGesture,
which aimed to overcome location dependencies in gesture recognition. This
system employed the extraction of location-independent Motion Navigation
Primitives (MNPs) to capture changes in motion direction. The researchers
evaluated the performance of WiGesture by conducting experiments involving
ten different categories of gestures across four distinct locations. WiGesture
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surpassed 90% recognition accuracy for all tested gesture categories and
locations.

Table 3.2: Summary of related Wi-Fi CSI work.

Reference Application Base Signal Preprocessing Classifier Location Independent Multi-user Environment
[60] HAR Ampltitude GAN CNN ✓ ×
[66] Driver’s face localization Amp+Phase Butterworth filter+ Linear Transformation SVM + KNN × ×
[67] Head motion detection Amp+ Phase STFT+ PCA+ Linear Transformation CNN × ×
[68] Head motion detection Amp Savizky-Golay XGBoost × ×
[76] HAR Amp SVD CNN + ProtoNet ✓ ×
[74] Gesture Recognition Phase CSI Ratio ResNet +Attention ✓ ×
[74] User Identification Amp CNN Prototypical ✓ ×
[77] HAR Amp+ Phase CM + PCA +FFT CNN-LSTM + MatNet ✓ ×
[78] HAR Amp+ Phase Phase Sanitiziation Inception model ✓ ×
[79] Head motion detection Amp STFT Inception model × ✓
[80] Head motion detection Amp WMA ECA model ✓ ✓
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Passive Wi-Fi CSI Sign
Language Recognition

4

4.1 Introduction

This chapter presents an overview of sign language recognition systems utiliz-
ing Wi-Fi CSI. The primary aim of this chapter is to provide an introduction
to relevant research endeavors that contribute to improving the quality of
life for individuals with hearing impairments. By harnessing the inherent
characteristics of Wi-Fi signals, such as privacy preservation, user-friendliness,
and convenience, these systems offer promising avenues for empowering the
deaf community.

CSI Data Collection Base Signal Extraction

Intel 5300 NIC 
[23] Amplitude & Phase

[24]

CSI Amplitude 
[23 , 63]

Signal Preprocessing

Time Domain

• [23] Amplitude 
Normalization

• [63] Raw Amplitude
• [24] WMA à Amplitude & 

Phase Calibration à
phase

Algorithms Model

Learning Algorithms
CNN model 
[23, 63, 24]

Figure 4.1: General architecture for SignFi systems

4.1.1 Background

In recent years, the field of human gesture recognition has garnered signif-
icant interest due to its diverse applications such as smart home systems,
healthcare, virtual reality, and sign language recognition. Conventional
sensing techniques include camera-based approaches [81] and wearable
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sensors [82], each accompanied by inherent limitations. Camera-based meth-
ods achieve satisfactory accuracy by analyzing video frames and images;
however, they raise concerns regarding privacy due to the potential leakage
of facial information. Conversely, wearable sensors offer advantages such as
lightweight design, cost-effectiveness, and ease of gesture monitoring and
detection. However, they suffer from user inconvenience, and the failure to
wear the sensor renders them ineffective. To address these shortcomings,
there is a growing interest in Wi-Fi-based solutions, which have emerged as
a promising alternative in the field of gesture recognition. Wi-Fi-based ap-
proaches effectively overcome the aforementioned limitations associated with
camera-based and wearable sensor methods, thus attracting considerable
attention from researchers in this field.

This chapter aims to present the contributions and challenges encountered in
my previous research study [36], which utilized the SignFi dataset [35]. The
SignFi dataset is a publicly available collection of daily 276 sign language
gestures, encompassing a substantial number of samples per gesture. Fig. 4.1
provides a comprehensive overview of the general architecture employed
in several existing SignFi dataset systems. The primary contributions of the
aforementioned study [36] are as follows:

1. Investigating the impact of different variations in the base signal on the
performance of sign language recognition.

2. developing the traditional CNN architecture and comparing its perfor-
mance with other deep learning algorithms.

However, it is important to acknowledge the limitations of this study, which
are taken into account and addressed in the subsequent chapters of this
thesis. These limitations include:

1. The utilization of a public dataset collected using the Intel 5300 NIC,
which possesses certain limitations as detailed in Chapter 3.2.1.

2. The SignFi dataset was obtained in a single-user environment, which
does not fully reflect real-life scenarios where deaf individuals are often
surrounded by others.

3. The deep learning model employed in the study exhibits complexity,
lengthy training and testing times, and requires substantial memory
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resources for its parameters, making it impractical for real-world de-
ployment.

These limitations are thoroughly examined and addressed in subsequent chap-
ters to enhance the applicability and practicality of the proposed approach
for enhancing the quality of people.

4.2 Sign language based system

The pipeline for all CSI based systems is as described in Chapter 3.1. In this
section, we will present my previous study [36] and compare it with other
studies that use SignFi dataset in their work.

4.2.1 CSI Data Collection

Ma et al.[35] conducted a comprehensive data collection process to gather
a substantial amount of CSI traces related to daily sign language gestures.
The dataset was gathered by employing an access point (AP) with three
external antennas as a transmitter, and a receiver equipped with an Intel
5300 NIC [40] with one internal antenna in two distinct environments: a
laboratory setting and a home scenario. These environments differ in terms
of room sizes, the distances between the AP, receiver, and transmitter’s an-
tenna orientations. The utilization of the 802.11n CSI tool [40] enabled the
capture of 30 sub-carriers for each antenna pair, resulting in complex CSI
measurements with dimensions of 200×30×3, where each dimension corre-
sponds to the number of packets, sub-carriers, and antenna pairs, respectively.
Table 4.1 summarizes the properties of SignFi dataset.

Table 4.1: SignFi Dataset

Dataset Environment Number of Signs Number of Users Number of Samples
D1 Home 276 1 2760
D2 Laboratory 276 1 5520
D3 Laboratory 150 5 7500

4.2 Sign language based system 43



4.2.2 Signal Preprocessing

Ma et al. [35] employ the variations in Channel State Information (CSI)
amplitude as fundamental signals to represent sign gestures. Subsequently, a
normalization procedure is applied to the CSI amplitude in order to prepare
it as input for the classification model. The resulting dataset possesses
dimensions of 200×30×3, which effectively captures intricate details and
nuances inherent in fine-grained actions associated with sign gestures.

Bastwesy et al.[36] employ a comprehensive approach in which they extract
both the amplitude and phase variations as fundamental signals for the clas-
sification task. To mitigate the influence of environmental noise, they apply
a Weighted Moving Average (WMA) filter to the raw amplitude. Additionally,
in order to address the inherent randomness introduced by the hardware
manufacturer, as discussed in Chapter2.2.2, a linear transformation is applied
to the raw phase. Furthermore, the smoothed amplitude and true phase are
concatenated on the subcarrier dimension to make the classification input
size equal 200×60×3.

Wei et al. [83] present a novel deep learning model that is capable of au-
tomatically extracting distinctive patterns from raw CSI amplitude data,
without the need for preprocessing techniques to handle outliers resulting
from environmental noise.

4.2.3 Learning Model

Ma et al. [35] propose the SignFi deep learning algorithm, which lever-
ages a 9-layer CNN as the classification model. CNNs possess the ability to
automatically learn parameters and features, making them well-suited for
solving complex problems. Furthermore, CNNs exhibit high computational
efficiency during the inference stage, even when confronted with a large
number of classes. SignFi adopts three 3 × 3 kernels with a stride of 1 in
both the vertical and horizontal directions. To maintain the output size of the
convolutional layer and ensure equal utilization of all inputs, SignFi employs
padding of 1 in both the vertical and horizontal directions. This padding
involves adding a column/row of zeros along the edges of the original input.
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Subsequently, a batch normalization layer, ReLU activation function, and av-
erage pooling layer are applied. The resulting feature maps are concatenated
at the flatten layer, facilitating the flow of information to a fully connected
layer comprising 276 neurons. This layer is followed by a softmax layer,
which performs the classification task by assigning probabilities to each class
label.

Bastwesy et al. [36] develope the SignFi CNN algorithm by enhancing the
convolutional block. The classification model in their study comprises two
CNN blocks, each consisting of sequential layers. The main objective of these
CNN blocks is to autonomously extract relevant features associated with each
gesture. The first layer is the Convolution Layer, which employs 32 filters of
size 5 × 5 and a stride of 1. Padding is applied by adding zeros around the
input edges with a padding value of 1, enabling the convolution operation
to encompass all inputs. The output of this layer consists of a set of feature
maps that serve as input for the subsequent layer. The Batch Normalization
Layer is utilized to normalize the inputs, thereby accelerating the training
process and enhancing network performance by mitigating the impact of
overfitting followed by ReLU Layer serves as a nonlinear activation function,
setting any input value below zero to zero. The Average Pooling Layer plays
a role in reducing the number of connections and parameters in the network.
In this framework, average pooling is applied with a window size of 3 ×
3, returning the average value within this window, with a stride of 3. The
Dropout Layer is incorporated to prevent overfitting during the training stage.
It improves the overall performance of the network by randomly eliminating
inputs based on a defined probability.

The learning model ended with two fully connected layers to aggregate
the learned features from preceding layers and contribute to the classifica-
tion process. The first fully connected layer includes 1000 neurons, while
the second layer consists of 276 neurons, corresponding to the number of
classes. The first layer utilizes the ReLU activation function and incorporates
a dropout rate of 0.5 to mitigate overfitting. The second fully connected
layer employs the softmax function, which assigns each CSI input to one
of the 276 sign classes based on the predicted probabilities. This softmax
classification layer facilitates the final classification of the input signals into
distinct sign gestures.
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Wei et al. [83] propose a deep learning model of substantial scale, consisting
of seven convolutional layers followed by three parallel average pooling
layers. The resulting feature maps from these layers are subsequently con-
catenated using a flatten layer, allowing them to be fed into a fully connected
layer with 1000 neurons. To mitigate overfitting, a dropout layer with a
keep rate of 0.8 is applied after the aforementioned fully connected layer.
To further enhance the model’s performance, an additional fully connected
layer with 1000 neurons followed by dropout layer with keep rate equal to
0.8 is introduced. During training and inference, the softmax layer is utilized
as the final layer, facilitating the classification process.

4.3 Performance Evaluation

The proposed model, as presented in [36], is subjected to a comparative
analysis against the models introduced in prior works, namely [35, 83, 70,
84]. The evaluation metric for comparison is recognition accuracy. The exper-
imental data is processed and analyzed using Google Colab, specifically the
professional version with access to 2 Terabytes of storage. The computational
infrastructure provided by Google Colab includes a server equipped with 26
Gigabytes of RAM and a P100 GPU. The implementation of the proposed
model is realized in Python 3.6, utilizing the Keras deep learning library,
which is a Python-based framework [85]. This section of the thesis is divided
into two parts: a comprehensive description of the dataset employed and a
thorough analysis of the obtained results.

4.3.1 Experiment Setup

The SignFi dataset comprises three publicly available datasets, obtained
through experimental measurements conducted in both laboratory and home
scenarios. These datasets include raw CSI measurements, capturing vari-
ations in room sizes, distances between the transmitter and receiver, and
antenna orientations. The CSI measurements within these datasets are sam-
pled at a rate of 200 Hz, with the duration of a single gesture instance
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ranging between 0.5 seconds and 2.5 seconds. Notably, instances contain-
ing gestures have been carefully segmented, ensuring that each instance
exclusively represents a single gesture.

Table 4.1 provides a comprehensive summary of the three SignFi datasets.
In D1, a total of 276 gestures are performed by a single user within a home
scenario, yielding 2,760 instances for data collection. D2 and D3 encompass
CSI instances collected simultaneously from the receiver and transmitter,
respectively, situated in a laboratory setting. A total of 5,520 CSI instances are
recorded within this context. Similarly, D3 also encompasses CSI instances
collected within the laboratory scenario, including 7,500 instances of gestures
performed by five different users.

4.3.2 Results

The performance evaluation of the system [36] is conducted using a 5-fold
cross-validation approach. This evaluation encompasses the home dataset,
lab dataset, the combined dataset consisting of 8,280 instances from both
home and lab environments, as well as the dataset comprising gestures
performed by five users for system validation. Additionally, a self-test is con-
ducted for each individual user, employing a 5-fold cross-validation method-
ology.

To facilitate the cross-validation process, the entire dataset is randomly
divided into five folds. Subsequently, one fold is designated for testing
purposes, while the remaining folds are utilized for training the system.
This process is repeated five times, resulting in five distinct runs. Finally,
the average accuracy across all five runs is computed as a measure of the
system’s performance. The evaluation of the proposed framework [36] in
comparison to other deep learning techniques, namely LSTM and Attention-
based Bidirectional LSTM (ABLSTM).

ABLSTM combines the Bidirectional LSTM (BLSTM) model with an attention
mechanism. BLSTM processes sequential data in both forward and backward
directions by employing forward and backward LSTM layers. This enables
the automatic extraction of informative features. The attention model plays
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a crucial role in assigning differential weights to various features, enhancing
the overall performance by emphasizing more important features [26].

LSTM and ABLSTM are particularly well-suited for time series data, including
Wi-Fi CSI data, which exhibit temporal dependencies. Previous studies [70,
84] have demonstrated the impressive performance of LSTM and ABLSTM in
Wi-Fi CSI-based human activity recognition.

In [36] comparative analysis, the LSTM model [70] and ABLSTM [84] are
employed on the SignFi datasets. For a fair comparison, raw CSI amplitude
and phase as the input feature vector utilized for LSTM, with a single layer
comprising 200 LSTM units. The LSTM approach achieves average accuracies
of 74.06%, 49.82%, 76.92%, 56.9%, and 63.5% for the home, lab, home+lab,
5-users, and self-test scenarios, respectively. In the ABLSTM model [84], The
raw CSI phase and amplitude are fed into the attention-based bidirectional
long short-term memory model. The ABLSTM achieves recognition accuracies
of 95.44%, 96.2%, 94.94%, 73.83%, and 70% in the home, lab, home+lab,
5-users, and self-test scenarios, respectively.

Based on the results, the proposed system [36] exhibits average recognition
accuracies of 99.674%, 99.855%, 99.73%, 93.84%, and 99% for the home,
lab, home+lab, 5-users, and self-test scenarios, respectively. These findings
are summarized in Table 4.2. Notably, the performance of all approaches is
generally higher in the lab environment compared to the home environment,
owing to the increased complexity of the latter. The superior performance
of the proposed model [36] can be attributed to its ability to automatically
extract features, enabling accurate recognition of diverse sign gestures in
complex environments.

Table 4.2: Overall performance for all systems based on SignFi dataset

Method Home Lab Home & Lab 5−Users Self test
[35] 98.91 98.01 94.81 86.66 98
[83] 99.89 99.98 − − 99.65
[70] 74.06 49.82 76.92 56.9 63.5
[84] 95.44 96.2 94.94 73.83 70
[36] 99.67 99.85 99.73 93.84 99

[36] summarized the time consumption for different frameworks in Table 4.3.
The SignFi system requires 8.28ms for training and 0.62ms for testing. On
the other hand, the LSTM model necessitates 7.2ms for training and 3ms for
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testing. The ABLSTM model exhibits a relatively long training time of 27.2ms
compared to other approaches, with a testing time of 10ms. In contrast, the
proposed CNN model [36] demonstrates the shortest training time of 1ms
among all approaches, while its testing time is 0.66ms, which is comparable
to the training time of SignFi.

Based on these findings, it can be inferred that the proposed model [36] is
suitable for real-time Wi-Fi CSI-based sign gesture recognition. It achieves
satisfactory accuracy, and its testing time is minimal, indicating its potential
for real-time applications.

Table 4.3: Time Consumption for all systems based on SignFi dataset

Method [35] [83] [70] [84] [36]
Training 8.28 − 7.2 27.2 1
Testing 0.62 − 3 10 0.66

4.4 Summary

The primary contribution of the proposed methodology [36] lies in the de-
velopment of a robust deep learning model capable of achieving satisfactory
recognition accuracy across various environments, while also demonstrating
resilience in the face of user diversity. Remarkably, the system achieves recog-
nition accuracy exceeding 99% when subjected to environmental variations
and surpasses 93% when confronted with user variations. However, it should
be noted that the study [36] relies on a publicly available dataset [35], col-
lected using the Intel 5300 NIC, which is accompanied by inherent limitations
discussed in the previous chapter.

Furthermore, the data collection process employed in the study [36] was
conducted within a single-user environment, where the user performed the
gestures in isolation. However, this setup does not align with real-world
scenarios, as communication between individuals with hearing impairments
and others is a crucial aspect. In subsequent chapters, we aim to address
these challenges by introducing novel methodologies and collecting our own
dataset using the ESP32, a more advanced tool for capturing CSI. Additionally,
we present two use cases that aim to improve the quality of life for individuals,
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namely communication assistance for quadriplegic individuals and mental
health support for workers.

Moreover, we delve into the challenges associated with deploying Wi-Fi CSI
in real-world settings, specifically focusing on robustness in the face of user
diversity, location variations, and session variations. Wi-Fi signals can be
influenced by the sensing area, and different users may perform the same
gestures with varying styles and speeds. These challenges are thoroughly
investigated in the subsequent chapters of this thesis.
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Wi-Nod: Head Nodding
Recognition by Wi-Fi
CSI Toward
Communicative Support
for Quadriplegics

5

5.1 Introduction

This chapter introduces and validates a novel contactless sensing system
called Wi-Nod, which utilizes ESP32 nodes as a CSI toolkit. Notably, this
work stands out as the first to collect Wi-Fi signals in a multi-human context
environment. Unlike previous studies that focused on single-user scenarios,
our approach considers the presence of both a target patient (quadriplegic
individual) and a caregiver, who acts as a scatter providing additional multi-
path propagation in the sensing area. This realistic setup enhances the
reliability and applicability of the system. Fig. 5.1 presents an overview of
the architectural framework proposed for the Wi-Nod system.
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Figure 5.1: General architecture for Wi-Nod system
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5.1.1 Background

The advent of Internet of Things (IoT) technologies has sparked significant
interest in the realm of HAR and GR applications. These technologies em-
power passive sensing capabilities on diverse smart IoT devices, including
Wi-Fi devices, smartphones, and smart speakers [86, 87, 88].

Such advancements have opened up new possibilities for leveraging Wi-Fi CSI
as a means to recognize head nodding gestures and provide communicative
support specifically tailored for individuals with quadriplegia. Quadriplegia,
resulting from spinal cord injuries, severely impacts an individual’s mobility
and ability to engage in conventional forms of communication. According to
a study [89] conducted by the American Spinal Injury Association in 2016,
an estimated 1.3 to 2.6 million individuals experience varying degrees of
spinal cord injuries annually, highlighting the pressing need for effective com-
munication solutions for quadriplegics. Therefore, head nodding gestures,
despite having a limited range of motion, serve as a vital means of expression
for these individuals, allowing them to indicate affirmative responses, answer
binary questions, and convey basic communication cues.

Quadriplegic individuals, even in the later stages of spinal injury, retain slight
mobility in their head and eyeballs, offering a potential avenue for commu-
nication and interaction. Although vision-based eyeball-tracking systems,
exemplified by Stephen Hawking’s case, have demonstrated effectiveness,
their complexity and cost hinder widespread adoption.

To address these challenges, there is a need for accessible and affordable
communication solutions for quadriplegics. Wi-Fi CSI emerges as a promis-
ing approach. By leveraging the unique characteristics of wireless signals,
Wi-Fi CSI captures subtle variations induced by human movements, includ-
ing head nodding gestures. The ubiquity of Wi-Fi infrastructure enables a
non-invasive and cost-effective means of recognizing and interpreting head
nodding gestures, providing valuable communicative support.

Our idea is inspired by the WiMorse [90] that employed Intel 5300 NIC
to collect the CSI waveforms produced by a finger. The authors created
their own code that encoded the two Morse symbols based on the subtle
finger movements. The authors built a mathematical model to detect the
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characters and numbers using WiFi CSI measurements derived from these
finger movements. WiMorse is a position-independent system that can be
deployed in different environments. The system achieved an average accuracy
of 95%.

By harnessing Wi-Fi CSI, we adopt a Morse code-inspired approach for rep-
resentation. Head movements are used to convey Morse symbols, with
downward and rightward head motions representing dots and dashes, respec-
tively. Additionally, a third symbol, space, is introduced to separate words,
indicated by a leftward head movement.

This research aims to pioneer the use of Wi-Fi CSI for Head Nodding Recog-
nition, specifically tailored for communicative support in quadriplegic indi-
viduals. By designing and implementing the Wi-Nod system, we strive to
empower quadriplegics to express themselves and engage in meaningful com-
munication using intuitive head movements. Through extensive validation
and experimentation in realistic multi-human contexts, we aim to establish
the effectiveness and practicality of our approach.

5.1.2 Research Contributions and Questions

The main contributions of this study are as follows:

1. We collect Wi-Fi signals in a multi-human context environment, incor-
porating both quadriplegic patients and caregivers, unlike previous
studies limited to single-user scenarios.

2. We extract the informative context related to the head motions in
the presence of multiple objects around the patient, accounting for
the influence of temperature and humidity on wireless signals, and
accommodating variations in motion speeds among different patients.

3. We evaluate the system’s performance in diverse scenarios to illustrate
the effectiveness and robustness of our proposed system.

In this study, we answer the following research questions:
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Figure 5.2: Wi-Nod System Framework

Q1 How can the system accommodate variations in motion speeds among
different quadriplegic patients to achieve accurate and consistent recog-
nition of head nodding gestures?

Q2 What is the impact of considering user and session diversity in a multi-
human context on the performance of the Wi-Nod system?

5.2 Methodology

5.2.1 System Overview

Our proposed Wi-Nod system consists of three key modules aimed at cap-
turing and analyzing patterns of channel variation associated with head
nodding gestures. Fig 6.2 provides an overview of the general architecture
of the Wi-Nod system, which comprises the data collection module, signal
preprocessing module, and learning model. Each of these modules plays a
crucial role in the overall functioning of the system.

5.2.2 Data Collection

Data was collected from two participants in two distinct time sessions: one
in the morning and another in the evening. This approach aimed to capture
variations in head nodding gestures that might occur throughout the day
due to factors such as fatigue, alertness, or environmental conditions. By
considering multiple time sessions and participants, the dataset encompasses
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a diverse range of the head nodding patterns. The data collection process
involved the utilization of eight ESP32 nodes, which were divided into two
groups: transmitters and receivers. Each group performed a specific role in
capturing the Channel State Information (CSI) streams between the nodes.
The transmitters emitted Wi-Fi signals, while the receivers recorded the
received signals and measured the resulting CSI. The configuration of the
ESP32 nodes enabled the capture of CSI streams, which contain valuable
information about the wireless channel and its variations caused by head
nodding gestures. By analyzing these CSI streams, it becomes possible to
extract meaningful patterns and features that can facilitate a head nodding
recognition.

5.2.3 Signal Preprocessing

signal preprocessing plays a vital role in preparing the raw CSI measurements
for effective classification. This module aims to address the inherent noise
present in the CSI waveform and enhance the performance of the subsequent
learning model. The signal preprocessing module consists of several stages,
each serving a specific purpose, as described below:

1. Data Segmentation: The signal segmentation stage involves splitting
the CSI measurements of each link based on their time stamp. This
step enables the fusion of signals from each link, creating a unique
pattern for each user’s head motion. The segmented signals can then be
mapped to the corresponding Morse code. This process helps capture
the temporal aspects of head nodding gestures.

2. Interpolation: To overcome the issue of packet loss in the CSI mea-
surements, padding interpolation is applied. This technique preserves
the distribution of the received packets, ensuring that important infor-
mation is not lost due to missing data. Interpolation helps maintain the
integrity and continuity of the CSI waveform.

3. Amplitude Extraction: In this work, the amplitude is extracted as the
base signal for analysis. The amplitude exhibits variations that are
correlated with head motion and is considered more reliable and less
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(a) Dot (b) Dash (c) Space

Figure 5.3: Raw and Filtered Amplitudes of Three Symbols across All Subcarriers
in 1st Link

(a) Dot (b) Dash (c) Space

Figure 5.4: Spectrograms of 13th Subcarrier in 3rd Link for Three Symbols

random than the CSI phase. By parsing the CSI files, the amplitude is
extracted and utilized as the primary signal for further processing.

4. Amplitude Noise Removal: The noise removal stage aims to smooth
the raw amplitude and eliminate outliers caused by environmental
changes. To achieve this, Weighted Moving Average (WMA) is applied.
The WMA effectively reduces noise and enhances the clarity of the
amplitude signal, ensuring that meaningful patterns associated with
head nodding gestures are preserved. In general, the filtered amplitude
can be calculated as:

A′
t = 1

m + (m − 1)... + 1 .[m.At + (m − 1).At − 1+

(m − 2).At − 2 + ... + At − m + 1]

A′
t is the weighted average amplitude within a window size m for time

t. Fig. 5.3 illustrates the results of the weighted moving average for
each symbol sample, and the color curves represent the amplitude of
each subcarrier within the first link, as it is observed that the amplitude
is smoother and outliers are eliminated.
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5. Spectrogram Extraction: Head motions and human movements intro-
duce complex variations in the CSI amplitude. Users may perform the
same head motion at different speeds, which can be captured through
frequency variations in the spectrogram. To extract spectrograms, a
sliding window technique is applied to the filtered amplitude, segment-
ing the signal into equal-sized segments. The Fast Fourier Transform
(FFT) is then performed on each segment, converting the signal from
the time domain to the frequency domain. This process produces
spectrograms through Short-Time Fourier Transform (STFT), which
provide a visual representation of the frequency information associated
with head nodding gestures. Fig. 5.4 illustrates the spectrogram of
the subcarrier with index 13th for each link, showcasing the frequency
variations corresponding to different head nodding symbols.

5.2.4 Learning Model

By employing this feature extraction and classifier stage, utilizing the in-
ception model, the system achieves improved accuracy and performance in
recognizing and classifying head nodding gestures. The automatic feature
extraction process, with low computational complexity, enhances the sys-
tem’s ability to understand and interpret the nuances of head movements,
facilitating effective communicative support for quadriplegic individuals. The
inception model, utilized in this work, is characterized by its wider archi-
tecture rather than deeper, enabling a faster learning process. This design
choice allows for parallel manipulation of the classifier input, as depicted
in Fig. 6.2. The spectrogram, representing the frequency variations of head
nodding gestures, is inputted into the first inception module for meaningful
feature extraction.

1. Feature Extraction: The feature extraction stage consists of two in-
ception blocks, each comprising three parallel convolution layers with
different numbers and sizes of kernels. After each convolution layer, the
rectified linear unit (ReLU) activation function is applied. A maximum
pooling (MaxPool) layer follows with a stride value of one, and the
outputs of these layers are concatenated. The first convolution layer
employs 32 kernels with a size of (1 × 1), the second convolution layer
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(a) Dot (down) (b) Dash (right) (c) Space (left)

Figure 5.5: Head Motions Used in Experiment: Dot, Dash, and Space

has 64 kernels with a size of (3 × 3), and the third convolution layer
utilizes 32 kernels with a size of (5 × 5). Finally, a MaxPool layer with
a kernel size of (3 × 3) is applied.

2. Classifier: The output of the second inception layer is flattened to
transform the multidimensional feature representation into a one-
dimensional vector. This flattened representation is then passed to
a fully connected layer, where all the extracted features are combined.
The final classification layer is represented by a softmax layer with
three classes, corresponding to the symbols dot, dash, and space, which
represent different head nodding gestures.

5.3 Performance Evaluation

To evaluate our proposed system, we test the performance of Wi-Nod in a
multi-human context environment to verify the robustness of the system.

5.3.1 Experiment Setup

In this phase, we deployed eight ESP32 nodes to construct our head nodding
system. Among these nodes, four were utilized as transmitters connected to
mini-PCs, while the remaining nodes served as receivers.
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To evaluate head nodding gestures, we enlisted two participants, one male
and one female, to perform these motions in a laboratory environment. Each
participant executed head movements corresponding to three symbols: dot,
dash, and space, represented by moving the head down, right, and left,
respectively, as illustrated in Fig. 5.5. The participants were instructed to per-
form each gesture for a duration of four minutes. Consequently, we obtained
four distinct datasets, each containing approximately 720 samples.

Notably, the data collection took place in a multi-human environment, simu-
lating real-world scenarios faced by quadriplegia patients in wheelchairs. To
replicate these circumstances, one person held a frame and moved behind
the participant, while several other individuals were present in the surround-
ings. To assess the robustness of our system, data collection was conducted
during two different time sessions: morning and evening. These sessions
introduced variations in the environmental conditions around the frame.
The morning session involved a smaller number of people (approximately
three individuals) in the laboratory, while the evening session included a
larger group (around 10 individuals). Python and the Keras platform were
employed for the processing of the collected data, facilitating subsequent
analysis and evaluation.

5.3.2 Results

We evaluated the performance of our proposed system using the cross vali-
dation approach, allocating 70% of the data for training and the remaining
30% for testing. The datasets were collected during different time sessions
throughout the day, denoted as F1, M1, F2, and M2. Here, the numbers rep-
resent the session type, with 1 indicating the morning session and 2denoting
the evening session. The symbols F and M indicate whether the dataset
was gathered by a female or male, respectively, with a caregiver holding
the frame during data collection. In our evaluation, we investigated the
impact of different link configurations, namely L1_2, L3_4, and L_all. The
L1_2 configuration represents the concatenation between link 1 and link 2,
forming a diagonal configuration. The L3_4 configuration represents the
concatenation between link 3 and link 4, creating a horizontal configuration.
Lastly, the L_all configuration involves the concatenation of all links together.
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Figure 5.6: The Recognition Accuracy of Different Dataset

The concatenation process is performed based on the subcarrier index dimen-
sions. To evaluate the system’s performance, we analyzed the accuracy and
confusion matrix metrics. These metrics provide insights into the system’s
classification accuracy and the patterns of misclassifications, respectively.

Table 5.1: Overall System Accuracy

Dataset
L1_2 L3_4 L_all

RAW_
AMP

WMA_
PCA_STFT

RAW_
STFT

WMA_
STFT

RAW_
AMP

WMA_
PCA_STFT

RAW_
STFT

WMA_
STFT

RAW_
AMP

WMA_
PCA_STFT

RAW_
STFT

WMA_
STFT

F1 97.7 83.4 98.16 99.5 94.93 85.71 96.3 98.6 98.62 84.79 99.1 99.5
M1 92.1 67.59 92.1 95.4 92.6 77.42 91.24 96.31 99.1 69.91 95.37 99.0
F2 98.15 80.09 98.6 99.07 92.13 78.2 92.13 99.0 98.7 84.26 97.7 98.1
M2 93.1 44.0 92.1 92.6 91.5 71.23 89.15 94.8 96.7 68.87 86.1 93.4
F1_M1 43.3 36.57 34.6 35.4 63.66 38.6 68.2 64.8 27.2 28.1 34.3 44.7
F1_F2 58.6 53.8 78.8 79.1 32.2 33.3 35.6 32.9 41.3 43.1 60.1 61.5

As shown in Fig. 5.6, the proposed system achieved over 95% recognition rate.
Table. 5.1 reveals that the diagonal link configuration, x ∈ R100×104 where x is
the classifier input, yields the highest accuracy when multiple individuals are
present within the sensing area. This configuration enables the classifier to
effectively extract relevant information from the spectrogram associated with
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the patient’s head nodding, while mitigating the impact of environmental
noises and other individuals’ movements. On the other hand, the all links
configuration, x ∈ R100×208, exhibits superior performance in scenarios where
the number of people surrounding the patient is relatively low. Moreover,
it is obvious that the horizontal link configuration is more susceptible to
variations in the environment and the presence of surrounding individuals,
resulting in the lowest accuracy among the other link configurations.

The confusion matrices in Fig 5.7 summarize the number of instances cor-
rectly and mistakenly classified by the learning model. In the first session,
the model predicted 1.4% of the dot samples as dashed compared to the
second session, where the misclassification rate is 11% between dashed and
space in M2 dataset and about 5% in F2.

5.4 Discussion

5.4.1 User Diversity Robustness

To evaluate the system’s robustness in handling user diversity, we conducted
comprehensive evaluations using the F1 dataset as the training dataset and
the M1 dataset for testing. In addition, we explored the impact of different
base signals on the classifier performance to identify the most suitable signal
for enhancing user diversity robustness. The results of these evaluations are
summarized in Table 5.1, which presents the performance of various base
signals utilized in the evaluation process. The evaluated signals include raw
amplitude (RAW AMP), weighted moving average followed by PCA and STFT
(WMA PCA STFT) for dimensionality reduction of the CSI waveforms, raw
amplitude followed by STFT (RAW STFT), and weighted moving average
followed by STFT (WMA STFT). These signals were analyzed to determine
their effectiveness in achieving robustness in handling user diversity.

the 5th raw of Table 5.1 shows that the combination of the 3rd and 4th links
achieved the highest accuracy when using the raw spectrogram as the base
signal. This accuracy was slightly higher than the filtered spectrogram, as
the movement of the user holding the frame affected the amplitudes of the
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(a) F1 confusion matrix (b) M1 confusion matrix

(c) F2 confusion matrix (d) M2 confusion matrix

Figure 5.7: The Confusion Matrix of Different Users

1st and 2nd links. We also examined the impact of dimensionality reduction
using PCA, which resulted in the lowest accuracy for links 3 and 4. This is
because PCA eliminates correlated variables, potentially leading to the loss
of informative data.

Moreover, the results highlight the significance of using the spectrogram as a
base signal for robustness in handling user diversity. Different movements
generate distinct frequencies in the frequency domain, and the spectrogram
captures this information. Figure 7a illustrates the accuracy based on the
leave-one-user-out validation approach. The confusion matrix for the integra-
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(a) Acc. (User Diversity)

(b) CM (User Diversity)

Figure 5.8: The Accuracy and Confusion Matrix of User Diversity

tion of 3rd and 4th links using the raw spectrogram is depicted in Fig. 5.8. It
reveals that the highest rate of misclassification occurs between the dot and
space samples, with over half of the dot samples being predicted as space,
30% as a dash symbol, and only 12% correctly classified.

5.4.2 Time Diversity Robustness

To investigate the robustness of time diversity, we conducted experiments
by training the model using the dataset collected in the morning and subse-
quently testing it on the evening dataset from the same user. The last raw

5.4 Discussion 63



(a) Acc. (Time Diversity)

(b) CM (Time Diversity)

Figure 5.9: The Accuracy and Confusion Matrix of Time Diversity

in Table 5.1 presents the results, indicating that the integration of the first
and second links achieved the highest accuracy of 79.1% by employing the
weighted moving average amplitude followed by STFT. This high accuracy
can be attributed to the fact that the first and second links capture both the
user’s head motion and the movement of the person behind them. The incep-
tion model effectively extracts meaningful features from these movements
using the spectrogram, which maps different speeds to distinct frequencies
and translates them into unique patterns.

Fig. 5.9(a) illustrates the accuracy summary, highlighting the performance of
the system in terms of time diversity. However, the confusion matrix depicted
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in Fig. 5.9(b) reveals some inaccuracies in the model’s predictions. Specifi-
cally, approximately 23% of the dash samples were incorrectly classified as
space, and around 20% of the space samples were misclassified as a dot.

5.5 Summary

In this chapter, we present Wi-Nod, a novel head nodding recognition system
that utilizes Wi-Fi CSI to facilitate communication between quadriplegia pa-
tients and others, potentially serving as a foundation for a Morse code system
operated by head motions. The Wi-Nod system is described in detail, starting
with the data collection phase using compact and cost-effective ESP32 nodes.
This is followed by a data preprocessing module that incorporates data seg-
mentation, concatenation, amplitude extraction, outliers removal filtering,
and frequency domain transformation based on the STFT. The processed data
is then fed into an inception model for the classification task. To evaluate
the performance of the Wi-Nod system, we collected four distinct datasets,
involving two different users and conducted during separate time sessions, all
within a multi-human context environment. The evaluation results revealed
that the system achieved an impressive head motion recognition accuracy
exceeding 95%. This study highlights the potential of utilizing Wi-Fi CSI for
head motion recognition and demonstrates the efficacy of the Wi-Nod system
in accurately recognizing and classifying head nodding gestures. The findings
contribute to the development of assistive communication technologies for
quadriplegia patients, enabling improved interaction and communication
capabilities.
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HeMoFi4Q: Morse
Communication Based
on Wi-Fi and Head
Motion for Quadriplegia
With Environmental
Robustness

6

6.1 Introduction

The primary objective of our proposed framework is to enhance our previous
research efforts by integrating Morse symbols based on head motions to gen-
erate the complete set of 26 alphabet letters. In this chapter, we commence
by introducing a novel sign language approach. Additionally, we outline the
pipeline of our proposed system and elaborate on the strategies employed
to address the challenge of environmental robustness. Fig. 6.1 provides an
overview of the HeMoFi4Q architecture.

CSI Data Collection Base Signal Extraction

ESP32 Tool CSI Amplitude 

Signal Preprocessing

Time Domain

• Amplitude Normalization
• WMA filter 

Algorithms Model

Learning Algorithms
Efficient Channel 

Attention {ECA}model 

Figure 6.1: General architecture for HeMoFi4Q system
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6.1.1 Background

Numerous studies have been undertaken to leverage Wi-Fi CSI for the identi-
fication and detection of human activities. These studies commonly involve
either manual feature extraction from the CSI data coupled with machine
learning models, or the adoption of deep learning techniques for automated
feature extraction. Additionally, recent investigations have focused on devel-
oping methodologies to recognize human activities in diverse environmental
settings through the utilization of Wi-Fi signals.

Bahadori et al. introduced a single-user environment human activity recogni-
tion system called ReWis [76]. The impact of employing multiple receivers
and multiple antennas per receiver was explored to enhance the accuracy
of the system. ReWis reduces dimensionality by leveraging time diversity
through SVD and captures the correlation among subcarriers by estimating
Pearson correlation coefficients. During the training phase, the CSI wave-
forms from the source environment are fed into a CNN model to extract
representative features, along with five samples of each of the four activities
from the unseen/target environment. This approach aims to bridge the
gap between the seen and unseen environments. Additionally, the ProtoNet
model is employed to investigate the similarity between the two different
domains and address the domain independence issue.

Shi et al. introduced HAR [77] focusing on enhancing the quality of the Wi-
Fi [CSI] waveforms through the utilization of Conjugate Multiplication (CM).
The CM technique aims to mitigate phase randomness by identifying the
CSI waveform with the highest quality and designating it as a reference.
Specifically, the reference CSI vector is determined based on the maximum
ratio of the mean of the CSI amplitude to the standard deviation across the
subcarriers. Subsequently, CM is computed between the reference vector and
all transmitter-receiver pairs. To reduce dimensionality, PCA is employed.
To capture activity-related features, the authors apply the FFT to obtain the
spectrogram of the filtered CSI. This spectrogram is then fed into a CNN-
LSTM network for the embedding task. Additionally, the authors introduce
the MatNet network, which aims to maximize the cosine similarity between
the source environments to extract representative features. Notably, the
proposed system achieves an average recognition accuracy exceeding 74%.
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Francesca et al. introduced a single independent environment HAR system
called SHARP [78], which utilizes Wi-Fi CSI. The authors propose a novel
phase sanitization method, leveraging the strongest path, to eliminate phase
offsets from the raw CSI signals. Subsequently, the extracted Doppler trace
is obtained from the normalized amplitude and filtered phase. For the
classification task, an Inception model is employed. The data collection for
the SHARP system is conducted in three distinct environments using the
Nexmon tool. Notably, even in the worst-case scenario, the average accuracy
achieved by SHARP is approximately 95%.

However, despite the valuable contributions made by previous studies in ad-
dressing the challenge of environmental diversity, it is important to note that
these approaches are predominantly designed for single-user environments.
This limitation restricts the feasibility and practical deployment of passive
Wi-Fi sensing in real-world settings. Herein, we have utilized Wi-Fi CSI
waveforms to passively track head motions and extract gesture signatures for
each character. The data collection process involved the utilization of a real
wheelchair and an ESP32 microcontroller. Drawing inspiration from few-shot
learning algorithms, we have addressed the location robustness issue in
multi-human context environments by combining the seen environment with
a few samples from the unseen environment. In order to achieve domain
independence, we have conducted a thorough investigation of the impact of
amplitude and phase features on improving recognition accuracy using the
smallest number of samples from the target source. The classification results
highlight the effectiveness of utilizing a diagonal links configuration and
smoothing the time-domain CSI amplitude variations, which yield the best
performance in diverse domain-independent scenarios. Fig. 6.2 summarizes
the objective of our proposed head motions for quadriplegia.

6.1.2 Research Contributions and Questions

The main contributions of this study are as follows:

1. We propose a novel communication method that utilizes Morse code
generated through head motions.
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Figure 6.2: Conceptual diagram of the proposed Morse code based on head-
motion framework. The system consists of three modules: data col-
lection of CSI reading of the 26 English alphabets, the noise removal
techniques, learning module, and the classification module
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2. We investigate the impact of location diversity in a multi-context envi-
ronment, where patients are surrounded by others. By considering this
practical scenario, our research aligns closely with real-world situations
and enhances the feasibility of the proposed communication method.

3. Inspired by few-shot learning algorithms, we introduce a technique
to improve system performance. In the learning phase, we merge
randomly selected small samples from the target environment, enabling
the classifier to effectively extract the unique signature associated with
each alphabet.

Our research addresses the following research questions:

Q1 What are the effects of location diversity in a multi-context environment
on the practicality and performance of the proposed communication
method?

Q2 How does the proposed communication method perform in different
environments and locations? Does the performance of the distribution-
adapted model follow the rank of distribution identification results?

Q3 What are the comparative effects of different base signals, link configu-
rations, and state-of-the-art classifiers on system performance?

6.2 Methodology

This research introduces a novel head motion system consisting of three key
modules: data collection, data preprocessing, and feature extraction and clas-
sification. Fig. 6.3 illustrates the overall architecture of the system. Notably,
this study marks the first time that a comprehensive Wi-Fi CSI dataset has
been collected using a cost-effective and low-power ESP32 microcontroller.
This device holds promise for CSI sensing in the context of the IoT due
to its standalone capabilities. Following data collection, signal processing
techniques were applied, including parsing, CSI segmentation, interpolation,
and filtering. These steps aimed to enhance the quality and usability of
the collected data. Lastly, an extract, classify, and analyze Efficient Channel
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Figure 6.3: Overview architecture of HeMoFi4Q system

Attention (ECA) model was constructed to extract CSI patterns corresponding
to specific head motion characteristics and perform the classification task.

6.2.1 Data Collection

To gather the CSI waveforms, three pairs of ESP32 units were affixed to a
real wheelchair. Data collection occurred in two distinct environments: a
single-user environment with only the patient present and a multi-human
context environment in three different locations. Each environment was
recorded in different locations. The Morse head motion for each character is
depicted in Table 6.1, presenting the corresponding movements denoted by
D, R, and L representing down, right, and left motions respectively. These
motions serve as the foundational blocks for our sign language system.

Table 6.1: HeMoFi4Q Code: D-down motion, R-right motion, L-left motion

Char Code Char Code Char Code Char Code Char Code
A D-R-L-L G R-R-D-L M R-R-L-L S D-D-D-L Y R-D-R-R
B R-D-D-D H D-D-D-D N R-D-L-L T R-L-L-L Z R-R-D-D
C R-D-R-D I D-D-L-L O R-R-R-L U D-D-R-L
D R-D-D-L J D-R-R-R P D-R-R-D V D-D-D-R
E D-L-L-L K R-D-R-L Q R-R-D-R W D-R-R-L
F R-R-D-L L D-R-D-D R D-R-D-L X R-D-D-R
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Figure 6.4: First three and last two alphabets motions corresponding to the raw
and filtered CSI amplitude. a. Visual representation of A, B, C, . . . , Y,
and Z characters. b. Raw CSI amplitude for each character across the
first link. c. Filtered CSI amplitude after applying weighted moving
average.

6.2.2 Signal Preprocessing

The overall process consisted of three distinct stages. Firstly, the data was
divided into segments based on timestamps to facilitate further analysis.
Secondly, mean values were incorporated to address the impact of packet
loss in Wi-Fi CSI measurements. This step aimed to mitigate any potential
distortions caused by missing data. Finally, efforts were made to eliminate
noise present in the signal amplitude, enhancing the accuracy and reliability
of the measurements. Additional detailed information regarding the segmen-
tation, padding, and filtering procedures can be found in the subsequent
descriptions.
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Timestamp segmentation

The objective of signal segmentation is to partition the Wi-Fi Channel State
Information (CSI) measurements of each link based on their respective
timestamps. This crucial process aims to combine the signals from each
link, enabling the creation of unique patterns that correspond to the head
movements of individual users. Consequently, these distinct patterns can be
mapped to their corresponding signatures, facilitating the identification and
differentiation of various head movements made by each user. This process
is essential for accurate and reliable communication through the system.

Mean padding

The technique of mean padding is commonly employed to handle the problem
of packet loss in Wi-Fi CSI measurements, while ensuring the preservation
of the remaining packet distribution. Instead of discarding the missing
packets, mean padding involves estimating their values by considering the
neighboring data points within the time series. By utilizing the average
value of the adjacent data points to fill the gaps, mean padding assists in
maintaining the distribution of the packets and the overall continuity of the
time series. This approach effectively mitigates the impact of packet loss and
facilitates the analysis of the CSI measurements.

Amplitude noise removal

This section outlines the noise removal technique used to smooth the CSI am-
plitude. It is worth mentioning that we investigated three different features
to evaluate the system’s performance. These features include the filtered
amplitude, time-frequency feature, and the combination of the filtered am-
plitude and the calibrated phase. However, the variations of the filtered
time-domain CSI amplitudes outperform other features in the recognition
accuracy. They reveal distinct signatures for different alphabets.

Since it is not reliable to use raw amplitude directly as a feature selection due
to the signal interference and environmental changes noise. Therefore, we
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adopt a weighted moving average filter (WMA) [91] to remove the outliers
and smooth the CSI amplitude waveforms as shown in Eq.6.1

Ât,i = m × At,i + (m − 1) × At-1,i + ... + 1 × At-m-1,i

m + (m − 1) + ... + 1 (6.1)

Where Ât,i and At,i are the filtered and raw amplitude corresponding to the
subcarrier i at time t, and m that is empirically set to 30 in this paper. The
illustration in Fig. 6.4(a) showcases the visual head motions of A, B, C, Y, and
Z alphabets, while corresponding raw and filtered CSI amplitudes are shown
in Fig. 6.4(b) and Fig. 6.4(c), respectively. Further details of the experiment
setup are described in the following sections.

6.2.3 Feature Extraction and Classifier Phase

The main issue with the current DCNN is that more layers added to it
will improve the performance, but will make the model more complex.
Additionally, the current attention technique non-identically weights the
extracted feature depending on how crucial it is to the classification task.
Therefore, information is lost as a result of the unnecessary and ineffective
dependencies across several channels.

To get over these restrictions, the ECA module [92] is presented to aggregate
the local inter-channel information. During the learning process, ECA assigns
the weights of each channel based on its significance in the Channel Attention
Map (CAM). Then, to emphasize the distinct patterns and suppress the
uncorrelated data, the input features of each channel are multiplied by the
corresponding CAM weights.

The following is a description of how Fig. 6.3 depicts the ECA network’s
process. First of all, the Global Average Pooling (GAP) layer [93] aggregates
the input features fa and can be expressed as in Equation 6.2.

g(X) = 1
WH

W,H∑
i=1,j=1

Xij (6.2)
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where x ∈ RW ×H×C is the convolution neural network output. W, H, and C
denote width, height, and channel dimension (i.e., number of filters).

Unlike the fully connected layer, GAP is used to decrease the complexity
of the modal by decreasing the number of parameters. Furthermore, it
solves the overfitting problem caused by the fully connected layer. It is
worth mentioning that there are no parameters or weights to be optimized
for GAP.

after that, the fast one-dimensional convolution layer 1d with k kernel size
fk

1d, f 1d ∈ RC , is applied to each input channel to generate the weights of
CAM fb which can be mathematically calculated as in Equation 6.3.

fb = σ(W × (fk
1d)) (6.3)

, where W ∈ RC×C is the weight matrix and C represents the channel
dimension. The k establishes how many neighbors take part in the attention
prediction via each channel. In the proposed system, k value is equal to
3. After that, the sigmoid function,σ, normalizes the attention weights f ‘

b.
Finally, the significant input features are generated by multiplying the input
features with the channel weights f ‘

b. In ECA network, the adaptive selection
of the kernel size is an exponential function that depends on the number of
channels C.

This model is a CNN with an ECA module. The input to the model is a tensor
of shape (1000,52,2). The model has two convolutional layers, each followed
by an ECA module, batch normalization, and max-pooling layers. The output
of the second max-pooling layer is flattened and fed into a dense layer with
256 units, followed by a dropout layer with a dropout rate of 0.25. The final
output layer contains 26 units representing the number of characters with
softmax activation.

The ECA module is a feature recalibration mechanism that enhances the
performance of CNNs by recalibrating the feature maps. It applies a convolu-
tional operation with a small kernel size to squeeze the feature maps into
a single channel and then applies a sigmoid activation function to obtain
attention maps. The attention maps are multiplied with the original feature
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maps to generate the scaled feature maps, which are then passed to the next
layer.

6.3 Performance Evaluation

6.3.1 Experiment Setup
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Figure 6.5: Data collection setup based on ESP32 microcontroller. a. Top view of
wheelchair setup used in both environments. b. Single-user environ-
ment layout. c. Multi_human context environment layouts.
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In our experimental setup, we considered two distinct environments to in-
vestigate the capabilities of ESP32 modules as both Tx and Rx. The research
employed a total of six ESP32 microcontrollers operating in the 2.4 GHz
frequency band and utilizing the IEEE 802.11n protocol for CSI data collec-
tion. Fig. 6.5(a) illustrates the configuration of the setup, which involved
three ESP32 modules functioning as transmitters. These transmitters were
connected to a mini-PC running the Ubuntu 16.04 operating system. The
remaining three ESP32 modules served as receivers. To establish the link
between transmitters and receivers, specific distances were maintained. For
link 1, the distance between the transmitter and its corresponding receiver
was 84.3 cm. Similarly, for link 2, the distance was 52.3 cm, and for link 3, it
was 84.3 cm

In both environments, Env1 and Env2, the user’s head movements followed a
predefined pattern outlined in Table 6.1. Each symbol, along with the end
motion, lasted for two seconds, resulting in a total of 10 seconds per character.
Data collection was organized into separate files, with each character’s data
spanning a duration of 10 minutes. The transmission of Wi-Fi frames from
the three Tx to the Rx occurred concurrently at a rate of 100 Hz.

Env1 represented a single-environment scenario where only the user was
present. Data was collected from two different locations within this envi-
ronment, as depicted in Fig. 6.5(b). On the other hand, Env2 represented a
multi-human context environment, as illustrated in Fig. 6.5(c). Each charac-
ter in the dataset had dimensions of 1000 × 52 × n, where 1000 denoted the
number of packets, 52 represented the number of subcarriers, and the value
of n depended on the number of links utilized. The investigation focused on
exploring the impact of different link configurations, which will be discussed
later in 6.3.3.

For a single-link configuration, the value of n was set to 1. When utilizing
two links, n was set to 2, and when employing all available links, n was set
to 3. The dataset collected for this research was balanced, ensuring an equal
number of samples were obtained from each location. A total of five locations
were considered, with 100 instances of each character collected from each
location. This resulted in a total of 2600 samples for each alphabet character
at each location. Cumulatively, across all locations, a total of 13, 000 samples
were gathered. The focus of the experiments was on 26 alphabet characters
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Table 6.2: Training and Testing Size for HeMoFi4Q Performance Evaluation

Samples Env1 Env2 Env1 → Env2 Env2 → Env1

Training samples Loc1 + 2% Loc2 2652
Loc1 + Loc2
+ 2% Loc3

5252
All_locs_Env1
+ 2% Loc3_Env2

5356
All_locs_Env2
+2% Env1

7904

Testing samples 98% Loc2 2548 98% Loc3 2548 98% Loc3_Env2 2548 98% Env1 5096

as the number of classes. This selection was based on the functionality of the
HeMoFi4Q system, which extracts Morse code signatures from head motion
and maps them to the corresponding characters.

6.3.2 Evaluation metrics of classification models

In order to assess the effectiveness of HeMoFi4Q in various environments, we
conducted an evaluation using CSI data. The implementation of HeMoFi4Q
was designed to be applicable in real-world scenarios. Taking inspiration
from few-shot learning algorithms, we introduced a strategy to address
the challenge of location diversity robustness. Specifically, a small portion
(denoted as x) from the unseen/test environment was incorporated into the
seen/train dataset. This fusion process is depicted in Fig. 6.2.

To evaluate the performance of the proposed system, we employed accuracy
and F1-score metrics. These metrics served as quantitative measures to assess
the effectiveness and robustness of HeMoFi4Q in different environments.

6.3.3 Results

The major objective of this study is to introduce a passive communication
method between quadriplegics and others based on head motions detected
by Wi-Fi signals and DL algorithms.

To evaluate the robustness of location diversity, the source dataset is com-
bined with 2% of the target dataset for training the model, and the remaining
98% is then used for the testing phase. Table 6.2 provides information
about the sample sizes used in different experimental settings. In particular,
we compared the performance of ECA learning model with two state-of-art
classifiers, namely CNN and ResNet across different locations of the same
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Table 6.3: Location diversity comparative results of different base signals at Env1

Link Conf
ECA CNN ResNet

Amp DWT_Amp Amp+Phase Amp DWT_Amp Amp+Phase Amp DWT_Amp Amp+Phase
Link1 79.3 77.7 37.3 84.5 73.7 33.4 81 74.8 34.5
Link2 86.8 81 62 88 81.7 69 86.7 80 65
Link3 82.7 77.2 61.4 88.4 72.7 60.2 76.2 74.7 61

Link1_2 92.4 93.8 78.5 93.3 90.2 72.3 88.3 91.7 73.4
Link1_3 94.6 90.2 79.3 92.8 88.9 74.7 88.4 87.2 72
Link2_3 93.3 94 79.7 93.7 92.5 75.6 87.2 90.6 74 .3

Table 6.4: Location diversity comparative results of different base signals at Env2

Link Conf
ECA CNN ResNet

Amp DWT_Amp Amp+Phase Amp DWT_Amp Amp+Phase Amp DWT_Amp Amp+Phase
Link1 65.9 76 48.3 76.8 73.3 44 57.5 70.6 42.6
Link2 74.6 83.4 55.6 84 70.6 52 55.8 68.6 48.7
Link3 74.7 88.9 57.6 82.8 87 51.7 58.8 83.8 40.5

Link1_2 86.4 87.1 69.3 84.6 85.4 59.7 57.8 73.1 51.4
Link1_3 89.3 88.3 71 83.3 83 52 60.7 76.3 45.8
Link2_3 87.4 85.5 70.2 84.4 83.8 60.3 57.5 85 57.8

Table 6.5: Cross Domain results of different classifiers

Env1 →Env2 Env2→Env1
ECA CNN Resnet ECA CNN Resnet

Accuracy 84.3 10 37 85.6 85 62.7
F1-score 0.84 0.07 0.36 0.83 0.78 0.57

Training_time(sec) 19 14 13 13 10 7
Testing_time (sec) 4 3 2 2 1 1

environment as in Table 6.3 and Table 6.4. Additionally, we evaluated the
performance in cross-domain environments, where the training dataset con-
sisted of a combination of locations from one environment and 2% of the
locations from a second environment. The testing phase was conducted on
the remaining 98% of the second environment, as illustrated in Table 6.5.

The parameters for the two baseline models are as follows.

• CNN model: This is a simple convolutional neural network (CNN)
model for image classification. The model consists of two CNN blocks,
each composed of several sequential layers. The input shape is (1000,
52, 2), representing a 2D image with 1000 packets, 52 subcarriers,
and 2 links used. The first block starts with a convolution layer with
32 filters of size 5x5 and a stride of 1, applying zero-padding with a
padding value of 1. This is followed by a batch normalization layer for
input normalization, a ReLU layer for introducing non-linearity, and
an average pooling layer with a window size of 3×3 and a stride of
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3. A dropout layer is employed to prevent overfitting by randomly
dropping out units during training. The second block consists of two
fully connected layers. The first fully connected layer has 1000 neurons
with a ReLU activation function and a dropout rate of 0.5. The second
fully connected layer has 26 neurons, corresponding to the number of
classes, and utilizes the softmax function for classification. The model is
trained using the Stochastic Gradient Descent with Momentum (SGDM)
optimization algorithm, with a learning rate of 0.02 and momentum of
0.9.

• ResNet model: This is a deep neural network architecture commonly
used for image classification tasks. The input shape of the model
is (1000, 52, 2), where 1000 refers to the number of packets, 52
represents the subcarriers, and 2 denotes the links used. To maintain
the spatial dimensions, the input is initially padded with zeros using
a (3, 3) padding size. The model consists of two stages. In the first
stage, a convolutional layer with 64 filters, a kernel size of (7, 7), and a
stride of (2, 2) is applied to extract features. This is followed by a batch
normalization layer for activation normalization, a ReLU activation
layer to introduce nonlinearity, and a max pooling layer with a pool
size of (3, 3) and a stride of (2, 2) for downsampling. The second stage
includes a convolutional block with three identity blocks. Each identity
block comprises three convolutional layers with filter sizes of [16, 32,
64], a kernel size of 3, and a stride of 1. The first identity block has a
different shape due to the change in filter sizes. An average pooling
layer with a pool size of (2, 2) is applied to further downsampling the
data. The output is then flattened into a 1D vector and fed into a fully
connected layer with 26 neurons, which corresponds to the number
of classes in the classification task. The softmax activation function is
used to generate predicted probabilities for classification. The model is
trained using the Adam optimizer with a learning rate of 0.001, beta_1
of 0.9, beta_2 of 0.999, and epsilon of 1e-08.

ECA classifier outperforms other algorithms as shown in Fig. 6.6 and Fig. 6.7
by achieving highest recognition accuracy and f1-score of location diversity
evaluation for Env1 and Env2, training on Env1 with 2% of Env2 and testing
on 98% of Env2 (S1), and training on Env2 with 2% of Env1 and testing
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on 98% of Env1 (S2), respectively. CNN algorithm achieves the lowest
performance when using the single-user environment for the learning phase
because of overfitting. CNN and ResNet cannot capture the unique patterns
for each character compared to ECA which uses an attention layer to highlight
the signatures of the characters from the single environment and the small
amount of the multi-human sensing environment.
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Figure 6.6: Overall accuracy of different learning models.

Single user environment data

The system was trained in a single-user environment where only the par-
ticipant existed, Env1, using the entire dataset collected from location 1
and an additional 2% of data from location 2, which equates to two sam-
ples for each character collected in the second location. This approach was
taken to improve the system’s performance and location diversity robustness.
Table 6.3 displays the evaluation outcomes of three distinct image classifica-
tion algorithms, namely Efficient Channel Attention (ECA), Convolutional
Neural Network (CNN), and Residual Network (ResNet). The results were
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Figure 6.7: F1-score of different learning models.

obtained by assessing the accuracy of each classifier, and they are presented
for comparison purposes.

It is observed from Table 6.3 that ECA slightly outperforms CNN on combined
datasets of the diagonal links configuration (link1_3) for different base
signals, while the ResNet classifier achieves the worst performance. Moreover,
ECA achieves the highest recognition accuracy with 94% when using the
variations of amplitude filtered by WMA filter from diagonal links datasets
and transforming the filtered amplitude of the combined dataset between
one of the diagonal links and the horizontal link to the wavelet domain
by applying the discrete wavelet transform (DWT). The confusion matrix
is introduced in Fig. 6.8. The confusion matrix shows that there are 13%
and 9% misclassifications between C and D and B, respectively. Additionally,
the model classified R character as T character with 16% rate and S as R
character with 36% rate which is the highest misclassification rate. Finally,
ECA classified W character with the same rate, 7%, as V and X.
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Figure 6.8: Confusion Matrix of Single User Environment

Multi-human context environment data

The classification accuracy of data collected from various locations in a
multi-human context environment is presented in Table 6.4. Our study
also investigated the optimal link configurations, different base signals, and
three classifiers. The results demonstrated that the dataset of diagonal links
outperformed other link configurations, achieving 89.3% accuracy based on
the variations of filtered amplitude and using the ECA classifier. Furthermore,
the ResNet classifier achieved its highest accuracy of 85% by utilizing the
wavelet of the filtered amplitudes from one of the diagonal link data with
the horizontal one. On the other hand, the combination of the variation of
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the filtered amplitude and calibrated phase was verified as the worst base
signal that could be fed to the system because the randomness of the phase
increased with the number of people in the sensing environment, leading to
a degradation of the system’s performance.
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Figure 6.9: Confusion Matrix of Multi-human Context Environment

Fig. 6.9 presents the confusion matrix. As it can be observed from this visual
representation, the model classified the B character with about 48% accuracy
as C character. Additionally, it misclassified the C character as 17% and 16%
as B and D characters, respectively. Moreover, there is a misclassification rate
between M and N with 12% and 22%, respectively.
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Cross domain results

This study aimed to examine the robustness of the proposed system to cross-
domain or environment diversity. This involved training the model on specific
locations within one environment and merging it with a randomly selected
2% from another environment, thereby investigating the effectiveness and
robustness of the system. Two worst-case scenarios were considered. The
first scenario (S1) is training on the single-user dataset with small samples
from the multi-human one and testing on the multi-human environment
(Env1→Env2). The second one (S2) uses a multi-user environment dataset
for learning with small samples from the single-user environment and for the
interference stage using the unseen samples of the single-user environment
(Env2→Env1).

The classification results of different classifiers and confusion matrix are
given in Table 6.5 and Fig. 6.10. Table 6.5 shows the overall performance of
different classifiers. ResNet gives the lowest accuracy in both scenarios while
ECA model gives the best performance among the other classifiers in terms
of accuracy and F1-score metrics. However, ECA takes a little bit more time
consumption in the learning and inference stages than others.

To evaluate the performance of S1, the training dataset consisted of the
single-user environment (Env1) dataset merged with 2% of the third location
dataset from the multi-human context environment (Env2), while the testing
dataset comprised the remaining 98% of the data. The ECA algorithm
outperformed the other algorithms, achieving 84.3% accuracy and 0.84
F1-Score with slightly more time consumption than CNN. On the other
hand, ResNet achieved the shortest time consumption compared to CNN
and ECA models but yielded an unacceptable classification accuracy as 37%.
Interestingly, CNN achieved poor accuracy due to overfitting, where the
model could not distinguish the signatures for each alphabet of the multi-
human environment from the small target samples used in the learning
phase. the model achieves 70% and higher for each character except the
C and T characters, it achieves 53% and 55% , respectively. ECA wrongly
classified the C character as B and F characters with accuracy of 18% and
24%, respectively. For T character, it misclassified it as S character with 18%
accuracy. The classification results for S2 give better accuracy than S1 results
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because the classifiers are able to extract the most significant features for
each character. ECA achieves the best accuracy in 85.6% which is slightly
higher than CNN model performance and 0.83 F1-score. From the confusion
matrix in Fig. 6.10, ECA achieves 72% and above for most of the characters.
In particular, W character gives the worst accuracy 43% since the model
wrongly classified it as X and V with 32% and 14% accuracy, respectively.
Moreover, B character accuracy is slightly higher than W one 54.3% since
there is a wrong classification as C and A 29% and 14%, respectively. The
model classified C character as B with 33% accuracy. Furthermore, There is
also misclassification between S as U and R with accuracy rates of 15% and
14%, respectively.
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Figure 6.10: Confusion Matrix of Env2→ Env1
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6.4 Discussion

In this study, a Morse code based on Wi-Fi CSI head motion detection is pre-
sented using ESP32 microcontroller. we investigated the impact of different
link configurations, base signals, and state-of-art deep learning classifiers on
the location diversity performance as shown in Table 6.3 and Table 6.4. It is
worth mentioning that these results by using 2% amount From the target or
unseen location. from these tables, it is obvious that the combination of the
diagonal links’ data outperforms other link configurations by extracting the
variation of the CSI amplitude and filtering it using the weighted moving av-
erage algorithm outperforms other link configurations by achieving 94% and
89% recognition accuracy, for single and multi-human context environment,
respectively.

6.4.1 Impact of different target amount

Our study aimed to explore the effects of altering the target amount in-
corporated into the training data on the enhancement of model accuracy
during instances of limited data availability. Specifically, we conducted an
experiment involving the testing of different target amount values within
the training data and the subsequent evaluation of their impact on model
performance in location diversity. Our findings contributed novel insights
into the potential benefits of adjusting the target amount in the training data
to improve the environmental robustness of the Wi-Fi CSI system.

Fig. 6.11 depicts the accuracy of the ECA algorithm, under various link
configurations, for different amounts from the unseen location (Loc2) merged
with the training dataset, which is the data gathered from Loc1, (Target
Amount%) during the learning phase. According to the information presented
in the figure, it is evident that the utilization of the diagonal links dataset
results in the highest performance for the ECA algorithm. This configuration
yielded the best results even when only two randomly selected samples
were taken for each character collected in the target location. As shown in
Fig. 6.12, the performance of each link alone yielded the worst recognition
accuracies, ranging from 66% to 74.7% for the diagonal and horizontal links,
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Figure 6.11: Classification accuracy using different amounts from the unseen loca-
tion merged with the seen location in a single-user environment.

respectively, due to the influence of the target’s surrounded movements by
individuals. However, when the diagonal links were combined, the system
achieved the highest performance of 89.3%. This can be attributed to the
ECA classifier, which utilizes a channel attention layer to highlight the most
significant features from the filtered amplitude captured by these links.
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Figure 6.12: Classification accuracy for different amounts from the unseen location
merged with the seen location in a multi-user environment.

6.4.2 Impact of different link configuration

Table 6.3 and Table 6.4 reveal a significant finding that the diagonal link
configurations consistently achieve the highest accuracy for both single-user
and multi-human context environments. Moreover, the variations of the
filtered amplitude were found to be a robust and reliable signature for
each character, regardless of the location diversity. In addition, the channel
attention layer of the ECA algorithm was identified as a crucial component
that enhances the classification task. It is noteworthy that the overall accuracy
of the system in a multi-human context environment is lower compared
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to a single-user environment. This is due to the fact that the presence
of more individuals leads to increased interference and reflection, which
ultimately degrades the system’s performance. Overall, the study highlights
the importance of an effective link configuration, signal processing technique,
and utilizing advanced classification algorithms in achieving accurate and
reliable character recognition based on passively tracking head motion via
Wi-Fi CSI signals in various environments.

6.4.3 Impact of different base signals

We investigated the impact of the variations of different base signals on the
classification performance as shown in Fig. 6.13. The impact of different base
signals like, filtered amplitude using WMA filter, transforming the filtered
amplitude to the wavelet domain by applying discrete wavelet transform
technique (DWT_Amp), and combining both the filtered amplitude based
on WMA and calibrated phase based on the linear transformation algorithm
(Amp+Phase) on the performance are studied. As the results show in the
previous tables, the combination of the CSI amplitude and phase variations
degrades the performance as it achieves 79.7% and 70.2% for the first and
second environments, respectively. The impact of the randomness of the
Wi-Fi CSI is obviously shown in the multi-human environment because there
are a lot of reflections and interference due to the existence of many dynamic
subjects in the sensing environment.

6.5 Summary

This chapter presents HeMoFi4Q, a novel passive head motion detection
system that utilizes Wi-Fi CSI analysis to facilitate non-verbal communication
with quadriplegia patients through a newly developed sign language. To
the best of our knowledge, this is the first attempt to create a sign language
specifically designed for quadriplegia patients, integrating Morse code and
head motions. HeMoFi4Q employs ESP32 microcontrollers to extract CSI
amplitude variations, which are then processed using a weighted moving
average filter and fed into the Efficient Channel Attention classifier. The
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Figure 6.13: Accuracy of different base signals.

dataset used for training and evaluation was collected from two different
environments, each containing multiple locations. To ensure the system’s
effectiveness and robustness in handling location diversity, we adopted a
few-shot learning approach by randomly merging a small sample amount
(2%) from the unseen environment with the training dataset during model
learning. The performance of HeMoFi4Q was evaluated using various metrics,
including accuracy, F1-score, and confusion matrix. The results demonstrated
that HeMoFi4Q outperformed all baseline models, highlighting the signifi-
cance of an effective link configuration, signal processing techniques, and
advanced classification algorithms in achieving accurate and reliable char-
acter recognition through passive tracking of head motion using Wi-Fi CSI
signals across diverse environments. Overall, this study emphasizes the im-
portance of leveraging appropriate methodologies and technologies to enable
effective communication for quadriplegia patients, showcasing the potential
of radio frequency sensing methods in this domain.
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Tracking On-Desk
Gestures Based on
Wi-Fi CSI on Low-Cost
Microcontroller

7

7.1 Introduction

In recent years, several studies have highlighted that individuals who bottle
up their emotions experience heightened levels of stress, anxiety, job dis-
satisfaction, emotional exhaustion, and reduced productivity. Furthermore,
it is well-documented that emotional suppression can have negative conse-
quences for both mental and physical well-being [94, 95]. Therefore, it is
crucial to comprehend and interpret body gestures, a form of non-verbal com-
munication encompassing facial expressions, gestures, and body movements,
as it plays a significant role in fostering a healthier and more productive work
environment. Fig. 7.1 provides the Wi-Fi CSI for on desk gesture tracking
system.

CSI Data Collection Base Signal Extraction

ESP32 Tool CSI Phase

Signal Preprocessing

Wavelet  Domain

• Unwrapping Phase
• Phase Calibration 
• DWT 

Algorithms Model

Learning Algorithms
Random Forest model 

Signal Compression

Derive statistical metrics 
from the wavelet phase

Figure 7.1: General architecture for on desk gesture tracking system
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7.1.1 Background

Prior research has extensively investigated various physical cues as indicators
of human emotions. These cues encompass a wide range of observable char-
acteristics, including eye gaze direction, iris extension, postural features, and
the dynamic movements exhibited by the human body. Some approaches [96,
97] utilize a Kinect sensor to discern and classify emotions from upper body
movements and gestures. Specifically, the authors focused on extracting
angles and displacements from these body joints to capture the sequential
gestures associated with each emotion. However, the limited sensing range
of the Kinect sensor and its sensitivity to environmental factors such as occlu-
sions and lighting conditions restrict its ability to capture subtle and nuanced
upper body movements, making it challenging to extract accurate features
for emotion classification.

Meanwhile, in the context of video analysis, recent advancements have intro-
duced innovative image-based methodologies that exploit the potential of
deep learning algorithms. These techniques have been specifically designed
to extract and discern keyframes of substantial importance from the con-
tinuous stream of frames [98, 99]. However, it is essential to acknowledge
that camera-based sensing systems raise concerns regarding privacy, thereby
amplifying individuals’ anxiety and stress levels due to the perceived constant
surveillance. Furthermore, the implementation of such systems may not be
economically viable, as they necessitate high-end computational capabilities
for efficient analysis and inference processes.

In order to address privacy concerns, utilization of sensors has been employed
to gather a range of physiological signals, including brain electrophysiological
signals, skin temperature, heart rate monitoring, and electrocardiogram data,
for the purpose of human emotion recognition [100, 101]. However, it is
crucial to acknowledge that this approach entails certain user inconveniences,
as individuals are required to wear sensors to facilitate the monitoring of
these signals. Moreover, it should be noted that most of these physiological
signals are inherently subjective and exhibit inter-individual variation. Con-
sequently, the reliability of system generalization tends to be compromised,
posing challenges to achieving robust and consistent outcomes.
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G1 G2 G3 G4 G5 G6 G7

DefinitionPsychological state

Arms crossed in front of the chestDefensive / disagreeG1
Hands on cheekLost in thoughtG2
Biting the nailsNervous / stressG3
Catapult postureRelaxedG4
Stroking the chinDeep thought for a decisionG5
Finger tappingImpatient while waitingG6
Heads on handUpsetG7

Figure 7.2: A visual representation of body gestures and their associated psycholog-
ical state.

To overcome the aforementioned challenges, this chapter embarks upon a
comprehensive exploration of the passive recognition of body gestures in
relation to workers. Specifically, our study focuses on the identification of
emotions by leveraging seven commonly observed body gestures, as depicted
in Fig. 7.2. The ESP32 Wi-Fi CSI toolkit is employed as the chosen sensing
technology for this purpose. Addressing the limitations associated with
camera-based and wearable sensor systems, our approach capitalizes on the
ESP32 toolkit as an independent and self-contained solution. This selection is
driven by advantageous attributes offered by the toolkit, including low power
consumption, user-friendly operation, and portability. Furthermore, inspired
by the application of multiple-input multiple-output (MIMO) configurations
in other CSI tools, we adopt the ESP32 toolkit in a MIMO configuration to
enhance the resolution of the captured CSI data.

7.1.2 Research Contributions and Questions

This study provides the following contributions:

1. We introduce a novel implementation of multiple input multiple out-
put (MIMO) using three ESP32 microcontrollers that operate within
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the same channel to enhance the reliability and robustness of data
transmission.

2. Our proposed approach for utilizing Wi-Fi CSI for gesture recognition
involves two key steps. Firstly, we employ phase calibration techniques
to ensure accurate and consistent measurements of the CSI. Secondly,
we apply statistical analysis to quantify and analyze phase fluctuations
in the phase wavelet domain.

3. We investigate the impact of different dimensional reduction techniques
on the performance of the system. The results show that the proposed
approach reduces the dimensionality of the data while preserving the
accuracy and reliability of the gesture recognition system.

In this chapter, we conduct a series of experiments aimed at validating the
proposed models. These experiments are designed to answer the following
research questions: We conduct experiments to validate the proposed models
to answer the following questions:

RQ1 To what extent does the CSI phase in the wavelet domain impact the
performance of the model?

RQ2 Does the model evaluation with the statistical features have a significant
impact on the model performance?

7.2 Methodology

This section elaborates on our proposed framework to implement the contact-
less MIMO ESP32 body gesture system. The proposed system aims to detect
and differentiate various gestures in a multi-human context environment by
extracting distinct signatures based on the phase information in the wavelet
domain. Fig. 7.3 presents an overview of the system framework, which
consists of four key modules: data collection and signal interpolation, noise
removal, feature extraction, and gesture recognition utilizing machine learn-
ing techniques. In the subsequent subsections, we provide a comprehensive
description of each step within our framework.
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Figure 7.3: Flowchart illustrating the framework to implement on-desk gesture
recognition system

7.2.1 Data Collection

The ESP32 nodes were affixed to a desk, enabling the acquisition of CSI
measurements when the target individual performed various body gestures.
Fig. 7.2 visually depicts the seven distinct on-desk gestures that were con-
sidered: "Arms crossed in front of the chest," "Hands on cheek," "Biting the
nails," "Catapult posture," "Stroking the chin," "Finger tapping," and "Heads
on hand." These gestures were deliberately selected based on their frequency
of occurrence and their relevance to emotions and actions commonly ob-
served in work environments. To account for potential variations and assess
the system’s robustness, data collection was conducted across three separate
days, referred to as distinct sessions. By examining the impact of session
diversity, we aimed to gain insights into the system’s performance and its
ability to handle variations that may arise in real-world scenarios.

This stage is divided into three steps as follows:

1. ESP32 as MIMO system: ESP32 is typically designed to be a single
antenna system, meaning it has one antenna for both transmitting
and receiving data. The ESP32 receiver was paired with an ESP32
transmitter, and they operated on the same channel using a single
input single output (SISO) configuration. In contrast, the proposed
system introduces a novel approach by utilizing the ESP32 as MIMO
system as a 1 × 2, with one transmitter and two receivers. In this MIMO
configuration, multiple receivers share the same channel with a single
transmitter to improve spatial diversity and enhance the reception of
signals. The data is collected by sending a ping between the transmitter
and two receivers at certain time intervals.
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2. CSI segmentation: In order to effectively segment CSI waveforms, two
key components were taken into consideration:

a) MAC address: Each ESP32 receiver is assigned a unique Media
Access Control (MAC) address. This address serves as an iden-
tifier for the specific receiver, allowing the packets received by
each receiver to be appropriately segmented. By associating CSI
waveforms with their corresponding MAC addresses, the system is
able to distinguish and process the data from individual receivers
separately.

b) Timestamp: To ensure accurate synchronization of the received
signals from both receivers, the timestamps of the packets were
utilized. By aligning the signals based on their received time,
the system concatenated the CSI waveforms from both receivers.
This process enabled the combination of the signals, providing
a comprehensive representation of the received data from the
multiple ESP32 receivers.

Consequently, the gathered CSI is represented as Hi(f) ∈ C1×2×52. A
total of 104 CSI waveforms are gathered for every received packet,
resulting in a substantial enhancement in the level of detail and granu-
larity of the collected data samples.

3. Linear interpolation: To tackle the packet loss problem, the linear
interpolation method involves estimating the missing or delayed pack-
ets by inferring their values based on the surrounding packets. This
technique allows us to fill in the gaps caused by packet loss or latency,
ensuring a more uniform distribution of the CSI waveforms. By pre-
serving the desired spacing between the packets, we can facilitate more
accurate and consistent analysis of the received data with the same
length.

7.2.2 Data Preprocessing

The CSI phase is a valuable source of information for capturing the nuances
of the target’s gesture. However, its practical utilization is often hindered by
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the presence of environmental noise interference as mentioned in chapter2.
In order to enhance the reliability and accuracy of the CSI phase, it is impera-
tive to mitigate the impact of hardware and environmental fluctuations. This
section focuses on achieving this objective through the minimization of CFO
and SFO errors. By applying a phase calibration algorithm, the detrimental
effects caused by CFO and SFO can be effectively eliminated, as will be
discussed in detail later. Additionally, to extract the phase variations associ-
ated with body gestures, the discrete wavelet transform (DWT) algorithm is
employed. This algorithm plays a crucial role in identifying and isolating the
relevant phase variations induced by the targeted gestures. By leveraging the
capabilities of the DWT algorithm, the system aims to extract and analyze
the distinct features within the CSI phase, facilitating accurate and reliable
gesture recognition.

1. Phase calibration: The measured CSI phase value θi of the ith subcarrier
can be expressed as in Eq. 7.1 [102]:

θ = θ̂ + 2πkiδt

M
+ β + Zf (7.1)

where θ̂ is the true phase, δt is the time lag due to SFO, Ki is the
subcarrier index of the ith subcarrier for i=1 to 52, β is the phase offset
due to CFO, M is the fast Fourier transform (FFT) size and is set to 64
based on the IEEE 802.11n specification.

To eliminate the effect of δt and β, a linear transformation is applied to
the raw phase after unfolding it. The steps of phase calibration are as
follows:

a) Unwrapping the raw phase: The CSI phase measured by ESP32
node is within the range [−π, π] while the true phase is in range
[0, 2π].

b) Applying linear transformation on unwrapped phase: a and b
are estimated as written in Eq. 7.2. They represent the slope of the
phase and the phase offset across the frequency band, respectively.

a = θ52 − θ1

k52 − k1
, b = 1

52

52∑
i=1

θi (7.2)
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Figure 7.4: Calibrated Phase of Different Body Gestures across All Subcarriers

After that, the calibrated phase θ̂ can be given as in Eq. 7.3:

θ̂ = θ − aki − b (7.3)

Fig. 7.4 illustrates the phase calibration signatures for the seven body
gestures across all subcarriers.

2. Discrete Wavelet Transform (DWT): By leveraging the advantages
of DWT, such as its multiresolution analysis, localization properties,
efficiency, and adaptability, the system aims to effectively remove in-
band distortion and enhance the accuracy and reliability of the gesture
recognition process.
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Figure 7.5: Phase Noise Removal of Arms crossed in front of the chest gesture across
5th subcarrier across the two links

The calibrated phase obtained from the phase calibration process is
subsequently fed into the DWT to address in-band distortion of the
signal. The DWT transforms the time-domain signal into the wavelet
domain, decomposing it into wavelet detail and approximate coeffi-
cients as explained in Chapter 3.4.2. It is important to emphasize
the preservation of the approximation coefficients since they provide
valuable insights into subtle body movements. These coefficients cap-
ture the fundamental details of the gesture, while the high-frequency
components of the signal primarily capture ambient noise. Fig. 7.5
shows the raw, calibrated and applying DWT on the calibrated phase of
the fifth subcarrier across both links between the transmitters and two
receivers.

7.2.3 Feature Extraction

Feature extraction is a crucial step in converting complex CSI data into
meaningful and representative features that can be effectively utilized in
subsequent processing and integration with machine learning models. In
the proposed approach, the focus is on extracting statistical features from
the wavelet phase fluctuations observed in different environments, as these
features provide a solid theoretical foundation for analysis.

To tackle the challenge of high dimensionality associated with subcarrier
data per frame, the approach leverages standard statistical aggregation
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functions. These functions, including mean, standard deviation, median,
lower quartile, upper quartile, minimum, maximum, skewness, and kurtosis,
are applied to extract essential statistical characteristics from the wavelet
phase information. By compressing the wavelet phase into a single higher-
level feature value, these functions effectively reduce the dimensionality
of the data. Compared to other dimensionality reduction techniques such
as Principal Component Analysis (PCA) and autoencoders, the utilization
of statistical features provides several advantages. Firstly, it simplifies the
representation of the data, reducing its dimensionality while preserving the
essential statistical characteristics associated with the phase fluctuations. This
compression facilitates more efficient computation and storage requirements,
making it suitable for real-time and resource-constrained applications.

Furthermore, the extraction of statistical features enhances interpretability,
which is particularly valuable in the context of explainable AI. By capturing
statistical properties such as distribution, central tendency, dispersion, and
shape of the phase fluctuations, these features provide insights into the un-
derlying patterns and dynamics within the CSI data. This interpretability
aspect enables researchers and practitioners to gain a deeper understanding
of the relationships between the extracted features and the target gestures,
facilitating model analysis, debugging, and the exploration of causal relation-
ships.

7.2.4 Gesture Recognition Based on Machine Learning

The lack of interpretability and resource-intensive nature of deep learning
(DL) models pose challenges in real-world applications where understanding
the model’s reasoning and deploying it on constrained devices are crucial. DL
models are often perceived as black boxes that offer limited explanations for
their results, making it difficult for users to comprehend the decision-making
process behind the model’s predictions. This interpretability issue can be
problematic in domains such as business decision-making and medical diag-
nosis, where users require transparency in the model’s outputs. Furthermore,
DL models consume substantial time and memory resources during training
and inference, which can be particularly challenging when deploying them
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on low-resource microcontroller devices. These devices have limited compu-
tational capabilities, making it necessary to consider factors such as memory
consumption, computation time, and energy usage when applying machine
learning (ML) models to them.

In light of these challenges, our research focuses on utilizing ML models,
particularly the Random Forest technique, to address the interpretability
and resource efficiency requirements. Random Forest models offer several
advantages over DL models in this context. Firstly, they provide greater
interpretability, enabling users to understand the factors that contribute to a
prediction. This interpretability is vital in real-world applications where the
reasoning behind the model’s output is essential. Additionally, Random Forest
models are computationally efficient and require less memory compared
to DL models. This computational advantage makes them well-suited for
deployment on low-resource microcontroller devices, where limitations in
time, memory, and energy consumption are critical factors.

7.2.5 Model Evaluation

We evaluate the model performance using the accuracy and confusion matrix,
as in Chapter 3.6.

7.3 Performance Evaluation

In this section, we first introduce the experimental setup. Then, we demon-
strate the evaluation results of our proposed on-desk gesture recognition
system.
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(a) Side View (b) Top View

Figure 7.6: Different Views of Experimental Setup

7.3.1 Experiment Setup

Hardware and Software

To simulate real-world scenarios, we conducted a series of experiments in
a multi-human context environment over the course of three days. Our
experimental setup involved the utilization of three ESP32 microcontrollers,
chosen for their compact size and low energy consumption. One microcon-
troller served as the transmitter (Tx), while the other two functioned as
receivers (Rx), all operating on the same channel. Fig. 7.6(a) and Fig. 7.6(b)
depict the side and top views of our experimental setup, strategically utilizing
underutilized areas as considered by users. The transmitter was positioned
81 cm away from the two receivers, with a distance of 127 cm between the
receivers themselves. In this experiment, all transceivers shared the third
channel, and the configuration ensured that the receiver extracted approx-
imately 100 CSI packets per second for 52 subcarriers. These CSI frames
provided information on multipath effects caused by phenomena such as
reflection, scattering, power, and distance fading within the sensing area. To
process the obtained CSI data, perform phase extraction, remove noise, and
implement the learning models, we utilized Python 3.9.

Data Description

To assess the robustness of our system across different sessions and locations,
we conducted a series of experiments that involved collecting data from two
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distinct locations over a period of three days. The volunteer, while simulating
desk-related activities, performed seven specific gestures on the desk surface,
as illustrated in Fig. 7.2. Throughout the experiments, each gesture was
captured within a one-second timeframe. The ping transmission rate was set
at 100 Hz, and the dimensionality of each gesture sample was represented as
R100×52×2, where 100 signifies the length of the signal, 52 denotes the number
of subcarriers, and 2 represents the number of links. To ensure diversity in
both session and location, we collected CSI data on three separate days. On
the first day, the participant was placed in a real-world setting surrounded by
a significant number of individuals. The second day involved a single-user
environment with only the participant present, while the third day had a
small number of individuals within the vicinity.

To assess the system’s performance, we gathered datasets of varying durations
for each gesture across the three days, specifically 20 minutes, 10 minutes,
and 15 minutes. These datasets were employed to validate the system’s
functionality and evaluate its performance in different scenarios and over
extended periods of time. The details of the three sessions are summarized
in Table 7.1.

Table 7.1: Properties of Body Gesture Dataset

Day Time(minutes)
Body Gesture

G1 G2 G3 G4 G5 G6 G7 Total
Day1 20 601 616 632 667 627 628 641 4412
Day2 10 309 320 311 325 311 307 316 1888
Day3 15 449 388 464 482 451 445 441 3120

7.3.2 Results

In this section, to comprehensively assess the robustness of our proposed
system, we adapt the accuracy metric and utilize two validation methods as
outlined below:

1. In-session cross validation: With this approach, we divide the dataset
from each individual day into 70% for training and 30% for testing.
This method allows us to evaluate the system’s performance within the
context of a single session, providing insights into its effectiveness in
handling variations within a given day’s dataset.
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2. Leave-one-session-out cross validation: This validation method enables
us to evaluate the generalization and robustness of the proposed system
across different sessions and locations. It involves training the model
using the dataset from one session while utilizing the dataset from
another session for testing.

Table 7.2: Overall proposed system performance in terms of accuracy

Validation method Dataset
Models

SVM RF NB GBC

In-session
Day1 98 98 94 97.2
Day2 98.4 99 95.4 97.6
Day3 98 98.7 95 97

Leave-one-session-out

Day1 −→ Day1 57.4 66.2 48.3 65.8
Day1 −→ Day2 57.3 68.8 43 58.8
Day2 −→ Day1 59.4 65.4 48 66.4
Day2 −→ Day3 56.1 68.7 46 68
Day3 −→ Day1 57 69 46 65.4
Day3 −→ Day2 57.5 72 53 61.3

To determine the most suitable classifier for our study, we evaluated multiple
algorithms, including Support Vector Machine (SVM), Random Forest (RF),
Naive Bayes (NB), and Gradient Boosting Classifier (GBC). Table 7.2 presents
a comparison of the performance of these classifiers. Notably, the Random
Forest algorithm outperformed the other three approaches in both in-session
validation and session diversity robustness.

In the context of in-session validation, the accuracy of Support Vector Ma-
chine (SVM) and Random Forest (RF) classifiers were found to be relatively
close to each other. This can be attributed to SVM’s ability to classify fea-
tures based on common characteristics within the same session. However,
SVM failed to achieve satisfactory accuracy in session diversity robustness
due to overfitting, as its training dataset’s distribution differed from that of
the testing dataset. On the other hand, Random Forest demonstrated the
capability to capture relevant features and achieve reasonable accuracy even
when faced with diverse sessions.

Therefore, despite the modest overall accuracy of 72%, Random Forest’s
performance surpasses that of the other classifiers, particularly in terms of
session diversity robustness. Its ability to effectively capture relevant features
and adapt to varying session conditions justifies its acceptability for our study,
despite the relatively lower accuracy.

106 Chapter 7 Tracking On-Desk Gestures Based on Wi-Fi CSI on Low-
Cost Microcontroller



Table 7.3, 7.4, 7.5, and 7.6 represent the confusion matrix for in-session and
out-session cross validation.

Table 7.3: Day1 confusion matrix

Predicted Per-class metrics
G1 G2 G3 G4 G5 G6 G7 PR RE F1

G1 1 0 0 0 0 0 0 1 1 1
G2 0 0.94 0.06 0 0 0 0 0.82 .94 0.88
G3 0 0.01 0.99 0.01 0 0 0 0.99 0.99 0.99
G4 0 0.01 0 0.99 0 0 0 0.99 0.99 0.99
G5 0 0 0 0 0.99 0.01 0 0.99 0.99 0.99
G6 0 0 0 0 0.01 0.99 0 0.99 0.99 0.99
G7 0 0 0 0 0 0 1 1 1 1

Table 7.4: Day2 confusion matrix

Predicted Per-class metrics
G1 G2 G3 G4 G5 G6 G7 PR RE F1

G1 1 0 0 0 0 0 0 1 1 1
G2 0 0.94 0.06 0 0 0 0 0.82 .94 0.88
G3 0 0 1 1 0 0 0 1 1 1
G4 0 0.01 0 0.99 0 0 0 0.99 0.99 0.99
G5 0 0 0 0 1 0 0 1 1 1
G6 0 0 0 0 0.01 0.99 0 0.99 0.99 0.99
G7 0 0 0 0 0 0 1 1 1 1

Table 7.5: Day3 confusion matrix

Predicted Per-class metrics
G1 G2 G3 G4 G5 G6 G7 PR RE F1

G1 1 0 0 0 0 0 0 1 1 1
G2 0 0.95 0.05 0 0 0 0 0.83 .94 0.88
G3 0 0 1 0 0 0 0 1 1 1
G4 0 0.01 0 0.99 0 0 0 0.99 0.99 0.99
G5 0 0 0 0 1 0 0 1 1 1
G6 0 0 0 0 0.01 0.99 0 0.99 0.99 0.99
G7 0 0 0 0 0 0 1 1 1 1

Moreover, we conducted additional analysis to explore the influence of vari-
ous base signals and dimensionality reduction techniques on the robustness
of session diversity.

7.3.3 Effect of Different Base Signals

In this study, we aim to investigate the influence of different base signals
in Wi-Fi CSI-based systems. Traditionally, these systems have focused on
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Table 7.6: Day3 −→ Day2 confusion matrix

Predicted Per-class metrics
G1 G2 G3 G4 G5 G6 G7 PR RE F1

G1 0.76 0.17 0 0 0.05 0.02 0 0.77 0.78 0.78
G2 0.02 0.78 0.01 0.01 0.16 0.02 0 0.51 0.76 0.61
G3 0.01 0.3 0.66 0.03 0.01 0 0 0.78 0.66 0.71
G4 0 0.04 0.12 0.75 0.09 0 0 0.92 0.75 0.83
G5 0.04 0.25 0.07 0.01 0.58 0.05 0 0.6 0.59 0.59
G6 0.15 0 0 0 0.05 0.79 0 0.69 0.78 0.73
G7 0 0.02 0 0.03 0 0.24 0.71 0.99 0.72 0.83

extracting the amplitude and using its variations as the base signal for feature
extraction and learning algorithms. Additionally, many of these systems
employ a Hampel filter, mentioned in Chapter 3.4.1 to eliminate outliers in
the amplitude. Some previous research has combined both amplitude and
phase as input for the system. However, to the best of our knowledge, our
study is the first to extract the variations of the phase values in the wavelet
domain as signatures of different body gestures in Wi-Fi CSI-based systems.

We have found that the phase values convey the most significant features of
different gestures in various sessions, as observed in Figure 8. By applying
DWT to the calibrated phase, we were able to improve the recognition accu-
racy by 10% compared to using only the calibrated phase. DWT effectively
mitigates the impact of environmental noise and wireless signal interference
on the same channel.

On the other hand, when utilizing the amplitude, the performance of the
system degrades, achieving only 46% accuracy. This is because body ges-
tures involve micro-scale motion, which is challenging to extract from the
CSI magnitude, especially in the presence of signal interference when two
receivers share the same channel. Based on our evaluation using various
machine learning techniques, we observed that the performance of the cali-
brated phase alone slightly outperforms the calibrated phase with DWT when
employing SVM and GBC algorithms. However, despite this slight difference
in performance, utilizing DWT for the calibrated phase offers a significant
advantage in terms of data compression without sacrificing information. This
advantage allows the system to be lightweight and easily deployed while still
achieving the highest accuracy among the tested algorithms, specifically 72%
accuracy based on RF. We summarize the recognition accuracy of different
base signals into Table 7.7.
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Table 7.7: The recognition accuracy of different base signals

Base Signal
Models

SVM RF NB GBC
Hampel Amplitude 46.3 46 33 43
DWT Hampel Amplitude 44.3 47 37 35
Calibrated Phase 59 69 52 68
Hampel Amplitude + Calibrated Phase 45 67 38 63
DWT Calibrated Phase 57.5 72 52.8 61.3

7.3.4 Effect of Different Dimensional Reduction Methods

We investigate the impact of various dimensional reduction (DR) techniques,
including Principal Component Analysis (PCA), Dense Autoencoder (AE),
and Convolutional Autoencoder (CAE), for extracting representative features
from each gesture, as summarized in Table 7.8. However, the classifier’s
performance deteriorates when utilizing PCA since it is primarily a linear
projection-based dimensionality reduction technique. In other words, PCA
transforms high-dimensional data into a lower-dimensional space, potentially
leading to the loss of relevant information and subsequent misclassification.

AE and CAE, on the other hand, serve as black-box feature extraction methods
based on neural network architectures. Nonetheless, these techniques lack
support for explainable AI and may not be well-suited for analyzing time
series data due to its temporal nature. In the case of AE, the network design
aims to create a compressed representation of the input data, but it fails
to effectively capture the temporal dependencies that are often crucial for
precise classification. Similarly, CAE focuses on spatial feature extraction and
struggles to extract sequential information effectively from CSI time series
data.

In contrast, the extraction of statistical features ensures an energy-efficient
and lightweight classification process, promoting efficiency in resource con-
sumption. Additionally, this approach facilitates explainable AI, enabling a
clear understanding of the decision-making process within the system.
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Table 7.8: The recognition accuracy of different dimensional reduction methods

DR Models
Models

SVM RF NB GBC
Statisitcal Features 57.5 72 52.8 61.3
PCA 38 56 29.5 40.4
AE 14 30.1 23 28
CAE 15.7 14.3 14.8 14.2

7.4 Summary

This study introduced a promising passive body gesture recognition system
that utilizes the ESP32 node as a Wi-Fi CSI tool. In contrast to conventional
methods, our approach involves transforming the CSI phase through a linear
transformation applied in the wavelet domain. Furthermore, we extract
hand-crafted features to ensure the explainability, robustness, and practical
applicability of our system in real-world scenarios.

To evaluate the system’s performance, we conducted three experiments across
different days and environments, aiming to assess its robustness in various
sessions and in a multi-human context environment. Additionally, we inves-
tigated the influence of different machine learning classifiers, base signals,
and dimensional reduction methods. Our results demonstrate the superiority
of our proposed methods, surpassing other approaches and achieving an
impressive recognition accuracy of 98% for in-session evaluation and 72%
for session diversity robustness.
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Conclusions
8

8.1 Achieved Aims and Objectives

The main objective of this thesis is to build a robust Wi-Fi CSI gesture
recognition system in a multi-human context environment.

In this research, we have presented pioneering work in the field of Wi-Fi
CSI, specifically focusing on enabling its use in real-world scenarios. Our
study aimed to overcome the limitations of existing CSI tools and harness
the potential of Wi-Fi CSI for various applications.

To achieve this, we collected data using ESP32, a powerful microcontroller,
to address the shortcomings of existing CSI tools. By utilizing ESP32, we
were able to capture and analyze CSI measurements with higher accuracy
and precision, enabling more robust and reliable results.

Through our research, we explored the applications of Wi-Fi CSI in head ges-
tures and body gestures, highlighting their potential for communication and
interaction purposes. We introduced techniques to enhance the robustness of
Wi-Fi CSI in real-world settings.

One of the key challenges we tackled the issue of location diversity, which is
common in real-world scenarios. By developing adaptive methodologies, we
improved the generalization capabilities of Wi-Fi CSI models across different
environments, enabling consistent performance and applicability.

Furthermore, our research considered the complexities of multi-human con-
text environments. We proposed novel algorithms and techniques to handle
interference and variability introduced by multiple individuals, making Wi-Fi
CSI more effective in these scenarios.

We introduced two applications with different frameworks. The first one is a
communication method for quadriplegia patients based on Morse code. The
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other is to passively detect employees’ emotions within the workplace setting.
To record CSI waveforms, we utilize the ESP32 microcontroller due to its
compact size, low power consumption, and cost-effectiveness.

We begin with with the Wi-Nod system, which serves as the foundation for
a communication system designed for quadriplegia patients utilizing head
nodding gestures. To implement this system, we developed a specialized
frame to look like a real wheelchair. Data collection was conducted in a
laboratory environment involving two users with a caregiver who holding the
frame behind the target. We gathered the data on two different time, morning
and evening, to investigate the session diversity robustness. To process the
collected data, we calculated the spectrogram using the amplitude of the
CSI.

Subsequently, the spectrogram was utilized as input for an inception model,
which served as the classifier which achieved an accuracy rate exceeding 95%
for three distinct symbols. Furthermore, we also investigated the system’s
robustness concerning user diversity and time diversity. Considering that
Wi-Fi signals are subject to variations due to environmental changes, it was
crucial to assess the system’s ability to maintain accurate performance in
diverse scenarios.

After that, we introduced the HeMoFi4Q system as an extension of the Wi-
Nod system, addressing its main limitation related to data collection in a fixed
location that does not reflect real-world scenarios. In the HeMoFi4Q system,
we mounted six ESP32 microcontrollers on a real wheelchair and collected
data sets in two different environments with distinct locations. This allowed
us to investigate the system’s robustness in both single-use and multi-human
context environments. We proposed a novel sign language approach based
on head motion and Morse code.

To address the domain shift problem and enable the system to capture
head motion-related features, we presented a new technique inspired by
few-shot learning models. Additionally, we employed an ECA model, a
powerful computer vision classifier known for its low parameter count and
high performance.

We further examined the impact of different base signals and link config-
urations on the system’s performance. Experimental results revealed that
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variations in amplitude in the time domain achieved the highest accuracy,
and the ECA model outperformed other state-of-the-art algorithms in terms
of both accuracy and computational time.

Lastly, we presented an on-desk passive emotion recognition system based
on upper body gestures. To develop this system, we collected a dataset
comprising seven different body gestures in two distinct locations over three
days. We utilized three ESP32 microcontrollers as a MIMO configuration,
with one serving as the transmitter and the others as receivers operating on
the same channel.

CSI waveforms were parsed and segmented based on their corresponding
time stamps and MAC addresses of each receiver. To mitigate packet loss,
we employed a linear interpolation technique. We observed that the shared
channel introduced collisions and interference, impacting the CSI amplitudes.
Consequently, we focused on extracting the CSI phase, as it was found to be
less influenced by signal interference.

To enhance the accuracy of the phase data, we applied phase calibration
techniques to mitigate CFO and SFO. Next, we utilized DWT on the filtered
phase to generate phase signatures corresponding to each body gesture in the
stable wavelet domain. For dimensionality reduction and feature selection,
several statistical measures such as mean, standard deviation, median, lower
quartile, upper quartile, minimum, maximum, skewness, and kurtosis were
calculated for the wavelet phase values.

Finally, we compared the performance of various common machine learning
models and found that the random forest model outperformed the others,
achieving an accuracy rate exceeding 72% in terms of location diversity
robustness.

Overall, our study contributes to the growing body of knowledge in Wi-Fi
CSI research and establishes its potential for real-world applications. By
collecting data using ESP32, we overcame the limitations of existing CSI
tools, enabling more accurate and precise measurements. The applications
and techniques we introduced enhance the robustness of Wi-Fi CSI, making
it a valuable tool in the healthcare domain.
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8.2 Future Work

Considering different HeMoFi4Q Morse code characters to form complete
words, while also incorporating spelling correction capabilities in real-world
scenarios. This additional challenge requires us to consider the integration
of NLPalgorithms. By incorporating NLP techniques, we aim to develop
a system that can effectively generate words by combining Morse code
characters and ensure accurate spelling correction in practical applications.

For future on-desk emotional recognition research, recognizing a worker’s
body gestures during their work activities could be proposed as a future task.
This will involve self-segmentation for the CSI signals and extracting relevant
features associated with the body gestures to facilitate the classification task.
By employing these techniques, we aim to develop a comprehensive sys-
tem capable of accurately recognizing and classifying various body gestures
exhibited by workers in real-time work scenarios.
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