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A B S T R A C T   

Background: A magnetic resonance imaging (MRI)-specific objective image quality assessment (IQA) algorithm, 
the quality evaluation using multidirectional filters for MRI (QEMDIM), was previously reported. QEMDIM re
quires a set of reference images to calculate the quality score (SQ) for an assessed image. SQ may be affected by 
the quality of the reference set owing to the calculation procedure. 
Purpose: To propose a modified version of the IQA algorithm and compare the IQA performance of the original 
and modified algorithms. 
Assessment: Brain axial T1- and T2-weighted spin-echo images of varying quality levels (noise and blurring) were 
acquired from seven healthy men. Subjective IQA (paired comparisons) was conducted on the images, and 
subjective quality scores were obtained. With reference sets of various quality levels, QEMDIM and modified IQA 
were applied to the same images that underwent the subjective IQA. The correlation of each SQ and modified 
score (Smod) with the subjective scores was evaluated for content-related subsets of assessed images and for each 
reference set. The effect of the reference-set quality on the distribution of the correlation coefficients (CCs) was 
statistically evaluated for SQ and Smod using a one-way analysis of variance test with a significance level of 0.05. 
We also evaluated the variation in Smod for images with almost the same qualities using the standard deviation 
(SD). 
Results: The CCs of SQ varied significantly with the quality of the reference set, whereas that of Smod did not. The 
SD of Smod for almost-same-quality images was less than that corresponding to the confidence interval of the 
subjective scores. 
Conclusion: Our modified algorithm was superior to QEMDIM in terms of IQA performance in clinical practice, 
especially in terms of accuracy, robustness, and reproducibility.   

1. Introduction 

Many researchers of magnetic resonance imaging (MRI) have made 
efforts to develop pulse sequences and/or image reconstruction to 
shorten the scan time without severe artifacts [1–7]. Such technical 
developments for shortening the scan time have often sacrificed the 
image quality in terms of low signal-to-noise ratio (SNR) and spatial 
resolution, which has led to lower diagnostic accuracy or detectability of 

some types of disease. Quality degradation usually becomes severe as 
time passes. To optimize the length of the scan time and/or any pa
rameters regarding pulse sequence and reconstruction, it is important to 
quantitatively evaluate the quality of clinical magnetic resonance (MR) 
images. 

There are many methods for the image quality assessment (IQA) of 
medical images. One of the most reliable and frequently used methods is 
subjective IQA by human observers, such as receiver operating 
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characteristic analysis [8], paired comparisons [9,10], and alternative 
forced choices [11,12]. However, subjective IQA has the disadvantages 
of requiring a long time and large inter- and/or intra-observer variability 
[13]. Therefore, many automated and objective IQA methodologies 
without observers have been developed [14–18]. Jang et al. proposed an 
MRI-specific objective IQA algorithm, quality evaluation using multi
directional filters for MRI (QEMDIM) [18]. QEMDIM requires an 
assessed image and a set of high-quality reference images to compute the 
quality score of the assessed image. The quality score is based on the 
absolute value of the difference in the quality between them, and 
QEMDIM may be unable to determine whether the assessed image has a 
higher or lower quality than the reference set because of the absolute 
score, possibly leading to misinterpretation of the QEMDIM scores by 
clinicians. To prevent this misinterpretation, the quality of the reference 
set should be higher than that of the assessed image. However, the 
preparation of high-quality images is difficult in clinical practice. If the 
reference set consists of images with a quality similar to or lower than of 
the assessed image, QEMDIM may not correctly assess the image quality. 
Therefore, a novel IQA algorithm is required to compensate for the 
drawbacks of the QEMDIM. 

In a report by Jang et al. [18], the QEMDIM algorithm was applied to 
images that had any one of the various types of distortions, including 
noise, blurring, and some types of artifacts, which were artificially 
added to the original high-quality images using image processing. These 
artificial distortions may differ from those encountered in clinical 
practice. Moreover, only one type of distortion changes may be rarely 
observed because most scan and reconstruction parameters in MRI can 
cause two or more types of distortions [19]. Therefore, it is necessary to 
validate whether the QEMDIM and our proposed algorithm can correctly 
assess the quality of images distorted by MRI scan parameters. 

This study aimed to propose a novel MRI-specific IQA algorithm by 
modifying the QEMDIM algorithm and to compare QEMDIM with our 
modified algorithm in terms of their IQA performance in clinical use. 
The IQA performance mentioned above includes the correlation with 
subjective IQA (i.e., accuracy) and variations in the quality score with 
the quality of the reference set (robustness across the reference qualities) 
and the quality type of the assessed image (robustness across the quality 
types assessed). We also evaluated the distribution of the modified 
quality scores of images with consistent qualities to validate our modi
fied algorithm in terms of the quantity and reproducibility (average and 
standard deviation [SD] of the distribution). 

The remainder of this paper is organized as below. The algorithms of 
QEMDIM and our modified method are described and compared in 
Section 2. Section 3 consists of four subsections that explain the pro
cedures for acquiring MR images, calculating subjective and objective IQ 
scores, and analyzing these scores. The analytical results are shown in 
Section 4. We describe our novel findings, the reasons underlying our 
results, and the limitations of this study in Section 5. Finally, we present 
some concluding remarks in Section 6. 

2. Theory 

The QEMDIM algorithm is based on natural scene statistics in the 
spatial domain [16,18]. In the algorithm (Fig. 1), an MR image is 
transformed into a map of the mean-subtracted contrast-normalized 
(MSCN) coefficients (MSCN map) [Eq. (1)] to extract quality-related 
features. Specifically, a given pixel value at the x-th column and y-th 
row, I(x,y), on an MR image with H rows and W columns is translated to 
the MSCN coefficient, ̂I(x, y), using Eq. (1): 

Î(x, y) =
I(x, y) − μ(x, y)

σ(x, y) + C
(1)  

where C is the stabilizing factor of 0.2, and μ(x,y) and σ(x,y) are the 
mean and SD, respectively, calculated from the pixel values around I(x, 
y) as follows: 

μ(x, y) =
∑K

k=− K

∑L

l=− L
w(k, l) I(x+ k, y+ l) (2)  

σ(x, y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K

k=− K

∑L

l=− L
w(k, l) [I(x + k, y + l) − μ(x, y) ]2

√

(3)  

where w is a two-dimensional Gaussian-weighting function with a kernel 
size of (2K + 1) × (2L + 1) and SD of 1.167 pixels. K and L were set to 3. 
The QEMDIM algorithm applies four types of multidirectional filters to 
an MSCN map. Each of the original and four filtered MSCN maps were 
divided into 16 square-shaped image patches with a size of H/4 × W/4 
without overlapping. From each patch, a histogram of the MSCN co
efficients (MSCN histogram) was drawn. The shape of an MSCN histo
gram varies depending on image quality [16,18]. Each of the MSCN 
histograms was fitted to the generalized Gaussian distribution (GGD) 
[20] to extract two features, α and β, representing the shape of the 
histogram. The above processes are also performed for the scaled MR 
image that is generated by applying low-pass filtering and down
sampling by a factor of two to the original MR image. Twenty features 
(two GGD-related features × five MSCN maps × two scaled images) were 
extracted from each patch of the MR image. For an assessed image, each 
of the 20 types of features was averaged over the 16 patches, which were 
used as the “20 features fa of the assessed image,” as shown in in Fig. 1. 
For the reference set, each of the 20 types of features was averaged over 
all patches of all the images included in the set after 10% outliers at the 
top and bottom of the feature distribution were excluded, which were 
the “20 features fr of the reference set,” as shown in Fig. 1. Finally, the 
QEMDIM score SQ representing the quality of the assessed image was 
calculated as follows: 

SQ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(f r − f a)
T
(f r − f a)

√

(4)  

where fr and fa are the 20-dimensional (20D) vectors of the features of 
the reference set and assessed image, respectively. According to Eq. (4), 
the SQ means the Euclidean distance between the fr and fa vectors in the 
20D space. In Fig. 2, the SQ can be depicted as the distance between the 
gray square and open circle for the high-quality assessed image and the 
distance between the gray square and open triangle for the low-quality 
assessed image. The two SQs in Fig. 2 may have equal values, despite 
their different image qualities. 

Fig. 1. Flowchart of the previously-reported algorithm (QEMDIM) and our 
modified IQA algorithm. The differences between the QEMDIM and modified 
algorithms were the “Extraction of 20 features” and “Calculation of the quality 
score,” which are denoted as “QEMDIM:” and “Modified:.” 
QEMDIM: Quality Evaluation using Multi-Directional Filters for MRI. 
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Based on the report of Jang et al. [18], we assumed that the norm or 
many elements of a 20-feature vector of an image would reach zero as 
the image quality increased and would reach a high or stable value when 
the image quality decreased. This implies that the data point of a 20- 
feature vector of a high-quality image would be close to the origin of 
the coordinate in 20D space, and that of a low-quality image would be 
far from the origin within a range whose shape was similar to that of a 
relatively narrow cone with its tip at the origin (Fig. 2). Therefore, under 
the hypothesis that the vector of a reference set would be parallel to a 
vector normal to the base circle of the cone, we believe that a useful 
feature for IQA may be the distance from the origin to a data point 
projected from the assessed image vector onto the reference vector 
(closed circle and closed triangle in Fig. 2). Under these assumptions, to 
compensate for the drawback of QEMDIM, which may not correctly 
assess the image quality, as described in the previous paragraph, we 
proposed a new quality score Smod as follows: 

Smod = ‖f r‖ −
f a⋅f r

‖f r‖
(5)  

where ‖fr‖ is the norm of fr and “⋅” is the inner product operator. The ‖fr‖
is depicted in Fig. 2 as the distance from the origin to the gray square, 
and the fa ⋅f r

‖f r‖
is depicted as the distance from the origin to the closed circle 

for the high-quality assessed image and distance from the origin to the 
closed triangle for the low-quality assessed image (Fig. 2). When the 
projected vector of the assessed image (closed circle or closed triangle in 
Fig. 2) is closer to the origin than the reference set vector, the Smod shows 
a positive number, which means that the assessed image has a higher 
quality than the reference set (and vice versa). The Smod of zero repre
sents the quality of the assessed image, which is the same as that of the 
reference set. 

We made two modifications to the QEMDIM algorithm (Fig. 1). First, 
the algorithm calculates the quality score Smod based on Eq. (5). Second, 
our algorithm does not divide the MR images into patches. In the 
QEMDIM algorithm, 20 types of features were obtained by averaging 
each feature over 16 patches. In contrast, in our modified algorithm, 20 
features are obtained directly from an image because drawing of the 
MSCN histograms and extraction of the α and β values are performed on 
the entire region of the image. The calculation efficiency is expected to 
improve by removing the process of dividing the patches and averaging 
the features. The patch-based algorithm in QEMDIM is intended to 
overestimate the quality of the reference set by excluding outliers 

because, as mentioned before, the QEMDIM algorithm requires a high- 
quality reference set. Therefore, image-based calculations will work 
well as our algorithm does not require high-quality reference images. 

3. Materials and methods 

This study comprised MR image acquisition and image observation 
sessions that required cooperation from the participants. This study was 
approved by the institutional review board, and written informed con
sent was obtained from all participants. 

3.1. MR image acquisition and reconstruction 

A 3.0-T MR scanner (SIGNA™ Architect, GE Healthcare, Milwaukee, 
WI, USA) and a 48-channel head coil were used in this study. A total of 
seven healthy volunteers (labeled Vol1–Vol7) participated in the MR 
acquisition experiment. The average and SD of their ages were 30.6 ±
3.8 (range, 25–38), and all of them were males. Five (Vol1–Vol5) of the 
seven volunteers underwent eight sets of T1-weighted (T1W) brain axial 
two-dimensional (2D) imaging, and five volunteers (Vol1–Vol3, Vol6, 
and Vol7) underwent two sets of T2-weighted (T2W) brain axial 2D im
aging. The number of the sets differing between the T1W and T2W im
aging was determined not to exceed the scan duration of 1 h. The 
imaging coverage was set to include the centrum semiovale and the 
upper edge of the eyeballs. To minimize the intra-volunteer variability 
in image quality among the multiple acquisitions, all k-spaces were 
concurrently filled with the MR signals. This was achieved by modifying 
the vendor-supplied pulse sequence using the environment for pulse 
programming in C (EPIC version DV28, GE Healthcare, Milwaukee, WI, 
USA). The scan parameters which differed between the T1W and T2W 
images were repetition time (TR) and echo time (TE): TR/TE = 545 ms/ 
12 ms for T1W imaging and 3500 ms/80 ms for T2W imaging. The other 
similar parameters for T1W and T2W imaging were as follows: spin-echo 
pulse sequence (a single echo per TR); Cartesian trajectory; number of 
excitations (NEX), 1; field of view (FOV) in the frequency-encoding (FE) 
direction, 66 cm; FOV in the phase-encoding (PE) direction, 22 cm; slice 
thickness, 2 mm; spacing, 2 mm; FE direction, anterior-posterior; 
number of slices, 12; number of FE steps (Nx), 768; number of PE 
steps (Ny), 256; and receive bandwidth (BW), ±250 kHz. We did not 
utilize the parallel imaging reconstruction [3–5] and fast spin echo 
sequence [1] for simplicity, although these techniques have been 
frequently used to shorten scan duration in clinical practice. It is thought 
to be difficult to precisely predict the quality of images acquired using 
these techniques [21,22]. Aiming to make the image quality predictable, 
these techniques were not adopted in this study. 

From each of the original k-spaces with a rectangular matrix size (Nx 
× Ny = 768 × 256) and NEX = 1, three k-spaces with a square shape 
(256 × 256) were generated so that the p-th square-shaped k-space 
consisted of the signals stored in (3x + p)-th column of the rectangular k- 
space, where p = {1,2,3} and x = {0,1,2,⋯,255}. We can regard the 
three square-shaped k-spaces as those that were acquired at different 
temporal phases whose time intervals were zero and that had the same 
image quality and image content [23]. Then, square-shaped k-spaces of 
NEX = n were generated by averaging the n k-spaces that had the same 
content (i.e., the same volunteer and cross-section), where n = {1, 2, 4, 
8} for T1W k-spaces and n = {1, 2} for T2W k-spaces. In addition, the 
filling rate of the square-shaped k-spaces in the PE direction (FRKy) 
varied at four levels: 50% (Ny = 128), 60% (Ny = 154), 75% (Ny = 192), 
and 100% (Ny = 256), which were implemented by padding zeros to the 
high-frequency regions of the k-spaces. This process simulates under
sampling in the PE direction and zero-fill interpolation processing. A low 
FRKy indicates low spatial resolution in the PE direction. After applying 
the elliptic Fermi filter, each square-shaped k-space was inversely 
Fourier-transformed to obtain magnitude images. All reconstructions 
were performed using Orchestra toolbox (GE Healthcare, Milwaukee, 
WI, USA). Finally, T1W images were categorized into 16 types of image 

Fig. 2. Schematic illustration of the reference set vectors (a blue square), high- 
and low-quality assessed images (a red circle and triangle), and their pro
jections onto the reference-set vector (a black circle and triangle). The three- 
dimensional coordinate is depicted here for simplicity, although the actual 
vectors have 20 dimensions. The cone depicts the range where a vector is likely 
to exist. The gray line inside the cone is perpendicular to the base circle of the 
cone and parallel to the reference-set vector. The gray triangle and the dots and 
line inside it represent the shadows of the cone and plots. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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quality, and T2W images were categorized into eight types of quality 
(columns in Fig. 3); each of the quality types consisted of 180 images 
(Fig. 3). 

3.2. Subjective IQA 

Thirteen radiologic technologists (Obs1–Obs13) participated in this 
observation session. The average and SD of their ages were 34.5 ± 6.3 
(range, 28–48), and those of their years of experience as radiologic 
technologists were 9.4 ± 5.2 (range, 4–23). Out of 13, one was female, 
and the others were male. A total of 16 T1W and eight T2W images at the 
level of the basal ganglia of Vol1 were used in the observation (Fig. 4). 
These images were of the same phase, and each had a different quality 
than the others (Figs. 3 and 4). The Ura-modified Schéffe method [24], 
which is a paired comparison method, was used in this study to 
comprehensively evaluate the subjective image quality of each MR 
image. The observation session consisted of T1W and T2W sub-sessions, 
and the 13 observers participated in either or both of the sub-sessions so 
that ten observers were assigned to each sub-session (Obs1–Obs10 in the 
T1W sub-session and Obs1–Obs7 and Obs11–Obs13 in the T2W sub- 
session). In the observation session, two images of different qualities 
were simultaneously displayed on a display monitor in a horizontal 
orientation, and the observers were asked to evaluate the relative and 
comprehensive image quality on a three-point scale (the left image is 
better, they are similar, or the right one is better). The value resulting 
from a pair of left image l and right image r evaluated by an observer o 
was defined as the preference αlro ∈ {1,0, − 1}, where l ∈ {1,2,⋯,NIm | l 
∕= r}, r ∈ {1,2,⋯,NIm | r ∕= l}, o ∈ {1,2,⋯,NOb}, NIm and NOb denote the 
numbers of images and observers in the sub-session, respectively. The 
αlro = 1 means the “left one is better.” The three-point scale evaluations 
were repeated for 240 image pairs (16P2) in the T1W sub-session and 56 

image pairs (8P2) in the T2W sub-session. The order of display of the 
image pairs was randomized among the observers to remove order ef
fects. The observers were not allowed to adjust the luminance, contrast, 
or magnification factor of the displayed images. The viewing distance 
and time were arbitrary. The observational procedure was instructed 
before the observation session using several pairs of images extracted 
from the images used in the observation session. Finally, the preference 
for the i-th image α̂i was calculated as follows [24]: 

α̂i =

∑NOb
o=1

∑NIm
r=1αiro −

∑NOb
o=1

∑NIm
l=1 αlio

2NImNOb
(6) 

The α̂ i ranging within [− 1, 1] was regarded as the subjective image 
quality score in this study, and a high score indicated a good quality of 
the i-th image. One-way analysis of variance (ANOVA) was conducted to 
evaluate the effect of image quality on subjective quality scores. More
over, as an index to determine whether there is a significant difference in 
the subjective quality score between any two images with a significance 
level ϕ, we calculated the yardstick value Yϕ as follows: 

Yϕ = qϕ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ̂2
/(2NObNIm)

√

(7)  

where qϕ is the studentized range and σ̂2 is the unbiased variance of 
errors computed in the ANOVA [25]. Two quality scores (α̂i and α̂j) are 
regarded as significantly different if 

⃒
⃒α̂i − α̂j

⃒
⃒
〉
Yϕ is satisfied. The sta

tistical significance levels of the ANOVA and yardstick analyses were set 
at 0.05. 

Fig. 3. Types of images reconstructed in this study. The left-hand side is a set of T1W images and the right-hand side is a set of T2W images. The 180 images on the 
same column have the same quality (NEX and FRKy), and 16 and eight types of qualities were prepared for T1W and T2W images, respectively (denoted by “Q” on the 
top of the figure). Each row consists of images with the same content (subject and cross section), and 60 types of content were acquired (denoted by “C” on the left of 
the figure). The “p” just above the “C1” images represents the temporal phase. The “Vol” and “Im” immediate left of the “Q1” images denote the volunteer (subject) 
and image (cross section). The red dashed rectangles denote the images used in the observation, as shown in Fig. 4. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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3.3. Comparison of IQA performance between the previous and our 
algorithms 

The reconstructed T1W and T2W images were divided into 16 T1W 
and eight T2W reference sets based on their quality (columns in Fig. 3). 
Feature vector fr (Fig. 1) was extracted from each reference set using an 
image-based modified algorithm. We defined fr,Q1, fr,Q2, ⋯, and fr,Q16 
for the T1W reference sets and fr,Q1, ⋯, and fr,Q8 for the T2W reference 
sets, each corresponding to the qualities of Q1, Q2, … (Fig. 3). 

The feature vector fa of an assessed image was extracted from each of 
all the 4320 reconstructed images (Fig. 3) using the image-based 
modified algorithm (Fig. 1). Every fa was used to calculate the 16 or 
eight quality scores Smods (Fig. 1 and Eq. (5)), each corresponding to the 
score calculated using the fr,Q1, fr,Q2, ⋯. Note that in the calculation of 
the scores, the contrast (T1W or T2W) of the reference sets was kept 
similar to that of the assessed image. Eventually, 16 and eight Smods 
were assigned to each T1W and T2W assessed images, respectively. 

The reconstructed T1W and T2W assessed images, each including 16 
and eight Smods, respectively, were divided into 60 assessed subsets 
according to the image contents (rows in Fig. 3). Each assessed subset 
consisted of 48 T1W images (16 quality × three phases) or 24 T2W im
ages (eight quality × three phases). Among images belonging to the 
same assessed subset, the variation in image quality was based only on 
NEX and FRKy. We assumed that the order and difference in the true 
quality (subjective quality score α̂i) among the images of the same 
subset should be the same as that of the images used in the observation 
(Fig. 4). Under this assumption, the correlation coefficient (CC) was 
calculated between “the α̂is obtained for the images in Fig. 4” and “the 
Smods of images in an assessed subset” for each reference set and each 
assessed subset. The Pearson linear correlation coefficient (PLCC), 
Spearman rank-ordered correlation coefficient (SROCC), and Kendall 
rank-ordered correlation coefficient (KROCC) were adopted as CCs 
[26–28]. Furthermore, the QEMDIM score SQs [Eq. (4)] and their CCs 
with α̂is were calculated in the same manner as described above. The 
distribution of CCs between SQs and α̂is (CCQ,α including PLCCQ,α, 
SROCCQ,α, and KROCCQ,α) was compared to that of CCs between Smods 
and α̂is (CCmod,α including PLCCmod,α, SROCCmod,α, and KROCCmod,α) for 
each reference set with various qualities. The Kruskal–Wallis test was 
used to analyze the effect of the quality of the reference set on the 
PLCCQ,α, SROCCQ,α, KROCCQ,α, PLCCmod,α, SROCCmod,α, and 

KROCCmod,α. The statistical significance level was set at a p-value of 
0.05. 

3.4. Quantity and reproducibility of our algorithms 

All the reconstructed images were divided into 60 × 16 T1W and 60 
× 8 T2W reference sets according to their qualities and image content; 
each of which consisted of three images with the same quality and 
content but different phases (Fig. 3). Smods were calculated for all the 
reconstructed images with the reference set to which the assessed image 
belonged. Since each assessed image theoretically had the same quality 
and content as the corresponding reference set, all Smods would ideally 
indicate zeros. We evaluated the normality, average, and SD of the 
distribution constructed using all Smods. The Shapiro-Wilk test was used 
for normality evaluation. 

4. Results 

ANOVA demonstrated that the subjective score α̂ significantly varied 
with the image quality (p < 0.001 for among the T1W images and among 
the T2W images in Fig. 4). The yardstick values Y0.05 were 0.130 for the 
T1W images and 0.184 for the T2W images. 

4.1. Comparison of IQA performance between the previous and our 
algorithms 

The distributions of 60 PLCCQ,αs and 60 PLCCmod,αs for each of the 
reference sets with different qualities are shown in Fig. 5. The distri
butions of SROCCs and KROCCs is not shown in this study because of 
their similarity to those of PLCCs. Tables 1 and 2 show the medians and 
interquartile ranges (IQRs) of the distributions of CCmod,α and CCQ,α for 
each quality of the reference set. For CCmod,αs, including PLCCmod,α, 
SROCCmod,α, and KROCCmod,α (Fig. 5b and d and Table 1), the variation 
in the medians and IQRs caused by the qualities of the reference set was 
no more than 0.02. These variations with various qualities were not 
statistically significant (p = 1.00 for all CCmod,αs). For CCQ,αs (Fig. 5a and 
c and Table 2), the medians and IQRs significantly varied in up to 1.85 
and 0.63, respectively (p = 0.00 for all CCQ,αs). In particular, the IQRs 
were wide, and the medians were close to zero when the reference set 
had an intermediate quality (NEX/FRKy = 2/100% or 4/60% for T1W 

Fig. 4. Images used in the observation. The images in 
the left of the vertical dashed line are T1W images, 
and those of the right are T2W images. Each column 
contains images with the same NEX, and each row 
contains images with the same FRKy. 
NEX: number of excitations. 
FRKy: filling rate of k-space in phase-encoding 
direction.   
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images and 1/75% or 2/60% for T2W images). It is visually apparent 
that the variation in the CC distributions with the various qualities of the 
reference set was much smaller for the modified scores than for the 
QEMDIM scores (Fig. 5). 

Representative scatter plots depicting the correlations between the 
modified scores (Smods) and the subjective scores (α̂is) and between the 
QEMDIM scores SQs and α̂i are shown in Fig. 6. Each of the 48 Smods was 
equally and parallelly shifted by the quality of the reference set 
(Fig. 6d–f). In other words, the difference in Smod between any two 
images was consistent irrespective of the quality of the reference set. The 
slope of the linear regression equation was 2.17 for Fig. 6d and 2.18 for 
Fig. 6e and f, respectively, and the average ± SD of the slopes of all the 
combinations of the assessed subset and reference set, that is, all plots in 
Fig. 5, were 2.38 ± 0.403 for T1W images and 3.28 ± 0.314 for T2W 
images. Fig. 6a–c show that despite the same assessed images as in 
Fig. 6d–f, the difference in SQ between any two images largely varied 
with the qualities of the reference set. There was a positive correlation 
for the low-quality reference set (Fig. 6a), negative correlation for the 
high-quality reference set (Fig. 6c), and almost no correlation for the 
intermediate-quality reference set (Fig. 6b). 

4.2. Quantity and reproducibility of our algorithms 

We obtained a histogram of the 4320 Smods, which was calculated for 

the 4320 assessed images with the corresponding reference set that 
consisted of three images with the same quality and content as the 
assessed image. The histogram shows a Gaussian distribution (p =
0.478). The average ± SD was − 1.67 × 10− 17 ± 0.0262. 

5. Discussion 

The QEMDIM scores (SQs) significantly varied with the quality of the 
reference set, even if the assessed images used were same among the 
different reference sets (Fig. 6a–c). The median and IQR of the CCQ,α also 
varied significantly because of the quality of the reference set (Fig. 5a 
and c and Table 2). In particular, when the quality of the reference set 
was intermediate, the medians were close to zero, and the IQRs were 
wide. These results imply that the QEMDIM algorithm is sensitive to the 
quality of the reference set, which is in line with the hypothesis 
described in the Theory section (Fig. 2 and Eq. (4)). The reason why the 
SQs showed a positive correlation with α̂ for the low-quality reference 
set (Fig. 6a) is that all 48 assessed images had higher quality than the 
reference set. Therefore, even the lowest-quality assessed image had a 
higher quality than the reference set and a small distance from the 
reference set in the 20D feature space, which led to a lower SQ than that 
of the high-quality images. Similarly, a high- or intermediate-quality 
assessed image had a higher quality than the reference set and a large 
or intermediate distance from the reference set, which led to a high or 

Fig. 5. Boxplots representing the variation in the distribution of PLCC with the quality of the reference sets. The figures on the top row (a and b) and bottom row (c 
and d) denote the results of T1W and T2W images, respectively. The Y-axes are PLCCQ,α for (a) and (c) and PLCCmod,α for (b) and (d). The X-axes depict the NEX of the 
reference set, and the colors of the plots depict the FRKy of the reference set. Each box plot consists of 60 data points that are the same as the number of the image 
contents (rows in Fig. 3). The height of each box indicates the interquartile range (IQR), and the horizontal line in each box represents the median of the distribution. 
The dot plots indicate the outliers defined as data points higher than the 75th percentile +1.5 times the IQR or lower than the 25th percentile – 1.5 times the IQR. 
NEX: number of excitations. 
FRKy: filling rate of a k-space in phase-encoding direction. 
PLCC: Pearson linear correlation coefficient. 
SQ: objective quality score obtained from the QEMDIM algorithm. 
Smod: objective quality score obtained from the modified algorithm. 
α̂: subjective quality score. 
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intermediate SQ. For the high-quality reference set (Fig. 6c), all the 
assessed images had lower quality than the reference set, and the dif
ference in quality between the assessed image and the reference set 
increased as the quality of the assessed image decreased, which resulted 
in a negative correlation between the SQs and α̂s. For the intermediate- 
quality reference set (Fig. 6b), the difference in quality between the 
assessed image and the reference set increased as the quality of the 
assessed image differed greatly from that of the reference set, which 

resulted in almost no correlation. On the other hand, the modified scores 
(Smods) of our modified IQA algorithm showed a consistently high cor
relation with α̂s, irrespective of the quality of the reference set (Fig. 5b 
and d and Table 1), which implies that our modified IQA algorithm had 
high accuracy and robustness across the reference quality in terms of 
IQA performance. In clinical practice, collecting many high-quality 
images for a reference set is difficult, and an assessed image is often 
superior to the reference set when a newly introduced machine or 
technology is used for the assessed images. Therefore, our modified IQA 
algorithm is more suitable for clinical use than the QEMDIM algorithm 
owing to its excellent IQA performance. 

When an assessed image has almost the same quality as the reference 
set, Smod is assumed close to zero (Eq. (5)). We evaluated the distribution 
of Smod under such conditions, and the average ± SD of Smod was − 1.67 
× 10− 17 ± 0.0262 in this study. The average value was very close to zero 
compared to the range in Smod of approximately 0.8 (Fig. 6), which was 
observed among the T1W images used in the observational experiment. 
Therefore, our modified IQA algorithm is considered highly quantita
tive. SD is thought to rely on both, the intra-measurement variability of 
the MR signal and the detection limit of the IQA algorithm, which is 
inevitable. The SD value can be a useful index for determining if the 
difference in quality between two assessed images when using the same 
reference set is significant. Owing to both, the SD of 0.0262 and the 
normality of the Smod distribution, a Smod difference of up to 0.0514 
(1.96 × SD) can occur with a 95% probability, even if the two assessed 
images have almost the same quality. A Smod difference of approximately 
0.05 was observed between the images with NEX = 8 and FRKy = 50% 
and those with NEX = 2 and FRKy = 100% (Fig. 4), and the α̂ difference 
between these images was 0.156. The slope of the linear regression 
equation can predict α̂ from Smod. Its value was 2.38 ± 0.403 for T1W 
images and 3.28 ± 0.314 for T2W images on average ± SD; therefore, a 
Smod difference of 0.0514 that can occur for two almost same-quality 
images should correspond to an α̂ difference of 0.122 ± 0.0207 for 
T1W images and 0.169 ± 0.016 for T2W images. These α̂ differences that 
can occur for two almost same-quality images are equivalent to and less 
than the yardstick value Y0.05 of 0.130 for T1W images and 0.184 for 
T2W images. This implies that our modified algorithm can have IQA 
reproducibility and sensitivity equivalent to those of subjective IQA. 

In this study, the two types of image quality were concurrently 
changed using the scan and reconstruction parameters. This quality is 
assumed to be similar to that seen in the clinical situation. Our modified 
quality scores showed a high correlation with subjective quality scores 
in this situation. Thus, our modified algorithm has high robustness 
across the quality types of assessed images. Such a high correlation was 
observed in both T1W and T2W images, implying that our modified al
gorithm is insensitive to the contrast of the assessed images. As the high 
IQA performance proved the above, our modified IQA algorithm has the 
potential to be used as an alternative to subjective IQA. 

Our modified IQA algorithm computes the Smod of an assessed image 
based on comparison with a reference set (Eq. (5)), and Smods exhibited a 
high correlation with the α̂, irrespective of the quality of the reference 
set (Fig. 5 and Table 1). Furthermore, our modified IQA has equivalent 
sensitivity and reproducibility to subjective IQA in terms of the subtle 
difference in quality between the two images. Therefore, in clinical 
practice, Smods could be a criterion that MR operators use to determine if 
a retake of the MR image is needed without the subjective IQA before the 
examination has finished. In this case, the reference set needs to be 
composed of the images previously taken for the same purpose or pa
tient, which will cause Smod to be lower than zero if the retake is needed, 
that is, the quality of the assessed image is lower than that of the 
reference set. Furthermore, it may be useful for MR researchers to use 
our modified algorithm to compare their developing methodology with 
the conventional one with respect to image quality without human ob
servers. In this case, the reference set should be composed of conven
tional images. In addition, our modified IQA algorithm could be helpful 

Table 1 
The medians of correlation coefficients (PLCC/SROCC/KROCC) between the 
subjective and modified scores calculated using the reference sets with various 
qualities (different NEX in the rows and FRKy in the columns). The parenthesized 
values next to the medians are the interquartile ranges.  

Image Contrast NEX FRKy [%] 

50 60 75 100 

T1W 

1 
.93 (.02)/ 
.94 (.02)/ 
.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.83 (.03) 

2 
.93 (.02)/ 
.94 (.02)/ 
.82 (.04) 

.93 (.02)/ 

.95 (.01)/ 

.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.83 (.03) 

4 
.93 (.02)/ 
.94 (.02)/ 
.82 (.03) 

.93 (.02)/ 

.94 (.02)/ 

.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.82 (.03) 

8 
.93 (.02)/ 
.94 (.02)/ 
.82 (.03) 

.93 (.02)/ 

.94 (.02)/ 

.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.82 (.03) 

.93 (.02)/ 

.95 (.01)/ 

.82 (.03) 

T2W 

1 
.96 (.02)/ 
.96 (.01)/ 
.86 (.05) 

.96 (.02)/ 

.96 (.01)/ 

.86 (.05) 

.96 (.02)/ 

.96 (.02)/ 

.86 (.05) 

.96 (.02)/ 

.96 (.02)/ 

.86 (.05) 

2 
.96 (.02)/ 
.96 (.01)/ 
.86 (.05) 

.96 (.02)/ 

.96 (.01)/ 

.86 (.05) 

.96 (.02)/ 

.96 (.02)/ 

.86 (.05) 

.96 (.02)/ 

.96 (.02)/ 

.86 (.05) 

PLCC: Pearson linear correlation coefficient. 
SROCC: Spearman rank-order correlation coefficient. 
KROCC: Kendall rank-order correlation coefficient. 
FRKy: filling rate of square-shaped k-space data in phase-encoding direction. 
NEX: the number of excitations. 

Table 2 
The medians of correlation coefficients (PLCC/SROCC/KROCC) between the 
subjective and QEMDIM scores calculated using the reference sets with various 
qualities (different NEX in the rows and FRKy in the columns). The parenthesized 
values next to the medians are the interquartile ranges.  

Image Contrast NEX FRKy [%] 

50 60 75 100 

T1W 

1 
.92 (.02)/ 
.94 (.02)/ 
.80 (.04) 

.91 (.04)/ 

.93 (.04)/ 

.78 (.06) 

.88 (.06)/ 

.89 (.08)/ 

.72 (.09) 

.73 (.19)/ 

.72 (.22)/ 

.54 (.19) 

2 
.87 (.07)/ 
.88 (.09)/ 
.72 (.10) 

.81 (.15)/ 

.81 (.17)/ 

.63 (.19) 

.63 (.33)/ 

.60 (.34)/ 

.44 (.28) 

.16 (.57)/ 

.16 (.50)/ 

.11 (.37) 

4 
.50 (.40)/ 
.44 (.43)/ 
.32 (.33) 

.10 (.59)/ 

.08 (.54)/ 

.06 (.38) 

-.41 (.47)/ 
-.33 (.45)/ 
-.26 (.33) 

-.73 (.22)/ 
-.69 (.30)/ 
-.52 (.25) 

8 
-.49 (.31)/ 
-.46 (.35)/ 
-.32 (.25) 

-.79 (.15)/ 
-.76 (.19)/ 
-.59 (.18) 

-.90 (.06)/ 
-.91 (.06)/ 
-.75 (.09) 

-.92 (.03)/ 
-.94 (.03)/ 
-.80 (.05) 

T2W 

1 
.93 (0.07)/ 
.93 (0.05)/ 
.80 (0.09) 

.83 (.23)/ 

.84 (.28)/ 

.69 (.28) 

.32 (.70)/ 

.32 (.67)/ 

.22 (.52) 

-.65 (.50)/ 
-.54 (.54)/ 
-.40 (.49) 

2 
.87 (.18)/ 
.89 (.18)/ 
.73 (.23) 

.46 (.66)/ 

.44 (.66)/ 

.33 (.52) 

-.64 (.53)/ 
-.51 (.55)/ 
-.36 (.47) 

-.91 (.12)/ 
-.89 (.16)/ 
-.74 (.21) 

PLCC: Pearson linear correlation coefficient. 
SROCC: Spearman rank-order correlation coefficient. 
KROCC: Kendall rank-order correlation coefficient. 
FRKy: filling rate of square-shaped k-space data in phase-encoding direction. 
NEX: the number of excitations. 
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in a variety of conditions, such as quantification of the misdiagnosis rate 
due to the image quality and standardization of distorted image quality 
among different medical facilities. 

We investigated the relationship between IQA quality scores and 
subjective scores. However, the effect of the quality score on the 
detectability and diagnostic accuracy of any disease on MR images has 
not been determined. Clarifying this relationship would make this 
modified algorithm highly useful in clinical practice. For example, based 
on this relationship, we can determine the cutoff value or acceptable 
range of the quality scores of the acquired image. To indicate the in
fluence of the quality score on diagnostic accuracy, further studies are 
needed to investigate the relationships between our modified scores, 
subjective IQA, and diagnostic accuracy for various types of diseases. 

This study had two possible limitations. First, we applied our IQA 
algorithm to images acquired under limited conditions, including the 
scan parameters (spin-echo axial T1W and T2W images), participants 
(five healthy men with relatively young ages), and organs (brain). For 
example, fast spin-echo and fluid-attenuated inversion recovery pulse 
sequences, diffusion-weighted imaging, and MR angiography have been 
used in clinical brain MRI along with the spin-echo sequence. Most of the 
brain MRI examinations have been performed for elderly patients with 

abnormalities, including cerebral infarction, tumors, or hemorrhage. 
Additionally, MRI examinations have been applied to any part of the 
whole body, not only the brain. These factors might have affected the 
image quality and/or appearance, which was not evaluated in this study. 
Further studies are required to investigate their effects on the perfor
mance of the modified IQA. Furthermore, we used an MR scanner pro
duced by a single vendor. There may be differences in the 
reconstruction, image processing, and pulse sequences among scanners 
produced by different vendors, which can affect the modified scores. 
Hence, it is necessary to compare the scores among scanners produced 
by different vendors. Nevertheless, we believe that our results are clin
ically useful because we verified our algorithm with fewer biases that 
could influence our scores. Second, we assessed the quality of images 
without artifacts, such as motion, susceptibility, wraparound, hetero
geneous signal intensity, and geometrical distortion, although the 
presence and/or severity of artifacts is one of the most important factors 
affecting subjective quality and diagnostic accuracy. Jang et al. reported 
that the QEMDIM algorithm has the potential to assess the severity of 
artifacts, including motion, aliasing caused by Cartesian undersampling, 
streak, and partial volume, along with Gaussian and Rician noise [18]. It 
may be clinically useful to develop a methodology based on our 

Fig. 6. Representative scatter plots representing the correlation between the subjective scores α̂ and QEMDIM scores SQ (a–c) and between the α̂ and the objective 
modified scores Smod (d–f). The figures on the different columns are different in the quality of the reference set each other: the left, low quality (NEX/FRKy = 1/50%); 
center, intermediate quality (4/75%); and right, high quality (8/100%). Each of the 48 plots in all figures denotes a measure of a T1W assessed image capturing the 
9th cross-section of the subject Vol1 (images included in the “C9” row in Fig. 3). The colors and shapes of the plots denote the NEX and FRKy, respectively, of the 
assessed images (a). The blue straight line and the surrounding gray area depict the linear regression line and the confidence interval, respectively. The PLCC, SROCC, 
and KROCC are shown above each figure. Note that the scales of the X-axes are not fixed among the figures. 
NEX: number of excitations. 
FRKy: filling rate of a k-space in phase-encoding direction. 
PLCC: Pearson linear correlation coefficient. 
SROCC: Spearman rank-ordered correlation coefficient. 
KROCC: Kendall rank-ordered correlation coefficient. 
SQ: objective quality score obtained from the QEMDIM algorithm. 
Smod: objective quality score obtained from the modified algorithm. 
α̂: subjective quality score. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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modified algorithm to separately assess the severity of noise, blurring, 
and several types of artifacts, in addition to the comprehensive image 
quality assessed in this study. 

6. Conclusion 

In conclusion, the quality scores of the QEMDIM algorithm are 
significantly dependent on the quality of the reference set. Our proposal 
of the modified IQA algorithm exhibited a high correlation with the 
subjective IQA scores irrespective of the quality of the reference set, and 
achieved quality scores of 0.00 ± 0.026 for images with the same quality 
and content. We demonstrated that the modified IQA algorithm can be 
applied to image distortion caused by changing MR scan parameters. 
Therefore, our modified algorithm is thought to have a clinically 
acceptable IQA performance (that is, accuracy, robustness, quantity, and 
reproducibility) for brain MR images, which may imply that our algo
rithm has the potential to be an alternative to subjective IQA. 
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