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Introduction

In this paper, we investigate the asymptotic behavior of oscillatory integrals of the form

I(t; F) = /n '@ (2)da. (i-1)

Here t is a real parameter and F) ¢ are real-valued smooth (infinitely differentiable) functions
defined on a small open neighborhood U of the origin in R™, which are called the phase and
amplitude, respectively.

We assume that support of ¢ is contained in U for the convergence of the integral. The
points where the gradient of F' (usually denoted by (VF')) vanishes are called critical points.
If F' has no critical point on the support of ¢, I,(t; F') = O(¢t ) holds for any N € N (see
Prpositions 2.1.2, 2.1.7). So we assume that F' satisfies F'(0) = [(VF)(0)] = 0. When n =1,
the asymptotic behavior as t tends to infinity is completely understood for non-flat functions.
In this case, ' can be expressed as F(¢(x)) = x* for some k& € N by change of variable ¢
and this k£ appears in the asymptotic behavior of I,(¢; F) ([31], see also Proposition 2.1.4
in this paper). However, the general dimensional case is much more complicated and there
still remain many open problems. In analysis of this case, we need some assumptions to the
phase functions. As a special case, if F' is nondegenerate (i.e., the Hessian matrix of F is
invertible), the asymptotic expansion of I,(¢; F') is obtained by using Morse’s lemma (see
Proposition 2.1.8).

On the other hand, when F' is degenerate, the other tools and methods are required. If
F is real analytic, by using Hironaka’s resolution of singularities, the form of the asymptotic
expansion of I,(t; F):

n

Lt F) ~ Y ) Carl(p)t*(logt) ™ ast — +oo, (i-2)

o k=1

il



v

is obtained (Jeanquartier [14], Malgrange [25]). Here « runs through finite number of arith-
metic progressions consisting of negative rational numbers. Since Hironaka’s theorem does
not give quantitative resolution of singularities, we cannot know precise properties of each
terms in (i-2). A.N.Varchenko [34] constructs a method to compute the above arithmetic
progressions from the geometrical information of the Newton polyhedron of F' by using the
theory of toric varieties. The main analysis in this paper is based on his work. After that,
many generalization of his work have been obtained, for instance, smooth phase case [17],
weighted amplitude case [5],[18] and so on. For readers, there is a good survey [21] by E.
Leon-Cardenal.

The aim of this paper is to generalize the above result of Varchenko to the case where

the phase function is replaced by f(x)/g(x), i.e

Lt frg) = / 58 o) da (i-3)
R7\g—1(0)

where f, g are real analytic functions defined on U satisfying that f(0) = [(V f)(0)| = 0 and
g(0) = [(Vg)(0)] =0, U and ¢ are the same as in (i-1). We call this integral the oscillatory
integral attached to (f/g,¢). In one-dimensional case, we can apply the same argument of
analytic case and obtain some kinds of series expression which imply the singularities of the
denominator g appear in the smoothness of 1,(¢; f, g) at the origin (see Section 7.3). Note
that if ¢ does not vanish on U, (i-3) is reduced to the analytic phase case (i-1).

By using a simultaneous resolution of singularities to f~1(0) U ¢=%(0), W.Veys and
W.A Zuiniga-Galindo [35] show that if the support of ¢ is contained in a sufficiently small
open neighborhood of the origin, then I,(¢; f, g) has two types of asymptotic expansion, that

is, the case when its parameter ¢ tends to infinity and zero. More precisely, for any positive

integer N,
Stifg) =) ZCM )t *(og ) + O(t™N) ast — 400, (i-4)
a<N k=1
n+1
I(t; f.g) — =Y Dai(e)t? + > " Dai(@)t’(logt) ™t fort € R\ {0}  (i-5)
BN B<N 1=2
BEN
hold, where ¥y (t) is a CV function satisfying that 1 (0 fRn x)dx and «, § run through

finite number arithmetic progressions consisting of pos1t1ve rational numbers. As is the case



in the analytic case, we cannot know the properties of each terms in (i-4), (i-5) from the
information of f and g. Let us focus the equation (i-5). From (i-5), we see that I,(¢; f, g) is
smooth on R\ {0}, however, at t = 0, I,(¢; f, g) has non-smooth part which correspond to the
right hand side in (i-5). We call this part singular part of 1,(t; f, g) and denote by S, (¢t; f, g)
(see Definition 3.0.3). In the analytic phase case, it is easy to see that I, (¢; F) is smooth at
t = 0 and this implies that the singular part of I,(¢; F') does not appear. From this fact, the
influence of the denominator g also seems to appear in singular part of I,(¢; f, g). Therefore,
in the analysis of asymptotic behavior of 1,(¢; f, g), the leading terms of (i-4) and S, (¢; f, g)
are very important. In order to investigate the properties of these leading terms, we define

the following indices.

Definition 1. Let f,g be real analytic functions for which the oscillatory integral (i-3)
admits the asymptotic expansions of the form (i-4), (i-5). Then, the oscillatory index at

infinity £ (f, g) and the oscillatory indez at zero & (f, g) are defined as follows:

Eoo(f, g) := min{a : Cy () # 0 for some ¢, k},
&o(f,g) == min{f5 : Dg,;(¢) # 0 for some ¢, [}

and the multiplicity of each index 1 (f, 9), Mo(f, g) are defined by
Noo(f5 g) = max{k : C¢_ (1.9 k() # 0 for some ¢},
no(f,9) == max{l : De,(1,q)(¢) # 0 for some ¢}.
Our main purpose is

e to construct an algorithm to compute the arithmetic progressions where o, 8 in (i-4),

(i-5) move from the information of f and g.

e To determine or precisely estimate the above oscillatory indices and their multiplicities

by means of the information of f and g.
Another main object of our investigation in this paper is the following integrals
Zr(s;Fop) = | |F(z)Po(r)dr (s €C), (i-6)
]Rn

for detail definition, see Chapter 7. This integral converges locally uniformly on the right-half

plane and defines a holomorphic function there, which is called local zeta function attached
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to (F,¢). The central question of this function is its analytic continuation. In general, if F
is an analytic function, Zg(s; F), ¢) can be meromorphically continued to the whole complex
plane and has poles on the negative real axis (see [3], [10]). Our main interest is a relationship
between the locations and orders of such poles and the properties of F, . It is known (see,
for instance, [17], [18], or Section 7.1 in this paper) that the properties of poles of local zeta
function Zg(s; F, @) is deeply connected to the asymptotic analysis of oscillatory integral
(i-1). The work of Varchenko is essentially constructing a method to compute the locations
and orders of poles of local zeta function from the information of Newton polyhedron of F.
We attempt to generalize this method to rational functions. For rational case, we consider

the following integrals

f@)|° .
Za(sit.go) = [ | plade, (-7)
¥ R7\D g()
where f, g, p are the same as in (i-3) and D := f~1(0) Ug~!(0). It is shown that this integral

converges on some domain in C and defines a holomorphic function there, which is called
local zeta function attached to (f/g,¢). As is the case of analytic function, this function is
meromorphically continued to C and has poles on real axis. The substantial analysis in this
paper is to investigate and describe properties of poles of the local zeta function Zg(s; f, g, )
by means of Newton polyhedra of f and g by using simultaneous toric desingularization. In
Chapter 6, we also investigate the case when f/g is meromorphic function (i.e., f,g are
holomorphic functions) and the integral (i-7) is considered on C".

Local zeta function itself is a mathematically interesting object and there have been many
researches of this function. In connection with number theory, local zeta functions for p-adic
field are enthusiastically investigated [6], [27], [7], [12], [23], [26]. Theory of p-adic case is
established by J.Igusa [13] and often called Igusa zeta function. There are some generalization
of local zeta functions for multi-functions. In [30], C.Sabbah introduces several variables
version of local zeta function, which is called multivariate local zeta function. The author
shows there exists meromorphic continuation to whole C' and its poles are contained in the
union of some hyperplanes. Later, in [24], F.Loeser defines multivariate local zeta function
for local field of characteristic zero. In [22], E.L.Cardenal, W.Veys and W.A.Zuniga-Galindo
consider the local zeta functions for analytic mapping and generalize the work of Varchenko.

This paper is organized as follows. In Chapter 1, we explain many important words

and their elementary properties, which are often used in this paper. In Chapter 2, in order
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to show our motivation to the investigation of this paper, we roughly explain the earlier
results concerning with the analytic phase case in [14],[25],[31],[34] and rational phase case
in [35]. In Chapter 3, we state our main results relating to the estimate and determination
of the oscillation index and its multiplicity. In Chapter 4, we explain how to construct
simultaneous resolution of singularities with respect to several functions by using the theory
of toric varieties. In Chapter 5, we construct an appropriate fan which are the most suitable
to investigate and describe the properties of poles of Zk(s; f,g,%). From this fan, two
important sets of integer vectors which are used to express the sets of candidate poles of
Zk(s; f,g,¢) are obtained. We also define and investigate two important subfans which will
play important roles to compute the coefficients of the leading terms of asymptotic expansion
(i-4) and (i-5). In Chapter 6, we investigate the poles of local zeta function Zk(s; f, g, ¢) by
using of the results in previous two chapters. Here, we give the positions of all candidate
poles and some sufficient conditions where the positions and orders of the (e-)leading poles
(see Definition 6.0.5) are explicitly determined. To do this, we compute the explicit formulae
of the coefficients of terms of Laurent expansions. In Chapter 7, after an exact relationship
between oscillatory integrals and local zeta functions is recalled, we will show some theorems
concerning with the Mellin transform and the Fourier transform which help us obtain the
explicit formulae of the coefficients of the leading terms in (i-4) and (i-5). As a result, proofs
of the theorems in Chapter 3 will be given. Furthermore, we consider more general case

which contains a non-smooth phase case in one-dimension.






Notation and Symbols

e We denote by Z,,Q,, R, the subsets consisting of all nonnegative numbers in Z, Q, R,
respectively. We write Ryg := {x € R: xz > 0}. For s € C, Re(s) and Im(s) express the

real part of s and imaginary part of s, respectively. We define 1/0 := oo and 1/00 := 0.

e We use the multi-index as follows. For x = (x1,...,2,),y = (y1,..,¥n) € R", a =

(ai,...,00,) € Z7, define

<$ay>:x1y1—|—-..+xnyn, |x|: x%+---+$3“
8 a1 8 479

=gt == - ’
' " (8561) (axn)
<Oé>:oz1—|—..._|_am a!:all...an!’ 0l =1.

e For A,BCR, A< B(A< B) means z < y(z < y) for any z € A and y € B.
e For A, B C R" and c € R, we set
A+B={a+beR":ac Aandbe B}, ¢-A={cacR":a€ A}
Moreover, Int(A) expresses the interior of the set A.
e We express by 1 the vector (1,...,1) or the set {(1,...,1)}.
e For aset A, P(A) is the set of all subsets of A.
e For a finite set A, #A means the cardinality of A.

e For a nonnegative real number r and a subset [ in {1,...,n}, the map 77 : R — R" is
defined by
r forjel,

(21, o0y 2n) = T (21, ..., xy) With z; =
x; otherwise.

X



We define T; := T?. For a set A in R", the image of A by T is denoted by T;(A).

When A = R" or Z7, its image is expressed as

Ti(A)={reA:z;=0for j eI}

e We use O as big O notation. That is: f(x) = O(g(x)) (x — 00) if there exist M, N > 0
such that
|f(z)| < M|g(z)| for N < x

and f(z) = O(g(x)) (x — a) if there exist M,d > 0 such that

|f(z)] < M|g(z)]  for [z —a| <.
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Chapter 1
Newton polyhedra and Newton data

In this chapter, we define Newton polyhedra of analytic functions and some values derived
from the geometrical information of Newton polyhedra. First, let us recall important concepts

about convex rational polyhedra. Refer to [36] for a general theory of convex polyhedra.

1.1 Newton Polyhedra

1.1.1 Polyhedra

For (a,l) € R" x R, let H(a,l) and H*(a,l) be a hyperplane and a closed half-space in R™
defined by

H(a,l) :={z € R": (a,z) =},
H*(a,l) :=={z € R" : {a,z) >},

respectively. It is clear that H*(a,l) is a convex set in R™ and H(a,l) is the topological

boundary of H*(a,l) unless a = 0.
Remark 1.1.1. It follows from the definition of H*(-,-) that for (a,l) € Z™ X Z,
H*(a,l+d-{a)) = H (a,l) +d-1for d > 0.

In the case of hyperplane H(a, 1), analogous equation can be obtained.



2 Chapter 1  Newton polyhedra

Definition 1.1.2. P C R" is called (convezr rational) polyhedron if P is expressed as an

intersection of some closed half-space, that is,
N
P=(\H"(d,1)
j=1

for (a/,1;,) €Z" X Z (j =1,...,N).
Definition 1.1.3. A pair (a,l) € Z" x Z is valid for P if P is contained in H"(a,l). A set
v C P is called face if v = H(a,l) N P for some valid pairs (a,l) € Z™ x Z.

Remark 1.1.4. (i) Since R = H"(0,0), R™ is a polyhedron and (0,0) is valid for any
polyhedron. Thus, polyhedron P is a trivial face and the other faces are called proper

faces.

(ii) The pair (0, —1) is valid for any polyhedron and H(0,—1) N P = ). This implies that
the empty set is also a face of the polyhedron P.

The boundary of a polyhedron P, denoted by 0P, is the union of all proper faces of P.
For a face F', OF is similarly defined.
From the definitions above, we can easily know that every proper face v is contained in

ﬂjﬂil H(d’,1;) for some {(a’,l;) € Z" x Z} and M € N. We write
F[P] = {the set of all nonempty faces of P}.

Definition 1.1.5. The dimension of a face F' is the dimension of its affine hull and denoted
dim(F'). The faces of dimensions 0,1 and dim(P) — 1 are called vertices, edges and facets,

respectively.

Lemma 1.1.6 (Lemma 3.1 in [5]). Let Py, P> be n-dimensional polyhedra in R™. If P, C P,
then Py N OP; is the union of proper faces of P;.

Every polyhedron treated in this paper satisfies a condition in the following lemma.

Lemma 1.1.7 (Lemma 2.2 in [18]). Let P C R be a polyhedron. Then the following

conditions are equivalent.
(i) P+R} CP.

(i1) There exists a finite set of pairs {(a’,1;)}}., C Zt x Zy. such that P = ﬂ;vzl H*(a?,1;).
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1.1.2 Newton polyhedra

Let K = R or C. Let us define the Newton polyhedron of a K-analytic function f and
some important functions associated with the Newton polyhedron. In this paper, R-analytic
means "real analytic” and C-analytic means ”holomorphic”.

Let f be a K-analytic function defined on a neighborhood of the origin in K™, which has

the Taylor series at the origin:

f(z) ~ Z Cot® with ¢, = M (1.1.1)

o!
n
a€Z+

We define the set Sy by
Spi={a€Z} :ca #0in (1.1.1)}.

Definition 1.1.8. The Newton polyhedron ' (f) of f is defined to be the convex hull of the
set J{a + R} :a € Sy}

It is known [36] that the Newton polyhedron of f is a polyhedron. The union of com-
pact faces of the Newton polyhedron I'y(f) is called the Newton diagram T'(f), while the
topological boundary of Iy (f) is denoted by OI'y (f).

Definition 1.1.9. For any face v of I',(f), the y-part of f is a function f,(z) defined by

Bla)= Y caa” (1.1.2)

aEWﬂZﬁ

Note that the series in (1.1.2) is always convergent when f is K-analytic.

Remark 1.1.10. (i) Let us consider the case when f is a smooth function. When K = R,
the Newton polyhedron of f can be similarly defined. However, when K = C, the
above definition is not available since its Taylor series may contain terms of the form

cayﬁxafﬁ . There exists an extended definition containing such a case, for instance, see

[29].

(i) When f is assumed to be smooth, the above definition of y-part is not available since
the series (1.1.2) may not converge for non-compact face v. In [5], [18], the authors
introduce definition of ~-part for non-analytic smooth functions which satisfy some

conditions concerning with the limit.
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1.2 The Newton data with respect to the pair (f,g)

In this section, we define the Newton distances and the Newton multiplicities with respect to
the pair of two K-analytic functions (f, ¢), which play important roles in the investigation
of this paper. Throughout this section, let f, g be K-analytic functions defined on a small
neighborhood of the origin.

Definition 1.2.1. The Newton distances with respect to the pair (f, g) are defined by
doo(f,9) :=min{d > 0: (I'y(g) +d-1) CTL(f)},
do(f,9) ==min{d > 0: (T'.(f) +d-1) C Ty (g)}.

Remark 1.2.2. From the above definition, we can see the following.

deo(f,9) = 01if and only if I'; (g) C T'(f).

e do(f,g) =0if and only if I'y (f) C T'+(g).

(1.2.1)

The Newton distances have the following another expressions.

Lemma 1.2.3. The Newton distances can be expressed as follows.

(i) duolf. g) = max{d > 0: O (f) N (Ts(g) +d- 1) # 0}

(i) do(f,g) = max{d > 0: 0l (g) N (I'+(f) +d-1) # 0}.
Proof. We only consider the case of dyo(f,g). Let A:=min{d >0: (I (9)+d-1) C T (f)}
and B :=max{d > 0: 9l (f) N (I'y(g9) +d-1) # 0}. We will prove two side inequations.
(A< B) Assume that OT', (f) N (T'y(g) + A-1) = 0. Then, from the definition of A,

(I'+(9) +
(Fy(g) +9- 1) C I't(f) and this is contradicted to the minimality of A. Hence oIy (f) N
(T4 (g) + A-1) # 0 holds and this leads A < B.

(B < A) Since for all d > A, both (I';(¢9)+d-1) C T (f) and T4 (/)N (T4 (g9)+d-1) =0
hold, we have the following relation:

{d=20:00 ()N (Ti(g) +d 1) #0F <{d=0:(T(9) +d-1) ST(f)}.

Taking the infimum of right side, we have

{d=0:00.(f) N (Ti(g) +d-1) # 0} < A

Taking the maximum of left side, we have the desired inequation. Il

-1) € I'y(f) holds. There exists positive constant 0 < § < A satisfying that
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From the viewpoint of geometry of two Newton polyhedra, the above expressions are

obvious. We define the two affine maps &, Py : R” — R" as
Do) = a+dw(f,9) -1
Po() == +do(f,9)- 1
We define the subsets of 0I'y (f),0l'(g) as
Lu(f) := 004 (f) N (' (9)) (= T (f) N (T(9) + doo(f,9) - 1)),
Ii(g) == 00 (g) N Qo(I'(f)) (=0T4(9) N (T4 (f) +do(f,9) - 1))

From the expressions in Lemma 1.2.3; the sets in (1.2.2) are not empty unless one Newton

(1.2.2)

polyhedron is completely contained in another one. We note that the above sets are not

necessarily the union of proper faces of each Newton polyhedron.

Remark 1.2.4. From Lemma 1.1.6, we see that I'.(f)(resp. I'i(g)) is a set of proper faces
of Boo (I (9)) (resp. Do(T'4(£)).

Let us define the Newton multiplicities of d(f, g), do(f, g) and the sets of important faces
of I'y (f) and I"; (g), which will play important roles in the investigation of multiplicities of
the oscillation index. Let F[f] (resp. Flg]) be the set of faces of I'y (f) (resp. I'y(g)). We
define two maps

v O (f) = FUfL 72 004 (g) = Flg,

as follows: for v € O (f), let y¢(cr) be the face of I', (f) whose relative interior contains .
It is clear that such a face can be uniquely determined. For § € 9I';(g), 7,(5) is determined

in the same way. Then, by using these maps, define

Fulfl = A{ys(a) € Ff] € Tu(N)},
Fulg] == {m4(B) € Flg] : B € I'(9)}-
When T, (f) (resp. T.(g)) is empty, we define F.[f] = 0 (resp. F.[g] = 0).
Definition 1.2.5. The Newton multiplicities of ds(f,g) and do(f, g) are defined by
Moo (f, 9) == max{n — dim(y) : v € F[f]},
mo(f,g) = max{n — dim(7) : 7 € F[g]}.
If F.[f] = 0 (vesp. Fi[g] =0), we define moo(f, g) = 0 (resp. mo(f,g) = 0).

We call the pair (dw(f, 9), Mmoo (f, g)) and (do(f, g), mo(f, g)) the Newton data with respect
to the pair (f, g). Note that these values depend on the choice of coordinate.
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Definition 1.2.6. The set of principal faces at infinity of Ty (f) is defined as

Foolfl:= Ay € Alf]:n— dim(y) = m(f, 9)}-
Define
Foolgl = {2 (1) NT4(g) 1 7 € Fulf]}- (1.2.3)
It is easy to see that every element of the above set is a face of Iy (¢), which is called principal
face at infinity of Iy (g).
Similarly, we define the sets of principal faces at zero of T (f) and I';(g) as follows.

Definition 1.2.7.
Folgl :=A{7 € Flgl : n — dim(7) = mo(f, 9)},
Folfl ={@ (1) NT1(f) : 7 € Folg]}-
For 7. € Foolf] and 7y € Folg], we define two maps V.., ¥y as follows:
Voo : Foolf] = Foolgl a8 Voo (Vs) 1= g (70) N T4 (9),
Uo : Folgl = Folfl as Wo(mo) == g (10) NT1(f).
It is easy to see that these maps are bijective. We say that v, € Fuo[f] (resp. 170 € Folg])
is associated to Too € Foolg] (resp. Yo € Folf]) if Yoo(Voo) = Too (resp. Wo(79) = 7o) hold.
Roughly speaking, when 7., has an intersection with the image of 7., by the map &, we

say Yo 1S associated to 7.

Remark 1.2.8. Let us consider the case of g(0) # 0. Then I'y (g) = R and it follows from
the definitions that do(f,g9) = mo(f,¢9) = 0. In this case, since duo(f,g) and mu(f,g) are
independent of g, we simply denote them by d; and my, respectively. It is easy to see the

followings.

e The Newton distance d; is determined by the point ¢ = (dy,...,ds), which is the

intersection of the diagonal line oy = - - - = a, with 9" (f).

e The principal face of I'y(f) is the smallest face 7, of I'y(f) containing the point g,

which is uniquely determined.
o my=n— dim(y,).

In Section 2.2, we introduce the result of this analytic case, which is a seminal work of

Varchenko.
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1.2.1 Classification and examples

From the viewpoint of geometrical relationship between the two polyhedra, the situation will
be classified into the following four cases. We will explain the characteristic of each case and
give simple examples. In the examples below we consider the case of n = 2 and polynomials
f and g which does not have zero except the origin.

(1) The case of I' (f) =T'+(g)
At first, let us consider the case where two Newton polyhedra have the same shape. In this

case, it is easy to see that
deo(f,9) = do(f,9) =0, me(f,g9) =mo(f,g9) =n,
Foolf] = Flgl = Folf] = Folg] = the set of vertices of I'y (f)(=I'+(g)).
Example 1. Let f(z) = (22 + 22)? and g(z) = 2% + 23. Then T (f) = T4 (¢) and
doo(f,9) = do(f,9) =0, mu(f,9) = mo(f,9) =2,
Foolf] = Flgl = Folf] = Folg] = {(4,0),(0,4)}.
(2) The case of I, (f) € T'+(g)

Next, let us consider the case where the Newton polyhedron of f is contained in that of g.

In this case, from the definition of the Newton data, we can see
do(f,9) =mo(f,g) =0, Folf] = Folg] =0,
doo(f,9) > 0, moo(f,9) €{1,....,n},  Fuo[f] # 0, Fuclg] # 0.
Example 2. Let f(x) = 2% + 2§ and g(z) = 23 + 23. Then, we see that
doo(f; 9) = 2, moo(f, 9) = 1,
Foolf] ={a € RZ : g + ag = 6}, Fuolg] = {a € RZ : a; + ap = 2}.
The important case: f(0) = 0,g(0) # 0 is contained in this case. Since I';(g) = R,

Newton distance and multiplicity of (f,g) coincide with those appeared in the studies of

classical case (see [34] or Section 2.2 in this paper).

(3) The case of T';(g) C T'..(f)
The case where the roles of f and g are exchanged in the case (2) can be similarly dealt with.

More precisely,
doo(f,9) = moo(f,9) =0,  Fu[f] = Fxlg] =0,
do(f,9) >0, mo(f,9) € {1,....n},  Folf] #0, Folg] # 0.
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The case when ¢g(0) = 0, f(0) # 0 is the simplest situation of rational case and contained in

this case.
(4) The case of I (f) ¢ T4 (g) and T (g) ¢ T (f)

Finally, we consider the most interesting case where the properties of both Newton polyhedra

are appearing. In this case, we can see that

doo(f,9) > 0,me(f,g) €{1,....,n}, do(f,g) >0,me(f,g9) € {1,...,n}.
Example 3. Let f(z) = 2} + 23 and g(z) = z} + 23. Then,

doo(f,9) = do(f,9) = 2/3,m(f, 9) = mo(f,9) = 1,
Foolf] = {(2,0)}, Folg) = {a € RY s a1 + 205 = 4},
Foolg) = {(0,2)}, Fuolf] = {@ € R : 201 + ap = 4}
Example 4. We consider more complicated example. Let f(z) = z$23 + x{xj + 2% and

g(z) = 2% + z223. Then, the Newton polyhedra of f, g and figures describing the case when

each polyhedron moves until it is contained in another one are as follows.

a s a9

(/) dy \
Folgl

\ 1‘+(g)
o aq

Newton polyhedra (i) The case when I'y (g) moves (i) The case when I', (f) moves

Figure 1 : the image of Newton data of the pair (f, g)

By a simple computation, from (i) in Figure 1, we have

doo(f,9) = 2,mu(f, 9) = 2,
Foolfl ={(4,49)} U{(a1,2) € R? : oy > 4},
Foolgl ={(2,2)} U{(1,0) € R} : oy > 4}
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Similarly, from (ii) in Figure 1, we have

dO(fv g) = 27m0(f7 g) = 17
Folg] = {(2,2) € Ri tag > 2} Folf] = {(0,a2) € Ri :ap > 10},






Chapter 2
Earlier results

In this chapter, we study some properties of the oscillatory integrals and the result of

Varchenko. After that, we introduce earlier results of rational case.

2.1 Analysis of smooth phase case

Let f be a smooth function defined on an open neighborhood U of the origin in R™. At first,
let us start one-dimensional case. In this case, almost all asymptotic behavior of I,(¢; f) as
its parameter t — o0, including an asymptotic expansion, is already obtained. We define

important class of function often appearing in this paper.
Definition 2.1.1. Let f be a function defined on R".
o We say f is rapidly decreasing as x — oo if limg_,oc 2% f(2) = 0 for any o € Z7}..

o If f is assumed to be smooth on R" and for any 8 € Z7, O” f(x) is rapidly decreasing

as r — 00, then f is called a rapidly decreasing function.

We denote the set of all rapidly decreasing functions defined on D C R™ by S(D), which is

called Schwartz space.

Proposition 2.1.2. Let n =1 and ¢ be a smooth function satisfying that Supp(y) C (a,b).
If f'(z) # 0 for all x € [a,b], then for any N € N

b
I(t; f) = / et @p(z)der = Ot™) ast — oco.

11
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Proof. See the proof of Proposition 1 in Chapter 8 in [31]. [

It follows from the convergence of the integrals

P [ (F@) e o)

for any M € Z, that I,(t; f) is a smooth function on R. Putting this fact and Proposi-
tion 2.1.2, we see that 1,(t; f) is a rapidly decreasing function if f’ does not vanish.

As we see in Proposition 2.1.2, the asymptotic behavior of I,(¢; f) is essentially affected
by the existence of the point where the first derivative of phase function f vanishes. Next
proposition is called van der Corput lemma, which directly indicates an influence of flatness

of the phase function.

Proposition 2.1.3 (van der Corput lemma). Let n = 1 and ¢ be a smooth function satisfying

that Supp(p) C (a,b). If |f® ()| > 1 for some k € N, then

Lt NI < Ct™r (t2 1)
for positive constant Cy which is independent of t. If k =1, f' is required to be monotonic.
Proof. See the proof of Proposition 2 in Chapter 8 in [31]. O

Moreover, explicit asymptotic expansion of 1,(¢; f) is obtained.

Proposition 2.1.4. Suppose that f satisfies f(xo) = f'(wo) = --- = fEV(x) = 0 and
f®)(x) # 0 for k > 2. Then, we have the following:

I(t; f) ~ t7Y/F Z a;t % ast — oo. (2.1.1)
=0
Proof. See the proof of Proposition 3 in Chapter 8 in [31]. O

Remark 2.1.5. The first coefficient of the asymptotic expansion (2.1.1) is given by

—if(k) (l‘o

So if ¢ does not vanish at @ = x, the leading term of the asymptotic expansion (2.1.1) is

(Zot_l/k.
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In the case of n > 2 is more complicated. To discuss this case, we define critical point as

follows.

Definition 2.1.6. For a smooth function f, the point x is called a critical point if

0 0
(V) (zo) = <8_1{1(x0)’ . a_ai(xo)) = (0,...,0).
In the case of n > 2, similar result is obtained if the phase function does not have critical

point.

Proposition 2.1.7. Suppose that @ has a sufficiently small support and f has no critical
point on Supp(p). Then for any N € N

I(t; f) = / @ p(x)de = Ot™N) ast — .

Applying Proposition 2.1.2 (if necessary, choosing a coordinate system), one can prove this
proposition. This proposition shows that the behavior of the oscillatory integral essentially
depends on the properties of critical point of the phase function. Indeed, in the results

appearing below, some conditions are assumed to critical point of f.

Proposition 2.1.8. Suppose that f has a critical point at the origin and the support of ¢ is

contained in sufficiently small neighborhood of the origin. If the Hessian matriz

2 2
8:1?13];1 (0> T 8xalaj;n (0>

2 2
8;18];1 ( ) T 8x8n8fxn( )

is invertible (such critical point is called nondegenerate), then

L(t; f) ~t7"/? Zajt’j as t — oo, (2.1.2)
=0

where each a; is a constant depending on f and .
Proof. See the proof of Proposition 6 in Chapter 8 in [31]. [

This proposition is proved by applying Morse’s lemma and transforming f into the form

i+t Ym — Wi o +yn) for some 0 <m < n.
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Remark 2.1.9. The first coefficient of the asymptotic expansion (2.1.2) is given by

(2mi)"2 - o(0)

T VTt z0)]

So if ¢ does not vanish at the origin, the leading term of the asymptotic expansion (2.1.2) is

aot*”/Q.

2.2 Analysis of degenerate case and result of Varchenko
In this section, we assume that

e f is a real analytic function defined on a sufficiently small open neighborhood U of the

origin in R™ and satisfy that f(0) = [(V f)(0)| = 0.
e f has no critical point apart from the origin on U.
e ¢ is a smooth function whose support is contained in U.

Theorem 2.2.1 ([14], [25]). The oscillatory integral I,(t; f) admits an asymptotic expansion
of the form:
I,(t; f) ~ Z Z Cor(p)t *(logt)F! as t — oo, (2.2.1)
a k=1
where « runs through finitely many arithmetic progressions consisting of positive rational

numbers and a map ¢ — Co (@) is distribution.

This result is obtained by an application of Hironaka’s resolution of singularities for

analytic functions.

Theorem 2.2.2 ([11], [3]). There exists a proper real analytic mapping 7™ from some n-
dimensional real analytic manifold Y to R™ such that at each point of the set m7=1(0), there

exist local coordinates y = (y, ..., yn) Satisfying the following properties:

(1) There exist nonnegative integers l; such that

fr(y) = iHy?- (2.2.2)
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(2) The Jacobian of the mapping © has the form

n

Ty) =]y " (2.2.3)

j=1

where m; are positive integers.
(3) m:Y \ 7 1(0) = U\ {0} is a diffeomorphism.

Since Hironaka’s resolution theorem is existence theorem, we cannot have explicit order
of each term in (2.2.1), even the leading term (explicit values of ({;,m;) in Theorem 2.2.2
can not be obtained). To discuss the leading term of (2.2.1), we define oscillation index &(f)
and its multiplicity n(f) of I,(t; f) as follows.

E(f) == min{a : Cy # 0 for some k, ¢},

n(f) = max{k : C¢(s)x # 0 for some p}.

Newton polyhedron has only information of multi-index of the Taylor series of of f, further
condition, concerning with the coefficients of the Taylor series, us needed. The following

condition is very crucial in the theory of Varchenko.

Definition 2.2.3. Let K =R or C. f is nondegenerate over K with respect to the Newton
polyhedron I'y (f) if for every compact face v of I' (f), f, satisfies

0 0
Vi, = (8_3]::’ e ’82) # (0,...,0) on the set (K \ {0})".

This nondegeneracy condition is introduced by Kouchinirenko in [20].

Remark 2.2.4. The above nondegeneracy condition depends on K. For example, let us
consider a function f(zy,z9) = (23 + x3)%
fy = f. The gradient of f, is (Vf,)(z) = (41 (2] + 23), 4xo(a? 4+ 23)) and (V f,)(z) = (0,0)
is equivalent to xy = ix5. This implies f is nondegenerate over R but degenerate over C with

respect to I'; (f).

Then, I'y (f) has only one compact face v and

Theorem 2.2.5 (Varchenko, [34]). Suppose that f is nondegenerate over R with respect to
U (f). Let dy,my and v, be as in Remark 1.2.8 then the followings hold:

(i) the arithmetic progression {a} appearing in Theorem 2.2.1 is obtained from geometrical

informations of I'L(f).
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(ii) There exists a positive constant C(p) satisfying that
() < Clp)t™ Y (log )™~ (£ > 2).
In particular, —=£(f) < —1/d;.
(1ii) Assume that ¢ satisfies p(0) # 0. If at least one of the following conditions is satisfied:

(a) df > 1y
(b) f is nonnegative or nonpositive on U;

(¢) 1/dg is not an odd integer and f,, does not vanish on U N (R \ {0})",

then &() = 1/d; and n(f) = m;.

These results are obtained by investigating the properties of the following integral

Za(s: F.) = / F@Pe(e)ds (seC),

n

where f,¢ are the same of I,(¢; f). From the convergence of the integral, this integral
defines a holomorphic function on the right half plane {Re(s) > 0}, which is called local
zeta function. In analysis of this function, resolution of singularities of f are used to know
the property of its analytic continuation. In fact, Zg(s; F, ) is analytically continued to
the whole complex plane as a meromorphic function and its poles appear in the order of
each term in the asymptotic expansion (2.2.1). An exact relationship between I, (¢; f) and
Zr(s; F, @) is written in [16], [35] or Chapter 7 in this paper. However, as we mentioned
before, resolution of singularities cannot be given explicitly for general analytic function
f. The work of Varchenko is essentially to give a method of constructing a quantitative

resolution of singularities under the nondegeneracy condition in Definition 2.2.3.

Remark 2.2.6. There is an oscillatory integrals with complex phase. In this case, 1,(7; f)

is defined as follows

I(T; f) = / e @p(2)dz (1 €R), (2:2.4)
where functions f and ¢ are holomorphirc functions defined on an open neighborhood U of
a critical point of f and I' is an n-dimensional chain lying on U. Then, when 7 tends to
infinity, it is shown in [25] that [,(7; f) admits the following asymptotic expansion

I,(15 f) ~ Z Z Coxm(log 7)1 (2.2.5)

a k=1
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where o runs through finitely many arithmetic expressions consisting of negative rational
numbers. Furthermore, the components (o, k) in (2.2.5) are connected to the eigenvalues of
(classical) monodromy operator of f at its critical point. Malgrange shows in [25] that for
cach «, exp(—2ma) is an eigenvalue of monodromy of f and if C,, ;. # 0, the size of the Jordan

block of exp(—2m«) is not smaller than k.

2.3 Known result of rational case

We recall a part of the work of W.Veys and W.A.Zuniga-Galindo in [35] for the case of
rational functions. By using a simultaneous resolution of singularities, they determine the
forms of two asymptotic expansions of I,(¢; f, g) as its parameter tends to zero and infinity.

In this section, we assume that

o f.pand U are same as in section 2.2.

e g is a real analytic function defined on U and satisfies that ¢(0) = |(Vg)(0)| = 0.

Moreover, g has no critical point apart from the origin on U.

Theorem 2.3.1 ([35]). Let my be the order of a pole A of Zg(s; f, g,¢) as in (i-7), then we
have the following:

(i) 1,(t; f,g) has an asymptotic expansion as t — oo of the form:

I(t; f, g) ~ ZZCakt (log t)*~ (2.3.1)

a k=1

where —a runs through all negative poles of Zg(s; f, g, ¢).

1) 1,(t; f,g) has an asymptotic expansion ast — 0 of the form:
®

my+1
I(t; f,g) — C ~ ZZDMtﬁ log )™+ 3~ Dyt (log )+ (2.3.2)
BEZ k=1 AEN k=1

where C' = fR" x)dx is a constant and [ runs through all positive poles of Zg(s; f, g, ¥).
If X\ is not a pole of Zr(s; f, g,¢), we put my = 0.

Remark 2.3.2. In [35], the authors investigate the meromorphic case (i.e., f,g are holo-
morphic functions and the integral is considered on C) and non-archimedean case (i.e., the

integrals on p-adic local fields), and obtain similar results.
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As is the result of analytic case, from the above theorem, we cannot know exact order
of each term of asymptotic expansions. Our main results enable us to determine orders of

leading terms in (2.3.1), (2.3.2) in an analogous way to the result of Varchenko.
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Main results

Let us state our main results relating to the estimate and determination of oscillatory indices
¢o(f,9) and & (f, g). Our main results extends Theorem 2.2.5 to rational phase case. Let U

be a small open neighborhood of the origin in R™. In this section, we assume that

e fand g are real analytic functions defined on U, which satisfy that f(0) = [(Vf)(0)| =0
and ¢g(0) = [(Vg)(0)| = 0. In other words, f and g have a critical point at the origin.

e f and g have no critical point apart from the origin on U.
e (0 is a smooth function whose support is contained in U.
First, we give an estimate for I,(¢; f, g) when its parameter is sufficiently large.

Theorem 3.0.1. Suppose that f - g is nondegenerate over R with respect to its Newton
polyhedron. If the support of ¢ is contained in a sufficiently small neighborhood of the origin,
then

o (t; f.9)| < C(p) /=09 (log 1) =91 (1 > 2).

In particular, we have —&.(f,g) < —1/dso(f, g).

We shall give some conditions where the oscillation index . (f,g) and its multiplicity

Mo (f, g) are determined by means of Newton data with respect to the pair (f,g).

Theorem 3.0.2. Suppose that f, g, satisfy the conditions in Theorem 3.0.1 and ¢ satisfies
©(0) # 0. Moreover, at least one of the following three conditions is satisfied:

19
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(a) dso(f,9) > 1;
(b) f is nonnegative or nonpositive on U;

(¢) 1/dx(f,q) is not an odd integer and f,_ does not vanish on U N (R\ {0})" for some
principal face at infinity Yoo € Foolf],

then foo(f, g) - 1/doo(fa g) and noo<f7 g) = m00<f7 g)

Next, let us consider the case when ¢ tends to zero. From the second part of the asymptotic
expansion (2.3.2), we see that I,(¢; f, g) has a smooth part near the origin, which correspond
to the terms of A € N and k£ = 0. In order to clarify an influence of the singularity of phase
function, we decompose I,(¢; f, g) into two part, regular part and singular part. By Borel’s
theorem, there exists a C'*° function ¢, small § > 0 and a positive constant C' not depending

on t satisfying that [1(t) — ¥y (t)] < CtN+° for any N, where ¢y is as in (i-5).

Definition 3.0.3. We call 1(t) the regular part of I,(t; f, g) and S,(t; f, g) := L,(t; f,9)—(t)
the singular part of 1,(t; f, g).

Note that the regular part ¢(¢) cannot be uniquely determined since v (¢)+ (flat function)
has same Taylor series. From (2.3.2) and the above definition, it is easy to see that the singular

part S, (t; f, g) has the following asymptotic expansion

mg
Se(ts f.9) ~ DY bast’logt)* ast —0,

B8 k=1

where 3, mg are the same as in Theorem 2.3.1. Our main results are concerned with the
leading term of this asymptotic expansion. At first, we give an estimate for S,(¢; f, g) for

small parameter.

Theorem 3.0.4. Suppose that f, g, p satisfy the conditions in Theorem 3.0.1, then
[Sp(t; f,9)| < D(p) £/ Tog g™ 91 (0 <t < 1/2).

In particular, we have &(f, g) > 1/do(f, g).

From the above theorem, we can see the next corollary relating to the regularity of

I,(t; f,g) at zero.
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Corollary 3.0.5. Suppose that f, g, satisfy the conditions in Theorem 3.0.1 and let k be
nonnegative integer with k < 1/do(f,g) < k+1. Then I,(t; f,g) is C* function at 0.

Finally, we shall give some conditions where &y(f, g) and n(f, g) are determined by means

of Newton data with respect to the pair (f,g).

Theorem 3.0.6. Suppose that f, g, ¢ satisfy the conditions in Theorem 3.0.1 and p satisfies
©(0) # 0. Moreover,

(i) if 1/do(f, g) is not an integer and at least one of the following three conditions is sat-
isfied:

((L) dO(fv g) > 1}'
(b) g is nonnegative or nonpositive on U;

(¢) gr, does not vanish on U N (R\ {0})" for some principal face at zero 9 € Fylgl,

then &o(f,9) = 1/do(f,g) and no(f,g) =mo(f,9).

(i1) If 1/do(f,g) is an integer and at least one of the following two conditions is satisfied:

(d) g is nonnegative or nonpositive on U;

(e) 1/do(f,g) is an even integer and g, does not vanish on U N (R\ {0})" for some

principal face at zero 19 € Folgl,

then 60(f7 g) = 1/d0(f> g) and nO(fa g) = mO(f> g) + L.

Remark 3.0.7. (i) From the proof of the above theorems, we can see that under the
same assumptions, the sets of arithmetic progressions {—a} and {#} in the asymptotic

expansions (i-4), (i-5) belong to the following sets:

{-a} c | Pala)U(-N), (3.0.1)

acVy

{8} < |J Prla)UN, (3.0.2)

aeV_

where V). C Z} are finite sets of vectors as in (5.1.5) and Pg(a) is arithmetic progression

depend on a € Z defined in (6.0.2).
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(i) Tt is known [16] that —1/d.(f,g) is the maximum element of the first set in (3.0.1)
and 1/dy(f, g) is the minimum element of the first set in (3.0.2).

Remark 3.0.8. Let us consider the case when do.(f,g) = 0. In this case, Theorem 3.0.1
implies for any NV € N, the following inequation holds

[1,(t; f.9)| < Cle)t™  (t>2).

This means I,(¢; f, g) is rapidly decreasing as t — oo and the singularity of f does not appear

in this asymptotic expansion. Similarly, if dy(f,g) = 0, for any N € N, we have

|Sp(t: f,9)l < D(p)t" (£ <1/2)

from Theorem 3.0.6. This means I,(¢; f, g) is smooth at the origin and the singularity of g

does not appear.

Remark 3.0.9. The limits

lim ¢"/4=U9) (log ) =D L (t; £, g)

t—o0

and

lim ¢~/ 009 (log )™ VDML (8 £, g)  (1/do(f. ) & Zo),

t—0

limt_l/dO(f’g)(logt)_mO(f’g) I(t; f,9) (1/do(f,9) € Z>o)

t—0

are explicitly computed in Chapter 7. The conditions in Theorems 3.0.2, 3.0.6 are sufficient

conditions where such limits do not vanish.

Remark 3.0.10. It is needless to say that the behavior of I,(¢; f, g) is independent of the
exchanges of the integral variables. Therefore, if there exists a coordinate in which f and g

satisfy the assumptions in each theorems, then the respected assertion holds.
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Toric resolution

In analysis of Varchenko in [34], the theory of toric varieties plays an important role. In this
section, we recall the fundamental terminologies and the method to construct a toric variety

from a given fan.

4.1 Cones and fans

Definition 4.1.1. A rational polyhedral cone o C R™ is a cone generated by finitely many

elements of Z", i.e., there exist uy, ..., ur € Z" such that
o={Mus + -+ Mur € R": Ay, ..., A\ > 0} (4.1.1)

Furthermore, if the vectors {uy,...,u;} in (4.1.1) are linearly independent and primitive
integer vectors, i.e., the greatest common divisor of each component of u; is equal to 1, the

set {uq,...,ux} is called the skeleton of o.

We say that o is strongly convez if o N (—o) = {0}. By regarding a cone as a polyhedron
in R™, the definitions of dimension, face, edge, facet for the cone are given in the same way
as in Definition 1.1.5. It is clear that the skeleton of o generates o itself and that the number

of the elements of skeleton of k-dimensional cone is not less than k.

Definition 4.1.2. ¥ is a fan if X is a finite collection of cones in R™ with the following

properties:
(i) Each o € ¥ is a strongly convex rational polyhedral cone;

23



24 Chapter 4  Toric resolution

(ii) If 0 € ¥ and 7 is a face of o, then 7 € ¥;
(iii) If 0,7 € ¥, then o N7 is a face of each.

For a fan 3, the support of X is defined by
X = U o.
ceX
For k =1,...,n, we denote by ©(*) the set of k-dimensional cones in ¥. For fans 1, ..., %y,

we define ¥ := {03 N---Noy,, :0; € X;}. Then ¥ is also a fan.

Definition 4.1.3. Let X be a fan in R”,. The fan S is called simplicial subdivision of ¥ if 3.

satisfies the following properties:
(i) The fans ¥ and 3 have the same support;
(ii) Each cones of 3 lies in some cone of 3;

(iii) The skeleton of any cone belonging to 3 can be completed to a base of the lattice dual

to Z™.

Note that for k-dimensional cone o € i("“‘), the number of the elements of its skeleton is

equal to k.

Remark 4.1.4. It is known [19] that for an arbitrary fan X, we can find a simplicial sub-
division of Y by a unimodular triangulation. In fact, the simplicial subdivision of S of ¥ is

not uniquely determined. There can exist infinitely many simplicial subdivisions for one fan.

4.2 Fan associated with polyhedra

Let P be an n-dimensional polyhedron satisfying that P + R} C P C R%}. We explain a
method to construct a fan from polyhedron P. We denote by (R™)Y the dual space of R"
with respect to the standard inner product. For a = (ay,...,a,) € (R")" with a; > 0, we
define

l(a) = min{{a,a) : « € P},
v(a) ={a € P: {(a,a) =l(a)}(= H(a,l(a)) N P).
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We define a relation ~ in (R")Y by a ~ @’ < v(a) = v(a’). Then, we immediately see that

7

the relation ”~” is an equivalence relation and for any face vy of P, there is an equivalence

class 7" which is defined by
v i={ae€R") :y(a)=vand a; > 0for j=1,...,n}

(4.2.1)
(={a€ ®R") :y=H(a,l(a))N P and a; >0 for j =1,...,n}).
Here PV = {0}. The closure of 7, denoted by 7V, is expressed as
W={ae ®R") :vCH(alla)NPanda; >0forj=1,..n} (4.2.2)

Proposition 4.2.1. Let v be a k-dimensional face of P expressed as
y=[)H(, ()N P
j=1
for{a',...;a™} C ZT. Then, 7V is an (n— k)-dimensional strongly convex rational polyhedral

V- and the set {a',...,a™} is its skeleton.

cone in (R™)
Moreover, the collection of ¥V for all faces of P gives a fan Yp, which is called the fan

associated with the polyhedron P.

Note that [¥Xp| = R%. Furthermore, let us consider n-dimensional polyhedra P, ..., P, C
R? satisfying P; + R} C P; C R, Let Xp, be the fan associated with P;. It is known that
the collection oy N --- N oy, for all o; € Yp, gives a fan, which is called the fan associated
with the polyhedra P, ..., P,,. We remark that any simplicial subdivision of this fan is also a
simplicial subdivision of ¥p, for each j.

In order to make the relationship between a face of P and an n-dimensional cone in )y
more understandable, we introduce the following two maps.

Let ¥ be a simplicial subdivision of ¥ and a'(0), ...,a"(c) be the skeleton of o € 3.

Two maps

A

v:P{1,...,n}) x 2™ = F[P], I:F[P]x%™ = P{1,..,n}) (4.2.3)

are defined as

Y(I,0) = [ H(d (o), 1(a’(0))) N P,

Jjel

I(y,0):={j:v C H(d(c),l(d(0))). (4.2.4)
If I =0, we define (0, o) := P. Note that I(P,o) = 0.
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Lemma 4.2.2. For o € ¥, v € F[P] and I € P({1,...,n}), we have the followinyg.
(1) v Cy(I(y,0),0) and dim(y) < n —#I(y,0).
(ii)) v =~(I,0) =1 CI(y,0) = dim(y) <n — #I.

Proof. (i) By the definitions of v(/,0) and I(~, o), we have

Y(I(y0)0)= (] H((0).U(a(0))NP D

Jel(v,0)
From the above relation, one can find that dim(y) < dim((;, ) H (@ (0),1(a?(0)))) =
n— #I(’% 0-)‘
(ii) The first implication is shown as follows:
y=9(,0) =~ =(H(@(0),l(a’(0))) N P
jel
=~y C H(d(0),l(a’(c))) for all j € I = I C I(v,0).

From the inequation in (i) and #I < #I(v,0), the second implication in (ii) is obvious. [

Next, let us consider the case when dim(vy) = n — #I(v,0). For a face v of P, we define

a set of cones as

~

2" (v) = {o € 2™ : dim(y) =n — #I(v,0)}. (4.2.5)
Lemma 4.2.3. For o € X, v € F[P] and I € P({1,...,n}), we have the followinyg.

(1) #1(7,0) = dim(y" No).

(ii) 5™ (7) = {o € 5™ : dim(y¥ N o) = dim(y")} # 0.

(iii) If o € S (), then v = ~v(I(7,0),0).

Proof. (i) For any j € I(v,0), the face 7 is contained in the hyperplane H(a’(o),l(a’(c))).
From the definition (4.2.2), we have a?(c) € 7V and this implies a’(c) € vVNo. So there exists
a bijection from I(7y,c) to the set of linearly independent vectors {a’(c) : j € I(v,0)} C
7_\/ No.

(ii) From the equation in (i) and dim(yY) = n—dim(y), we see that dim(y") = #1(v,0) =
dim(vyY N o). Since the support of S s R", there exists o satisfying that dim(yY No) =
dim(y"). So % (5) is not empty.



4.3 Resolution of singularities associated with )y 27

(iii) We have the following inequation,

dim(y) < dim(1(1(1.0).0)) < dim | () H(@(0). 1(a)())

J€l(7,0)
_ @ 4
=n—#I(y,0) = dim(y).

The inequality (1) is obtained from the assertion (i) in Lemma 4.2.2 and the equality (2) comes
from the assumption. This implies dim(y) = dim(y(I(vy,0),0)). Since v C v(I(~,0),0) by
Lemma 4.2.2-(i), the above dimensional equation yields v = v(I(v, o), 0). ]

4.3 Resolution of singularities associated with 5

Here, we explain the method to construct a toric resolution of singularities for K-analytic
functions defined on K = R or C. It is known that this method is available for the case when
K is a local field with characteristic zero, for instance, p-adic field. If you want to know
about this and its applications to the non-archimedean local zeta function, see [35].

Let ¥ be a fan satisfying || = R} and 32 be one of a simplical subdivision of 3. For each

o e XM let al(0),...,a"(c) be the skeleton of 0. We set the coordinates of a’(c) as

a'(0) = (a1(0), ..., a},(0)).

We denote the copy of K™ by K™ (o), which is associated with a cone 0. We define the map

i (o) : K™"(0) = K™ as follows: mg(0)(y1, ..., Yn) = (21, ..., T,) With

Let Y; be the union of K™(o) for o which are glued along the image of 7x (o). In detail, Y5
is a quotient space | |, ¢ K™(0)/ ~ with the equivalence relation defined by y = (y1, ..., yn) ~
v =,y © mr(o)(y) = k(7)) for y € K"(0),y € K™(7). It is known (see [9])
that

e Y5 is an n-dimensional algebraic manifold;

e The map 7 : Yy — K" defined on each coordinate K" (o) as ng (o) : K"(0) — K" is

proper;
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e Each K"(0) is densely embedded in Y.
Remark 4.3.1. The following conditions are equivalent.

e a'(0),...,a"(0) can be completed to a base of the lattice dual to Z".
[ det(ai(a))lgj,kgn = +1.
e The inverse map 7 (o)~ is rational.

Definition 4.3.2. The manifold Y5 is called the toric variety associated with 3

Later, we see that the pair (Ys, k) satisfies the properties in Theorem 2.2.2. The pair
(Y, m) is called the K-resolution of singularities associated to 5.

The following lemma is useful for the analysis in Chapter 6.

Lemma 4.3.3. (i) The set of the points in K™ (o) in which w (o) is not an isomorphism

18 a union of coordinate hyperplanes.

(ii) The Jacobian of the mapping w (o) is

n

a?(o))—1
Jﬂ'K(O’)(y) = j:Hy; @) .

i=1

Proof. Here, we prove only (ii). From the definition of the Jacobian and the determinant,

we have
al(o)—1 d?(o al (o n al(o) a2(o af(o)—1
a}(a)yll( ) y21( )ynl( ) al(a)yll( )y21( )ynl( )
al(o)—1 a2(c al (o n al(o) a2(o al(o)—1
a%(a)yf( ) 922( )"'yn2( ) a2(0)y12( )y22( )“'ynZ( )
| S (W) =
al(0)-1 a2(o ap(o n al (o) a2(o ap(o)—1
a}l(a)yln( ) an( ) __ynn( ) a"(o)y! ( )y2 ( )___yn (o)
— ai(o)yrt - af(o)y,!
al (o . . .
_ (H%( ( )>) :
— B " 3
’ a'717,(0->y1 ! an<0)yn1
. d(o) - atlo)
al(o))—1 . . .
= (Hy]< (@) > I (4.3.1)
ap(o) - ay(o)

The determinant of the last matrix in (4.3.1) is equal to 1 or —1, because of the property of

the simplicial subdivision (the property (iii) in Definition 4.1.3 and Remark 4.3.1). [
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Lemma 4.3.4. If v =~([,0) as in (4.2.3) and {a'(0),...,a™(0)} is a skeleton of o, then f,
satisfies the following equation on {x € K" : f,(x) = 0}:

J I J v
ai (o) 3x1 +-+ an(a)xnaxn =0 forjel.

Proof. From the form of f, in (1.1.2), we see that f, is a quasi-homogeneous polynomial with

a weight {a](0), ..., al (o)} for each j € I. Since (a/, ) = I;(a’(0)) for a € 7, we have
F0@gy )y ) = @ @) ¢ (g)

with a parameter t. Differentiating both side by ¢, we have

0 ; i
Zak ek 15, 90 1 ) gy (@i (o) @ N1 £ (), (43.2)
8$k
Substituting t = 1, f,(z) = 0 to (4.3.2), we have the desired equation. O

The next lemma is concerned with the property of the map mx (o) when the face v(7, o)

is compact.

Lemma 4.3.5. If v =~(1,0), the following conditions are equivalent.
(i) v is compact.
(ii) mr(o)(Ti(K™)) = 0.

Proof. See the proof of Proposition 8.6 in [18]. O

4.4 Resolution of singularities with respect to two func-

tions

Let X, ¥, be fans associated to the polyhedron I'y (f), I't(¢9) and ¥ := {01 N0y : 01 €
Y, 09 € ¥,}. In this section, let us recall some lemmas on the simultaneous resolution of
singularities for two functions introduced in [18]. Hereafter, we use the symbol I,(a) for

a € R} and K-analytic function h defined near the origin in K™ defined as

lh(a) :=min{{a,a) : a € ' (h)}. (4.4.1)
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and for I C {1,...,n}

T(K") ={ye K":y; =0if j € I},
THK") ={ye K":y;=1if j € I}.

Lemma 4.4.1 (Proposition 7.4. in [18]). Let 3 be a simplicial subdivision of the fan ¥ and
o € 3™ be an n-dimensional cone whose skeleton is a'(o),...,a" (o) € Z". Then, there exists

such that f5(0) - g»(0) # 0 and

K -analytic functions f,, g, defined on the set wx(o)~!

(U)
f (o) () = (ﬁyé““““”) fa(y)
! (4.4.2)
9(mx (o) (0) = (H yé-g(“”””) 20

fory € (o) 1(U).

Proof. Here, we treat only the case of f. Substituting mx (o) into the Taylor series of f, we

have

f(r(o)(y)) = Z Ca (H (e > ﬁ o] (0)a1+ad (0)ag+-+ad (o) o

a€Zl

n

co [Tl (4.4.3)

ezn  j=1

Since the multi-index « lies in I'; (f) and from the definition of ;(a) in (4.4.1), all the terms
in (4.4.3) can be divided by y;f(aj(g)) for j =1,...,n. Thus, one can find that

frx(@)(y) = [Lu ™ anH @@l @) (Hy;f“” "”) o).

j=1 acZy  j=1 Jj=1

From the construction of 3, there exists ap € '\ (f) N Z" satisfying that (a/(0), ag) —
l;(a’(0)) = 0 for any j = 1,...,n and this implies f,(0) = c,, # 0. O

For h = f, g, we define a map v, : P({1,...,n}) x (DN Flh| as follows:

=) H(a(0), (0’ (0))) NT 4 (h).

jel
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Lemma 4.4.2. Let f, and g, be as in Lemma 4.4.1. If vy = v¢(1,0), 72 = v,(1,0), then we

have

Fulw@) @ @) = | [T/ | - 1T,
e (4.4.4)

(7 @) T W) = [ [T | - 9o(Tu(w)).
J¢l
Proof. By substituting y = T} (y) to (4.4.2) and the relation f,(T}(y)) = f+(T:(y)), we have
(4.4.4). O

Note that 7 (0)(T}(y)) € (K \{0})" if y € T;(K™). From Lemma 4.4.1, we see that f, g
can be expressed as normal crossing form near the origin of each K"(o). Then, in order to
complete the resolution, we have to consider the zero set of f,, g, at each coordinate axis far

from the origin. For this, we need Newton nondegeneracy condition appeared in Chapter 2.

Proposition 4.4.3. If f and g are nondegenerate over K with respect to their Newton
polyheda and a set I C {1,...,n} satisfies 7 (o)(T7(K™)) = 0, then the sets {y € TH(K™) :
fo(y) = 0} and {y € Tr(K™) : g,(y) = 0} are nonsingular, that is, the restriction of the
gradient of functions f, and g, to T;(K™) does not vanish at the points of the set {y €
Tr(K™) : fo(y) =0} and {y € T;(K") : g5(y) = 0}, respectively.

Proof. We only prove the case of f. Let v = v4(/,0). Since we consider the coordinate axis

far from the origin, we see that [[,,; v ;f (@) # 0. Thus, the relation (4.4.4) implies

fo(Ti(y)) = 0 = fo (7 (0)(T} (1)) = O,

aiyjm(a)@}(y») —0 forjgl. (4.4.5)

0

8_yjfU(T](y)) =0

Therefore, it suffices to investigate the zero set of f. (7x (o) (T} (y))). We denote a coordinate
of (o) (THw)) by (1, n), 1€ Gp = [Te: y?"yc(g). Then, by chain rule, each partial
derivative of f,(7) with respect to y; for j ¢ I is

S Al | .
) —;%kfw(y) i ; yka~ £5) forjel. (4.4.6)
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On the other hand, from f,(7) = 0 and Lemma 4.3.4, we have

n

a{c(a)gjkifv(?]) =0 forjel. (4.4.7)
k=1 Ol

If the gradient of f,(77(y)) vanishes, from (4.4.5), (4.4.6) and (4.4.7) we have

o) - a@)\ (a2h@) (o

2 2 -9 o~

alga) anga) y28g2:f’y(y) _ O ' (4.4.8)
o) - axo)) \a£@)  \o

Since n x n matrix (al(c))1<jr<n is invertible, (4.4.8) implies all partial derivatives satisfy

8%]_ f+(7) = 0 for § # 0. This is contradicted to the nondegeneracy of f. O]

Remark 4.4.4. Let b = (by,...,b,), ¢ = (c1, ..., ¢,) be points on T7(K") satisfying f,(b) = 0,
9o(b) # 0 and fy(c) # 0, go(c) = 0. Then, from the implicit function theorem, there exist
local diffeomorphisms ¢y, ¢. defined on an each neighborhood of b, ¢ such that

(i) y = dulu) with b = ¢y(b) and

(i o7 () 0 ¢b> (u) = (u; — by) (H u;f(aj(a))> ,

g jel

where y; = u; for j € [ and ¢ ¢ I.

(i) y = ¢e(v) with ¢ = ¢.(c) and

(5 o i (0) o gz%) (v) = o i 2 (H v;f(aa'(a))> ;

where y; = v; for j € [ and i ¢ I.

Mixing Lemma 4.4.2, Proposition 4.4.3 and Remark 4.4.4, we see that the pair (Y5, 7k)
satisfy the properties in Theorem 2.2.2 for both f and g. We call the pair (Y, 7x) simulta-

neous resolution of singularities with respect to f and g.

Lemma 4.4.5 (Lemma 7.5. in [18]). Let a = (a1, ...,a,) € R} and F := f - g. Let w(a) =
H(a,lp(a))NT(h) for h=F, f,g. Then we have
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(i) Fyp@)(@) = fr(0)(@) * Gy (2)-
(i) lr(a) = ly(a) + lf(a).

Proof. Let h = F., f, g have a Taylor series at the origin of the form

h(xz) = Z cn(a)x.

a€Zl

For a positive t, we have

h(t™xy, ..., t"x,) = Z cp(a)ti @z =t @p,(z),
a€Z
where h;(x) = o (@)t @) =@ pa Tt g easy to see that h;(z) satisfies ho(x) = h., () ().
Q€ Yh(a)

We have the following equation;
@ Fy () = 0@t £ (1) g (2) <= Fy(z) = to@Ha@-lr@) £ 0y, (z). (4.4.9)

Considering the limit as ¢t — 0 in (4.4.9) and be careful to the fact that Fy(z) # 0, the

assertions (i),(ii) are shown. O

Lemma 4.4.6 (Lemma 7.8. in [18]). If f - g is nondegenerate over K with respect to its
Newton polyhedoron, then so is each f and g.

Proof. Suppose that f is not nondegenerate. Then there exists a compact face v of I', (f)
and a point z, € (K \ {0})" such that %(a:*) =0 for j =1,...,n. Let a € Ry satisfy that
(a,ly(a)) is a valid pair defining 7. Moreover, from Lemma 4.3.4, 37 ajxngf;(az) = f,(x),
we have f,(z.) = 0. Since () = f,(2)() * gy,(a) (%) from Lemma 4.4.5-(i), we have
O, a) 0fta 095(@
= WUx) = (= Lk ) - a * a *) ° . * =0
0] = S 0] g 0] + i) )

J

for j = 1,...,n. This is contradicted to the nondegeneracy of F'. O]

Remark 4.4.7. In general, the converse of the assertion in Lemma 4.4.6 does not hold (for
example, f(x) = x1(z1 — x2) and g(z) = (x1 — x2)). So the assumption of nondegeneracy
of f- g is a little stronger to say f, and g, do not have other singularities. In fact, the

nondegeneracy of f - g is necessary to avoid another difficulty (see Lemma 4.4.8).
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From Remark 4.4.4, f, and g, can be expressed normal crossing form at the points on
the coordinate axis far from the origin under nondegeneracy condition. However, if f, and
g, vanish at the same point, we might have to consider further resolution. The following

lemma states that such situation does not occur under the assumption of nondegeneracy of

fg

Lemma 4.4.8. Suppose that F := f - g is nondegenerate over K with respect to its Newton
polyhedron and for any o € ™, a set I C {1,...,n} satisfies 7 (0)(T7(K™)) = 0, then f,(y)

and g,(y) do not vanish simultaneously on Tr(K™).

Proof. Assume that f,(b) = g,(b) = 0 for some b € T7(K™). From Lemma 4.4.2., we obtain

f’Yl(B) = 972<B> =0,

where B = 7 (0)(T}(b)) € (K \ {0})" and 71,79 are as in Lemma 4.4.2. By Lemma 4.4.5,
there exists v € F[F] such that F,(z) = f,, () - g,,(x). Then, we have

OF, o _ Of,

ag’m
8£Cj( ) N (9xj

837]'

(B) - g(B) + [, (B) (B)=0

for j = 1,...,n. This shows that F' is not nondegenerate. O]



Chapter 5
Some Important Fans

In this chapter, as a preparation for the analysis of local zeta function, we construct some
important fans which have appropriate properties reflecting the geometrical relationship be-
tween two Newton polyhedra. Furthermore, we define and investigate some fans which are
concerned with the coefficients of the leading terms in the asymptotic expansions (i-4), (i-5).
Indeed, we will have formulae of such coefficients by using cones belonging to the fans treated

here.

5.1 Important sets for candidate poles

5.1.1 Construction of an appropriate fan

In this section, we construct a fan which is appropriate in our analysis of local zeta function
in chapter 6. Let f, g be K-analytic functions defined near the origin in K™.

We define the sets of vectors as

Vi(f,g) = {a e R : £(l(a) = ly(a)) > O},
where [(-),l,(-) are as in (4.4.1).
Lemma 5.1.1. The following conditions are equivalent.
(i) doo(f,9) =0=T1(9) CT(f) <= Vi(f,9) = 0.

(it) do(f,g9) =0 <= T (f) CI'i(9) &= V-(f,g9) =0.

35
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Proof. We only prove the assertion (i). The first equivalence is obvious from Remark 1.2.2.
The second equivalence is proved as follows.

(<) V(f,9) = 0 implies I;(a) — ly(a) < 0 for all a € R}. Then, we have a relation
H*(a,l4(a)) € H (a,lf(a))  for all a € RY. (5.1.1)

Since Newton polyhedron is a polyhedron, (5.1.1) implies I'; (g) C I, (f).

(=) Assume that lf(a’) — [4(a’) > 0 for some a’ € R’. By the same argument, we have
a relation H*(d,l¢(a")) € H*(d',l,(a’)). Then, H*(d',1,(a")) N1 (g) =: 7(d') is a face of
I';(g) and

L@ \T4(f) D Tig) \ H(d, Ip(a')) D 7(a') \ HT(d',14(a)) = 7(a').
This implies T, (g) ¢ T+ (f). 0
For f,g, we define
T, (f,g) := the convex hull of the set T, (f) UT,(g).

Note that I, (f, ¢g) is a polyhedron. Let X; be the fan associated with the polyhedron I'; (f, g).
We define a subset of ¥, as follows

Yp :={o€X;:ls(a) =1l,(a) holds for any a € o}.
From this definition, it is easy to see that ¥p is a subfan of X;.
Lemma 5.1.2. Every cone o € Xy satisfies only one of the following conditions:
(1) Int(o) C Vi(f,9);
(i) Int(o) C V_(f, 9);
(iii) o € Xp.

Proof. Let o be a cone in 3, and a'(0), ..., a*(0) be skeleton of o. Let v, be a face of ' (f, g)
defined by

Vo = (ﬂ H(aj(U)J*(aj(U)))) NI.(f.9), (5.1.2)
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where [,(a) := min{(a,a) : « € ' (f,g)}. For a polyhedron P, we denote the set of
vertices of P by V(P). Since I'y(f,g) is the convex hull of ', (f) UT';(g), we see that
V(Ti(f,9) c V(I (f)) UV(I'i(g)) and from this fact, we have the following classification
of 7v,:

(A) % NV(IL(f,9)) € V(I'+(9));
(B) 7% n V(I (f,9)) € VII(f));

(C) 1NV () NV (f)) # 0.
Then, we will show that (A) = (i), (B) = (ii) and (C) = (iii).
At first, we consider the condition (A). From the definitions of {¢(-) and [,(-), it suffices
to show that I, (f) € H*(a,l,(a)) for any a € Int(c). The condition (A) implies that the

vertices of 7, are vertices of I'{ (g) only, then for any a € Int(o), we have

L(a) = ly(a).
The construction from the face of polyhedron to its dual cone as in (4.2.1) implies that ~, is
expressed as
Yo = H(a,lg(a)) NT4(f, 9)-

Thus, (a,l,(a)) is valid for I', (f, g) and we have following relations:

H*(a,ly(a)) D T4 (f,9) D T4(f). (5.1.3)

If H(a,l,(a))NT(f) # 0, this set is a face of ' (f) and from the relation (5.1.3), 7, contains
this set. Then, v, contains the vertex of I'{ (f) and this is contradiction.

(B) = (ii) is similarly proved.

For the proof of (C) = (iii), since the interior of ¢ can be shown by the same argument
as above, it suffices to consider the boundary of o. Since the boundary of ¢ is also a cone
in 3, we only have to consider the skeleton of 0. The condition (C) implies there exists
aeV(IL(f)) and 5 € V(I'1(g)) satisfying that «, 8 € v,. Then, from equation (5.1.2), we
have

a,B € H(a’(0),1.(a’(s))) for any j
and this implies
L.(a’(0)) = I;(d’(0)) = l,(a’(c)) for any j.
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5.1.2 Important fans and sets of vectors for candidate poles

Let F'= f-g and X be a fan associated with I'{ (F'). Let X be a fan constructed from the
fans Xp and Xy, ie., ¥ = {01 Noy : 01 € Xp,00 € ¥;}. Moreover, let 3 be a simplicial
subdivision of ¥, which will be the most important fan in our analysis.

From Lemma 5.1.2, we can define the following three subfans of 3.

S ={re¥:risaface of 0 € 5™ satisfying Int(c) C Vi (f,9)}.

S, = {r € ¥ :7isaface of 0 € 2™ satisfying ¢ C Xp}.

It is easy to obtain the following decomposition

=3, UZ_US3,. (5.1.4)

For an n-dimensional cone ¢ € 3, we denote by a'(0), ...,a"(c) the skeleton of o. Let V..

be the two sets of vectors in R} defined by
Vi ={d(0) e SV NVi(f.g):0 2™ j=1,.n} (5.1.5)

From the property of fan associated with polyhedron, we see that V. C Z7}. These sets of

vectors will be used to express the sets of candidate poles of local zeta functions.

5.2 Important fans for leading poles

In this section, we define and consider important fans for computation of the coefficients of

the leading poles of Zk(s; f, g, ).

5.2.1 Newton distances and distance between the two Newton

polyhedra
We define the symbol d(f, g;a) as
d(f, g;a) := (Ig(a) = ly(a))/(a),

where I;(-),l,(-) are as in (4.4.1) and @ € R%}. Let us explain the geometrical meaning of

d(f,g;a). For h = f or g, we denote by p(a) the point of the intersection of the hyperplane
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H(a,ly(a)) with the diagonal line {(t,....,t) € R% : t > 0}. Then l;(a)/(a) is a value
satisfying that p(a) = (I5(a)/{a), ..., ln(a)/{a)). Since H(a,l,(a)) NI (h) is always a face of
'y (h), ln(a)/{a) can be regarded as a distance from the origin to I'; () in the direction of a.
So d(f,g;a) stands for the some kinds of distance from I'; (¢g) to I'y (f) in the direction of a.

Proposition 5.2.1. Let do(f,g) and do(f,g) be as in (1.2.1), then we have the following:
(1) doo(f,9) = max{d(f, g;a) - a € R} }.

(it) do(f,9) = max{d(g, f;a) : a € R} }.

Proof. We only consider the case of doo(f,g). Let 'y (f) and I'; (g) be expressed as

Lo(f)= () H'(a,lf(a)), Ti(g)= () H'(a,ly(a)).

a€R?} a€RY
By the definition of dy(f,¢g) and Lemma 5.1.1, we have the following equivalence,
(T (9) +doo(fr9) - 1) CTL(f)
> l(a) — lg(a) —ds(f,9) - (a) <0 foralla € R} (5.2.1)

= dwo(f,9) > M for alla € R7}.

(@)
The last inequation implies doo(f, g) > max{d(f, g;a) : a € R’ }.
Assume that doo(f, g) > max{d(f,g;a): a € R}, then from (5.2.1), we have

(T(9) +do(fr9) - 1) ST (f)
= (I'1(9) +d(f,9) - 1) NOTL(f) = 0.

This is contradicted to the expression of doo(f, g) in Lemma 1.2.3-(i). O

By using the d(-,-;-), we define important subfans of ¥. Let ¥, ¥y be subsets of X
defined by

Yo ={0€X:d(f, g;a) =d(f,g) for all a € o}.
Yo={oceX:d(g, f;a) =do(f,g) forall a € o}.

Note that these subsets ¥, 2y are not empty.

Remark 5.2.2. From the above definition, it is easy to see that ¥, and ¥, are fans.
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5.2.2 Properties of X and X,

Lemma 5.2.3. Let {a'(0),...,a™ (o)} be a skeleton of o € ¥ (k = 2,...,n). For all a €
Int(o), the following inequation holds:

i d(f,g;:0(0)) < d(f,g:0) < max d(f,g;a’(0)). (5:2.2)
Proof. For any a € Int(o), there exist k; > 0 (i = 1,...,m) such that a = >_1" | k;a’(0). From
the construction of ¥, we can find the points £ € 0I' (f) and n € OI'; (g) satisfying that
l;(a? (o)) = (a/(0),&) and I,(a? () = (a? (0),n) for all j = 1,...,m. Then, from the definition
of d(f, g;a), we have

A g0) = = = TS (o)

<6L,€ - 77) Z?il ki<ai(0)7§ - 7]>
) .

By a simple computation, we have

LN e ity ({86 =) (a(0).€ — )

KRR S0 o)

% Y ki (d(0) - (@(0) - (d(f,9.a'(0)) = d(f, 9.0 (0)), (5.2.3)
I i=1,i#j

where Cj is a positive constant denoted by C; = (a’(0)) - > ki(a’(0)). By checking the

signature of the each term in (5.2.3), we can obtain the inequation (5.2.2). ]

Remark 5.2.4. From equation (5.2.3) in the above proof, equality in (5.2.2) holds if and
only if min<;<,, d(f, g;a'(0)) = maxi<i<, d(f, g;a'(c)) = d(f, g;a’ (o)) for all j.

Lemma 5.2.3 and Remark 5.2.4 say that d(f, g;a) has a property like maximum principle
in theory of complex analysis. We obtain the following corollary from the above lemma and

remark.

Corollary 5.2.5. Under the same situation in Lemma 5.2.3, the following two conditions

are equivalent.
(i) d(f,g,a) = maxi<j<, d(f,g,a’(0)) = mini<j<,, d(f, g,a’(c)) for some a € Int(o).

(ii) d(f,g,a) = maxi<j<p, d(f,g,a’(c)) = mini<j<,, d(f, g,a’(c)) for all a € o.
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From this corollary, we can check whether o € ¥ belongs to ¥, (X¢) or not by investigating
only one vector a € Int(o).

In Chapter 6, we have to consider all cones containing vectors a € R’} satisfying that
d(f,g;a) = ds(f,g) or d(g, f;a) = do(f,g). However, we find it sufficient to treat cones only

belonging to ¥, and Xy from the next corollary.

Corollary 5.2.6. The following equalities hold.

Zeo| = {a € R} 1 d(f, g;a) = do(f, 9)}-
20| = {a € R} : d(f,g;a) = do(f, 9)}.
Proof. We only consider the case of ¥,. Assume that there exist a € R} and o ¢ ¥ such

that a € Int(o) and d(f,g,a) = dw(f,g). Then, from Corollary 5.2.5, we have d(f,g,a) =
dso(f, g) for all a € o. This is contradiction. [

5.2.3 Properties of the principal faces

In order to investigate the properties of the leading poles of Zk (s; f, g, ¢), we must understand
more exact relationships between cones of the subfans of 3 and the faces of Newton polyhedra
I (f)and ' (g). In this subsection, after we focus cones of the fans ¥, ¥y and the principal
faces in Fo[f], Folg], their relationships are investigated in detail.

For 0 € (™ we denote the skeleton of o as {a'(0),...,a"(c)}. Let

Ass(0) ={j 1 d(f,9;0' (0)) = d(f.9)} C {L,....n},

Ao(0) ={j  d(g, f1a’(0)) = do(f,9)} C {1, ....,n}
and for a cone o € % satisfying that Ay (c) # 0 or Ag(c) # 0, let Yoo(0),70(0) (resp.
Too(0), T0(0)) be the faces of I'y (f) (resp. ';(g)) defined by

Yool0) = () H(@(0),1;(’(0)) NTL(f),

JjE€EA (o)

(o) = () H(@(0), (e (0)) NT+(f);

Jj€Ao(o)

(5.2.4)

To(0) = () H(@(0),l(a’())) NT4(g),

JE€A(0)

n(0) = (] H(d(0),ly(a’(0))) NT(g).

Jj€Ao(o)
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When A, (o) or Ag(o) is empty, we define v,.(0) = 7o(0) := 0, v(0) = 70(0) = 0,
respectively.

Let f]oo and f]o be simplicial subdivision of ¥, and ¥ satisfying that 5300, ZA]() C 3. Let
S0 53 be subsets of S defined by

igg) = {0' - 2(02) . #Aoo(a) — moo(f; g)}7

i ) (5.2.5)
E(()n) ={o € Zén) t #Ao(0) = mo(f,9)}-

Lemma 5.2.7. Suppose that v is a principal face at infinity of U (f) and 1 is a principal
face at zero of T'1(g). Then we have the followings.

(i) 1(Yos,0) C Ano(0), I(10,0) C Ag(0) for any o € B,

(ii) #Anu(0) < moclf. 9), #Ao(0) < mo(f.g) for any o € S,

(iii) S (ys) C W 50 (1) S,
(iv) S8 S £,
Here, I(-,-) and 2™ (-) are as in (4.2.4), (4.2.5).

Proof. Since we can prove in analogous way, we only consider the case of ...
(1) Suppose that j € I(Ve,0), 1.6. Yoo C H(a’(0),1;(a’(0))). Let 7o be a principal face
at infinity of I'; (g) associated t0 Yoo, 1€, ¥oo(VYoo) = Too- From the definition of ¥, we have

P (Too) C U (Too) = Yoo and

Yoo € H(a(0),14(a’ (0))) = Poo(7) C H(a(0),1(a’ (0)))

= Too C O (H(d (0),14(a’(0)))).

Because of I';. (g) C @} (H(a (0),1;(a’(0)))) = H(a?(0),l;(a? (0)) —dso(f, g)- 1) and the fact
that 7o is a nonempty proper face of I';(g), the definition of I,(-) implies that [,(a’(c)) =
(a7 (o)) — doo(f, g) - {(a?(c)). This shows j € Ay (o).

(ii) The case when A, (o) = 0 is obvious, so we assume that A, (c) # (. Since j €

Anc(0) & 1,(01(0)) = (@ (0) = doc(f, 9) - (@7()) and Doo(T'4(g)) C T4 (f), we have

Do (T0(0)) C P ﬂ H(aj(a)vlg(aj(a))) N®u (4 (g))

JEA(0)
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= N AL )+ delf0) - (£ )NT)

JE€A (o)

= ) H@(©). (@) T (f) = 1lo). (5.26)
JEA(0)

Since P (Too(0)) is a nonempty set in I'u(f) and contained in the face vy (0) of I'y (f), the
definition of F,[f] implies that there exists a face 4 € F,[f] such that @ (7(0)) C 7 C
Yoo(0). From the definition of m(f,g), we have

dim(7ye0(0)) = dim(y) = n — meo(f, 9)- (5.2.7)

On the other hand, we have

dim(Yeo(0)) < dim ﬂ H(d(0),l;(a’(0))) | =n—#As(0). (5.2.8)

JE€A(0)

Putting (5.2.7), (5.2.8) together, we have # A (0) < mo(f, 9).
Since the proofs of the assertions (iii),(iv) are same as those of Lemma 11.5-(iii),(iv) in

[18], we omit them here. O
Remark 5.2.8. From Lemma 5.2.7-(ii),(iv), we see that

max{#Ay(0): 0 € f](")} = Moo(f, 9),
max{#Ao(c) : 0 € 2™} = my(f, g).

Proposition 5.2.9. (i) If o € S then Yoo (0) (Tesp. Too(0)) is a principal face at in-
finity of T (f) (resp. T'y(g)). Moreover, vo(0) is associated to To(0) (i.€., Too(0) =
Voo (Yeo(0)) )-

(i) If o € i(()n), then 1o(c) (resp. vo(0)) is a positive principal face at zero of ' (g) (resp.
L' (f)). Moreover, To(0) is associated to vo(o) (i.e., Yo(0) = ¥o(10(0))).

Proof. As we can prove in analogous way, we only consider the assertion (i). Suppose that
oW ie, #Ax(0) = moo(f, g).

(Vo0 () is a principal face at infinity of 'y (f))
From (5.2.7), (5.2.8), we have dim (7. (0)) = n—my(f, g) and, moreover, v, (0) = 5 € F.[f].
It follows from these equations that v (o) is a principal face at infinity of I'; (f).
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(Voo () is associated to 7o (o))

The following equation holds:

O (1(0)) = () H(d(0), (e’ (0)) N O (TL()).

JEA(0)

According to the property I' (¢) + dwo(f,9) - 1 C T'1(f), we have

Ol (Yeo(0))NTulg) = [ H(a'(0),14(a’(0))) N (T (f) = deo(f.9) - 1) NT1(g)
JEA (o)
ﬂ H(a(0),14(a’(0))) NT4(9) = Too(0).

From the above equation and the definition (1.2.3), we see that 7.,(0) is a negative principal

face of I'; (g) associated to oo (o). O

From Proposition 5.2.9, the map from $% to Fi [f] (resp. to .7-" [g]) is naturally defined
(i.e., 0 — Yoo(0) (resp. o+ Too(0))). Similarly, the map from E ) to Folf] (resp. to Folg])
is defined by o +— 7o(0) (resp. o +— 10(0)).

Lemma 5.2.10. The above four maps are surjective.

Proof. See the proof of Lemma 11.8 in [18]. O



Chapter 6
Analysis of local zeta functions

The purpose of this chapter is to investigate the following integrals

f(z)

g9(z)

S

Kgo(x)|dx\K (s € C), (6.0.1)

Zits: £.9.0) = |

K"\Dg

where K =R or C and

e f g are K-analytic functions defined on an open neighborhood U of the origin and
Dg = f71(0) U g71(0). Here, we recall that R-analytic means "real analytic” and

C-analytic means ”holomorphic”.
e ¢ is a smooth function whose support is contained in U.
o | |xmeans |-|g =] |or|-|c=]"|* where | - | is a usual absolute values in R or C.

o |dx|x means |dz|g = dxy A - Ndx, for (z1,...,2,) € R" and |dz|c = dxy A -+ Adx, A
dzy A -+ N dz, for (z41,...,2,) € C™.

Unlike the analytic case, the convergence of the integral in (6.0.1) is not followed from
the compactness of support of ¢. In fact, it is shown [1] that the above integral converges on

some slit domain in C.

Theorem 6.0.1 ([1]). There exist positive constants o, 8 with 0 < «, 5 < oo such that the
integral (6.0.1) converges locally uniformly on the region {—a < Re(s) < B} and defines a

holomorphic function there.

45
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This theorem is shown by using a simultaneous resolution of singularities. The holomor-
phic function defined on the region given in Theorem 6.0.1 is called archimedean local zeta
function attached to (f/g, ¢). Furthermore, W.Veys and W.A.Zuniga-Galindo [35] show that
the above local zeta function has a meromorphic continuation to the whole complex plane
and its poles are contained in finitely many arithmetic progressions consisting of rational
numbers. We denote this meromorphic continuation by the same symbol Zx(s; f, g, ¢).

As we mentioned in Introduction, poles of Zg(s; f,g,¢) are deeply connected to the
asymptotics of oscillatory integrals attached to (f/g,¢) in (i-3). Therefore, to describe the

properties of these poles is very important.

6.0.1 Candidate poles

Let us state the results relating to the positions and the orders of candidate poles of Zx (s; f, g, ).

For this, we define the arithmetic progression derived from a vector defined by

L <(1> + (5KI/ .
Pu@) = | vezfco (60.2)

lg(a) = ly(a
where a € Z7, l;(-),l4(-) are as in (4.4.1) and

Ok =
1/2 (K =0C).

Theorem 6.0.2. Suppose that f - g is nondegenerate over K with respect to its Newton
polyhedron, then we have the followings.

(i) The poles of the function Zk(s; f, g, ) are contained in the set

| Pr(a)U | Prla) U (6xZ\ {0, £1/2}), (6.0.3)

acVy acV_

where Vi are as in (5.1.5). Note that Vi, =0 if and only if doo(f,g) =0 and V_ = 0 if
and only if do(f,g) = 0.

(i) (a) If doo(f,g) > 0, then the largest element of the first set in (6.0.3) is —1/dx(f, ).

(b) If do(f,g) > 0, then the smallest element of the second set in (6.0.3) is 1/dy(f,g).
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(i1i) (a) If doo(f,g) > 0, the order of pole of Zk(s; f,g,¢) at s = —1/d(f,g) is at most

Moo (f, 9) if 1/dso(f,g) is not an integer,
min{me(f,g9) +1,n} otherwise.

(b) If do(f,qg) > 0, the order of pole of Zx(s; f,g,¢) at s =1/do(f,g) is at most

mo(f,q) if 1/do(f,g) is not an integer,
min{mg(f,g) + 1,n} otherwise.

Here, the poles on (6xZ \ {0,+1/2}) will be called trivial poles.

Remark 6.0.3. The set (6.0.3) is a set of candidate poles of Zk(s; f, g, ¢) and there might
be many poles which do not appear in actuality. As a known result, Denef and Sargos [§]
show that in analytic case, if a is an additional vector obtained by process of simplicial
subdivision, poles belonging to Pk (a) do not appear. We believe that the same assertion

holds in meromorphic case.

Remark 6.0.4. (a) As in the proof of Theorem 6.0.2, we see that the non-trivial poles,
that is, lying on Uy, Pr(a) UU,ey Px(a) can be computed by using the theory of
toric varieties based on the Newton polyhedra of f and g. This means that the list
of non-trivial poles can be determined by the geometry of the Newton polyhedra of f
and ¢g. On the other hand, the existence of trivial poles cannot be determined from the

information of I'y (f) and 'y (¢g) only.

(b) When d..(f,g) = 0, the set V| is empty and this implies that Zx(s; f, g,¢) has no

negative non-trivial poles. The same can be said for the positive non-trivial poles when
d0<f7 g) = 0.

6.0.2 The leading poles

Let us consider the important poles of Zk(s; f,g,¢) which have crucial roles in both the
properties of Zk(s; f, g, ) and relationship between Zg(s; f, g, ¢) and other mathematical
fields.
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Definition 6.0.5. (i) The largest negative pole in (6.0.3) is called the negative leading
pole. Moreover, the largest negative non-trivial pole is called the negative e-leading

pole.

(ii) The smallest positive pole in (6.0.3) is called the positive leading pole. Moreover, the

smallest positive non-trivial pole is called the positive e-leading pole.

The word ”e-leading pole” means ”essential leading pole”, which plays an essentially
important role in the analysis of oscillatory integrals.

Note that Zk(s; f,g,¢) does not always have negative(positive) (e-)leading poles. If
Zk(s; f,g,¢) has a negative leading pole at s = —a* and a positive leading pole at s = *,
Zk(s; f,9,¢) can be regarded as a holomorphic function on the region {s € C : —a* <
Re(s) < p*}. In Chapter 7, we see that properties of the negative and positive e-leading
poles of Zg(s; f, g, ) are reflected to the orders of leading terms of asymptotic expansions
(i-4), (i-5). In addition, in the recent studies of Bernstein-Sato polynomials in [32], [1], it
is an important issue to express these leading poles of Zk(s; f, g, ) by using appropriate
informations of f and g. For these reasons, we attempt to describe conditions where each

(e-)leading pole can be determined explicitly by means of Newton data defined in Chapter 1.

Theorem 6.0.6. Suppose that f - g is nondegenerate over K with respect to its Newton
polyhedron and ¢ satisfies that p(0) > 0 and ¢ is nonnegative on its support.

(i) Suppose that doo(f,g) > 0. If at least one of the following two conditions is satisfied:

(a) dso(f,9) > 1;

(b) K =R and f is nonnegative or nonpositive on U,

then the negative leading pole of Zx(s; f,g,¢) exists at s = —1/d(f,g) and its order

is equal to ms(f, ). Furthermore, if at least one of the three conditions (a), (b) and
(c) there exists Yoo € Foolf] such that f, _ does not vanish on U N (K \ {0})"

is satisfied, then the negative e-leading pole of Zk (s; f, g, @) exists at s = —1/d(f, g)

and its order is equal to mso(f,g).

(i) Suppose that do(f,g) > 0. If at least one of the following two conditions is satisfied:
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(d) do(f,9) > 1;

(e) K =R and g is nonnegative or nonpositive on U,

then the positive leading pole of Zx (s; f, g, ) exists at s = 1/do(f,g) and its order is

equal to mo(f, g). Furthermore, if at least one of the three conditions (d), (e) and
(f) there exists 7o € Folg] such that g,, does not vanish on U N (K \ {0})"

is satisfied, then the positive e-leading pole of Zi (s; f, g, ¢) exists at s = 1/dy(f,g) and

its order is equal to mo(f,g).

Remark 6.0.7. (i) We consider the case when du(f,g) = 0. From Remark 6.0.4-(b),

(i)

negative poles of Zx(s; f,g,¢) are only trivial poles and from the proofs of Proposi-
tion 6.3.1 and Theorems 6.3.3, 6.3.6, we see that Zk(s; f, g, ») has no negative trivial
pole under the assumptions (i)-(b),(c). According to these facts, we can interpret that
locating the negative leading pole at s = —oo indicates Zk(s; f, g, ) is holomorphically
extended to the left half plane. Similarly, Zx(s; f, g, @) is holomorphically extended to
the right half plane when its positive leading pole is at s = +o00.

In Theorems 6.3.3, 6.3.4, 6.3.6, 6.3.7, we give explicit formulae for the coefficients of
terms in Laurent expansion at e-leading poles under the same assumption in Theo-
rem 6.0.6. These explicit formulae show that the above coefficients essentially depend
on the principal face-parts (f,.,g-.) and (f,,, g ). The conditions in Theorem 6.0.6

are sufficient conditions for the non-vanishing of these coefficients.

Example 5. Let us consider adapting above theorem to the functions f, g in subsection 1.2.1.

It is easy to see that all the functions satisfy the assumptions in Theorem 6.0.6. Then, we

have the followings:

(i)

(i)

When f(z) = (2% +23)? and g(x) = 2 + 23, both Newton distances are equal to 0 and
assumptions (i)-(b),(c) and (ii)-(e),(f) are satisfied. Then, we see that Zgr(s; f, g, )
has leading poles at s = +o00, which implies Zg(s; f, g, ¢) can be regarded as an entire

function.

When f(z) = 28 + 2§ and g(z) = 22 + 232, doo(f,9) = 2 and do(f,g9) = 0. Here,
the assumptions (i)-(a) and (ii)-(e),(f) are satisfied, then Zgr(s; f, g, ¢) has a pole at
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s = —1/2 of order 1 as a negative leading pole and is holomorphically extended to the

right half plane.

(iii) When f(z) = 2% + 23 and g(x) = ] + 23, Zr(s; f,g,) has a negative leasing pole
at s = —3/2 of order 1 and a positive leading pole at s = 3/2 of order 1. Here, the
assumptions (i)-(b),(c) and (ii)-(e),(f) are satisfied.

6.1 Poles of elementary functions

For the analysis of local zeta functions, we investigate poles of elementary integrals of the

form
n

L(s) = /R (Hy§j8+mj_l> U (y, s)dy,

j=1
where [; € Z, m; € N and (-, s) is a C* function of y in R" for any s € C and (y, -) is an

entire function on C for any y € R™.

6.1.1 Positions and orders of poles of L(s)

Let B, By be subsets of {1,...,n} defined by
By :={j:+l; >0}, B:=B UB_.

Remark 6.1.1. It is easy to see that L(s) converges when s € C satisfies Re(l;s +m; —1) >
—1 for all j. Hence, L(s) defines a holomorphic function on the region

max{—m;/l;} < Re(s) < min{-m;/I;}
Proposition 6.1.2. L(s) can be analytically continued to the whole complex plane as a

meromorphic function and its poles belong to the set

{—mjl+yj :ujez+,jeB}. (6.1.1)
J

Moreover, suppose that p belongs to the above set and let

mj+uj

A(p):{jeB:— ; :pforsomeyj€Z+}.
J

Then, if L(s) has a pole at s = p, the order of the pole of L(s) at p is at most #A(p).
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Proof. For any v = (11, ...,v,) € Z, by repeating the integration by parts , we have

ﬁ H / rn[ yljs+mj+Vj aMiﬁ(% S) dy
ls—i—mj—l—l/) R\ J oy{* -+ - Oyun

j=1v=0 j=1

This shows L(s) is analytically continued to the wider region Re(l;s + m; + v;) > —1 and
the poles of L(s) are contained in the set (6.1.1). Since v € Z is arbitrary, we see that L(s)
can be analytically continued to the whole complex plane. Moreover, it is easy to see that

(I;5 +m; + v;) satisfying p = —(m; + v;)/l; appear at most #A(p) times. O

6.1.2 First coefficients of L(s)

Let us compute the coefficients of the terms of Laurent expansions of L(s) at the important
poles. When By # 0, we define py := max{—m;/l; : j € By}, p_ := min{—m;/l; : j € B_}
and Ay := A(p4), respectively. Note that pL are the negative(positive) leading poles of L(s)

if the coeflicients do not vanish.

Proposition 6.1.3. The coefficients of (s — p+) "7+ in the Laurent ezpansions of L(s) are

Hl_ O pi ZfAi:{l,...,n},

l mji—1
H /n AL y]pi+ ’ V(Tay(y), p+) H dy; (otherwise).
JGAj:

éAi JEAL

\

Proof. By an integration by parts with respect to each y; for j € Ay and the computation

of lim,_,,, (s — p+)#4£ L(s), we obtain this proposition. O

6.1.3 Trivial poles of L(s)

In the analysis in Section 6.2, we must consider the case when the coefficients of some poles

have particular properties. This property will be understood through the following functions:

s lis+m;—1
Ll,i<5):/ v IT w777 | (s eees s, ) dy,

+ jeED4

_s lis+m;—1
Ls1(s) :/ Yn H y; o VY1, s Yn—1, £Yn)dy,

¥ jeD_

where Dy are subsets of B\ {n}.
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Lemma 6.1.4. For A € N, let Ay) be subsets in Dy defined by Ay = {j: A +m; —1 € N}
and A_y ={j : —ljA+m; —1 € —=N}. Then, we have the following:

(i) The functions Ly 4 (s) have poles at s = —\ of order not higher than #A_\ + 1. More-
over, the following holds : Let ajf)\ be the coefficients of (s + \)"#4-2=1 in the Laurent
expansions of Ly +(s) at s = —\, respectively. Then the equation a®, = (—=1)*"'a_,

holds.

(i) The functions Lo 4 (s) have poles at s = X\ of order not higher than #Ax+1. Moreover,

the following holds : Let af be the coefficients of (s—\)"#4 =L in the Laurent expansions

of Lo+ (s) at s = A, respectively. Then the equation a) = —(—1)*"tay holds.

Proof. See the proof of Lemma 9.4 in [18]. O

6.2 Proof of Theorem 6.0.2

6.2.1 The case of K =R

At first, we consider the case of K = R. It is easy to see that the following relation holds.

Zr(8; [, 9,0) = Z4(s5 f,9,0) + Z_(s; [, 9, ), (6.2.1)
where
. _ M)
zisifoe)= [ (5H) et (6:22)
and

(f(2)/g(x))y = max{f(z)/g(x),0},  (f(z)/g(x))- = max{—f(x)/g(x),0}.

By applying the orthant decomposition to the functions Z.(s; f, g, ¢), we have

Zi(s; f,9,0) = Z (83 0, fo: 90) (6.2.3)
oe{-1,1}"
with .
s = [ (L) et (620
n +
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and
he(x) := h(0121, ..., 0,1,) (6.2.5)

for h=¢, f,g,0 = (b1,....,0,) € {—1,1}".
By applying the real toric resolution of singularities = = mgr(y), (+£(s; f,g,%) can be

expressed as

A >—/n (28) stopto

m e (2] oo mmlin s

(9o mr)(Y)
where dy is a volume element in Ys. It is easy to see that there exists a set of C3° functions

{Xo : Yy >R :0€ 3} satisfying the following properties:

e For each o € (™ the support of the function y, is contained in R™(0) and y, identi-

cally equals one in some neighborhood of the origin.

® > csm Xo = 1 on the support of ¢ o 7.

A set of these functions is called partition of unity on Ys. Then, we have
Celsifg0)= > (si.f.9) (6.2.6)
oesn)

with

() (. _ Some(@DWN" (L or o
Doso= [ <gom<a>><y>)i(“” () ) () s ()
1T

- lr(ad (o))—=1 a’ (o)) y
:/ (Hyjf(()) o(@(0)) )
T\ ()

Jj=1

(6.2.7)
(y)dy,

where X, (y) = (¢ o mr(0))(Y)Xo(Y).

Consider the functions Cia)(s; o, f,g) for each o € S We easily see the existence of
finite sets of C§° functions {& : R" — R}, {n : R" — R, } and {k,, : R* — R, } satisfying

the following conditions.

e The supports of &, n; and k,, are sufficiently small and >, &+ >, m+ >, km =1
on the support of x,.
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e For each k, the function f,/g, is always positive or negative on the support of &.

e For each [, the support of 7; contains just one point in the set {y € Supp(x,) : fo(y) =
0} and the union of the support of 7; for all [ contains the set {y € Supp(xs) : f-(y) =

0}.

e For each m, the support of x,, contains just one point in the set {y € Supp(xs) : 9,(y) =
0} and the union of the support of «,, for all m contains the set {y € Supp(x,) : 9,(y) =

0}.

Remark 6.2.1. From Lemma 4.4.8, f, and g, do not vanish simultaneously on the 77 (R™)
which satisfies 7(0)(T7(R"™)) = 0. Hence, by shrinking their supports if necessary, we can
select the supports of 7, and k,, satisfying that Supp(n;) N Supp(k,,) = @ hold for all [ and

m.

By using the functions {&x}, {m} and {k,,}, we have the following decomposition:

(s, 1.9) ZI (5)+ 3 JO(s)+ > K (s) (6.2.8)
l m
with
" ey -bwen )Y | .
= Y; ' Y &k (y)dy,
/]R 31_[1 J ga(y) X H k( )
= / [y fgéyg H “Hin(y)dy, (6.2.9)
RY \j=1 9oy L =1
K(s) = T @ e -b@e) f2 )\ 1T, @1 ;
= Hyj H o (y)dy,
jil gO’(y) =1
+
where & (y) = Xe (&), M(y) = Lo@)m(y) and fn(y) = Xo(y)rm(y). If the set {y €

m)

Nea

Xo
Supp(Xo) : fo(y) = 0} NRY (resp. {y € Supp(Xs) : go(y) = 0} NRY) is empty, then the
)

functions Jia(s (resp. K" (s)) do not appear in the decomposition (6.2.8).

6.2.2 Poles of 1) (s), JI (s) and K\")(s)

Let us consider the positions of poles of Ij(fz,(s), Jg?a(s) and Kj(;rf,)(s) in (6.2.9). First, we

consider properties of poles of the functions Iikg,(s) Since every y; is nonnegative in the
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integrand, we have

k i lr(ad (o))=lgy(ad (0)))s+(a? (o)) —1 fa(y) S
[i;(s):/ T ot - ta s ( > E(y)dy.
Rn

9o (y) +

Let
Alo) :=={j : l;(d'(0)) — l,(a’ (o)) # 0} C {1,...,n}. (6.2.10)

By applying Proposition 6.1.2 to (5.2.3), we can see that each ](fz,(s) can be analytically
continued to the whole complex plane as meromorphic functions and their poles are contained

in the set

U Pe@(o (6.2.11)
JEA(0)
Second, we consider the case of the functions Jil?a(s). By applying Lemma 4.4.1 and

Remark 4.4.4, Jgj(s) can be expressed as follows:

S

l 1y (a? (0))—lg(a? (o
JQU(S):/ (wi—b) [ @@

+ jEAl(O') +

X H u§aj(0)>—1 fll(uh ey Up — bi, ceey un)du,
JEA(0)
where A;(c) C {1,...,n}, i & Ai(c), b; > 0 and 7, € CS°(R™) has a support containing the

origin. Consider further changing the integral variables, we have

J(l) »(s) = / u; H ug-lf(aj(o))flg(aj(U)))sﬂaj(o)%l m(Ury ooy £y ooy up)du. (6.2.12)
L JjeA(o)

By applying Proposition 6.1.2 to (6.2.12), we can see that each Jj([l,)g(s) can be analytically
continued to the whole complex plane as meromorphic functions and their poles are contained

in the set

U Pr@(e)) U (-N), (6.2.13)
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Finally, we consider the case of the functions K i";)(s) In a similar fashion to the case of

Jj([l?a, we have

K(img)(s) = / v H vj(-lf(aj(U))_lg(aj(g)))SHQj(U)>_1 R (U1, ooy 205, s vn)dv, (6.2.14)
RY jEAm(a)

where A, (o) C {1,....,n}, i ¢ An(o), b; > 0 and &, € C§°(R™) has a support containing the

origin. By applying Proposition 6.1.2 to (6.2.14) again, we can see that each Kj([nf,)(s) can be

analytically continued to the whole complex plane as meromorphic functions and their poles

are contained in the set
U Pr(@(0)UN, (6.2.15)
j€Am (o)
where A, (0) == {j € An(0) : [;(a?(0)) — 1,(a’(0)) # 0}.
Considering the relation (6.2.1), (6.2.3) and above argument, the poles of Zg(s; f, g, ¢) are
contained in the union of the sets (6.2.11), (6.2.13) and (6.2.15). This implies the assertion-(i)
in Theorem 6.0.2 for the case K = R.

6.2.3 The case of K =C

In the case of K = C, Z¢(s; f, g, ) can be written as

f(z)

g(z

Ze(s; f,9,¢) :/ o(x)dx N\ dT.

C™\Dc¢

Applying the complex toric resolution of singularities z = m¢(w) and using the partition of

unity {x, : ffg —R,:0€ 2(")} on }72, we have

Ze(sif9.0) = > Zo(si f,9) (6.2.16)
ses()
with
n f( ) 2s n 2
5 l¢(a? (o)) —lg(a? (o o\Ww .« al (o)) — —
Zs(s; f,9) _/C ijf( (D)=l () () Xo(w) ij< @1 dw A dw, (6.2.17)
" li=1 7 j=1

where Y, = (¢ o m¢)(w)Xo(w). Furthermore, for each o, we find finite sets of C§° functions

{& :C" > Ry} {m : C" - Ry} and {k,, : C* — R} as in section 5.2 replaced x, with
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Xo- Then, considering the polar coordinate w; = rjeiej with r; > 0 and 6; € [0,27] and

Remark 4.4.4, Z,(s; f,g) is expressed as

Zo(s:1,9) =D IP(s) + Y I (s) + ) K{M(s),

where
fgk)(s) _ / HT?(lf(aj(U))—lg(aj(U)))S+2<aj(0))—1 (7, 8)dr, (6.2.18)
Yi=1
J0(s) = / gt [ 20 @ onse @1 gy g, (6.2.19)
i jEA (o)
f(((fm) (s) = /n TZ-_QS—H H r]?(lf(“j(a))—lg(aj(U)))5+2<‘lj(U)>—1 cHon (r)dr (6.2.20)
+ JjEAm (o)
with
; 2s
fo(rew) v i0 i
Hy(r,s) = / , “Xo(re) - & (re')do,
[0,27]" go(re?)
Hi(r) = / Yo (re®?) - iy (rei?)db,
[0,27]™
Hon(r) = / Yo (re®) - R (re®®)do.
[0,27]™
Here, re® = (r1e®, ... r,ei) and 7j(-), &m(-) are CF° functions whose supports contain the

origin. From the above expressions, it is easy to see that Hy(-,s) are C'*° functions for
any s € C, Hy(r,-) are holomorphic functions for any r € Ry and H;(-), Hn(-) are C™
functions. Therefore, we can apply same argument in the proof of real case to the integrals
(6.2.18), (6.2.19) and (6.2.20). Consequently, in the case of K = C, we see that the poles of
Zec(s; f,9,¢) are contained in the set (6.0.3).

Order of poles

Next, let us consider the orders of poles of Zk(s; f, g, ). At first, we give the proof of the

assertion-(ii) in Theorem 6.0.2.

Lemma 6.2.2.
max{—m ZCLGV+} :—m (6221)

min{—m ta € V_} = W) (6.2.22)
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Proof. We only consider the case of dw(f, g). By Proposition 5.2.1, for any a € R}, we have

the following equivalence:

15(0) ~ ly(a) L @

dOO(f7g>2d(f7g7a): <(l> doo(f,g) __lf((Z)—lg(a)

Moreover, from the construction of i, we see the existence of a € V. satisfying the equality

in the last inequality. Therefore, we have the equation in the lemma. O

Obviously, each element of the left sets in (6.2.21), (6.2.22) is equal to the first element

of the arithmetic progression Pk (a). This implies the assertions (ii) in Theorem 6.0.2.

Let us consider the orders of poles of Zx(s; f, g,¢) at s = —1/doo(f, g) and s = 1/dy(f, g).
From the equations (5.2.1), (5.2.2), it suffices to analyze the poles of Ij([k,?,(s), Jg?g(s) and
KE_T?(S) Applying Proposition 6.1.2 to the integrals (5.2.3), (5.2.5) and (5.2.6), we see that
orders of poles at s = —1/d(f,g), 1/do(f,g) of Ij(tkz,(s) are at most #A(0), #A40(0) and

those of Jj([l?g(s) and K(ff,)(s) are at most

min{#A4x(0),n —1} —1/d(f,9) ¢ Z,
min{#A(0) +1,n} —1/d(f,9) € Z;

min{#Ag(0),n -1} 1/do(f,9) ¢ Z,
min{#Ao(o) + 1,n} 1/do(f,g) € Z.
Here, A (o) and Ay(o) are as in (5.2.4).
To show the assertions (iii) and (iv) in Theorem 6.0.2, it suffices to show the esti-

mates #Ax(0) < moo(f,g) and #Ao(0) < mo(f,g). We can obtain these estimates from
Lemma 5.2.7 and Proposition 6.1.2.

6.3 First coefficients of Zx(s; f, g, ¢)

In this section, we compute the coefficients of Laurent series of Zk(s; f, g, ) at the (candi-
date) e-leading poles and give the conditions where the position and order of each e-leading

pole are determined by means of Newton data.
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6.3.1 The case of K =R

At first, we compute the coefficients of (s + 1/du(f,g)) =9 and (s — 1/dy(f, g))"™o(9)
in the Laurent series of Z.(s; f, g, ¢) for the case of K = R. Respectively, we define
Ce= lim  (s+1/du(f,9)"=Y9C(s: [, 9, 0),

Dy= lim  (s—1/do(f,9))™ "9 (s; f. g, ),

s—1/do(f,9)

(6.3.1)

where (1(s; f, g, ) is as in (6.2.4).
Here, we recall the definitions of important fans iﬁfgﬁ), ién) defined in Chapter 5.

igg) = {0' - 2(02) : #Aoo(a) = moo(f; g)}7
f](()n) ={o € f]én)  #Ao(0) = mo(f,9)}-

In this subsection, we use the following notation and symbols to decrease the complexity

in the expression of the integrals.
o [Lzay; dy; means [T, y;" - T4 dy; with a; > 0.
o L(A) = TT,ea(ls(a(0)) — Ly(ai(0))) .
o Ty(y) :={(y1, -, yn) ER" 1 y; =01if j € A}.
o A7 = A(0), A = Ay(0).

Here, A is a subset of {1,...,n}.
First, let us consider the coefficients of (s 4 1/ds(f, g)) = (F9).

Proposition 6.3.1. Suppose that f - g is nondegenerate over R with respect to its Newton

polyhedron and at least one of the following conditions is satisfied.
(a) dso(f,9) > 1;
(b) [5(Tag (y)) does not vanish on R N7(o)"Y(U) for any o € W,

Then, we have explicit formulae for coefficients C.. = 3 s Ci(0) =: G+(f, g, ), where
G+(f,g,p) are as in (6.3.8), (6.3.10), (6.3.11), (6.3.12) in the proof of this proposition.
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Proof. Let us compute the limit C4 explicitly. Let

M;(0) = —(I;(a’(0)) = ly(a’ (0))) /doe ([, 9) + {0’ (0)).

Respectively, we define

Ce(o):= lim  (s+1/du(f,9)"™=Y9¢ (510, f.9),

s*}fl/doo(f»g)

where Q(f)(s; o, f,g) is as in (6.2.6). If 0 ¢ > then C+(0) = 0 since the orders of poles of
C(f)(S' o, f, g) at s = —1/dxo(f, g) is less than mq.(f, g). Thus, it suffices to consider the case
when o € . We divide the computation into the following two cases: my(f,g) < n and
Moo (f, 9) = n.

(The case: moo(f,9) = N < n)
First, we consider the case when condition (a) is satisfied. Considering the equation (5.2.2)

and applying Proposition 6.1.3 to (5.2.3), (5.2.5) and (5.2.6), we have

=Y 100) + ) I (0) + ) K(o) (6.3.2)

with
~1/dso(f.9)
(k) - fo(Tag (y)) . 1
(o) = L(A%) / <— E(Tae (y GO g (6.3.3)
* R’ij ga<TAgo (y)) + gf ! ’
and
1 o 'fn(TAgo(ul,...,:I:ul-,...,un)) M;(a)—1
T (o) = L(AZ) / o e T «"" ', (6.3.4)
Ry U JEA(0)\AZ,
m - Fm(Tag, (V1 ooy £035 ooy 0p)) My ()1
K{"(0) = L(Aoo)/nN T [T o "4, (635
Ry Ui JEAm ()AL,

where &, A1, fim, Ai(0), Am(0), us, v; are as in (5.2.3), (5.2.5), (5.2.6). The summations in
(6.3.2) are taken for all &, [, m satisfying that Tas (R™)NSupp(&) # 0 and AZ, C Ai(0), A (o),
respectively. Since do(f,g) > 1, the integrals in (6.3.3), (6.3.4) are convergent as improper
integrals.

We remark that the values of /1" (o), Jj(cl)(a) and Kim)(a) depend on the cut-off functions
Xos &k, My Km- In (6.3.3), (6.3.4) and (6.3.5), we deform the cut-off functions &, n; and k,,
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as the volume of the support of 7, and &, tend to zero for all [,m. Then the limits of the

values of J; 4 (0) and K, + (o) are zero and we have

o) =>_ 1"(0). (6.3.6)

Furthermore, considering the support of >, & (y), we have

—1/doo(f,9)
Calo) =z [ (L) i) T 99y, (637)

0:(Tag () ), L

Furthermore, let us compute the limits C4 explicitly. If the cut-off function y, is deformed
as the volume of the support of x, tends to zero, then C (o) tends to zero. Since each R’} (o)
is densely embedded in Yy and Cy = Zaeifg) Ci(0), for any fixed cone o € 5% we have

C:I: = G:I:(fhgﬂo) with

- —1/dso(£,9) _1
Gl =tz [ (L) (¢ o 1) Tae ) TT 9%y

0o (Tae. ) ) 1l

(6.3.8)
We remark that the above integral does not depend on the cut-off functions. Let us give
the other formulae of GL(f, g, ), which are more directly expressed by f, g, ¢ with principal
faces at Infinity Yoo := Yoo (0) € Fuolf] and 7 := 7o (0) € Fuolg] which is associated to each

other. From Lemma 4.4.2, we obtain

(frw o ma(o))(The ) = | TT 6" | - £o(Tue. (),

JEAZ,

(6.3.9)

lg(a? (o

(Gre 0 m(@)(The @) = | TT 02" | - 90 (Tag ()
JEAZ,
By using the above equations, (6.3.8) can be rewritten as
Gi(f? g, ()0)
—1/des(f.9)
(froe © T(0)) (T (y)) (o)1

= L(A‘O’O)/ = (¢ o mr(0))(Tag (y gt O gy
(<ng o 72(@) (Tl ) ] , ) 11w J
(6.3.10)

Secondly, we consider the case when the condition (b) is satisfied. In this case, Jil?a(s)

do not appear in the decompositions (5.2.2) and the integral in (6.3.3) is convergent since
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fo(Tas_(y)) does not vanish. Thus, we can obtain the equations (6.3.7) for o € 5% by the
same argument as in the case of condition (a). However, in this case, we must be careful
that C1(0) do not always vanish even in the case when o ¢ 2% If —1/doo(f, g) is an integer
and o ¢ ) satisfies #Ax(0) = ms(f,g) — 1, the assertion-(iii) in Theorem 6.0.2 implies
that Jﬂ,(s) can have a pole at s = —1/d(f, g) of order mq(f, g). Indeed, for such o, the
orders of poles of Iikg(s) at s = —1/d(f,g) are at most mu.(f, g) — 1, so the value of C1 (o)
derives from the integral JE_LI?G(S) only. Hence, coefficients C4 (o) can be computed in a similar
argument as in the proof of Proposition 6.1.3. From these computations, it is easy to see that
these coefficients tend to zero if the volume of the support of y, tends to zero. Therefore,
the limits C+ can be similarly computed as in (6.3.8) and (6.3.10).
(The case: mqo(f,g9) =n)

In this case, by the same argument, we have

—1/deo(f,9)
fa(O)) £(0), (6.3.11)

95(0)

where ¢ € 5% and L = L({1,...,n}). From the equation (6.3.9), we obtain another expres-

G+(f.9,¢)=1L- (

+

sion corresponding to (6.3.10):

Gulfogp) = L- ( o(0). (6.3.12)

[
For the coefficients of (s — 1/dy(f, g)) ™9 we obtain similar result.

Proposition 6.3.2. Suppose that f - g is nondegenerate over R with respect to its Newton

polyhedron and at least one of the following conditions is satisfied.
((Z) dO(f) g) > ]-;
(b) 9o(Tag(y)) does not vanish on R N7w(o)~"(U) for any o € i](()n).

Then, we have explicit formulae for coefficients Dy = 3 _«m Di(0) =1 Hi(f,g,¢), where
0
H.(f,g,¢) are as in (6.3.13), (6.3.15), (6.3.14), (6.3.16) in the proof of this proposition.

Proof. Let
m;(0) = (Iy(a’(0)) = lg(0)) /do(f. g) + (a’(0)).
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Respectively, we define

Di(o):= lim (s —1/do(f,9))™9c (50, f,9).

s—1/do(f,9)

By the same argument in the proof of Proposition 6.3.1, we obtain Hy(f, g, ) as follows:
1fm0(f>g) =N< n,

(Tao 1/do(f.9) -
it = o) [ (B o oo T

+ JEAS
(6.3.13)
and if mO(f? g) =n,
£,(0) 1/do(f.9)
Hi(f,g.0)=1L- (g (O)L ©(0). (6.3.14)

where o € 2" and L = L({1,...,n}).

We obtain the other formulae of H.(f, g, ) in a similar fashion to the proof of Proposi-
tion 6.3.1 with principal faces at zero 7 := 79(0) € Folg] and 7o := Yo(0) € Folf], which is
associated to each other. If my(f,g) = N < n, then

H:t(fv 9, @)
o (Fo © 72(0))(Ths () ) o)1
— L(AO) /RiN ((97’0 o WR(O'))<T}18 (y)))i ((P o 7TR TA" gd yg dyj
(6.3.15)
and if mo(f, g) = n, then
1/do(f.9)
Hulfa.0) =L (2 o0 (6:3.16)
]

Finally, let us compute the coefficients of (s+1/dw (f, g)) ™9 and (s—1/dy(f, g))"™0(/9)
in the Laurent series of Z.(s; f,g,¢) and Zg(s; f, g,¢). Respectively, we define

CyL = lim s+ 1/do(f, Mmoo (f,9) 7 s: f,9,0),
= g T el 9) +(5:1.9,¢)
C= lm (s 1/dulf, )"0 205 f. g, 0)

s——1/doo(f.9)

Dy= lim (s—1/do(f,9)™ 9 Z (s; f, g, ¢),

S*)l/do(f,g)

D= 1 —1/do(F, 9))™Y9) Ze(s: f, g, 0).
HU;?(f,g)(s /do(f,9)) r(s; f,9,¢)
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Theorem 6.3.3. Suppose that f - g is nondegenerate over R with respect to its Newton

polyhedron and at least one of the following three conditions is satisfied:
(a) dso(f,9) > 1;
(b) f is nonnegative or nonpositive on U ;
(¢) fv. does not vanish on UN(R\{0})", where v is a principal face at infinity of ' (f).

Then, we obtain explicit formulae for coefficients in the following:

CyL = Z Gi(fg,gg, go(;) and C=C,+C_, (6317)
oe{-1,1}"
where fg, g9 and g are as in (6.2.5) and G.(f,g,¢) are as in Propositions 6.3.1.
Furthermore, if ¢ satisfies that o(x) > 0 and ¢(0) > 0 on its support, then Cy are

nonnegative and C = Cy + C_ s positive.

Proof. From the equation (6.2.3), (6.2.4), we must show that the conditions (a),(b),(c) imply
the conditions in Proposition 6.3.1 to obtain the formulae (6.3.17).

Since the case (a) is obvious, we only consider the cases (b) and (c). It suffices to show
that the conditions (b) and (c) imply that f,(T4- (y)) does not vanish on R™ N 7g (o) (V)
for any o € s

Assume that for some o € 5% there exists a point b € Tag wry N mr(0) "1 (U) such that
fs(b) = 0. By Lemma 4.4.6, f is nondegenerate over R with respect to its Newton polyhedron
and Proposition 4.4.3 implies that there exists points by, by € Tas ®n) N 7r(c) "1 (U) near b
such that f,(b;) > 0 and f,(b2) < 0. From the equations (4.4.2), (6.3.9) and g¢,(y) does not
vanish near b, it is easy to see that the conditions (b) and (c) induce the contradiction to the
existence of the above points by, bs.

In order to see C' = Cy + C_ # 0 from the formula (6.3.10), it suffices to show that
(Gro © m™r(0))(Tag (y)) does not identically equal to zero near the origin. This follows from

the equation (6.3.9) and g¢,(0) # 0. O

Theorem 6.3.4. Suppose that f - g is nondegenerate over R with respect to its Newton

polyhedron and at least one of the following three conditions is satisfied:

(a) do(f,9) > 1;
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(b) g is nonnegative or nonpositive;
(¢) gr, does not vanish on U N (R\ {0})™, where 1y is a principal face at zero of I';(g).

Then, we obtain explicit formulae for coefficients in the following:
Di= Y Hi(fs.g90.00) and D =D, +D_ (6.3.18)
fe{-1,1}»

where fg, g9 and g are as in (6.2.5) and Hi(f, g, ) are as in Proposition 6.3.2.
Furthermore, assume that ¢ satisfies that o(x) > 0 and ¢(0) > 0 on its support. If
mo(f, g) is odd, then Dy are nonpositive and D = D, + D_ is negative. If mo(f,g) is even,

then Dy are nonnegative and D = Dy + D_ 1is positive

Proof. In a similar fashion to the proof of Theorem 6.3.3, we obtain the formulae (6.3.18)
under the one of above three conditions. The signature of DL and D are seen by checking

the signature of L(AY). O
Theorems 6.3.3, 6.3.4 imply that Zr(s; f, g, ) has at s = —1/d(f, g) (resp. 1/do(f,g))
poles of orders ms(f,g) (resp. mo(f,g)).
Poles on integers
Let us consider the properties of poles of Z.(s; f, g,¢) at integers. For A € N, define
Aga(0) = {j € Al0) : =(Ig(a’ (0)) — ly(a’(0))A + (a’ (o)) — 1 € £N},
pixr = min{max{#A4,(0) : 0 € M} n -1},
where A(o) is as in (5.2.4).

Proposition 6.3.5. Suppose that f - g is nondegenerate over R with respect to its Newton
polyhedron. If the support of ¢ is contained in a sufficiently small neighborhood of the origin,

then we have the following:

(i) The orders of poles of Z+(s; f,g,¢) at s = =X\ € =N are at most p_x+1. In particular,
if =\ > —1/d.(f,g), then these orders are at most 1. Moreover, let a*, be the coeffi-
cients of (s + N)7P=>~1 in the Laurent series of Z.(s; f,g,¢) at s = —\, respectively.
Then we have a*, = (—1)*"ta”, for —\ € —N.
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(ii) The orders of poles of Z+(s; f,g,¢) at s = X € N are at most py + 1. In particular, if
A < 1/do(f,g), then these orders are at most 1. Moreover, let ay be the coefficients of

(s —A)™P2 71 in the Laurent series of Z+(s; f,g,¢) at s = X\, respectively. Then we have
al = —(=1)*"'ay for A € N.

Proof. Compared the forms of the integrals in (5.2.5), (5.2.6) and Ly +(s), Ly 1 (s) in (5.1.4),
we obtain above assertions by applying Lemma 6.1.4 to Jj([l,)g(s) and Kj(["? (s). O

6.3.2 The case of K =C

Next, let us consider the case of K = C. In this case, from the proof in subsection 6.2.3,
there appear only one type decomposition as in (6.2.16), while two types decomposition ” Cj(:)”
appear in the real case. Thus, the argument becomes a little simpler. In consequence, we
obtain similar results to the real case.

We define
é: lim (5+1/doo<f,g>)moo(f7g)Z(C(Suf7g790)7

D= lim (s—1/dy(f,q)™ P9 Zc(s; f, 9, 0).
soim (s = 1/do(f,9)) c(s:f.9,0)

(6.3.19)

Theorem 6.3.6. Suppose that f - g is nondegenerate over C with respect to its Newton

polyhedron and at least one of the following conditions is satisfied;

(a) dw(f,9) > 1;
(b) f(Tas (y)) does not vanish on C" N re(o)~t for any o € 0.

Then, we have explicit formulae for coefficient C' as in (6.3.23), (6.3.24) and (6.3.25) in the
proof of this theorem. Furthermore, if the conditions (i) - (a) or (c¢) are satisfied, and ¢

satisfies the conditions in Theorem 6.0.6, then C is positive.

Proof. We define
Clo) = lim  (s+1/dw(f,9))Z4(5; f,9), (6.3.20)

S*}*l/doo(f,g)
where Za(s; f,9)is asin (6.2.17). In this proof, we use same notations appearing in the proof
of Proposition 6.3.1, for instance, M;(0), L(AZ), Tag (-), T}‘go('), Ai(o), Ap(o), L. At first, we

assume that the condition (a) is satisfied.
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(The case : moo(f,9) = N <n)
In a similar fashion to the proof of Proposition 6.3.1, we apply Proposition 6.1.3 to (6.2.18),
(6.2.19) and (6.2.20). Then, we have

Clo) =Y 1W(a)+> Ja)+> K™(0)

k 1
where
j - /doo(fzg)
. Tao (re?)) ? : ; 2M;(0)—1
1®(o) = WNL(AZO)/ / fa“é E(Tyq (re?)) p2Mi(o)= dr;db;
RN J{0,2a]n—N go(TAgo (re®?)) j;:‘[go 7
(6.3.21)
and
o 2/doo 2M; (o
JO(o) = 7V L(A%, /HN/ T i(Tag (re))r; /doo(f-9) H T @1y ;d0;,
® (0.2} jEANNAZ,
(6.3.22)
- L(A? (o)—
K™ (g) = (45) Fon (Tag (1), 0)d | v/ %= (H9) H (@) tdr;,
2N RN \J[0,2]" = ' !
+ ’ JEAm(0)\AZ,

where () = Xo(J& (). A1() = Xo()i(): Fn() = Xo()im(-). Note that the integrals
(6.3.21), (6.3.22) are convergent as improper integrals because of d(f, g) > 2. By deforming

the support of &, n; and k,, as in the proof of Proposition 6.3.1, we have

é(a / /
RN J[0,27]n—N

Then, for any fixed cone o € if;f), by deforming the support of x, in a similar fashion

72/d00(f79) ) 2Mv( )71
Xo(Taq (re?)) H i drdb;.
JEAL

g (re'd))
9o go( rei?))

to the functions {x,} and considering the polar coordinate exchange again, we have explicit

formula for C as

L aVL(AL)
C= @y /

Furthermore, by using equations in (6.3.9), (6.3.23) can be rewritten as

72/doo(f:g)
(gpoﬂ(c TAO‘ H |w |2M dej /\dwj'.
JEAZ,

fa (TAgO (w))
9o (Tag, (w))

(6.3.23)
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—2/ds(f.9)
o TN L(A7.) / (fyo © Wc(d))(T};go(w)) ’ (¢ o me(0))(Tas (w))
=T ) C AL
(20)" N Jenn | (gro © 7T(;(<7))(T}1go (w)) (6.3.24)
« H |wj|2(aj(a))—2dwj A d_j
JEAL,
(The case : moo(f,g9) =n)
We have similar formulae to (6.3.11), (6.3.12) in the case of K = R.
i [o(0) | =0 fro ()| 2/
C=7"L-0)- =7"L-p0)-|—= 6.3.25
QO( ) ga(()) 90< ) g’roo<1) ( )

These computations are applicable if the condition (b) is satisfied by the same reason

discussed in the proof of Proposition 6.3.1. m
Similarly, the formulae of the coefficients of (s — 1/do(f, g)) ™9 are obtained.

Theorem 6.3.7. Suppose that f - g is nondegenerate over C with respect to its Newton

polyhedron and at least one of the following conditions is satisfied,

(Cl) d0<f7 g) > 17'
(b) fo(Tag(y)) does not vanish on C* N 7wc(o)™" for any o € f](()").

Then, we have explicit formulae for coefficient D as in (6.3.26), (6.3.27) and (6.3.28) in the
proof of this theorem. Furthermore, if the conditions (ii) - (a) or (c) are satisfied, and ¢
satisfies the conditions in Theorem 6.0.6, then D is positive (resp. negative) when mo(f,g)

is an even (resp. odd) integer.

Proof. The notations m;(o), L(Ag),TAg(-),leg(-),Al(a),Am(a), L are same as in the proof
of Proposition 6.3.2. By the same argument in the proof of Theorem 6.3.6, we obtain explicit

formulae for D as follows:

if mo(f,9) = N <mn, then

RNL(Ap)
P="Gipn /

2/do(f.9)
(¢ 0 7c(0))(Tag (w)) T lw;*™ @ 2dw; A duw;.
JEAG

fa (TA(‘)’ (U)))
9o (Tag(w))

(6.3.26)
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Furthermore, we obtain the following other formulae of D with principal faces at zero

70 := To(0) € Folg] and o := Yo(0) € Fo[f], which is associated to each other:

a4 [ | mel@) (T () [T
D= fo oo ¢ T
X H ‘ZUJ'P(CLJ(U))iQdU)j A\ dwj.
J¢Ag
If mo(f,g) = n, then
. 2/do(f,9) 2/do(f,9)
D=L o(0)- g”ggi — L p(0) - ?—((11; (6.3.28)







Chapter 7

Integral transforms and asymptotics

of oscillatory integrals

In this chapter, we will show some theorems and lemmas on two important integral trans-
forms. Indeed, these lemmas connect the poles of local zeta function Zg(s; f, g, ¢) with the
asymptotic behavior of I,(¢; f, g) via Gelfand-Relay function K(u). After that, we will give

the proofs of main theorems of this paper.

7.1 Mellin transform and Fourier transform

First, we introduce two integral transforms, Mellin transform and Fourier transform, which

play important roles in the analysis of oscillatory integrals.

Definition 7.1.1. Let f be continuous and locally integrable function on R,. Then the
Mellin transform of f is defined by

(MS)(s) = /000 ¥ f(z)dr (s € C). (7.1.1)
Remark 7.1.2. Let f be as in Definition 7.1.1 and satisfy the following conditions

(i) f(z) = O(z=@)) as & — +0;

(ii) f(z) = O(x=®9) as v — +o0,

where a, b are real constants with a < b and € > 0 is sufficiently small. Then, the integral in

(7.1.1) absolutely converges and defines holomorphic function on the region {a < Re(s) < b}.

71
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The inverse transform of the Mellin transform is defined by the following contour integral

(MIF)(x) := Lo r~°F(s)ds,

Comi

c—100
where a < ¢ < b. For the convergence of the above integral, F'(s) is required to be analytic

in the strip {a < Re(s) < b} and tend to zero uniformly as Im(s) — £oo for a < Re(s) < b.

The Fourier transform is defined as the integral below.

Definition 7.1.3. Let f be an absolutely integrable function. Then the Fourier transform
of f is defined by

(FA)() = /OO e f(x)dw.

—00

It is known that if f is a rapidly decreasing function, then so is (Ff).

7.1.1 Relationship between I,(t; f,g) and Zg(s; f, g, )

Now, let us consider the transformation of I,(¢; f, g) in (i-3) and Z.(s; f, g, ) in (6.2.2).
Define the Gelfand-Leray function K : R — R as

Kw@%wfmw—/me

where W, = {z € R"\ ¢g71(0) : f(z)/g(x) = u} for u € R and w is the surface element on
W, which is determined by d(f/g) ANw = dxy A -+ A dzp,.
Considering the change of variable f(z)/g(x) = v and Fubini’s theorem to I,(¢; f, g), we

have

Lo = [ = [ s
Wyu+W_y

R™\g~*(0)
= / e IC(u)du.

—00

This shows that the oscillatory integral I, (; f, g) is a Fourier transform of /C(u). On the
other hand, consider the same change of variable and Fubini’s theorem to Z(s; f, g, ), we

have
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Zi(s; f.9,0) = /}Rn\DR (%) x)dx —/ /W/iu (F£u)*o(z)du A w

- / () K (£u)du.

0

Thus, we have

o0

Za(5:£,9.9) = Zo(5: .9.9) + Z_(s: f.9, ) = / WK () du.

The last integral indicates that local zeta function Zg(s; f, g, ¢) is a Mellin transform of IC(u).
Since 1,(t; f, g) is a Fourier transform of IC(u), our main object of investigation is K(u). In
particular, we will focus on the influence of the critical points of f and g. To be more specific,
since u = f(x)/g(z), the properties of such singularities in '(u) are appearing when |u| tends
to zero and infinity, which correspond to the case when f(z) — 0 and g(z) — 0, respectively.

In the next subsection, we investigate the properties of C(u) as an inverse Mellin transform
of ZR(‘S; f7 g, 90)

7.1.2 Asymptotic expansion of the Gelfand-Relay function

Let us consider the asymptotic expansion of the Gelfand-Relay function K as its parameter

lu| — 0 and oo.

Theorem 7.1.4. Let 0 < p; < py < --- be positive real numbers and k; be nonnegative
integers. Suppose that Zi(s; f,g,¢) has poles at s = —p; of order k; for every j and ajfk are
the coefficient of the term (s+p;)™" of Laurent series of Z+(s; f, g, ) at s = —p;, respectively.
Then, we have the asymptotic expansion of the form:

ook
NZ AjpulPi (log [u])*~ (7.1.2)

7j=1 k=1

as |u| = 0 and

Ajrk = : (a;:k + aj_,lc)'

Proof. According to Theorem 6.0.1, there exist positive constants a, b such that Z, (s; f, g, ¢)

is a holomorphic function on the region {—a < Re(s) < b}. Furthermore, by an integration
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by parts to the integrals in (6.2.7), we see that Z,(s; f,g,¢) is uniformly dominated by
Im(s)~! for any s where Z,(s; f,g,¢) is holomorphic. Hence, we can apply the inverse
Mellin transform to Z, (s; f, g, ) as

1 c+100
KW =5 [ w1200 fg s (7.1.3)

211 Joino
for —a < c <b.
By applying the Cauchy’s integral formula to (7.1.3), we move the integral contour to the
left side. Then, for A € R with A < ¢ and A # —p;, we have
| [etioo
K =5 [ 0 Zu(s fg s

270 Jeino

1 A+ioco 1
— w5 g p)ds + ) —/ w24 (55 f,9,0)ds,  (7.1.4)
27TZ A—i0o 2mi OB;
A<—p;j<c J
where B; is the sufficiently small circle with center s = —p; . It is easy to see that the first

integral in the right-hand side of (7.1.4) is estimated as

1 A+ioco .
. / u" Z+(S; f: g, gO)dS
A

S R- u—)\—l
21 Jy_ino

with positive constant R. On the other hand, by the residue formula, the second term in
(7.14) is

k;

. 1A (— 1) .
/{)B Zy(si g, 0)ds = Y wbi! Ek_)l)!a},k(logu)k g

A<—p;<c k=1

A< —Dj <c

Since A is arbitrary, the following asymptotic expansion is obtained:

u)wz

j=1 k=1

k; .
a LuPlogu) it (7.1.5)

as u — +0. For Z_(s; f, g, ), the same argument gives us the following asymptotic expan-

sion:
k;

—u)~ ) (kl_l, aj,(—u)” " (log(—u))* ™! (7.1.6)

j=1 k=1

<7

as —u — +0. Owing to (7.1.5) and (7.1.6), the asymptotic expansion (7.1.2) holds.
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Similarly, we have the asymptotic expansion of K(u) as |u| — oo.

Theorem 7.1.5. Let 0 < ¢1 < g2 < --- be positive real numbers and k; be nonnegative
integers. Suppose that Zy(s; f,qg,¢) has poles at s = q; of order k; for every j and bfk are
the coefficient of the term (s —q;)™" of Laurent series of Z+(s; f,g,¢) at s = q;, respectively.

Then, we have the asymptotic expansion of the form:

oo kg
~ Z B; . lul"% ! (log |u])*~ (7.1.7)
=1 k=1
as |u| — oo and
(_1)k—1 N B
Bjj = i (b5 + b0, (7.1.8)

Proof. By deforming the integral contour in (7.1.3) to the right side, we have the above

asymptotic expansion. O

7.1.3 Some Fourier transforms

For analysis in next section, we prepare some important lemmas concerning with the Fourier
transform of some functions. To prove main theorems, we consider the Fourier transform
of each term appearing in the asymptotic expansion (7.1.2) and (7.1.7). However, to find
clear transformation of each term is difficult. So we consider the asymptotic formulae of each
Fourier transform.

Throughout this subsection, we use the following notation: Let f(¢),g(t) be functions

defined on an interval I C R.

o f(t)

g(t) mod S(I) means that f(t) — g(t) € S(I).

o f(t)

g(t) mod C*°(I) means that f(t) — g(t) € C(I).
e Whenn <a <n+1forne€Z, weset |a] =n.
e I'(-) means a gamma function.

The following lemmas are useful for the estimate below.
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Lemma 7.1.6. For a real number X\, the following inequation holds:
/OO e P ldy < Ce/? fort>1, (7.1.9)
t
where C s a positive constant independent of t.
Proof. When X < 1, we have a direct estimate as

o0 o
/ e P dr < / et =¢t
t t

for x >t > 1. If A > 1, an integration by parts implies
/ e "M ldr = e 4 (N — 1)/ e "’ 2da.
t t

By repeating this process, we see that this case can be reduced to the case of A < 1, which

implies inequation (7.1.9) holds for all . [

Lemma 7.1.7. If 0 < a < 1, then
1 . o
/ e dy = a/ ey ldy = eF2™T (o + 1).
0 0

Proof. The first equality is obtained by the change of variable Ta = y. When a = 1/2, the
first integral is called the Fresnel integral. Thus, the first integral is generalization of the
Fresnel integral and it can be computed in a similar way by using an elementary method of

complex analysis. Details are written in [15], [28], [33]. O

Fourier transform of z*~!

Let A\ e R, pe Nand x; : R — R be a " function satistying that

1 ifo<z<L,
xi1(z) =
0 UM<z

for positive constants L < M. We define integrals F' §1/3 (t) as

Fy) () ::/0 el log |2 ])P xa (|2 da. (7.1.10)
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Note that the integral F/Slp) (t) + Filz (—t) is the Fourier transform of the function z —

|z|*(log ||)?~*x1(|z|) and each integral in (7.1.10) absolutely converges. It is easy to see
that the relation
) ot
By (&) = a)\pleA,l(it) (7.1.11)

holds. From this relationship, it suffices to investigate the asymptotic behavior of the case
p=1
Lemma 7.1.8. If A > 0, then F/{ll)(t) = A\t= mod S(R), where Ay = 2™ ().

Proof. By change of integral variable s = —itx, we have a contour integral on the imaginary
line as follows.

SOl . 1 —1itoo N S
FA(11 (t) = / e (v)de = m/ e s <—_zt> ds
’ . , (7.1.12)

Here, we extend the real function x; to the complex function x; by defining x1(s) := x1(]s])
for s € C. Note that the support of x; is contained in a disk D(M) = {s € C: |s| < M}. Let
G be a domain in C whose boundary is anticlockwise oriented and consists of the following

three curves;

where M’ is a positive constant with M < M’. Applying Green’s theorem to the contour

integral along the boundary of GG, we have

/ {ess’\lfﬁ (E> ds+0- dE} = —// Q_ (ess’\lfa (E>) dsds. (7.1.13)
G14+G2+G3 t G Js t

S

Since e~ and s*~! are holomorphic on G, the right integral in (7.1.13) becomes

_// 685“%3 (?) dsds. (7.1.14)
G

On the other hand, since the curve Gj is outside of the support of xi, we see that the left
integral in (7.1.13) is equal to

oo . —itoo .
—/ e Ty (%) dz +/ e Yy (%) dy. (7.1.15)
0 0
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From (7.1.12), (7.1.13), (7.1.14) and (7.1.15), we have

with

Z(t)= egﬂt)‘/ e TNy (%) dx,
0
_ amig—A —s /\—12A E —
J(t) =e2™t //Ge s a§X1<t>dsds.
(Z(1))

From the definition of x4(s), we have

Z(t) = eém‘t_k/ e "My (%) dx
0

Sﬂtk/ e Tty — eg’”'t’\/ e Tt <1 - X1 (%)) dx
0 0

e%mF()\)t_)‘ — g2 /OO ettt (1 - X1 <§>> dx.

Lt

I
)

The last integral in (7.1.16) is estimated as

[ )

< /OO e—xx)\—ldx S Ce—(Lt)/Q
L

t

(7.1.17)

by using Lemma 7.1.6. From (7.1.16) and (7.1.17), we see that Z(t) — Ayt~ is rapidly

decreasing function.

(7 (1))

Let D(r) be a dick in C centered at the origin with radius r, that is

D(r):={seC:|s| <r},

where r is a positive real number. Note that %3¢ = 0 on D(L), since ¥1(s) =1 on D(L).

Consider the change of integral variable s = t(z + iy) to J(t), we have

A 8 1S
— pa™ip—A —s A1 2 o [ 22
J(t) =e2™t // e ’s le < r ) dsds

= —Qie;”i/ / e T (1 4 i) OX (i — y)dady,
o Jo
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where 0 is a differential operator defined by 0 = %(a% + z'a%) and we use the relation dsds =

(2i)dxzdy. Define the function H(y) as

H(y) = / e " (z +iy) 0% (i — y)d,
0

then the function J () can be regarded as a Fourier transform of H(y), that is,
J(t) = —22’6@7/ e "WH(y)dy.
0

Since the support of 9y, (ix — y) is contained in D(M) \ D(L), H(y) is a C° function and
this implies J () is a rapidly decreasing function.
Consequently, the assertion in lemma is shown.

]

As a corollary of the above lemma, from the relation (7.1.11), we have the following

asymptotic formulae.

Corollary 7.1.9.
FY)(t) = (£1)* At (log 1)~ + Ot (log t)7™2)
ast — oo. Here, Ay is as in Lemma 7.1.8.

Fourier transform of z=*!

Let A € Ryp, p € Nand xs2 : R — R be a C' function satisfying that

1 ifM<ux,
x2(x) = (7.1.18)
0 ifa<L

for positive constant L < M. We define the integrals F’ )Ezg (t) as

p

FE)t) = [ ] log ol xalol) o (7119
0

Note that the integral F)(\2p) (t) + F/{Qp) (—t) is the Fourier transform of the function z ~—
|z|~*"1(log |z|)*~x2(|z|) and each integral in (7.1.19) absolutely converges. It is easy to

see that the relation
or—1
p—1

ot

FO(£t) = (-1)

) ) (£t) (7.1.20)
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holds. Thus, it suffices to investigate the property of F )521) (t) as well. Unlike Lemma 7.1.8,
its asymptotic behavior is a little different whether A is an integer or not.

At first, we state the case when A is not an integer.

Lemma 7.1.10. If A > —1 is not an integer, then F>E21) = Byt* mod C*(R), where By =
e =™ (=\). Here, the branch of t* for t <0 is chosen as t» = e™|t]*,

Proof. (—1 < X < 0) First, we consider the case where A € (—1,0). By using x2(z) in (7.1.18),

Fﬁ) (t) is divided into two parts as follows,

Since the support of (1 — x2(x)) is compact, the second integral in (7.1.21) is a C'*° function
of t. When ¢t > 0, by the change of integral variable, the first integral in (7.1.21) can be
written as

/ pite A1 g A / ¢y 1y — PeT (=) (7.1.22)
0 0
by using Lemma 7.1.7. When ¢ < 0, by choosing the branch of ¢* as in this lemma, we have
/ ety A dy = |t!’\/ e Wy A ldy = ‘t’/\e%mr(_)\) = tAe%AﬂiF(_A)-
0 0

Therefore, the equation (7.1.22) holds for A € (—1,0).
<N

Next, let us consider the case where A € Ry \ Z. Since xa(x) = 0 for z < L, an integration
by parts implies

/OO ey g (2)de = i /00 e x A o (z)dw + ! /OO ey (x)da. (7.1.23)

0 A Jo A Jo

From the definition of x5 in (7.1.18), the support of x4 is contained in [L, M| and this leads
to that the second integral in (7.1.23) is a C'*° function. Since there uniquely exist m € N

and g € (—1,0) such that A\ = ¢ + m, by repeating the above process m times, we have

FEN0 = Sy, ¢ el mod O™ (®) (7.1.24)

Since ¢ € (—1,0), we can apply (7.1.22) to (7.1.24) and we obtain Fﬁ)(t) = A\t* mod
C*°(R), where
; & _ (0"

S @) T N D (gD
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Using the property of gamma function, I'(a+ 1) = al'(a) for a € R\ Z, we sce that Ay = A,
and the equation in the lemma holds for A € Ry \ Z. O

On the other hand, when A is an integer, a logarithmic function appears in the singularity
of F\(t).

Lemma 7.1.11. If X is a nonnegative integer, then Fﬁ) = C\t*logt mod C*°(R,), where
C\ = —i*/AL

Proof. Tt is sufficient to show the lemma in the case of A = 0. Indeed, we can easily deal
with the general case in a similar argument to that in Lemma 7.1.10.

We divide the integral Fo(,21) as follows.

1t o
Féi) (t) = / ey (2)dr + / ey (z)dx
L 1/t
1/t 1t ©
:/ x_lxg(x)dx—i—/ (e — 1)x_1X2(I)dx+/ ey (2)d
L L 1/t
= G(t)+ H(t)+ K(t) forteR,.
For the integral G(t), by an integration by parts, we have
1/t
G(t) = —logt - xa(1/t) - / log - ) (x)dz
L
= —logt- x2(1/t) mod C*(Ry)
= —logt mod C*(R,).

The last equivalence is obtained by dividing x2(1/t) as x2(1/t) = 1+ (x2(1/t) — 1).
Next, let us show that H(t) is a C*° function on R. We define two C'* functions g, h as
the following convergence series:

oo . o0 ‘n

Zn n, . n— ? n, . .n
gla.t) =) " Looh(zt) =) it (ot < 1),
n=1 " n=1 ’

Note that g(z,t) = (e"* — 1)z~ and Zh(z,t) = g(z,t) for |zt| < 1. Then, by an integration
by parts, we have
M

H(t) = /Loog(:x,t)XQ(x)dx = h(1/t,t) — /L h(z,t)x5(x)dx for t € R,. (7.1.25)
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It is easy to see that H(1/t,t) is a constant and that the last integral in (7.1.25) is a C'*
function of £ on R,.

Finally, let us consider the integral K (t). By changing the integral variable y = tz, we
have

K(t):/ eimiﬁle(x)dx:/ ey xa(y/t)dy
1/t 1

= / ey tdy — / ey (1 — xaly/t))dy fort € Ry, (7.1.26)
1 1

The first integral in (7.1.26) is a constant defined by a convergent improper integral. It is
easy to see that the second integral in (7.1.26) is a C*° function of ¢ on R,.
Putting together the above results, we can see that Fo(,21) (t) + logt is a C* function on

R,. O
From the relation (7.1.20), we have the following asymptotic formulae.

Corollary 7.1.12. (i) If A\ > —1 is not an integer, then

FO(£t) = (£1)* - (1) Bat*log )~ + O(t*(log t)* %) ast — 0.

(i) If X is a nonnegative integer, then
FO(t) = (£1) - (1) 10yt log t)” + Ot (logt)’™!)  as t — 0.
Here, By,Cy are as in Lemmas 7.1.10, 7.1.11.

Finally, we prepare a lemma for the analysis in next section which are useful to estimate

the remainder terms.

Lemma 7.1.13. Suppose that h(z) = O(x=*"(logz)?) as x — oo, then the following holds:

- L
/ e h(x)xo(x)dr = Z cit! + O(t*(logt)?) ast— 0, (7.1.27)
0

j=0

where L is an integer satisfying that L < A < L + 1.

Proof. We set Er(X) := X —Zle X9 /gl = XEH 7% X = X (X)) with ¢
function ¢ on R. Let us consider the following integral

o0

00 1/t
/ EL(itx)h(x)Xg(x)dx:/ EL(itx)h(x)Xg(a:)dx—l—/ Ep(itx)h(x)xe(z)dz. (7.1.28)

M M 1/t
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Then, by a change of variable y = tx, the first integral of right-hand side in (7.1.28) is

estimated as

1/t
SCtLH/ ¥ (log x)Pdx

M

L+1 ' 4 L=A p 1
=Ct <;) (logy — logt) ;dy (7.1.29)
Mt

p 1
=Ccr > (Z) (—logt)" / y"logy)* " dy,
k=0 Mt

1/t
/ (it2) L (it2)h(2)xo () da

M

where (' is a positive constant and (Z) means a binomial coefficient. Each integral in the last

term in (7.1.29) is estimated as
1 1
/ y"*(logy) ™y < / y"*logy) = dy
Mt 0

and converges because of L — A > —1 and it is easy to see that all the terms in (7.1.29) is

dominated by t*(logt)?. The second integral is also estimated as

/1: Ep(itx)p(itx)h(x)x2(x)dz

< C"/ = Ylog x)"dx
1

=Cy (Z>(—logt)’“ / y ! (logy)? Ty
1

and the last integral is convergent because of —A — 1 < —1. Thus, all the terms in (7.1.30)

(7.1.30)

is dominated by t*(logt)?. For these arguments, we have the following equation:

< C"tMlogt)” ast— 0

‘ /M " By (it2)h(2)xa(x)de

and this implies the equation (7.1.27). O

7.2 Proof of main theorems

In this section, we apply the inverse Mellin transform to Zg(s; f, g, ¢) of real case and lemmas
concerning the Fourier transform to K(u). Mixing the results obtained in Chapter 6, we will

give the proof of main theorems in Chapter 3.
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7.2.1 Asymptotic of I,(t; f,g9) as t = o0

At first, let us consider the case of the parameter ¢ is sufficiently large. In this case, the
negative poles of Zg(s; f, g, p) appear in the asymptotic expansions.

By using Theorem 7.1.4 to Zgr(s; f, g, ¢), we have asymptotic expansion of K(u) at |u| — 0

asin (7.1.8). In particular, the coefficient A of |u|~*(log |u|)*~! in this expansion is expressed
as -
(=D
A= —"—JA, +A_
where Ay are the coefficients of Laurent expansion of Z.(s; f, g,¢) at s = —a, that is,

Ay 1
Z4(s; =— 4+ 0 —|.
i(S,f,9780) (S+Oé)k+ ((S—{—Ck)kl)
Applying Corollary 7.1.9 to each term in the asymptotic expansion of K(u), we have the

asymptotic expansion of I,(t; f,g) as t — oo as in (i-4). It is obvious that the component
—a runs through the all negative poles of Zg(s; f, g,¢) which are quantitatively computed
in Theorem (6.0.2). Furthermore, the term in the asymptotic expansion of I,(t; f, g) corre-
sponding to the term |u|~*(log |u|)*~! is At=*(logt)*~* and its coefficient is given by

()

S

(™2 AL 4 e 2A ), (7.2.1)
where I' is the Gamma function.

Remark 7.2.1. If « is not an odd integer, then

~ 2I'(«v) cos(mar /2
o) 2C(0) oo

In order to decide the vanishing of the coefficient, the above equation is helpful.

A, + A

Next, let us consider the coefficient of leading term in the above expansion. From the
relationship between I,(t; f, g) and Zy(s; f, g,¢) and the equation (7.2.1), we give explicit
formulae for the coefficient of the leading term of the asymptotic expansion (i-4) of I1.(¢; f, g)
at infinity.

Theorem 7.2.2. If f, g and ¢ satisfy the conditions in Theorem 3.0.2, then we have
lim /%59 (log ¢) =P+ T (4 f g)

t—00

— (fn(l/( ioo;)f ’_9)1))| /Gl (FN 01, e—iﬂ/(Qdoo(f,g))C_}

where C. are as in (6.3.17).
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7.2.2 Proof of Theorems 3.0.1 and 3.0.2

Applying the argument in Subsection 7.2.1 to the results relating to Zg(s; f, g, ¢) in Chap-
ter 6, we obtain the Theorems 3.0.1 and 3.0.2.

Proof of Theorem 3.0.1. This theorem follows from Theorem 6.0.2. If do(f,g) < 1, there
may appear terms derived from the negative trivial poles of Zg(s; f, g, ¢), whose decay rates
are larger than ¢~!/@=(/9)(logt)m=(/9)~1  However, Proposition 6.3.5 and the relationship

(7.2.1) induce the cancellation of the coefficients of such terms and the assertion in Theo-

rem 3.0.1 holds. [l

Proof of Theorem 3.0.2. This theorem follows from Theorem 7.2.2 by considering the asser-
tions in Theorem 6.3.3. If the condition (b) is satisfied, either Z, (s; f, g,¢) or Z_(s; f,g, %)
is equivalently zero and cancellation of the coefficient does not occur. Note that the necessity

of the condition in (c), "1/dx(f, g) is not an odd integer”, follows from Remark 7.2.1. [

7.2.3 Asymptotic expansion of I,(¢; f,g) ast = 0

Next, we consider the case of the parameter ¢ is sufficiently small. In this case, by apply-
ing Theorem 7.1.5 to Z.(s; f,g, ) we have asymptotic expansion of K(u) at |u| — oo as
in (7.1.7). Then, we have asymptotic expansion of I,(t; f,g) as t — 0 as in (i-5) by ap-
plying Corollary 7.1.12 and Lemma 7.1.13 to each term of (7.1.7). Here, we can see more
explicit relationship between the coefficients of the asymptotic expansion of I,(¢; f,g) ans
the coefficients of Laurent expansions of Z. (s; f, g, ).

Let Z.(s; f,g,¢) have the following Laurent expansion at s = 3

Zi(s:f,9,90) = ﬁ +0 (W) )

then the corresponding parts of the asymptotic expansions K (u) at |u| — oo is

((l_i)m B Ju] 1 (log [u])'"* + O(ju| 1 (log u])!~?).

Be careful to whether g is an integer or not, we have the following two asymptotic formulae
by applying Corollary 7.1.12 and Lemma 7.1.13 to these terms

L8]
B(B)t (log )™ + ) " ;(B)Y + Ot (logt)?) (8 ¢ Z),

=0
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-1
B(B)t" (logt)" + B G (B + Ot (logt)' ™) (BeZ)
=0
with
(@S emesy @),
B(8) = L (7.2.2)
gl (0B e
Remark 7.2.3. If § is not an integer, then

Re(B(9)) =

In a similar fashion to the previous section, we obtain the explicit formula of the coefficient

(B, + B_].

of leading term in the asymptotic expansion (i-5).
Theorem 7.2.4. If f,g and ¢ satisfy the conditions in Theorem 3.0.6, then we have the
followings:

(i) If 1/do(f,g) is not an integer, then

lim ¢~ 1/d0(f.9) (log t)—mo(fg )+1 I(t; f, 9)

t—0

_ (F(_(ljfd[))(f’ 91)))'[ ~in/ A D, 4 /2 ) ]|
molJ,9) —
(i) If 1/do(f,g) is an integer, then
1/do(f.9) mo(f.9)
Hm ¢~ (log#)™ Ly (t; f,9)
1 /) e (7.2.3)
~ nlFg — DN dagg Y N

Here, Dy are as in (6.3.18).

7.2.4 Proof of Theorems 3.0.4 and 3.0.6

Proof of Theorem 3.0.4. This theorem follows from Theorem 6.0.2. If dy(f,g) < 1, we see
that Proposition 6.3.5 and the relationship (7.2.2) induce the cancellation of the coefficients

of terms derived from positive trivial poles . O]

Proof of Theorem 3.0.6. The assertions follow from the formulae in Theorem 7.2.4 by con-
sidering the assertions in Theorems 6.3.4. The condition in (ii)-(b), "1/dy(f, g) is an even

integer” is necessary since the coefficient in (7.2.3) cancels when D, = D_. ]
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7.3 Some general case in one-dimension

Here, we consider the case of n = 1. In this case, we can obtain the same results in Chapter 3
by using of a Taylor series of p. Furthermore, through the argument below, we can extend
Theorem 3.0.6 to more general phase functions containing even non-smooth functions at the
origin. Precise explanation and arguments are written in [15].

Let us consider the following integral

1(t) = / e () da,
0

where « is a positive real number and ¢ is a C§° function on R. In this section, we use the

following notations.
e Whenn —1<a<nforné€Z, weset [a] =n.
e For a smooth function f and k € Z,, f* means the k-th derivative of f.

Theorem 7.3.1 ([15]). (i) If o is a rational number, then for any positive integer N,
N N
L(t) =Y A"+ Y "Bt/ *logt +n(t) fort € Ry,
j=1 j=1
where ¥y (t) is a CTONFV/A=1 function on R, and

e(fj/Qa)ﬂ"L’ 90(.]71) (O)

A=y T/ #ifa g N A =04 jjaeN,
A (7.3.1)
By = 2O I eN, By=04fjjagN
= — , if 7/ , =017/
a1 (G/a)! ’
for 7 € N, where I' means the Gamma function.
(ii) If « is not a rational number, then for any positive number N,
N
Io(t) = At/ 4 on(t) fort € Ry, (7.3.2)
j=1

where ¢y (t) is a CTOVFV/A=L fynction on R and A; are as in (7.3.1).

Remark 7.3.2. (1) If the branch of #//* for ¢t < 0 is chosen as #//% = ™/ ®|t|3/® then the
equation in (7.3.2) holds for all ¢ € R.
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(2) We can obtain a similar result to (7.3.1) in the case where ¢ < 0. If @ > 0 is a rational

number, then for any positive integer N,
N N
L(t) =Y At + 3" Biti/*log|t| + Un(t) fort€R_,
j=1 j=1

where B; are as in (7.3.1) and ¢y (t) is a CTV+FD/e1=1 function on R_.

[0}

After changing of integral variable x=® = y, by substituting the Taylor series of ¢ at the
origin, we can apply Lemmas 7.1.10 and 7.1.11 and prove the above theorem. This method is
not available for the case of n > 2. In the case of n = 1, it is easy to see that for any non-flat
smooth functions f(z),g(z), f(x)/g(x) can be expressed as a monomial ™ with m € Z by
an implicit function theorem. Thus, the case when m is a negative integer is contained in
the above theorem with a@ € Z, (The case of m € Z, corresponds to Proposition 2.1.4).
Furthermore, as a corollary, if f(z) is a non-smooth function which can be expressed by the

following particular form, we have similar result to Theorem 7.3.1.

Corollary 7.3.3. Let a > 0 be non-integer. Let f be a function which can be expressed
as f(z) = x%g(x) where g is a smooth function on R satisfying that g(0) = ¢'(0) = -+ =
g*=1(0) = 0 and g (0) # 0. Then, for any positive integer N, the integral

It = [ ()
0
can be written as

N N
To(t) = A/t L N Biti/ 0t logt + oy (t)  fort € Ry,
i=1 j=1

where ¥y is a CTNFD/@HRI=1 function on R

Note that the coefficients flj, Bj are slightly different from A;, B; in Theorem 7.3.1. These

coefficients depend on «, k and the derivatives of g at the origin.
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