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Introduction

In this paper, we investigate the asymptotic behavior of oscillatory integrals of the form

Iφ(t;F ) =

∫
Rn

eitF (x)φ(x)dx. (i-1)

Here t is a real parameter and F, φ are real-valued smooth (infinitely differentiable) functions

defined on a small open neighborhood U of the origin in Rn, which are called the phase and

amplitude, respectively.

We assume that support of φ is contained in U for the convergence of the integral. The

points where the gradient of F (usually denoted by (∇F )) vanishes are called critical points.

If F has no critical point on the support of φ, Iφ(t;F ) = O(t−N) holds for any N ∈ N (see

Prpositions 2.1.2, 2.1.7). So we assume that F satisfies F (0) = |(∇F )(0)| = 0. When n = 1,

the asymptotic behavior as t tends to infinity is completely understood for non-flat functions.

In this case, F can be expressed as F (ϕ(x)) = xk for some k ∈ N by change of variable ϕ

and this k appears in the asymptotic behavior of Iφ(t;F ) ([31], see also Proposition 2.1.4

in this paper). However, the general dimensional case is much more complicated and there

still remain many open problems. In analysis of this case, we need some assumptions to the

phase functions. As a special case, if F is nondegenerate (i.e., the Hessian matrix of F is

invertible), the asymptotic expansion of Iφ(t;F ) is obtained by using Morse’s lemma (see

Proposition 2.1.8).

On the other hand, when F is degenerate, the other tools and methods are required. If

F is real analytic, by using Hironaka’s resolution of singularities, the form of the asymptotic

expansion of Iφ(t;F ):

Iφ(t;F ) ∼
∑
α

n∑
k=1

Cαk(φ)t
α(log t)k−1 as t→ +∞, (i-2)

iii



iv

is obtained (Jeanquartier [14], Malgrange [25]). Here α runs through finite number of arith-

metic progressions consisting of negative rational numbers. Since Hironaka’s theorem does

not give quantitative resolution of singularities, we cannot know precise properties of each

terms in (i-2). A.N.Varchenko [34] constructs a method to compute the above arithmetic

progressions from the geometrical information of the Newton polyhedron of F by using the

theory of toric varieties. The main analysis in this paper is based on his work. After that,

many generalization of his work have been obtained, for instance, smooth phase case [17],

weighted amplitude case [5],[18] and so on. For readers, there is a good survey [21] by E.

León-Cardenal.

The aim of this paper is to generalize the above result of Varchenko to the case where

the phase function is replaced by f(x)/g(x), i.e.,

Iφ(t; f, g) :=

∫
Rn\g−1(0)

eit
f(x)
g(x)φ(x)dx (i-3)

where f, g are real analytic functions defined on U satisfying that f(0) = |(∇f)(0)| = 0 and

g(0) = |(∇g)(0)| = 0, U and φ are the same as in (i-1). We call this integral the oscillatory

integral attached to (f/g, φ). In one-dimensional case, we can apply the same argument of

analytic case and obtain some kinds of series expression which imply the singularities of the

denominator g appear in the smoothness of Iφ(t; f, g) at the origin (see Section 7.3). Note

that if g does not vanish on U , (i-3) is reduced to the analytic phase case (i-1).

By using a simultaneous resolution of singularities to f−1(0) ∪ g−1(0), W.Veys and

W.A.Zúñiga-Galindo [35] show that if the support of φ is contained in a sufficiently small

open neighborhood of the origin, then Iφ(t; f, g) has two types of asymptotic expansion, that

is, the case when its parameter t tends to infinity and zero. More precisely, for any positive

integer N ,

Iφ(t; f, g) =
∑
α<N

n∑
k=1

Cα,k(φ)t
−α(log t)k−1 +O(t−N) as t→ +∞, (i-4)

Iφ(t; f, g)− ψN(t) =
∑
β<N
β/∈N

Dβ,1(φ)t
β +

∑
β<N

n+1∑
l=2

Dβ,l(φ)t
β(log t)l−1 for t ∈ R \ {0} (i-5)

hold, where ψN(t) is a C
N function satisfying that ψN(0) =

∫
Rn φ(x)dx and α, β run through

finite number arithmetic progressions consisting of positive rational numbers. As is the case
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in the analytic case, we cannot know the properties of each terms in (i-4), (i-5) from the

information of f and g. Let us focus the equation (i-5). From (i-5), we see that Iφ(t; f, g) is

smooth on R\{0}, however, at t = 0, Iφ(t; f, g) has non-smooth part which correspond to the

right hand side in (i-5). We call this part singular part of Iφ(t; f, g) and denote by Sφ(t; f, g)

(see Definition 3.0.3). In the analytic phase case, it is easy to see that Iφ(t;F ) is smooth at

t = 0 and this implies that the singular part of Iφ(t;F ) does not appear. From this fact, the

influence of the denominator g also seems to appear in singular part of Iφ(t; f, g). Therefore,

in the analysis of asymptotic behavior of Iφ(t; f, g), the leading terms of (i-4) and Sφ(t; f, g)

are very important. In order to investigate the properties of these leading terms, we define

the following indices.

Definition 1. Let f, g be real analytic functions for which the oscillatory integral (i-3)

admits the asymptotic expansions of the form (i-4), (i-5). Then, the oscillatory index at

infinity ξ∞(f, g) and the oscillatory index at zero ξ0(f, g) are defined as follows:

ξ∞(f, g) := min{α : Cα,k(φ) ̸= 0 for some φ, k},

ξ0(f, g) := min{β : Dβ,l(φ) ̸= 0 for some φ, l}

and the multiplicity of each index η∞(f, g), η0(f, g) are defined by

η∞(f, g) := max{k : Cξ∞(f,g),k(φ) ̸= 0 for some φ},

η0(f, g) := max{l : Dξ0(f,g),l(φ) ̸= 0 for some φ}.

Our main purpose is

• to construct an algorithm to compute the arithmetic progressions where α, β in (i-4),

(i-5) move from the information of f and g.

• To determine or precisely estimate the above oscillatory indices and their multiplicities

by means of the information of f and g.

Another main object of our investigation in this paper is the following integrals

ZR(s;F, φ) :=

∫
Rn

|F (x)|sφ(x)dx (s ∈ C), (i-6)

for detail definition, see Chapter 7. This integral converges locally uniformly on the right-half

plane and defines a holomorphic function there, which is called local zeta function attached
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to (F, φ). The central question of this function is its analytic continuation. In general, if F

is an analytic function, ZR(s;F, φ) can be meromorphically continued to the whole complex

plane and has poles on the negative real axis (see [3], [10]). Our main interest is a relationship

between the locations and orders of such poles and the properties of F, φ. It is known (see,

for instance, [17], [18], or Section 7.1 in this paper) that the properties of poles of local zeta

function ZR(s;F, φ) is deeply connected to the asymptotic analysis of oscillatory integral

(i-1). The work of Varchenko is essentially constructing a method to compute the locations

and orders of poles of local zeta function from the information of Newton polyhedron of F .

We attempt to generalize this method to rational functions. For rational case, we consider

the following integrals

ZR(s; f, g, φ) =

∫
Rn\D

∣∣∣∣f(x)g(x)

∣∣∣∣s φ(x)dx, (i-7)

where f, g, φ are the same as in (i-3) and D := f−1(0)∪ g−1(0). It is shown that this integral

converges on some domain in C and defines a holomorphic function there, which is called

local zeta function attached to (f/g, φ). As is the case of analytic function, this function is

meromorphically continued to C and has poles on real axis. The substantial analysis in this

paper is to investigate and describe properties of poles of the local zeta function ZR(s; f, g, φ)

by means of Newton polyhedra of f and g by using simultaneous toric desingularization. In

Chapter 6, we also investigate the case when f/g is meromorphic function (i.e., f, g are

holomorphic functions) and the integral (i-7) is considered on Cn.

Local zeta function itself is a mathematically interesting object and there have been many

researches of this function. In connection with number theory, local zeta functions for p-adic

field are enthusiastically investigated [6], [27], [7], [12], [23], [26]. Theory of p-adic case is

established by J.Igusa [13] and often called Igusa zeta function. There are some generalization

of local zeta functions for multi-functions. In [30], C.Sabbah introduces several variables

version of local zeta function, which is called multivariate local zeta function. The author

shows there exists meromorphic continuation to whole Cl and its poles are contained in the

union of some hyperplanes. Later, in [24], F.Loeser defines multivariate local zeta function

for local field of characteristic zero. In [22], E.L.Cardenal, W.Veys and W.A.Zúñiga-Galindo

consider the local zeta functions for analytic mapping and generalize the work of Varchenko.

This paper is organized as follows. In Chapter 1, we explain many important words

and their elementary properties, which are often used in this paper. In Chapter 2, in order
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to show our motivation to the investigation of this paper, we roughly explain the earlier

results concerning with the analytic phase case in [14],[25],[31],[34] and rational phase case

in [35]. In Chapter 3, we state our main results relating to the estimate and determination

of the oscillation index and its multiplicity. In Chapter 4, we explain how to construct

simultaneous resolution of singularities with respect to several functions by using the theory

of toric varieties. In Chapter 5, we construct an appropriate fan which are the most suitable

to investigate and describe the properties of poles of ZK(s; f, g, φ). From this fan, two

important sets of integer vectors which are used to express the sets of candidate poles of

ZK(s; f, g, φ) are obtained. We also define and investigate two important subfans which will

play important roles to compute the coefficients of the leading terms of asymptotic expansion

(i-4) and (i-5). In Chapter 6, we investigate the poles of local zeta function ZK(s; f, g, φ) by

using of the results in previous two chapters. Here, we give the positions of all candidate

poles and some sufficient conditions where the positions and orders of the (e-)leading poles

(see Definition 6.0.5) are explicitly determined. To do this, we compute the explicit formulae

of the coefficients of terms of Laurent expansions. In Chapter 7, after an exact relationship

between oscillatory integrals and local zeta functions is recalled, we will show some theorems

concerning with the Mellin transform and the Fourier transform which help us obtain the

explicit formulae of the coefficients of the leading terms in (i-4) and (i-5). As a result, proofs

of the theorems in Chapter 3 will be given. Furthermore, we consider more general case

which contains a non-smooth phase case in one-dimension.





Notation and Symbols

• We denote by Z+,Q+,R+ the subsets consisting of all nonnegative numbers in Z,Q,R,
respectively. We write R>0 := {x ∈ R : x > 0}. For s ∈ C, Re(s) and Im(s) express the

real part of s and imaginary part of s, respectively. We define 1/0 := ∞ and 1/∞ := 0.

• We use the multi-index as follows. For x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn, α =

(α1, ..., αn) ∈ Zn
+, define

⟨x, y⟩ = x1y1 + · · ·+ xnyn, |x| =
√
x21 + · · ·+ x2n,

xα = xα1
1 · · ·xαn

n , ∂α =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

,

⟨α⟩ = α1 + · · ·+ αn, α! = α1! · · ·αn!, 0! = 1.

• For A,B ⊂ R, A ≤ B(A < B) means x ≤ y(x < y) for any x ∈ A and y ∈ B.

• For A,B ⊂ Rn and c ∈ R, we set

A+B = {a+ b ∈ Rn : a ∈ A and b ∈ B}, c · A = {ca ∈ Rn : a ∈ A}.

Moreover, Int(A) expresses the interior of the set A.

• We express by 1 the vector (1, ..., 1) or the set {(1, ..., 1)}.

• For a set A, P(A) is the set of all subsets of A.

• For a finite set A, #A means the cardinality of A.

• For a nonnegative real number r and a subset I in {1, ..., n}, the map T r
I : Rn → Rn is

defined by

(z1, ..., zn) = T r
I (x1, ..., xn) with zj :=

r for j ∈ I,

xj otherwise.

ix
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We define TI := T 0
I . For a set A in Rn, the image of A by TI is denoted by TI(A).

When A = Rn or Zn
+, its image is expressed as

TI(A) = {x ∈ A : xj = 0 for j ∈ I}.

• We use O as big O notation. That is: f(x) = O(g(x)) (x→ ∞) if there existM,N > 0

such that

|f(x)| ≤M |g(x)| for N < x

and f(x) = O(g(x)) (x→ a) if there exist M, δ > 0 such that

|f(x)| ≤M |g(x)| for |x− a| < δ.
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Chapter 1

Newton polyhedra and Newton data

In this chapter, we define Newton polyhedra of analytic functions and some values derived

from the geometrical information of Newton polyhedra. First, let us recall important concepts

about convex rational polyhedra. Refer to [36] for a general theory of convex polyhedra.

1.1 Newton Polyhedra

1.1.1 Polyhedra

For (a, l) ∈ Rn × R, let H(a, l) and H+(a, l) be a hyperplane and a closed half-space in Rn

defined by

H(a, l) := {x ∈ Rn : ⟨a, x⟩ = l},

H+(a, l) := {x ∈ Rn : ⟨a, x⟩ ≥ l},

respectively. It is clear that H+(a, l) is a convex set in Rn and H(a, l) is the topological

boundary of H+(a, l) unless a = 0.

Remark 1.1.1. It follows from the definition of H+(·, ·) that for (a, l) ∈ Zn × Z,

H+(a, l + d · ⟨a⟩) = H+(a, l) + d · 1 for d ≥ 0.

In the case of hyperplane H(a, l), analogous equation can be obtained.

1



2 Chapter 1　Newton polyhedra

Definition 1.1.2. P ⊂ Rn is called (convex rational) polyhedron if P is expressed as an

intersection of some closed half-space, that is,

P =
N∩
j=1

H+(aj, lj)

for (aj, lj) ∈ Zn × Z (j = 1, ..., N).

Definition 1.1.3. A pair (a, l) ∈ Zn × Z is valid for P if P is contained in H+(a, l). A set

γ ⊂ P is called face if γ = H(a, l) ∩ P for some valid pairs (a, l) ∈ Zn × Z.

Remark 1.1.4. (i) Since Rn = H+(0, 0), Rn is a polyhedron and (0, 0) is valid for any

polyhedron. Thus, polyhedron P is a trivial face and the other faces are called proper

faces.

(ii) The pair (0,−1) is valid for any polyhedron and H(0,−1) ∩ P = ∅. This implies that

the empty set is also a face of the polyhedron P .

The boundary of a polyhedron P , denoted by ∂P , is the union of all proper faces of P .

For a face F , ∂F is similarly defined.

From the definitions above, we can easily know that every proper face γ is contained in∩M
j=1H(aj, lj) for some {(aj, lj) ∈ Zn × Z} and M ∈ N. We write

F [P ] = {the set of all nonempty faces of P}.

Definition 1.1.5. The dimension of a face F is the dimension of its affine hull and denoted

dim(F ). The faces of dimensions 0, 1 and dim(P ) − 1 are called vertices, edges and facets,

respectively.

Lemma 1.1.6 (Lemma 3.1 in [5]). Let P1, P2 be n-dimensional polyhedra in Rn. If P1 ⊂ P2,

then P1 ∩ ∂P2 is the union of proper faces of P1.

Every polyhedron treated in this paper satisfies a condition in the following lemma.

Lemma 1.1.7 (Lemma 2.2 in [18]). Let P ⊂ Rn
+ be a polyhedron. Then the following

conditions are equivalent.

(i) P + Rn
+ ⊂ P .

(ii) There exists a finite set of pairs {(aj, lj)}Nj=1 ⊂ Zn
+×Z+ such that P =

∩N
j=1H

+(aj, lj).



1.1 Newton Polyhedra 3

1.1.2 Newton polyhedra

Let K = R or C. Let us define the Newton polyhedron of a K-analytic function f and

some important functions associated with the Newton polyhedron. In this paper, R-analytic
means ”real analytic” and C-analytic means ”holomorphic”.

Let f be a K-analytic function defined on a neighborhood of the origin in Kn, which has

the Taylor series at the origin:

f(x) ∼
∑
α∈Zn

+

cαx
α with cα =

∂αf(0)

α!
. (1.1.1)

We define the set Sf by

Sf := {α ∈ Zn
+ : cα ̸= 0 in (1.1.1)}.

Definition 1.1.8. The Newton polyhedron Γ+(f) of f is defined to be the convex hull of the

set
∪
{α + Rn

+ : α ∈ Sf}.

It is known [36] that the Newton polyhedron of f is a polyhedron. The union of com-

pact faces of the Newton polyhedron Γ+(f) is called the Newton diagram Γ(f), while the

topological boundary of Γ+(f) is denoted by ∂Γ+(f).

Definition 1.1.9. For any face γ of Γ+(f), the γ-part of f is a function fγ(x) defined by

fγ(x) =
∑

α∈γ ∩Zn
+

cαx
α. (1.1.2)

Note that the series in (1.1.2) is always convergent when f is K-analytic.

Remark 1.1.10. (i) Let us consider the case when f is a smooth function. When K = R,
the Newton polyhedron of f can be similarly defined. However, when K = C, the
above definition is not available since its Taylor series may contain terms of the form

cα,βx
αxβ. There exists an extended definition containing such a case, for instance, see

[29].

(ii) When f is assumed to be smooth, the above definition of γ-part is not available since

the series (1.1.2) may not converge for non-compact face γ. In [5], [18], the authors

introduce definition of γ-part for non-analytic smooth functions which satisfy some

conditions concerning with the limit.
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1.2 The Newton data with respect to the pair (f, g)

In this section, we define the Newton distances and the Newton multiplicities with respect to

the pair of two K-analytic functions (f, g), which play important roles in the investigation

of this paper. Throughout this section, let f, g be K-analytic functions defined on a small

neighborhood of the origin.

Definition 1.2.1. The Newton distances with respect to the pair (f, g) are defined by

d∞(f, g) := min{d ≥ 0 : (Γ+(g) + d · 1) ⊂ Γ+(f)},

d0(f, g) := min{d ≥ 0 : (Γ+(f) + d · 1) ⊂ Γ+(g)}.
(1.2.1)

Remark 1.2.2. From the above definition, we can see the following.

• d∞(f, g) = 0 if and only if Γ+(g) ⊂ Γ+(f).

• d0(f, g) = 0 if and only if Γ+(f) ⊂ Γ+(g).

The Newton distances have the following another expressions.

Lemma 1.2.3. The Newton distances can be expressed as follows.

(i) d∞(f, g) = max{d ≥ 0 : ∂Γ+(f) ∩ (Γ+(g) + d · 1) ̸= ∅}.

(ii) d0(f, g) = max{d ≥ 0 : ∂Γ+(g) ∩ (Γ+(f) + d · 1) ̸= ∅}.

Proof. We only consider the case of d∞(f, g). Let A := min{d ≥ 0 : (Γ+(g)+ d ·1) ⊂ Γ+(f)}
and B := max{d ≥ 0 : ∂Γ+(f) ∩ (Γ+(g) + d · 1) ̸= ∅}. We will prove two side inequations.

(A ≤ B) Assume that ∂Γ+(f) ∩ (Γ+(g) + A · 1) = ∅. Then, from the definition of A,

(Γ+(g) + A · 1) ⊊ Γ+(f) holds. There exists positive constant 0 < δ < A satisfying that

(Γ+(g) + δ · 1) ⊂ Γ+(f) and this is contradicted to the minimality of A. Hence ∂Γ+(f) ∩
(Γ+(g) + A · 1) ̸= ∅ holds and this leads A ≤ B.

(B ≤ A) Since for all d > A, both (Γ+(g)+d ·1) ⊊ Γ+(f) and ∂Γ+(f)∩(Γ+(g)+d ·1) = ∅
hold, we have the following relation:

{d ≥ 0 : ∂Γ+(f) ∩ (Γ+(g) + d · 1) ̸= ∅} < {d ≥ 0 : (Γ+(g) + d · 1) ⊊ Γ+(f)}.

Taking the infimum of right side, we have

{d ≥ 0 : ∂Γ+(f) ∩ (Γ+(g) + d · 1) ̸= ∅} ≤ A.

Taking the maximum of left side, we have the desired inequation.
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From the viewpoint of geometry of two Newton polyhedra, the above expressions are

obvious. We define the two affine maps Φ∞,Φ0 : Rn → Rn as

Φ∞(α) := α + d∞(f, g) · 1,

Φ0(α) := α + d0(f, g) · 1.

We define the subsets of ∂Γ+(f), ∂Γ+(g) as

Γ∗(f) := ∂Γ+(f) ∩ Φ∞(Γ+(g)) (= ∂Γ+(f) ∩ (Γ+(g) + d∞(f, g) · 1)),

Γ∗(g) := ∂Γ+(g) ∩ Φ0(Γ+(f)) (= ∂Γ+(g) ∩ (Γ+(f) + d0(f, g) · 1)).
(1.2.2)

From the expressions in Lemma 1.2.3, the sets in (1.2.2) are not empty unless one Newton

polyhedron is completely contained in another one. We note that the above sets are not

necessarily the union of proper faces of each Newton polyhedron.

Remark 1.2.4. From Lemma 1.1.6, we see that Γ∗(f)(resp. Γ∗(g)) is a set of proper faces

of Φ∞(Γ+(g)) (resp. Φ0(Γ+(f))).

Let us define the Newton multiplicities of d∞(f, g), d0(f, g) and the sets of important faces

of Γ+(f) and Γ+(g), which will play important roles in the investigation of multiplicities of

the oscillation index. Let F [f ] (resp. F [g]) be the set of faces of Γ+(f) (resp. Γ+(g)). We

define two maps

γf : ∂Γ+(f) → F [f ], τg : ∂Γ+(g) → F [g],

as follows: for α ∈ ∂Γ+(f), let γf (α) be the face of Γ+(f) whose relative interior contains α.

It is clear that such a face can be uniquely determined. For β ∈ ∂Γ+(g), τg(β) is determined

in the same way. Then, by using these maps, define

F∗[f ] := {γf (α) ∈ F [f ] : α ∈ Γ∗(f)},

F∗[g] := {τg(β) ∈ F [g] : β ∈ Γ∗(g)}.

When Γ∗(f) (resp. Γ∗(g)) is empty, we define F∗[f ] = ∅ (resp. F∗[g] = ∅).

Definition 1.2.5. The Newton multiplicities of d∞(f, g) and d0(f, g) are defined by

m∞(f, g) := max{n− dim(γ) : γ ∈ F∗[f ]},

m0(f, g) := max{n− dim(τ) : τ ∈ F∗[g]}.

If F∗[f ] = ∅ (resp. F∗[g] = ∅), we define m∞(f, g) = 0 (resp. m0(f, g) = 0).

We call the pair (d∞(f, g),m∞(f, g)) and (d0(f, g),m0(f, g)) the Newton data with respect

to the pair (f, g). Note that these values depend on the choice of coordinate.
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Definition 1.2.6. The set of principal faces at infinity of Γ+(f) is defined as

F∞[f ] := {γ ∈ F∗[f ] : n− dim(γ) = m∞(f, g)}.

Define

F∞[g] := {Φ−1
∞ (γ) ∩ Γ+(g) : γ ∈ F∞[f ]}. (1.2.3)

It is easy to see that every element of the above set is a face of Γ+(g), which is called principal

face at infinity of Γ+(g).

Similarly, we define the sets of principal faces at zero of Γ+(f) and Γ+(g) as follows.

Definition 1.2.7.

F0[g] := {τ ∈ F∗[g] : n− dim(τ) = m0(f, g)},

F0[f ] := {Φ−1
0 (τ) ∩ Γ+(f) : τ ∈ F0[g]}.

For γ∞ ∈ F∞[f ] and τ0 ∈ F0[g], we define two maps Ψ∞, Ψ0 as follows:

Ψ∞ : F∞[f ] → F∞[g] as Ψ∞(γ∞) := Φ−1
∞ (γ∞) ∩ Γ+(g),

Ψ0 : F0[g] → F0[f ] as Ψ0(τ0) := Φ−1
0 (τ0) ∩ Γ+(f).

It is easy to see that these maps are bijective. We say that γ∞ ∈ F∞[f ] (resp. τ0 ∈ F0[g])

is associated to τ∞ ∈ F∞[g] (resp. γ0 ∈ F0[f ]) if Ψ∞(γ∞) = τ∞ (resp. Ψ0(τ0) = γ0) hold.

Roughly speaking, when τ∞ has an intersection with the image of γ∞ by the map Φ∞, we

say γ∞ is associated to τ∞.

Remark 1.2.8. Let us consider the case of g(0) ̸= 0. Then Γ+(g) = Rn
+ and it follows from

the definitions that d0(f, g) = m0(f, g) = 0. In this case, since d∞(f, g) and m∞(f, g) are

independent of g, we simply denote them by df and mf , respectively. It is easy to see the

followings.

• The Newton distance df is determined by the point q = (df , ..., df ), which is the

intersection of the diagonal line α1 = · · · = αn with ∂Γ+(f).

• The principal face of Γ+(f) is the smallest face γ∗ of Γ+(f) containing the point q,

which is uniquely determined.

• mf = n− dim(γ∗).

In Section 2.2, we introduce the result of this analytic case, which is a seminal work of

Varchenko.



1.2 The Newton data with respect to the pair (f, g) 7

1.2.1 Classification and examples

From the viewpoint of geometrical relationship between the two polyhedra, the situation will

be classified into the following four cases. We will explain the characteristic of each case and

give simple examples. In the examples below we consider the case of n = 2 and polynomials

f and g which does not have zero except the origin.

(1) The case of Γ+(f) = Γ+(g)

At first, let us consider the case where two Newton polyhedra have the same shape. In this

case, it is easy to see that

d∞(f, g) = d0(f, g) = 0, m∞(f, g) = m0(f, g) = n,

F∞[f ] = F∞[g] = F0[f ] = F0[g] = the set of vertices of Γ+(f)(= Γ+(g)).

Example 1. Let f(x) = (x21 + x22)
2 and g(x) = x41 + x42. Then Γ+(f) = Γ+(g) and

d∞(f, g) = d0(f, g) = 0, m∞(f, g) = m0(f, g) = 2,

F∞[f ] = F∞[g] = F0[f ] = F0[g] = {(4, 0), (0, 4)}.

(2) The case of Γ+(f) ⊂ Γ+(g)

Next, let us consider the case where the Newton polyhedron of f is contained in that of g.

In this case, from the definition of the Newton data, we can see

d0(f, g) = m0(f, g) = 0, F0[f ] = F0[g] = ∅,

d∞(f, g) > 0, m∞(f, g) ∈ {1, ..., n}, F∞[f ] ̸= ∅, F∞[g] ̸= ∅.

Example 2. Let f(x) = x61 + x62 and g(x) = x21 + x22. Then, we see that

d∞(f, g) = 2, m∞(f, g) = 1,

F∞[f ] = {α ∈ R2
+ : α1 + α2 = 6}, F∞[g] = {α ∈ R2

+ : α1 + α2 = 2}.

The important case: f(0) = 0, g(0) ̸= 0 is contained in this case. Since Γ+(g) = Rn
+,

Newton distance and multiplicity of (f, g) coincide with those appeared in the studies of

classical case (see [34] or Section 2.2 in this paper).

(3) The case of Γ+(g) ⊂ Γ+(f)

The case where the roles of f and g are exchanged in the case (2) can be similarly dealt with.

More precisely,

d∞(f, g) = m∞(f, g) = 0, F∞[f ] = F∞[g] = ∅,

d0(f, g) > 0, m0(f, g) ∈ {1, ..., n}, F0[f ] ̸= ∅, F0[g] ̸= ∅.
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The case when g(0) = 0, f(0) ̸= 0 is the simplest situation of rational case and contained in

this case.

(4) The case of Γ+(f) ̸⊂ Γ+(g) and Γ+(g) ̸⊂ Γ+(f)

Finally, we consider the most interesting case where the properties of both Newton polyhedra

are appearing. In this case, we can see that

d∞(f, g) > 0,m∞(f, g) ∈ {1, ..., n}, d0(f, g) > 0,m0(f, g) ∈ {1, ..., n}.

Example 3. Let f(x) = x21 + x42 and g(x) = x41 + x22. Then,

d∞(f, g) = d0(f, g) = 2/3,m∞(f, g) = m0(f, g) = 1,

F∞[f ] = {(2, 0)},F∞[g] = {α ∈ R2
+ : α1 + 2α2 = 4},

F∞[g] = {(0, 2)},F∞[f ] = {α ∈ R2
+ : 2α1 + α2 = 4}.

Example 4. We consider more complicated example. Let f(x) = x81x
2
2 + x41x

4
2 + x102 and

g(x) = x81 + x21x
2
2. Then, the Newton polyhedra of f, g and figures describing the case when

each polyhedron moves until it is contained in another one are as follows.

α1

α2

　

Γ+(f)

Γ+(g)

Newton polyhedra

α1

α2

　

d∞

d∞

F∞[f ]

(i) The case when Γ+(g) moves

α1

α2

　

d0
F0[g]

(ii) The case when Γ+(f) moves

Figure 1 : the image of Newton data of the pair (f, g)

By a simple computation, from (i) in Figure 1, we have

d∞(f, g) = 2,m∞(f, g) = 2,

F∞[f ] = {(4, 4)} ∪ {(α1, 2) ∈ R2
+ : α1 ≥ 4},

F∞[g] = {(2, 2)} ∪ {(α1, 0) ∈ R2
+ : α1 ≥ 4}.
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Similarly, from (ii) in Figure 1, we have

d0(f, g) = 2,m0(f, g) = 1,

F0[g] = {(2, α2) ∈ R2
+ : α2 ≥ 2},F0[f ] = {(0, α2) ∈ R2

+ : α2 ≥ 10}.





Chapter 2

Earlier results

In this chapter, we study some properties of the oscillatory integrals and the result of

Varchenko. After that, we introduce earlier results of rational case.

2.1 Analysis of smooth phase case

Let f be a smooth function defined on an open neighborhood U of the origin in Rn. At first,

let us start one-dimensional case. In this case, almost all asymptotic behavior of Iφ(t; f) as

its parameter t → ∞, including an asymptotic expansion, is already obtained. We define

important class of function often appearing in this paper.

Definition 2.1.1. Let f be a function defined on Rn.

• We say f is rapidly decreasing as x→ ∞ if limx→∞ xαf(x) = 0 for any α ∈ Zn
+.

• If f is assumed to be smooth on Rn and for any β ∈ Zn
+, ∂

βf(x) is rapidly decreasing

as x→ ∞, then f is called a rapidly decreasing function.

We denote the set of all rapidly decreasing functions defined on D ⊂ Rn by S(D), which is

called Schwartz space.

Proposition 2.1.2. Let n = 1 and φ be a smooth function satisfying that Supp(φ) ⊂ (a, b).

If f ′(x) ̸= 0 for all x ∈ [a, b], then for any N ∈ N

Iφ(t; f) =

∫ b

a

eitf(x)φ(x)dx = O(t−N) as t→ ∞.

11
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Proof. See the proof of Proposition 1 in Chapter 8 in [31].

It follows from the convergence of the integrals

iM
∫ b

a

(f(x))Meitf(x)φ(x)dx

for any M ∈ Z+ that Iφ(t; f) is a smooth function on R. Putting this fact and Proposi-

tion 2.1.2, we see that Iφ(t; f) is a rapidly decreasing function if f ′ does not vanish.

As we see in Proposition 2.1.2, the asymptotic behavior of Iφ(t; f) is essentially affected

by the existence of the point where the first derivative of phase function f vanishes. Next

proposition is called van der Corput lemma, which directly indicates an influence of flatness

of the phase function.

Proposition 2.1.3 (van der Corput lemma). Let n = 1 and φ be a smooth function satisfying

that Supp(φ) ⊂ (a, b). If |f (k)(x)| ≥ 1 for some k ∈ N, then

|Iφ(t; f)| ≤ Ckt
−1/k (t ≥ 1)

for positive constant Ck which is independent of t. If k = 1, f ′ is required to be monotonic.

Proof. See the proof of Proposition 2 in Chapter 8 in [31].

Moreover, explicit asymptotic expansion of Iφ(t; f) is obtained.

Proposition 2.1.4. Suppose that f satisfies f(x0) = f ′(x0) = · · · = f (k−1)(x0) = 0 and

f (k)(x0) ̸= 0 for k ≥ 2. Then, we have the following:

Iφ(t; f) ∼ t−1/k

∞∑
j=0

ajt
−j/k as t→ ∞. (2.1.1)

Proof. See the proof of Proposition 3 in Chapter 8 in [31].

Remark 2.1.5. The first coefficient of the asymptotic expansion (2.1.1) is given by

a0 =

(
2πk!

−if (k)(x0)

)1/k

φ(x0).

So if φ does not vanish at x = x0, the leading term of the asymptotic expansion (2.1.1) is

a0t
−1/k.
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In the case of n ≥ 2 is more complicated. To discuss this case, we define critical point as

follows.

Definition 2.1.6. For a smooth function f , the point x0 is called a critical point if

(∇f)(x0) =
(
∂f

∂x1
(x0), · · · ,

∂f

∂xn
(x0)

)
= (0, ..., 0).

In the case of n ≥ 2, similar result is obtained if the phase function does not have critical

point.

Proposition 2.1.7. Suppose that φ has a sufficiently small support and f has no critical

point on Supp(φ). Then for any N ∈ N

Iφ(t; f) =

∫
Rn

eitf(x)φ(x)dx = O(t−N) as t→ ∞.

Applying Proposition 2.1.2 (if necessary, choosing a coordinate system), one can prove this

proposition. This proposition shows that the behavior of the oscillatory integral essentially

depends on the properties of critical point of the phase function. Indeed, in the results

appearing below, some conditions are assumed to critical point of f .

Proposition 2.1.8. Suppose that f has a critical point at the origin and the support of φ is

contained in sufficiently small neighborhood of the origin. If the Hessian matrix

Hf (0) =


∂2f

∂x1∂x1
(0) · · · ∂2f

∂x1∂xn
(0)

...
. . .

...
∂2f

∂xn∂x1
(0) · · · ∂2f

∂xn∂xn
(0)


is invertible (such critical point is called nondegenerate), then

Iφ(t; f) ∼ t−n/2

∞∑
j=0

ajt
−j as t→ ∞, (2.1.2)

where each aj is a constant depending on f and φ.

Proof. See the proof of Proposition 6 in Chapter 8 in [31].

This proposition is proved by applying Morse’s lemma and transforming f into the form

y21 + · · ·+ y2m − (y2m+1 + · · ·+ y2n) for some 0 ≤ m ≤ n.
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Remark 2.1.9. The first coefficient of the asymptotic expansion (2.1.2) is given by

a0 =
(2πi)n/2 · φ(0)√

| detHf (0)|
.

So if φ does not vanish at the origin, the leading term of the asymptotic expansion (2.1.2) is

a0t
−n/2.

2.2 Analysis of degenerate case and result of Varchenko

In this section, we assume that

• f is a real analytic function defined on a sufficiently small open neighborhood U of the

origin in Rn and satisfy that f(0) = |(∇f)(0)| = 0.

• f has no critical point apart from the origin on U .

• φ is a smooth function whose support is contained in U .

Theorem 2.2.1 ([14], [25]). The oscillatory integral Iφ(t; f) admits an asymptotic expansion

of the form:

Iφ(t; f) ∼
∑
α

n∑
k=1

Cα,k(φ)t
−α(log t)k−1 as t→ ∞, (2.2.1)

where α runs through finitely many arithmetic progressions consisting of positive rational

numbers and a map φ 7→ Cα,k(φ) is distribution.

This result is obtained by an application of Hironaka’s resolution of singularities for

analytic functions.

Theorem 2.2.2 ([11], [3]). There exists a proper real analytic mapping π from some n-

dimensional real analytic manifold Y to Rn such that at each point of the set π−1(0), there

exist local coordinates y = (y1, ..., yn) satisfying the following properties:

(1) There exist nonnegative integers lj such that

f(π(y)) = ±
n∏

j=1

y
lj
j . (2.2.2)
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(2) The Jacobian of the mapping π has the form

Jπ(y) = ±
n∏

j=1

y
mj−1
j , (2.2.3)

where mj are positive integers.

(3) π : Y \ π−1(0) → U \ {0} is a diffeomorphism.

Since Hironaka’s resolution theorem is existence theorem, we cannot have explicit order

of each term in (2.2.1), even the leading term (explicit values of (lj,mj) in Theorem 2.2.2

can not be obtained). To discuss the leading term of (2.2.1), we define oscillation index ξ(f)

and its multiplicity η(f) of Iφ(t; f) as follows.

ξ(f) := min{α : Cα,k ̸= 0 for some k, φ},

η(f) := max{k : Cξ(f),k ̸= 0 for some φ}.

Newton polyhedron has only information of multi-index of the Taylor series of of f , further

condition, concerning with the coefficients of the Taylor series, us needed. The following

condition is very crucial in the theory of Varchenko.

Definition 2.2.3. Let K = R or C. f is nondegenerate over K with respect to the Newton

polyhedron Γ+(f) if for every compact face γ of Γ+(f), fγ satisfies

∇fγ =

(
∂fγ
∂x1

, · · · , ∂fγ
∂xn

)
̸= (0, ..., 0) on the set (K \ {0})n.

This nondegeneracy condition is introduced by Kouchinirenko in [20].

Remark 2.2.4. The above nondegeneracy condition depends on K. For example, let us

consider a function f(x1, x2) = (x21 + x22)
2. Then, Γ+(f) has only one compact face γ and

fγ = f . The gradient of fγ is (∇fγ)(x) = (4x1(x
2
1 + x22), 4x2(x

2
1 + x22)) and (∇fγ)(x) = (0, 0)

is equivalent to x1 = ix2. This implies f is nondegenerate over R but degenerate over C with

respect to Γ+(f).

Theorem 2.2.5 (Varchenko, [34]). Suppose that f is nondegenerate over R with respect to

Γ+(f). Let df ,mf and γ∗ be as in Remark 1.2.8 then the followings hold:

(i) the arithmetic progression {α} appearing in Theorem 2.2.1 is obtained from geometrical

informations of Γ+(f).
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(ii) There exists a positive constant C(φ) satisfying that

|Iφ(t; f)| ≤ C(φ)t−1/df (log t)mf−1 (t ≥ 2).

In particular, −ξ(f) ≤ −1/df .

(iii) Assume that φ satisfies φ(0) ̸= 0. If at least one of the following conditions is satisfied:

(a) df > 1;

(b) f is nonnegative or nonpositive on U ;

(c) 1/df is not an odd integer and fγ∗ does not vanish on U ∩ (R \ {0})n,

then ξ(f) = 1/df and η(f) = mf .

These results are obtained by investigating the properties of the following integral

ZR(s;F, φ) =

∫
Rn

|f(x)|sφ(x)dx (s ∈ C),

where f, φ are the same of Iφ(t; f). From the convergence of the integral, this integral

defines a holomorphic function on the right half plane {Re(s) > 0}, which is called local

zeta function. In analysis of this function, resolution of singularities of f are used to know

the property of its analytic continuation. In fact, ZR(s;F, φ) is analytically continued to

the whole complex plane as a meromorphic function and its poles appear in the order of

each term in the asymptotic expansion (2.2.1). An exact relationship between Iφ(t; f) and

ZR(s;F, φ) is written in [16], [35] or Chapter 7 in this paper. However, as we mentioned

before, resolution of singularities cannot be given explicitly for general analytic function

f . The work of Varchenko is essentially to give a method of constructing a quantitative

resolution of singularities under the nondegeneracy condition in Definition 2.2.3.

Remark 2.2.6. There is an oscillatory integrals with complex phase. In this case, Iφ(τ ; f)

is defined as follows

Iφ(τ ; f) :=

∫
Γ

eτf(z)φ(z)dz (τ ∈ R), (2.2.4)

where functions f and φ are holomorphic functions defined on an open neighborhood U of

a critical point of f and Γ is an n-dimensional chain lying on U . Then, when τ tends to

infinity, it is shown in [25] that Iφ(τ ; f) admits the following asymptotic expansion

Iφ(τ ; f) ∼
∑
α

n∑
k=1

Cα,kτ
α(log τ)k−1, (2.2.5)
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where α runs through finitely many arithmetic expressions consisting of negative rational

numbers. Furthermore, the components (α, k) in (2.2.5) are connected to the eigenvalues of

(classical) monodromy operator of f at its critical point. Malgrange shows in [25] that for

each α, exp(−2πα) is an eigenvalue of monodromy of f and if Cα,k ̸= 0, the size of the Jordan

block of exp(−2πα) is not smaller than k.

2.3 Known result of rational case

We recall a part of the work of W.Veys and W.A.Zúñiga-Galindo in [35] for the case of

rational functions. By using a simultaneous resolution of singularities, they determine the

forms of two asymptotic expansions of Iφ(t; f, g) as its parameter tends to zero and infinity.

In this section, we assume that

• f, φ and U are same as in section 2.2.

• g is a real analytic function defined on U and satisfies that g(0) = |(∇g)(0)| = 0.

Moreover, g has no critical point apart from the origin on U .

Theorem 2.3.1 ([35]). Let mλ be the order of a pole λ of ZR(s; f, g, φ) as in (i-7), then we

have the following:

(i) Iφ(t; f, g) has an asymptotic expansion as t→ ∞ of the form:

Iφ(t; f, g) ∼
∑
α

mα∑
k=1

Cα,kt
−α(log t)k−1, (2.3.1)

where −α runs through all negative poles of ZR(s; f, g, φ).

(ii) Iφ(t; f, g) has an asymptotic expansion as t→ 0 of the form:

Iφ(t; f, g)− C ∼
∑
β/∈Z

mβ∑
k=1

Dβ,kt
β(log t)k−1 +

∑
λ∈N

mλ+1∑
k=1

Dλ,kt
λ(log t)k−1, (2.3.2)

where C =
∫
Rn φ(x)dx is a constant and β runs through all positive poles of ZR(s; f, g, φ).

If λ is not a pole of ZR(s; f, g, φ), we put mλ = 0.

Remark 2.3.2. In [35], the authors investigate the meromorphic case (i.e., f, g are holo-

morphic functions and the integral is considered on C) and non-archimedean case (i.e., the

integrals on p-adic local fields), and obtain similar results.
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As is the result of analytic case, from the above theorem, we cannot know exact order

of each term of asymptotic expansions. Our main results enable us to determine orders of

leading terms in (2.3.1), (2.3.2) in an analogous way to the result of Varchenko.



Chapter 3

Main results

Let us state our main results relating to the estimate and determination of oscillatory indices

ξ∞(f, g) and ξ0(f, g). Our main results extends Theorem 2.2.5 to rational phase case. Let U

be a small open neighborhood of the origin in Rn. In this section, we assume that

• f and g are real analytic functions defined on U , which satisfy that f(0) = |(∇f)(0)| = 0

and g(0) = |(∇g)(0)| = 0. In other words, f and g have a critical point at the origin.

• f and g have no critical point apart from the origin on U .

• φ is a smooth function whose support is contained in U .

First, we give an estimate for Iφ(t; f, g) when its parameter is sufficiently large.

Theorem 3.0.1. Suppose that f · g is nondegenerate over R with respect to its Newton

polyhedron. If the support of φ is contained in a sufficiently small neighborhood of the origin,

then

|Iφ(t; f, g)| ≤ C(φ) t−1/d∞(f,g)(log t)m∞(f,g)−1 (t ≥ 2).

In particular, we have −ξ∞(f, g) ≤ −1/d∞(f, g).

We shall give some conditions where the oscillation index ξ∞(f, g) and its multiplicity

η∞(f, g) are determined by means of Newton data with respect to the pair (f, g).

Theorem 3.0.2. Suppose that f, g, φ satisfy the conditions in Theorem 3.0.1 and φ satisfies

φ(0) ̸= 0. Moreover, at least one of the following three conditions is satisfied:

19
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(a) d∞(f, g) > 1;

(b) f is nonnegative or nonpositive on U ;

(c) 1/d∞(f, g) is not an odd integer and fγ∞ does not vanish on U ∩ (R \ {0})n for some

principal face at infinity γ∞ ∈ F∞[f ],

then ξ∞(f, g) = 1/d∞(f, g) and η∞(f, g) = m∞(f, g).

Next, let us consider the case when t tends to zero. From the second part of the asymptotic

expansion (2.3.2), we see that Iφ(t; f, g) has a smooth part near the origin, which correspond

to the terms of λ ∈ N and k = 0. In order to clarify an influence of the singularity of phase

function, we decompose Iφ(t; f, g) into two part, regular part and singular part. By Borel’s

theorem, there exists a C∞ function ψ, small δ > 0 and a positive constant C not depending

on t satisfying that |ψ(t)− ψN(t)| ≤ CtN+δ for any N , where ψN is as in (i-5).

Definition 3.0.3. We call ψ(t) the regular part of Iφ(t; f, g) and Sφ(t; f, g) := Iφ(t; f, g)−ψ(t)
the singular part of Iφ(t; f, g).

Note that the regular part ψ(t) cannot be uniquely determined since ψ(t)+ (flat function)

has same Taylor series. From (2.3.2) and the above definition, it is easy to see that the singular

part Sφ(t; f, g) has the following asymptotic expansion

Sφ(t; f, g) ∼
∑
β

mβ∑
k=1

bβ,kt
β(log t)k−1 as t→ 0,

where β,mβ are the same as in Theorem 2.3.1. Our main results are concerned with the

leading term of this asymptotic expansion. At first, we give an estimate for Sφ(t; f, g) for

small parameter.

Theorem 3.0.4. Suppose that f, g, φ satisfy the conditions in Theorem 3.0.1, then

|Sφ(t; f, g)| ≤ D(φ) t1/d0(f,g)| log t|m0(f,g)−1 (0 ≤ t ≤ 1/2).

In particular, we have ξ0(f, g) ≥ 1/d0(f, g).

From the above theorem, we can see the next corollary relating to the regularity of

Iφ(t; f, g) at zero.



21

Corollary 3.0.5. Suppose that f, g, φ satisfy the conditions in Theorem 3.0.1 and let k be

nonnegative integer with k < 1/d0(f, g) ≤ k + 1. Then Iφ(t; f, g) is C
k function at 0.

Finally, we shall give some conditions where ξ0(f, g) and η0(f, g) are determined by means

of Newton data with respect to the pair (f, g).

Theorem 3.0.6. Suppose that f, g, φ satisfy the conditions in Theorem 3.0.1 and φ satisfies

φ(0) ̸= 0. Moreover,

(i) if 1/d0(f, g) is not an integer and at least one of the following three conditions is sat-

isfied:

(a) d0(f, g) > 1;

(b) g is nonnegative or nonpositive on U ;

(c) gτ0 does not vanish on U ∩ (R \ {0})n for some principal face at zero τ0 ∈ F0[g],

then ξ0(f, g) = 1/d0(f, g) and η0(f, g) = m0(f, g).

(ii) If 1/d0(f, g) is an integer and at least one of the following two conditions is satisfied:

(d) g is nonnegative or nonpositive on U ;

(e) 1/d0(f, g) is an even integer and gτ0 does not vanish on U ∩ (R \ {0})n for some

principal face at zero τ0 ∈ F0[g],

then ξ0(f, g) = 1/d0(f, g) and η0(f, g) = m0(f, g) + 1.

Remark 3.0.7. (i) From the proof of the above theorems, we can see that under the

same assumptions, the sets of arithmetic progressions {−α} and {β} in the asymptotic

expansions (i-4), (i-5) belong to the following sets:

{−α} ⊂
∪
a∈V+

PR(a) ∪ (−N), (3.0.1)

{β} ⊂
∪

a∈V−

PR(a) ∪ N, (3.0.2)

where V± ⊂ Zn
+ are finite sets of vectors as in (5.1.5) and PR(a) is arithmetic progression

depend on a ∈ Zn
+ defined in (6.0.2).
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(ii) It is known [16] that −1/d∞(f, g) is the maximum element of the first set in (3.0.1)

and 1/d0(f, g) is the minimum element of the first set in (3.0.2).

Remark 3.0.8. Let us consider the case when d∞(f, g) = 0. In this case, Theorem 3.0.1

implies for any N ∈ N, the following inequation holds

|Iφ(t; f, g)| ≤ C(φ)t−N (t ≥ 2).

This means Iφ(t; f, g) is rapidly decreasing as t→ ∞ and the singularity of f does not appear

in this asymptotic expansion. Similarly, if d0(f, g) = 0, for any N ∈ N, we have

|Sφ(t; f, g)| ≤ D(φ)tN (t ≤ 1/2)

from Theorem 3.0.6. This means Iφ(t; f, g) is smooth at the origin and the singularity of g

does not appear.

Remark 3.0.9. The limits

lim
t→∞

t1/d∞(f,g)(log t)−m∞(f,g)+1 Iφ(t; f, g)

and

lim
t→0

t−1/d0(f,g)(log t)−m0(f,g)+1 Iφ(t; f, g) (1/d0(f, g) /∈ Z>0),

lim
t→0

t−1/d0(f,g)(log t)−m0(f,g) Iφ(t; f, g) (1/d0(f, g) ∈ Z>0)

are explicitly computed in Chapter 7. The conditions in Theorems 3.0.2, 3.0.6 are sufficient

conditions where such limits do not vanish.

Remark 3.0.10. It is needless to say that the behavior of Iφ(t; f, g) is independent of the

exchanges of the integral variables. Therefore, if there exists a coordinate in which f and g

satisfy the assumptions in each theorems, then the respected assertion holds.
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Toric resolution

In analysis of Varchenko in [34], the theory of toric varieties plays an important role. In this

section, we recall the fundamental terminologies and the method to construct a toric variety

from a given fan.

4.1 Cones and fans

Definition 4.1.1. A rational polyhedral cone σ ⊂ Rn is a cone generated by finitely many

elements of Zn, i.e., there exist u1, ..., uk ∈ Zn such that

σ = {λ1u1 + · · ·+ λkuk ∈ Rn : λ1, ..., λk ≥ 0}. (4.1.1)

Furthermore, if the vectors {u1, ..., uk} in (4.1.1) are linearly independent and primitive

integer vectors, i.e., the greatest common divisor of each component of uj is equal to 1, the

set {u1, ..., uk} is called the skeleton of σ.

We say that σ is strongly convex if σ ∩ (−σ) = {0}. By regarding a cone as a polyhedron

in Rn, the definitions of dimension, face, edge, facet for the cone are given in the same way

as in Definition 1.1.5. It is clear that the skeleton of σ generates σ itself and that the number

of the elements of skeleton of k-dimensional cone is not less than k.

Definition 4.1.2. Σ is a fan if Σ is a finite collection of cones in Rn with the following

properties:

(i) Each σ ∈ Σ is a strongly convex rational polyhedral cone;

23
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(ii) If σ ∈ Σ and τ is a face of σ, then τ ∈ Σ;

(iii) If σ, τ ∈ Σ, then σ ∩ τ is a face of each.

For a fan Σ, the support of Σ is defined by

|Σ| :=
∪
σ∈Σ

σ.

For k = 1, . . . , n, we denote by Σ(k) the set of k-dimensional cones in Σ. For fans Σ1, ...,Σm,

we define Σ := {σ1 ∩ · · · ∩ σm : σj ∈ Σj}. Then Σ is also a fan.

Definition 4.1.3. Let Σ be a fan in Rn
+. The fan Σ̂ is called simplicial subdivision of Σ if Σ̂

satisfies the following properties:

(i) The fans Σ and Σ̂ have the same support;

(ii) Each cones of Σ̂ lies in some cone of Σ;

(iii) The skeleton of any cone belonging to Σ̂ can be completed to a base of the lattice dual

to Zn.

Note that for k-dimensional cone σ ∈ Σ̂(k), the number of the elements of its skeleton is

equal to k.

Remark 4.1.4. It is known [19] that for an arbitrary fan Σ, we can find a simplicial sub-

division of Σ by a unimodular triangulation. In fact, the simplicial subdivision of Σ̂ of Σ is

not uniquely determined. There can exist infinitely many simplicial subdivisions for one fan.

4.2 Fan associated with polyhedra

Let P be an n-dimensional polyhedron satisfying that P + Rn
+ ⊂ P ⊂ Rn

+. We explain a

method to construct a fan from polyhedron P . We denote by (Rn)∨ the dual space of Rn

with respect to the standard inner product. For a = (a1, ..., an) ∈ (Rn)∨ with aj ≥ 0, we

define

l(a) = min{⟨a, α⟩ : α ∈ P},

γ(a) = {α ∈ P : ⟨a, α⟩ = l(a)}(= H(a, l(a)) ∩ P ).
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We define a relation ∼ in (Rn)∨ by a ∼ a′ ⇔ γ(a) = γ(a′). Then, we immediately see that

the relation ”∼” is an equivalence relation and for any face γ of P , there is an equivalence

class γ∨ which is defined by

γ∨ := {a ∈ (Rn)∨ : γ(a) = γ and aj ≥ 0 for j = 1, ..., n}

( = {a ∈ (Rn)∨ : γ = H(a, l(a)) ∩ P and aj ≥ 0 for j = 1, ..., n}).
(4.2.1)

Here P∨ = {0}. The closure of γ∨, denoted by γ∨, is expressed as

γ∨ = {a ∈ (Rn)∨ : γ ⊂ H(a, l(a)) ∩ P and aj ≥ 0 for j = 1, ..., n}. (4.2.2)

Proposition 4.2.1. Let γ be a k-dimensional face of P expressed as

γ =
m∩
j=1

H(aj, l(aj)) ∩ P

for {a1, ..., am} ⊂ Zn
+. Then, γ

∨ is an (n−k)-dimensional strongly convex rational polyhedral

cone in (Rn)∨ and the set {a1, ..., am} is its skeleton.

Moreover, the collection of γ∨ for all faces of P gives a fan ΣP , which is called the fan

associated with the polyhedron P .

Note that |ΣP | = Rn
+. Furthermore, let us consider n-dimensional polyhedra P1, ..., Pm ⊂

Rn
+ satisfying Pj + Rn

+ ⊂ Pj ⊂ Rn
+. Let ΣPj

be the fan associated with Pj. It is known that

the collection σ1 ∩ · · · ∩ σm for all σj ∈ ΣPj
gives a fan, which is called the fan associated

with the polyhedra P1, ..., Pm. We remark that any simplicial subdivision of this fan is also a

simplicial subdivision of ΣPj
for each j.

In order to make the relationship between a face of P and an n-dimensional cone in Σ̂

more understandable, we introduce the following two maps.

Let Σ̂ be a simplicial subdivision of Σ and a1(σ), ..., an(σ) be the skeleton of σ ∈ Σ̂(n).

Two maps

γ : P({1, ..., n})× Σ̂(n) → F [P ], I : F [P ]× Σ̂(n) → P({1, ..., n}) (4.2.3)

are defined as

γ(I, σ) :=
∩
j∈I

H(aj(σ), l(aj(σ))) ∩ P,

I(γ, σ) := {j : γ ⊂ H(aj(σ), l(aj(σ))). (4.2.4)

If I = ∅, we define γ(∅, σ) := P . Note that I(P, σ) = ∅.
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Lemma 4.2.2. For σ ∈ Σ̂(n), γ ∈ F [P ] and I ∈ P({1, ..., n}), we have the following.

(i) γ ⊂ γ(I(γ, σ), σ) and dim(γ) ≤ n−#I(γ, σ).

(ii) γ = γ(I, σ) ⇒ I ⊂ I(γ, σ) ⇒ dim(γ) ≤ n−#I.

Proof. (i) By the definitions of γ(I, σ) and I(γ, σ), we have

γ(I(γ, σ), σ) =
∩

j∈I(γ,σ)

H(aj(σ), l(aj(σ))) ∩ P ⊃ γ.

From the above relation, one can find that dim(γ) ≤ dim(
∩

j∈I(γ,σ)H(aj(σ), l(aj(σ)))) =

n−#I(γ, σ).

(ii) The first implication is shown as follows:

γ = γ(I, σ) ⇒ γ =
∩
j∈I

H(aj(σ), l(aj(σ))) ∩ P

⇒ γ ⊂ H(aj(σ), l(aj(σ))) for all j ∈ I ⇒ I ⊂ I(γ, σ).

From the inequation in (i) and #I ≤ #I(γ, σ), the second implication in (ii) is obvious.

Next, let us consider the case when dim(γ) = n−#I(γ, σ). For a face γ of P , we define

a set of cones as

Σ̂(n)(γ) := {σ ∈ Σ̂(n) : dim(γ) = n−#I(γ, σ)}. (4.2.5)

Lemma 4.2.3. For σ ∈ Σ̂(n), γ ∈ F [P ] and I ∈ P({1, ..., n}), we have the following.

(i) #I(γ, σ) = dim(γ∨ ∩ σ).

(ii) Σ̂(n)(γ) = {σ ∈ Σ̂(n) : dim(γ∨ ∩ σ) = dim(γ∨)} ̸= ∅.

(iii) If σ ∈ Σ̂(n)(γ), then γ = γ(I(γ, σ), σ).

Proof. (i) For any j ∈ I(γ, σ), the face γ is contained in the hyperplane H(aj(σ), l(aj(σ))).

From the definition (4.2.2), we have aj(σ) ∈ γ∨ and this implies aj(σ) ∈ γ∨∩σ. So there exists
a bijection from I(γ, σ) to the set of linearly independent vectors {aj(σ) : j ∈ I(γ, σ)} ⊂
γ∨ ∩ σ.

(ii) From the equation in (i) and dim(γ∨) = n−dim(γ), we see that dim(γ∨) = #I(γ, σ) =

dim(γ∨ ∩ σ). Since the support of Σ̂ is Rn
+, there exists σ satisfying that dim(γ∨ ∩ σ) =

dim(γ∨). So Σ̂(n)(γ) is not empty.
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(iii) We have the following inequation,

dim(γ) ≤ dim(γ(I(γ, σ), σ))
(1)

≤ dim

 ∩
j∈I(γ,σ)

H(aj(σ), l(aj(σ)))


= n−#I(γ, σ)

(2)
= dim(γ).

The inequality (1) is obtained from the assertion (i) in Lemma 4.2.2 and the equality (2) comes

from the assumption. This implies dim(γ) = dim(γ(I(γ, σ), σ)). Since γ ⊂ γ(I(γ, σ), σ) by

Lemma 4.2.2-(i), the above dimensional equation yields γ = γ(I(γ, σ), σ).

4.3 Resolution of singularities associated with Σ̂

Here, we explain the method to construct a toric resolution of singularities for K-analytic

functions defined on K = R or C. It is known that this method is available for the case when

K is a local field with characteristic zero, for instance, p-adic field. If you want to know

about this and its applications to the non-archimedean local zeta function, see [35].

Let Σ be a fan satisfying |Σ| = Rn
+ and Σ̂ be one of a simplical subdivision of Σ. For each

σ ∈ Σ̂(n), let a1(σ), ..., an(σ) be the skeleton of σ. We set the coordinates of aj(σ) as

aj(σ) = (aj1(σ), ..., a
j
n(σ)).

We denote the copy of Kn by Kn(σ), which is associated with a cone σ. We define the map

πK(σ) : K
n(σ) → Kn as follows: πK(σ)(y1, ..., yn) = (x1, ..., xn) with

xj =
n∏

k=1

y
akj (σ)

k = y
a1j (σ)

1 · · · ya
n
j (σ)

n , j = 1, ..., n.

Let YΣ̂ be the union ofKn(σ) for σ which are glued along the image of πK(σ). In detail, YΣ̂

is a quotient space
⊔

σ∈Σ̂K
n(σ)/ ∼ with the equivalence relation defined by y = (y1, ..., yn) ∼

y′ = (y′1, ..., y
′
n) ⇔ πK(σ)(y) = πK(τ)(y

′) for y ∈ Kn(σ), y′ ∈ Kn(τ). It is known (see [9])

that

• YΣ̂ is an n-dimensional algebraic manifold;

• The map πK : YΣ̂ → Kn defined on each coordinate Kn(σ) as πK(σ) : K
n(σ) → Kn is

proper;
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• Each Kn(σ) is densely embedded in YΣ̂.

Remark 4.3.1. The following conditions are equivalent.

• a1(σ), ..., an(σ) can be completed to a base of the lattice dual to Zn.

• det(ajk(σ))1≤j,k≤n = ±1.

• The inverse map πK(σ)
−1 is rational.

Definition 4.3.2. The manifold YΣ̂ is called the toric variety associated with Σ̂.

Later, we see that the pair (YΣ̂, πK) satisfies the properties in Theorem 2.2.2. The pair

(YΣ̂, πK) is called the K-resolution of singularities associated to Σ̂.

The following lemma is useful for the analysis in Chapter 6.

Lemma 4.3.3. (i) The set of the points in Kn(σ) in which πK(σ) is not an isomorphism

is a union of coordinate hyperplanes.

(ii) The Jacobian of the mapping πK(σ) is

JπK(σ)(y) = ±
n∏

j=1

y
⟨aj(σ)⟩−1
j .

Proof. Here, we prove only (ii). From the definition of the Jacobian and the determinant,

we have

|JπK(σ)(y)| =

∣∣∣∣∣∣∣∣∣∣∣

a11(σ)y
a11(σ)−1
1 y

a21(σ)
2 · · · ya

n
1 (σ)

n · · · an1 (σ)y
a11(σ)
1 y

a21(σ)
2 · · · ya

n
1 (σ)−1

n

a12(σ)y
a12(σ)−1
1 y

a22(σ)
2 · · · ya

n
2 (σ)

n · · · an2 (σ)y
a12(σ)
1 y

a22(σ)
2 · · · ya

n
2 (σ)−1

n

...
. . .

...

a1n(σ)y
a1n(σ)−1
1 y

a2n(σ)
2 · · · ya

n
n(σ)

n · · · ann(σ)y
a1n(σ)
1 y

a2n(σ)
2 · · · ya

n
n(σ)−1

n

∣∣∣∣∣∣∣∣∣∣∣
=

(
n∏

j=1

y
⟨aj(σ)⟩
j

)
·

∣∣∣∣∣∣∣∣
a11(σ)y

−1
1 · · · an1 (σ)y

−1
n

...
. . .

...

a1n(σ)y
−1
1 · · · ann(σ)y

−1
n

∣∣∣∣∣∣∣∣
=

(
n∏

j=1

y
⟨aj(σ)⟩−1
j

)
·

∣∣∣∣∣∣∣∣
a11(σ) · · · an1 (σ)
...

. . .
...

a1n(σ) · · · ann(σ)

∣∣∣∣∣∣∣∣ . (4.3.1)

The determinant of the last matrix in (4.3.1) is equal to 1 or −1, because of the property of

the simplicial subdivision (the property (iii) in Definition 4.1.3 and Remark 4.3.1).
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Lemma 4.3.4. If γ = γ(I, σ) as in (4.2.3) and {a1(σ), ..., an(σ)} is a skeleton of σ, then fγ

satisfies the following equation on {x ∈ Kn : fγ(x) = 0}:

aj1(σ)x1
∂fγ
∂x1

+ · · ·+ ajn(σ)xn
∂fγ
∂xn

= 0 for j ∈ I.

Proof. From the form of fγ in (1.1.2), we see that fγ is a quasi-homogeneous polynomial with

a weight {aj1(σ), ..., ajn(σ)} for each j ∈ I. Since ⟨aj, α⟩ = lf (a
j(σ)) for α ∈ γ, we have

fγ(t
aj1(σ)x1, ..., t

ajn(σ)xn) = tlf (a
j(σ))fγ(x)

with a parameter t. Differentiating both side by t, we have

n∑
k=1

ajk(σ)t
ajk(σ)−1xk

∂fγ
∂xk

(t, x) = lf (a
j(σ))tlf (a

j(σ))−1fγ(x). (4.3.2)

Substituting t = 1, fγ(x) = 0 to (4.3.2), we have the desired equation.

The next lemma is concerned with the property of the map πK(σ) when the face γ(I, σ)

is compact.

Lemma 4.3.5. If γ = γ(I, σ), the following conditions are equivalent.

(i) γ is compact.

(ii) πK(σ)(TI(K
n)) = 0.

Proof. See the proof of Proposition 8.6 in [18].

4.4 Resolution of singularities with respect to two func-

tions

Let Σf , Σg be fans associated to the polyhedron Γ+(f), Γ+(g) and Σ := {σ1 ∩ σ2 : σ1 ∈
Σf , σ2 ∈ Σg}. In this section, let us recall some lemmas on the simultaneous resolution of

singularities for two functions introduced in [18]. Hereafter, we use the symbol lh(a) for

a ∈ Rn
+ and K-analytic function h defined near the origin in Kn defined as

lh(a) := min{⟨a, α⟩ : α ∈ Γ+(h)}. (4.4.1)
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and for I ⊂ {1, ..., n}

TI(K
n) := {y ∈ Kn : yj = 0 if j ∈ I},

T 1
I (K

n) := {y ∈ Kn : yj = 1 if j ∈ I}.

Lemma 4.4.1 (Proposition 7.4. in [18]). Let Σ̂ be a simplicial subdivision of the fan Σ and

σ ∈ Σ̂(n) be an n-dimensional cone whose skeleton is a1(σ), ..., an(σ) ∈ Zn
+. Then, there exists

K-analytic functions fσ, gσ defined on the set πK(σ)
−1(U) such that fσ(0) · gσ(0) ̸= 0 and

f(πK(σ)(y)) =

(
n∏

j=1

y
lf (a

j(σ))
j

)
· fσ(y),

g(πK(σ)(y)) =

(
n∏

j=1

y
lg(aj(σ))
j

)
· gσ(y)

(4.4.2)

for y ∈ πK(σ)
−1(U).

Proof. Here, we treat only the case of f . Substituting πK(σ) into the Taylor series of f , we

have

f(πK(σ)(y)) =
∑
α∈Zn

+

cα

(
n∏

k=1

y
a1k(σ)
1 · · · ya

n
k (σ)

n

)α

=
∑
α∈Zn

+

cα

n∏
j=1

y
aj1(σ)α1+aj2(σ)α2+···+ajn(σ)αn

j

=
∑
α∈Zn

+

cα

n∏
j=1

y
⟨aj(σ),α⟩
j . (4.4.3)

Since the multi-index α lies in Γ+(f) and from the definition of lf (a) in (4.4.1), all the terms

in (4.4.3) can be divided by y
lf (a

j(σ))
j for j = 1, ..., n. Thus, one can find that

f(πK(σ)(y)) =
n∏

j=1

y
lf (a

j(σ))
j

∑
α∈Zn

+

cα

n∏
j=1

y
⟨aj(σ),α⟩−lf (a

j(σ))
j =

(
n∏

j=1

y
lf (a

j(σ))
j

)
· fσ(y).

From the construction of Σ̂, there exists α0 ∈ Γ+(f) ∩ Zn
+ satisfying that ⟨aj(σ), α0⟩ −

lf (a
j(σ)) = 0 for any j = 1, ..., n and this implies fσ(0) = cα0 ̸= 0.

For h = f, g, we define a map γh : P({1, ..., n})× Σ̂(n) → F [h] as follows:

γh(I, σ) :=
∩
j∈I

H(aj(σ), lh(a
j(σ))) ∩ Γ+(h).
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Lemma 4.4.2. Let fσ and gσ be as in Lemma 4.4.1. If γ1 = γf (I, σ), γ2 = γg(I, σ), then we

have

fγ1(π(σ)(T
1
I (y))) =

∏
j /∈I

y
lf (a

j(σ))
j

 · fσ(TI(y)),

gγ2(π(σ)(T
1
I (y))) =

∏
j /∈I

y
lg(aj(σ))
j

 · gσ(TI(y)).

(4.4.4)

Proof. By substituting y = T 1
I (y) to (4.4.2) and the relation fσ(T

1
I (y)) = fσ(TI(y)), we have

(4.4.4).

Note that πK(σ)(T
1
I (y)) ∈ (K \ {0})n if y ∈ TI(K

n). From Lemma 4.4.1, we see that f, g

can be expressed as normal crossing form near the origin of each Kn(σ). Then, in order to

complete the resolution, we have to consider the zero set of fσ, gσ at each coordinate axis far

from the origin. For this, we need Newton nondegeneracy condition appeared in Chapter 2.

Proposition 4.4.3. If f and g are nondegenerate over K with respect to their Newton

polyheda and a set I ⊂ {1, . . . , n} satisfies πK(σ)(TI(K
n)) = 0, then the sets {y ∈ TI(K

n) :

fσ(y) = 0} and {y ∈ TI(K
n) : gσ(y) = 0} are nonsingular, that is, the restriction of the

gradient of functions fσ and gσ to TI(K
n) does not vanish at the points of the set {y ∈

TI(K
n) : fσ(y) = 0} and {y ∈ TI(K

n) : gσ(y) = 0}, respectively.

Proof. We only prove the case of f . Let γ = γf (I, σ). Since we consider the coordinate axis

far from the origin, we see that
∏

j /∈I y
lf (a

j(σ))
j ̸= 0. Thus, the relation (4.4.4) implies

fσ(TI(y)) = 0 ⇐⇒ fγ(πK(σ)(T
1
I (y))) = 0,

∂

∂yj
fσ(TI(y)) = 0 ⇐⇒ ∂

∂yj
fγ(πK(σ)(T

1
I (y))) = 0 for j /∈ I. (4.4.5)

Therefore, it suffices to investigate the zero set of fγ(πK(σ)(T
1
I (y))). We denote a coordinate

of πK(σ)(T
1
I (y)) by (ỹ1, ..., ỹn), i.e., ỹk =

∏
j /∈I y

ajk(σ)

j . Then, by chain rule, each partial

derivative of fγ(ỹ) with respect to yj for j /∈ I is

∂

∂yj
fγ(ỹ) =

n∑
k=1

∂

∂ỹk
fγ(ỹ) ·

∂ỹk
∂yj

=
1

yj

n∑
k=1

ajk(σ)ỹk
∂

∂ỹk
fγ(ỹ) for j /∈ I. (4.4.6)
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On the other hand, from fγ(ỹ) = 0 and Lemma 4.3.4, we have

n∑
k=1

ajk(σ)ỹk
∂

∂ỹk
fγ(ỹ) = 0 for j ∈ I. (4.4.7)

If the gradient of fσ(TI(y)) vanishes, from (4.4.5), (4.4.6) and (4.4.7) we have
a11(σ) · · · a1n(σ)

a21(σ) · · · a2n(σ)
...

. . .
...

an1 (σ) · · · ann(σ)




ỹ1

∂
∂ỹ1
fγ(ỹ)

ỹ2
∂

∂ỹ2
fγ(ỹ)
...

ỹn
∂

∂ỹn
fγ(ỹ)

 =


0

0
...

0

 . (4.4.8)

Since n × n matrix (ajk(σ))1≤j,k≤n is invertible, (4.4.8) implies all partial derivatives satisfy

∂
∂ỹj
fγ(ỹ) = 0 for ỹ ̸= 0. This is contradicted to the nondegeneracy of f .

Remark 4.4.4. Let b = (b1, ..., bn), c = (c1, ..., cn) be points on TI(K
n) satisfying fσ(b) = 0,

gσ(b) ̸= 0 and fσ(c) ̸= 0, gσ(c) = 0. Then, from the implicit function theorem, there exist

local diffeomorphisms ϕb, ϕc defined on an each neighborhood of b, c such that

(i) y = ϕb(u) with b = ϕb(b) and(
f

g
◦ πK(σ) ◦ ϕb

)
(u) = (ui − bi)

(∏
j∈I

u
lf (a

j(σ))
j

)
,

where yj = uj for j ∈ I and i /∈ I.

(ii) y = ϕc(v) with c = ϕc(c) and(
f

g
◦ πK(σ) ◦ ϕc

)
(v) =

1

(vi − ci)

(∏
j∈I

v
lf (a

j(σ))
j

)
,

where yj = vj for j ∈ I and i /∈ I.

Mixing Lemma 4.4.2, Proposition 4.4.3 and Remark 4.4.4, we see that the pair (YΣ̂, πK)

satisfy the properties in Theorem 2.2.2 for both f and g. We call the pair (YΣ̂, πK) simulta-

neous resolution of singularities with respect to f and g.

Lemma 4.4.5 (Lemma 7.5. in [18]). Let a = (a1, ..., an) ∈ Rn
+ and F := f · g. Let γh(a) :=

H(a, lh(a)) ∩ Γ+(h) for h = F, f, g. Then we have
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(i) FγF (a)(x) = fγf (a)(x) · gγg(a)(x).

(ii) lF (a) = lg(a) + lf (a).

Proof. Let h = F, f, g have a Taylor series at the origin of the form

h(x) =
∑
α∈Zn

+

ch(α)x
α.

For a positive t, we have

h(ta1x1, ..., t
anxn) =

∑
α∈Zn

+

ch(α)t
⟨a,α⟩xα = tlh(a)ht(x),

where ht(x) =
∑

α∈Zn
+
ch(α)t

⟨a,α⟩−lh(a)xα. It is easy to see that ht(x) satisfies h0(x) = hγh(a)(x).

We have the following equation;

tlF (a)Ft(x) = tlf (a)+lg(a)ft(x)gt(x) ⇐⇒ Ft(x) = tlf (a)+lg(a)−lF (a)ft(x)gt(x). (4.4.9)

Considering the limit as t → 0 in (4.4.9) and be careful to the fact that F0(x) ̸≡ 0, the

assertions (i),(ii) are shown.

Lemma 4.4.6 (Lemma 7.8. in [18]). If f · g is nondegenerate over K with respect to its

Newton polyhedoron, then so is each f and g.

Proof. Suppose that f is not nondegenerate. Then there exists a compact face γ of Γ+(f)

and a point x∗ ∈ (K \ {0})n such that ∂fγ
∂xj

(x∗) = 0 for j = 1, ..., n. Let a ∈ R>0 satisfy that

(a, lf (a)) is a valid pair defining γ. Moreover, from Lemma 4.3.4,
∑n

j=1 ajxj
∂fγ
∂xj

(x) = fγ(x),

we have fγ(x∗) = 0. Since Fγ(x) = fγf (a)(x) · gγg(a)(x) from Lemma 4.4.5-(i), we have

∂Fγ(a)

∂xj
(x∗) =

∂fγ(a)
∂xj

(x∗) · gγg(a)(x∗) + fγ(a)(x∗) ·
∂gγg(a)

∂xj
(x∗) = 0

for j = 1, ..., n. This is contradicted to the nondegeneracy of F .

Remark 4.4.7. In general, the converse of the assertion in Lemma 4.4.6 does not hold (for

example, f(x) = x1(x1 − x2) and g(x) = (x1 − x2)). So the assumption of nondegeneracy

of f · g is a little stronger to say fσ and gσ do not have other singularities. In fact, the

nondegeneracy of f · g is necessary to avoid another difficulty (see Lemma 4.4.8).
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From Remark 4.4.4, fσ and gσ can be expressed normal crossing form at the points on

the coordinate axis far from the origin under nondegeneracy condition. However, if fσ and

gσ vanish at the same point, we might have to consider further resolution. The following

lemma states that such situation does not occur under the assumption of nondegeneracy of

f · g.

Lemma 4.4.8. Suppose that F := f · g is nondegenerate over K with respect to its Newton

polyhedron and for any σ ∈ Σ̂(n), a set I ⊂ {1, ..., n} satisfies πK(σ)(TI(K
n)) = 0, then fσ(y)

and gσ(y) do not vanish simultaneously on TI(K
n).

Proof. Assume that fσ(b) = gσ(b) = 0 for some b ∈ TI(K
n). From Lemma 4.4.2., we obtain

fγ1(B) = gγ2(B) = 0,

where B = πK(σ)(T
1
I (b)) ∈ (K \ {0})n and γ1, γ2 are as in Lemma 4.4.2. By Lemma 4.4.5,

there exists γ ∈ F [F ] such that Fγ(x) = fγ1(x) · gγ2(x). Then, we have

∂Fγ

∂xj
(B) =

∂fγ1
∂xj

(B) · gγ2(B) + fγ1(B) · ∂gγ2
∂xj

(B) = 0

for j = 1, ..., n. This shows that F is not nondegenerate.



Chapter 5

Some Important Fans

In this chapter, as a preparation for the analysis of local zeta function, we construct some

important fans which have appropriate properties reflecting the geometrical relationship be-

tween two Newton polyhedra. Furthermore, we define and investigate some fans which are

concerned with the coefficients of the leading terms in the asymptotic expansions (i-4), (i-5).

Indeed, we will have formulae of such coefficients by using cones belonging to the fans treated

here.

5.1 Important sets for candidate poles

5.1.1 Construction of an appropriate fan

In this section, we construct a fan which is appropriate in our analysis of local zeta function

in chapter 6. Let f, g be K-analytic functions defined near the origin in Kn.

We define the sets of vectors as

V±(f, g) := {a ∈ Rn
+ : ±(lf (a)− lg(a)) > 0},

where lf (·), lg(·) are as in (4.4.1).

Lemma 5.1.1. The following conditions are equivalent.

(i) d∞(f, g) = 0 ⇐⇒ Γ+(g) ⊂ Γ+(f) ⇐⇒ V+(f, g) = ∅.

(ii) d0(f, g) = 0 ⇐⇒ Γ+(f) ⊂ Γ+(g) ⇐⇒ V−(f, g) = ∅.

35
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Proof. We only prove the assertion (i). The first equivalence is obvious from Remark 1.2.2.

The second equivalence is proved as follows.

(⇐) V(f, g) = ∅ implies lf (a)− lg(a) ≤ 0 for all a ∈ Rn
+. Then, we have a relation

H+(a, lg(a)) ⊂ H+(a, lf (a)) for all a ∈ Rn
+. (5.1.1)

Since Newton polyhedron is a polyhedron, (5.1.1) implies Γ+(g) ⊂ Γ+(f).

(⇒) Assume that lf (a
′) − lg(a

′) > 0 for some a′ ∈ Rn
+. By the same argument, we have

a relation H+(a′, lf (a
′)) ⊊ H+(a′, lg(a

′)). Then, H+(a′, lg(a
′)) ∩ Γ+(g) =: τ(a′) is a face of

Γ+(g) and

Γ+(g) \ Γ+(f) ⊃ Γ+(g) \H+(a′, lf (a
′)) ⊃ τ(a′) \H+(a′, lf (a

′)) = τ(a′).

This implies Γ+(g) ̸⊂ Γ+(f).

For f, g, we define

Γ+(f, g) := the convex hull of the set Γ+(f) ∪ Γ+(g).

Note that Γ+(f, g) is a polyhedron. Let Σ♮ be the fan associated with the polyhedron Γ+(f, g).

We define a subset of Σ♮ as follows

ΣD := {σ ∈ Σ♮ : lf (a) = lg(a) holds for any a ∈ σ}.

From this definition, it is easy to see that ΣD is a subfan of Σ♮.

Lemma 5.1.2. Every cone σ ∈ Σ♮ satisfies only one of the following conditions:

(i) Int(σ) ⊂ V+(f, g);

(ii) Int(σ) ⊂ V−(f, g);

(iii) σ ∈ ΣD.

Proof. Let σ be a cone in Σ♮ and a
1(σ), ..., ak(σ) be skeleton of σ. Let γσ be a face of Γ+(f, g)

defined by

γσ =

(
k∩

j=1

H(aj(σ), l∗(a
j(σ)))

)
∩ Γ+(f, g), (5.1.2)
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where l∗(a) := min{⟨a, α⟩ : α ∈ Γ+(f, g)}. For a polyhedron P , we denote the set of

vertices of P by V (P ). Since Γ+(f, g) is the convex hull of Γ+(f) ∪ Γ+(g), we see that

V (Γ+(f, g)) ⊂ V (Γ+(f)) ∪ V (Γ+(g)) and from this fact, we have the following classification

of γσ:

(A) γσ ∩ V (Γ+(f, g)) ⊂ V (Γ+(g));

(B) γσ ∩ V (Γ+(f, g)) ⊂ V (Γ+(f));

(C) γσ ∩ V (Γ+(g)) ∩ V (Γ+(f)) ̸= ∅.

Then, we will show that (A) ⇒ (i), (B) ⇒ (ii) and (C) ⇒ (iii).

At first, we consider the condition (A). From the definitions of lf (·) and lg(·), it suffices

to show that Γ+(f) ⊊ H+(a, lg(a)) for any a ∈ Int(σ). The condition (A) implies that the

vertices of γσ are vertices of Γ+(g) only, then for any a ∈ Int(σ), we have

l∗(a) = lg(a).

The construction from the face of polyhedron to its dual cone as in (4.2.1) implies that γσ is

expressed as

γσ = H(a, lg(a)) ∩ Γ+(f, g).

Thus, (a, lg(a)) is valid for Γ+(f, g) and we have following relations:

H+(a, lg(a)) ⊃ Γ+(f, g) ⊃ Γ+(f). (5.1.3)

If H(a, lg(a))∩Γ+(f) ̸= ∅, this set is a face of Γ+(f) and from the relation (5.1.3), γσ contains

this set. Then, γσ contains the vertex of Γ+(f) and this is contradiction.

(B) ⇒ (ii) is similarly proved.

For the proof of (C) ⇒ (iii), since the interior of σ can be shown by the same argument

as above, it suffices to consider the boundary of σ. Since the boundary of σ is also a cone

in Σ♮, we only have to consider the skeleton of σ. The condition (C) implies there exists

α ∈ V (Γ+(f)) and β ∈ V (Γ+(g)) satisfying that α, β ∈ γσ. Then, from equation (5.1.2), we

have

α, β ∈ H(aj(σ), l∗(a
j(σ))) for any j

and this implies

l∗(a
j(σ)) = lf (a

j(σ)) = lg(a
j(σ)) for any j.
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5.1.2 Important fans and sets of vectors for candidate poles

Let F = f · g and ΣF be a fan associated with Γ+(F ). Let Σ be a fan constructed from the

fans ΣF and Σ♮, i.e., Σ := {σ1 ∩ σ2 : σ1 ∈ ΣF , σ2 ∈ Σ♮}. Moreover, let Σ̂ be a simplicial

subdivision of Σ, which will be the most important fan in our analysis.

From Lemma 5.1.2, we can define the following three subfans of Σ̂.

Σ̂± := {τ ∈ Σ̂ : τ is a face of σ ∈ Σ̂(n) satisfying Int(σ) ⊂ V±(f, g)}.

Σ̂∗ := {τ ∈ Σ̂ : τ is a face of σ ∈ Σ̂(n) satisfying σ ⊂ ΣD}.

It is easy to obtain the following decomposition

Σ̂ = Σ̂+ ∪ Σ̂− ∪ Σ̂∗. (5.1.4)

For an n-dimensional cone σ ∈ Σ̂, we denote by a1(σ), ..., an(σ) the skeleton of σ. Let V±

be the two sets of vectors in Rn
+ defined by

V± := {aj(σ) ∈ Σ̂
(1)
± ∩ V±(f, g) : σ ∈ Σ̂(n), j = 1, ..., n}. (5.1.5)

From the property of fan associated with polyhedron, we see that V± ⊂ Zn
+. These sets of

vectors will be used to express the sets of candidate poles of local zeta functions.

5.2 Important fans for leading poles

In this section, we define and consider important fans for computation of the coefficients of

the leading poles of ZK(s; f, g, φ).

5.2.1 Newton distances and distance between the two Newton

polyhedra

We define the symbol d(f, g; a) as

d(f, g; a) := (lf (a)− lg(a))/⟨a⟩,

where lf (·), lg(·) are as in (4.4.1) and a ∈ Rn
+. Let us explain the geometrical meaning of

d(f, g; a). For h = f or g, we denote by p(a) the point of the intersection of the hyperplane
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H(a, lh(a)) with the diagonal line {(t, ..., t) ∈ Rn
+ : t ≥ 0}. Then lh(a)/⟨a⟩ is a value

satisfying that p(a) = (lh(a)/⟨a⟩, ..., lh(a)/⟨a⟩). Since H(a, lh(a)) ∩ Γ+(h) is always a face of

Γ+(h), lh(a)/⟨a⟩ can be regarded as a distance from the origin to Γ+(h) in the direction of a.

So d(f, g; a) stands for the some kinds of distance from Γ+(g) to Γ+(f) in the direction of a.

Proposition 5.2.1. Let d∞(f, g) and d0(f, g) be as in (1.2.1), then we have the following:

(i) d∞(f, g) = max{d(f, g; a) : a ∈ Rn
+}.

(ii) d0(f, g) = max{d(g, f ; a) : a ∈ Rn
+}.

Proof. We only consider the case of d∞(f, g). Let Γ+(f) and Γ+(g) be expressed as

Γ+(f) =
∩

a∈Rn
+

H+(a, lf (a)), Γ+(g) =
∩

a∈Rn
+

H+(a, lg(a)).

By the definition of d∞(f, g) and Lemma 5.1.1, we have the following equivalence,

(Γ+(g) + d∞(f, g) · 1) ⊂ Γ+(f)

⇐⇒ lf (a)− lg(a)− d∞(f, g) · ⟨a⟩ ≤ 0 for all a ∈ Rn
+

⇐⇒ d∞(f, g) ≥ lf (a)− lg(a)

⟨a⟩
for all a ∈ Rn

+.

(5.2.1)

The last inequation implies d∞(f, g) ≥ max{d(f, g; a) : a ∈ Rn
+}.

Assume that d∞(f, g) > max{d(f, g; a) : a ∈ Rn
+}, then from (5.2.1), we have

(Γ+(g) + d∞(f, g) · 1) ⊊ Γ+(f)

⇐⇒ (Γ+(g) + d∞(f, g) · 1) ∩ ∂Γ+(f) = ∅.

This is contradicted to the expression of d∞(f, g) in Lemma 1.2.3-(i).

By using the d(·, ·; ·), we define important subfans of Σ. Let Σ∞,Σ0 be subsets of Σ

defined by

Σ∞ = {σ ∈ Σ : d(f, g; a) = d∞(f, g) for all a ∈ σ}.

Σ0 = {σ ∈ Σ : d(g, f ; a) = d0(f, g) for all a ∈ σ}.

Note that these subsets Σ∞,Σ0 are not empty.

Remark 5.2.2. From the above definition, it is easy to see that Σ∞ and Σ0 are fans.
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5.2.2 Properties of Σ∞ and Σ0

Lemma 5.2.3. Let {a1(σ), ..., am(σ)} be a skeleton of σ ∈ Σ(k)(k = 2, ..., n). For all a ∈
Int(σ), the following inequation holds:

min
1≤j≤m

d(f, g; aj(σ)) ≤ d(f, g; a) ≤ max
1≤j≤m

d(f, g; aj(σ)). (5.2.2)

Proof. For any a ∈ Int(σ), there exist ki > 0 (i = 1, ...,m) such that a =
∑m

i=1 kia
i(σ). From

the construction of Σ, we can find the points ξ ∈ ∂Γ+(f) and η ∈ ∂Γ+(g) satisfying that

lf (a
j(σ)) = ⟨aj(σ), ξ⟩ and lg(aj(σ)) = ⟨aj(σ), η⟩ for all j = 1, ...,m. Then, from the definition

of d(f, g; a), we have

d(f, g; a) =
⟨a, ξ − η⟩

⟨a⟩
=

∑m
i=1 ki⟨ai(σ), ξ − η⟩∑m

i=1⟨ai(σ)⟩
.

By a simple computation, we have

d(f, g; a)− d(f, g; aj(σ))

=
1

Cj

m∑
i=1,i ̸=j

ki · ⟨aj(σ)⟩ · ⟨ai(σ)⟩ ·
(
⟨ai(σ), ξ − η⟩

⟨ai(σ)⟩
− ⟨aj(σ), ξ − η⟩

⟨aj(σ)⟩

)

=
1

Cj

m∑
i=1,i ̸=j

ki · ⟨aj(σ)⟩ · ⟨ai(σ)⟩ · (d(f, g, ai(σ))− d(f, g, aj(σ))), (5.2.3)

where Cj is a positive constant denoted by Cj = ⟨aj(σ)⟩ ·
∑m

i=1 ki⟨ai(σ)⟩. By checking the

signature of the each term in (5.2.3), we can obtain the inequation (5.2.2).

Remark 5.2.4. From equation (5.2.3) in the above proof, equality in (5.2.2) holds if and

only if min1≤i≤m d(f, g; a
i(σ)) = max1≤i≤m d(f, g; a

i(σ)) = d(f, g; aj(σ)) for all j.

Lemma 5.2.3 and Remark 5.2.4 say that d(f, g; a) has a property like maximum principle

in theory of complex analysis. We obtain the following corollary from the above lemma and

remark.

Corollary 5.2.5. Under the same situation in Lemma 5.2.3, the following two conditions

are equivalent.

(i) d(f, g, a) = max1≤j≤m d(f, g, a
j(σ)) = min1≤j≤m d(f, g, a

j(σ)) for some a ∈ Int(σ).

(ii) d(f, g, a) = max1≤j≤m d(f, g, a
j(σ)) = min1≤j≤m d(f, g, a

j(σ)) for all a ∈ σ.
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From this corollary, we can check whether σ ∈ Σ belongs to Σ∞(Σ0) or not by investigating

only one vector a ∈ Int(σ).

In Chapter 6, we have to consider all cones containing vectors a ∈ Rn
+ satisfying that

d(f, g; a) = d∞(f, g) or d(g, f ; a) = d0(f, g). However, we find it sufficient to treat cones only

belonging to Σ∞ and Σ0 from the next corollary.

Corollary 5.2.6. The following equalities hold.

|Σ∞| = {a ∈ Rn
+ : d(f, g; a) = d∞(f, g)}.

|Σ0| = {a ∈ Rn
+ : d(f, g; a) = d0(f, g)}.

Proof. We only consider the case of Σ∞. Assume that there exist a ∈ Rn
+ and σ /∈ Σ∞ such

that a ∈ Int(σ) and d(f, g, a) = d∞(f, g). Then, from Corollary 5.2.5, we have d(f, g, a) =

d∞(f, g) for all a ∈ σ. This is contradiction.

5.2.3 Properties of the principal faces

In order to investigate the properties of the leading poles of ZK(s; f, g, φ), we must understand

more exact relationships between cones of the subfans of Σ̂ and the faces of Newton polyhedra

Γ+(f) and Γ+(g). In this subsection, after we focus cones of the fans Σ∞,Σ0 and the principal

faces in F∞[f ],F0[g], their relationships are investigated in detail.

For σ ∈ Σ̂(n), we denote the skeleton of σ as {a1(σ), ..., an(σ)}. Let

A∞(σ) = {j : d(f, g; aj(σ)) = d∞(f, g)} ⊂ {1, ..., n},

A0(σ) = {j : d(g, f ; aj(σ)) = d0(f, g)} ⊂ {1, ..., n}
(5.2.4)

and for a cone σ ∈ Σ̂(n) satisfying that A∞(σ) ̸= ∅ or A0(σ) ̸= ∅, let γ∞(σ), γ0(σ) (resp.

τ∞(σ), τ0(σ)) be the faces of Γ+(f) (resp. Γ+(g)) defined by

γ∞(σ) :=
∩

j∈A∞(σ)

H(aj(σ), lf (a
j(σ))) ∩ Γ+(f),

γ0(σ) :=
∩

j∈A0(σ)

H(aj(σ), lf (a
j(σ))) ∩ Γ+(f);

τ∞(σ) :=
∩

j∈A∞(σ)

H(aj(σ), lg(a
j(σ))) ∩ Γ+(g),

τ0(σ) :=
∩

j∈A0(σ)

H(aj(σ), lg(a
j(σ))) ∩ Γ+(g).
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When A∞(σ) or A0(σ) is empty, we define γ∞(σ) = τ∞(σ) := ∅, γ0(σ) = τ0(σ) := ∅,
respectively.

Let Σ̂∞ and Σ̂0 be simplicial subdivision of Σ∞ and Σ0 satisfying that Σ̂∞, Σ̂0 ⊂ Σ̂. Let

Σ̃
(n)
∞ , Σ̃

(n)
0 be subsets of Σ̂(n) defined by

Σ̃(n)
∞ := {σ ∈ Σ̂(n)

∞ : #A∞(σ) = m∞(f, g)},

Σ̃
(n)
0 := {σ ∈ Σ̂

(n)
0 : #A0(σ) = m0(f, g)}.

(5.2.5)

Lemma 5.2.7. Suppose that γ∞ is a principal face at infinity of Γ+(f) and τ0 is a principal

face at zero of Γ+(g). Then we have the followings.

(i) I(γ∞, σ) ⊂ A∞(σ), I(τ0, σ) ⊂ A0(σ) for any σ ∈ Σ̂(n).

(ii) #A∞(σ) ≤ m∞(f, g), #A0(σ) ≤ m0(f, g) for any σ ∈ Σ̂(n).

(iii) Σ̂(n)(γ∞) ⊂ Σ̃
(n)
∞ , Σ̂(n)(τ0) ⊂ Σ̃

(n)
0 .

(iv) Σ̃
(n)
∞ , Σ̃

(n)
0 ̸= ∅.

Here, I(·, ·) and Σ̂(n)(·) are as in (4.2.4), (4.2.5).

Proof. Since we can prove in analogous way, we only consider the case of γ∞.

(i) Suppose that j ∈ I(γ∞, σ), i.e. γ∞ ⊂ H(aj(σ), lf (a
j(σ))). Let τ∞ be a principal face

at infinity of Γ+(g) associated to γ∞, i.e., Ψ∞(γ∞) = τ∞. From the definition of Ψ∞, we have

Φ∞(τ∞) ⊂ Ψ−1
∞ (τ∞) = γ∞ and

γ∞ ⊂ H(aj(σ), lf (a
j(σ))) =⇒Φ∞(τ∞) ⊂ H(aj(σ), lf (a

j(σ)))

⇐⇒ τ∞ ⊂ Φ−1
∞ (H(aj(σ), lf (a

j(σ)))).

Because of Γ+(g) ⊂ Φ−1
∞ (H(aj(σ), lf (a

j(σ)))) = H(aj(σ), lf (a
j(σ))−d∞(f, g) ·1) and the fact

that τ∞ is a nonempty proper face of Γ+(g), the definition of lg(·) implies that lg(a
j(σ)) =

lf (a
j(σ))− d∞(f, g) · ⟨aj(σ)⟩. This shows j ∈ A∞(σ).

(ii) The case when A∞(σ) = ∅ is obvious, so we assume that A∞(σ) ̸= ∅. Since j ∈
A∞(σ) ⇔ lg(a

j(σ)) = lf (a
j(σ))− d∞(f, g) · ⟨aj(σ)⟩ and Φ∞(Γ+(g)) ⊂ Γ+(f), we have

Φ∞(τ∞(σ)) ⊂ Φ∞

 ∩
j∈A∞(σ)

H(aj(σ), lg(a
j(σ)))

 ∩ Φ∞(Γ+(g))
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⊂
∩

j∈A∞(σ)

H(aj(σ), lg(a
j(σ)) + d∞(f, g) · ⟨aj(σ)⟩) ∩ Γ+(f)

=
∩

j∈A∞(σ)

H(aj(σ), lf (a
j(σ))) ∩ Γ+(f) = γ∞(σ). (5.2.6)

Since Φ∞(τ∞(σ)) is a nonempty set in Γ∗(f) and contained in the face γ∞(σ) of Γ+(f), the

definition of F∗[f ] implies that there exists a face γ̃ ∈ F∗[f ] such that Φ∞(τ∞(σ)) ⊂ γ̃ ⊂
γ∞(σ). From the definition of m∞(f, g), we have

dim(γ∞(σ)) ≥ dim(γ̃) ≥ n−m∞(f, g). (5.2.7)

On the other hand, we have

dim(γ∞(σ)) ≤ dim

 ∩
j∈A∞(σ)

H(aj(σ), lf (a
j(σ)))

 = n−#A∞(σ). (5.2.8)

Putting (5.2.7), (5.2.8) together, we have #A∞(σ) ≤ m∞(f, g).

Since the proofs of the assertions (iii),(iv) are same as those of Lemma 11.5-(iii),(iv) in

[18], we omit them here.

Remark 5.2.8. From Lemma 5.2.7-(ii),(iv), we see that

max{#A∞(σ) : σ ∈ Σ̂(n)} = m∞(f, g),

max{#A0(σ) : σ ∈ Σ̂(n)} = m0(f, g).

Proposition 5.2.9. (i) If σ ∈ Σ̃
(n)
∞ , then γ∞(σ) (resp. τ∞(σ)) is a principal face at in-

finity of Γ+(f) (resp. Γ+(g)). Moreover, γ∞(σ) is associated to τ∞(σ) (i.e., τ∞(σ) =

Ψ∞(γ∞(σ))).

(ii) If σ ∈ Σ̃
(n)
0 , then τ0(σ) (resp. γ0(σ)) is a positive principal face at zero of Γ+(g) (resp.

Γ+(f)). Moreover, τ0(σ) is associated to γ0(σ) (i.e., γ0(σ) = Ψ0(τ0(σ))).

Proof. As we can prove in analogous way, we only consider the assertion (i). Suppose that

σ ∈ Σ̃
(n)
∞ , i.e., #A∞(σ) = m∞(f, g).

(γ∞(σ) is a principal face at infinity of Γ+(f))

From (5.2.7), (5.2.8), we have dim(γ∞(σ)) = n−m∞(f, g) and, moreover, γ∞(σ) = γ̃ ∈ F∗[f ].

It follows from these equations that γ∞(σ) is a principal face at infinity of Γ+(f).
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(γ∞(σ) is associated to τ∞(σ))

The following equation holds:

Φ−1
∞ (γ∞(σ)) =

∩
j∈A∞(σ)

H(aj(σ), lg(a
j(σ))) ∩ Φ−1

∞ (Γ+(f)).

According to the property Γ+(g) + d∞(f, g) · 1 ⊂ Γ+(f), we have

Φ−1
∞ (γ∞(σ)) ∩ Γ+(g) =

∩
j∈A∞(σ)

H(aj(σ), lg(a
j(σ))) ∩ (Γ+(f)− d∞(f, g) · 1) ∩ Γ+(g)

=
∩

j∈A∞(σ)

H(aj(σ), lg(a
j(σ))) ∩ Γ+(g) = τ∞(σ).

From the above equation and the definition (1.2.3), we see that τ∞(σ) is a negative principal

face of Γ+(g) associated to γ∞(σ).

From Proposition 5.2.9, the map from Σ̃
(n)
∞ to F∞[f ] (resp. to F∞[g]) is naturally defined

(i.e., σ 7→ γ∞(σ) (resp. σ 7→ τ∞(σ))). Similarly, the map from Σ̃
(n)
0 to F0[f ] (resp. to F0[g])

is defined by σ 7→ γ0(σ) (resp. σ 7→ τ0(σ)).

Lemma 5.2.10. The above four maps are surjective.

Proof. See the proof of Lemma 11.8 in [18].



Chapter 6

Analysis of local zeta functions

The purpose of this chapter is to investigate the following integrals

ZK(s; f, g, φ) =

∫
Kn\DK

∣∣∣∣f(x)g(x)

∣∣∣∣s
K

φ(x)|dx|K (s ∈ C), (6.0.1)

where K = R or C and

• f, g are K-analytic functions defined on an open neighborhood U of the origin and

DK = f−1(0) ∪ g−1(0). Here, we recall that R-analytic means ”real analytic” and

C-analytic means ”holomorphic”.

• φ is a smooth function whose support is contained in U .

• | · |K means | · |R = | · | or | · |C = | · |2, where | · | is a usual absolute values in R or C.

• |dx|K means |dx|R = dx1 ∧ · · · ∧ dxn for (x1, ..., xn) ∈ Rn and |dx|C = dx1 ∧ · · · ∧ dxn ∧
dx1 ∧ · · · ∧ dxn for (x1, ..., xn) ∈ Cn.

Unlike the analytic case, the convergence of the integral in (6.0.1) is not followed from

the compactness of support of φ. In fact, it is shown [1] that the above integral converges on

some slit domain in C.

Theorem 6.0.1 ([1]). There exist positive constants α, β with 0 < α, β ≤ ∞ such that the

integral (6.0.1) converges locally uniformly on the region {−α < Re(s) < β} and defines a

holomorphic function there.

45



46 Chapter 6　Analysis of local zeta function

This theorem is shown by using a simultaneous resolution of singularities. The holomor-

phic function defined on the region given in Theorem 6.0.1 is called archimedean local zeta

function attached to (f/g, φ). Furthermore, W.Veys and W.A.Zúñiga-Galindo [35] show that

the above local zeta function has a meromorphic continuation to the whole complex plane

and its poles are contained in finitely many arithmetic progressions consisting of rational

numbers. We denote this meromorphic continuation by the same symbol ZK(s; f, g, φ).

As we mentioned in Introduction, poles of ZR(s; f, g, φ) are deeply connected to the

asymptotics of oscillatory integrals attached to (f/g, φ) in (i-3). Therefore, to describe the

properties of these poles is very important.

6.0.1 Candidate poles

Let us state the results relating to the positions and the orders of candidate poles of ZK(s; f, g, φ).

For this, we define the arithmetic progression derived from a vector defined by

PK(a) :=

{
− ⟨a⟩+ δKν

lf (a)− lg(a)
: ν ∈ Z+

}
⊂ Q, (6.0.2)

where a ∈ Zn
+, lf (·), lg(·) are as in (4.4.1) and

δK =

1 (K = R)

1/2 (K = C).

Theorem 6.0.2. Suppose that f · g is nondegenerate over K with respect to its Newton

polyhedron, then we have the followings.

(i) The poles of the function ZK(s; f, g, φ) are contained in the set∪
a∈V+

PK(a) ∪
∪

a∈V−

PK(a) ∪ (δKZ \ {0,±1/2}), (6.0.3)

where V± are as in (5.1.5). Note that V+ = ∅ if and only if d∞(f, g) = 0 and V− = ∅ if

and only if d0(f, g) = 0.

(ii) (a) If d∞(f, g) > 0, then the largest element of the first set in (6.0.3) is −1/d∞(f, g).

(b) If d0(f, g) > 0, then the smallest element of the second set in (6.0.3) is 1/d0(f, g).



47

(iii) (a) If d∞(f, g) > 0, the order of pole of ZK(s; f, g, φ) at s = −1/d∞(f, g) is at mostm∞(f, g) if 1/d∞(f, g) is not an integer,

min{m∞(f, g) + 1, n} otherwise.

(b) If d0(f, g) > 0, the order of pole of ZK(s; f, g, φ) at s = 1/d0(f, g) is at mostm0(f, g) if 1/d0(f, g) is not an integer,

min{m0(f, g) + 1, n} otherwise.

Here, the poles on (δKZ \ {0,±1/2}) will be called trivial poles.

Remark 6.0.3. The set (6.0.3) is a set of candidate poles of ZK(s; f, g, φ) and there might

be many poles which do not appear in actuality. As a known result, Denef and Sargos [8]

show that in analytic case, if a is an additional vector obtained by process of simplicial

subdivision, poles belonging to PK(a) do not appear. We believe that the same assertion

holds in meromorphic case.

Remark 6.0.4. (a) As in the proof of Theorem 6.0.2, we see that the non-trivial poles,

that is, lying on
∪

a∈V+
PK(a) ∪

∪
a∈V−

PK(a) can be computed by using the theory of

toric varieties based on the Newton polyhedra of f and g. This means that the list

of non-trivial poles can be determined by the geometry of the Newton polyhedra of f

and g. On the other hand, the existence of trivial poles cannot be determined from the

information of Γ+(f) and Γ+(g) only.

(b) When d∞(f, g) = 0, the set V+ is empty and this implies that ZK(s; f, g, φ) has no

negative non-trivial poles. The same can be said for the positive non-trivial poles when

d0(f, g) = 0.

6.0.2 The leading poles

Let us consider the important poles of ZK(s; f, g, φ) which have crucial roles in both the

properties of ZK(s; f, g, φ) and relationship between ZK(s; f, g, φ) and other mathematical

fields.
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Definition 6.0.5. (i) The largest negative pole in (6.0.3) is called the negative leading

pole. Moreover, the largest negative non-trivial pole is called the negative e-leading

pole.

(ii) The smallest positive pole in (6.0.3) is called the positive leading pole. Moreover, the

smallest positive non-trivial pole is called the positive e-leading pole.

The word ”e-leading pole” means ”essential leading pole”, which plays an essentially

important role in the analysis of oscillatory integrals.

Note that ZK(s; f, g, φ) does not always have negative(positive) (e-)leading poles. If

ZK(s; f, g, φ) has a negative leading pole at s = −α∗ and a positive leading pole at s = β∗,

ZK(s; f, g, φ) can be regarded as a holomorphic function on the region {s ∈ C : −α∗ <

Re(s) < β∗}. In Chapter 7, we see that properties of the negative and positive e-leading

poles of ZR(s; f, g, φ) are reflected to the orders of leading terms of asymptotic expansions

(i-4), (i-5). In addition, in the recent studies of Bernstein-Sato polynomials in [32], [1], it

is an important issue to express these leading poles of ZK(s; f, g, φ) by using appropriate

informations of f and g. For these reasons, we attempt to describe conditions where each

(e-)leading pole can be determined explicitly by means of Newton data defined in Chapter 1.

Theorem 6.0.6. Suppose that f · g is nondegenerate over K with respect to its Newton

polyhedron and φ satisfies that φ(0) > 0 and φ is nonnegative on its support.

(i) Suppose that d∞(f, g) > 0. If at least one of the following two conditions is satisfied:

(a) d∞(f, g) > 1;

(b) K = R and f is nonnegative or nonpositive on U ,

then the negative leading pole of ZK(s; f, g, φ) exists at s = −1/d∞(f, g) and its order

is equal to m∞(f, g). Furthermore, if at least one of the three conditions (a), (b) and

(c) there exists γ∞ ∈ F∞[f ] such that fγ∞ does not vanish on U ∩ (K \ {0})n

is satisfied, then the negative e-leading pole of ZK(s; f, g, φ) exists at s = −1/d∞(f, g)

and its order is equal to m∞(f, g).

(ii) Suppose that d0(f, g) > 0. If at least one of the following two conditions is satisfied:
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(d) d0(f, g) > 1;

(e) K = R and g is nonnegative or nonpositive on U ,

then the positive leading pole of ZK(s; f, g, φ) exists at s = 1/d0(f, g) and its order is

equal to m0(f, g). Furthermore, if at least one of the three conditions (d), (e) and

(f) there exists τ0 ∈ F0[g] such that gτ0 does not vanish on U ∩ (K \ {0})n

is satisfied, then the positive e-leading pole of ZK(s; f, g, φ) exists at s = 1/d0(f, g) and

its order is equal to m0(f, g).

Remark 6.0.7. (i) We consider the case when d∞(f, g) = 0. From Remark 6.0.4-(b),

negative poles of ZK(s; f, g, φ) are only trivial poles and from the proofs of Proposi-

tion 6.3.1 and Theorems 6.3.3, 6.3.6, we see that ZK(s; f, g, φ) has no negative trivial

pole under the assumptions (i)-(b),(c). According to these facts, we can interpret that

locating the negative leading pole at s = −∞ indicates ZK(s; f, g, φ) is holomorphically

extended to the left half plane. Similarly, ZK(s; f, g, φ) is holomorphically extended to

the right half plane when its positive leading pole is at s = +∞.

(ii) In Theorems 6.3.3, 6.3.4, 6.3.6, 6.3.7, we give explicit formulae for the coefficients of

terms in Laurent expansion at e-leading poles under the same assumption in Theo-

rem 6.0.6. These explicit formulae show that the above coefficients essentially depend

on the principal face-parts (fγ∞ , gτ∞) and (fγ0 , gτ0). The conditions in Theorem 6.0.6

are sufficient conditions for the non-vanishing of these coefficients.

Example 5. Let us consider adapting above theorem to the functions f, g in subsection 1.2.1.

It is easy to see that all the functions satisfy the assumptions in Theorem 6.0.6. Then, we

have the followings:

(i) When f(x) = (x21 + x22)
2 and g(x) = x41 + x42, both Newton distances are equal to 0 and

assumptions (i)-(b),(c) and (ii)-(e),(f) are satisfied. Then, we see that ZR(s; f, g, φ)

has leading poles at s = ±∞, which implies ZR(s; f, g, φ) can be regarded as an entire

function.

(ii) When f(x) = x61 + x62 and g(x) = x21 + x22, d∞(f, g) = 2 and d0(f, g) = 0. Here,

the assumptions (i)-(a) and (ii)-(e),(f) are satisfied, then ZR(s; f, g, φ) has a pole at
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s = −1/2 of order 1 as a negative leading pole and is holomorphically extended to the

right half plane.

(iii) When f(x) = x21 + x42 and g(x) = x41 + x22, ZR(s; f, g, φ) has a negative leasing pole

at s = −3/2 of order 1 and a positive leading pole at s = 3/2 of order 1. Here, the

assumptions (i)-(b),(c) and (ii)-(e),(f) are satisfied.

6.1 Poles of elementary functions

For the analysis of local zeta functions, we investigate poles of elementary integrals of the

form

L(s) =

∫
Rn
+

(
n∏

j=1

y
ljs+mj−1
j

)
ψ(y, s)dy,

where lj ∈ Z, mj ∈ N and ψ(·, s) is a C∞ function of y in Rn for any s ∈ C and ψ(y, ·) is an
entire function on C for any y ∈ Rn.

6.1.1 Positions and orders of poles of L(s)

Let B,B± be subsets of {1, ..., n} defined by

B± := {j : ±lj > 0}, B := B+ ∪B−.

Remark 6.1.1. It is easy to see that L(s) converges when s ∈ C satisfies Re(ljs+mj −1) >

−1 for all j. Hence, L(s) defines a holomorphic function on the region

max
j∈B+

{−mj/lj} < Re(s) < min
j∈B−

{−mj/lj}.

Proposition 6.1.2. L(s) can be analytically continued to the whole complex plane as a

meromorphic function and its poles belong to the set{
−mj + νj

lj
: νj ∈ Z+, j ∈ B

}
. (6.1.1)

Moreover, suppose that p belongs to the above set and let

A(p) =

{
j ∈ B : −mj + νj

lj
= p for some νj ∈ Z+

}
.

Then, if L(s) has a pole at s = p, the order of the pole of L(s) at p is at most #A(p).
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Proof. For any ν = (ν1, ..., νn) ∈ Zn
+, by repeating the integration by parts , we have

L(s) =

(
n∏

j=1

νj∏
ν=0

1

(ljs+mj + ν)

)∫
Rn
+

(
n∏

j=1

y
ljs+mj+νj
j

)
∂⟨ν⟩ψ(y, s)

∂yν11 · · · ∂yνnn
dy.

This shows L(s) is analytically continued to the wider region Re(ljs +mj + νj) > −1 and

the poles of L(s) are contained in the set (6.1.1). Since ν ∈ Zn
+ is arbitrary, we see that L(s)

can be analytically continued to the whole complex plane. Moreover, it is easy to see that

(ljs+mj + νj) satisfying p = −(mj + νj)/lj appear at most #A(p) times.

6.1.2 First coefficients of L(s)

Let us compute the coefficients of the terms of Laurent expansions of L(s) at the important

poles. When B± ̸= ∅, we define p+ := max{−mj/lj : j ∈ B+}, p− := min{−mj/lj : j ∈ B−}
and A± := A(p±), respectively. Note that p± are the negative(positive) leading poles of L(s)

if the coefficients do not vanish.

Proposition 6.1.3. The coefficients of (s− p±)
−#A± in the Laurent expansions of L(s) are

n∏
j=1

1

lj
ψ(0, p±) if A± = {1, ..., n},

∏
j∈A±

1

lj

∫
Rn−#A±
+

∏
j /∈A±

y
ljp±+mj−1
j

ψ(TA±(y), p±)
∏
j /∈A±

dyj (otherwise).

Proof. By an integration by parts with respect to each yj for j ∈ A± and the computation

of lims→p±(s− p±)
#A±L(s), we obtain this proposition.

6.1.3 Trivial poles of L(s)

In the analysis in Section 6.2, we must consider the case when the coefficients of some poles

have particular properties. This property will be understood through the following functions:

L1,±(s) =

∫
Rn
+

ysn ∏
j∈D+

y
ljs+mj−1
j

ψ(y1, ..., yn−1,±yn)dy,

L2,±(s) =

∫
Rn
+

y−s
n

∏
j∈D−

y
ljs+mj−1
j

ψ(y1, ..., yn−1,±yn)dy,

where D± are subsets of B \ {n}.
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Lemma 6.1.4. For λ ∈ N, let A±λ be subsets in D± defined by Aλ = {j : ljλ+mj − 1 ∈ N}
and A−λ = {j : −ljλ+mj − 1 ∈ −N}. Then, we have the following:

(i) The functions L1,±(s) have poles at s = −λ of order not higher than #A−λ + 1. More-

over, the following holds : Let a±−λ be the coefficients of (s+ λ)−#A−λ−1 in the Laurent

expansions of L1,±(s) at s = −λ, respectively. Then the equation a+−λ = (−1)λ−1a−−λ

holds.

(ii) The functions L2,±(s) have poles at s = λ of order not higher than #Aλ+1. Moreover,

the following holds : Let a±λ be the coefficients of (s−λ)−#Aλ−1 in the Laurent expansions

of L2,±(s) at s = λ, respectively. Then the equation a+λ = −(−1)λ−1a−λ holds.

Proof. See the proof of Lemma 9.4 in [18].

6.2 Proof of Theorem 6.0.2

6.2.1 The case of K = R

At first, we consider the case of K = R. It is easy to see that the following relation holds.

ZR(s; f, g, φ) = Z+(s; f, g, φ) + Z−(s; f, g, φ), (6.2.1)

where

Z±(s; f, g, φ) =

∫
Rn\g−1(0)

(
f(x)

g(x)

)s

±
φ(x)dx (6.2.2)

and

(f(x)/g(x))+ = max{f(x)/g(x), 0}, (f(x)/g(x))− = max{−f(x)/g(x), 0}.

By applying the orthant decomposition to the functions Z±(s; f, g, φ), we have

Z±(s; f, g, φ) =
∑

θ∈{−1,1}n
ζ±(s;φθ, fθ, gθ) (6.2.3)

with

ζ±(s; f, g, φ) :=

∫
Rn
+

(
f(x)

g(x)

)s

±
φ(x)dx (6.2.4)
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and

hθ(x) := h(θ1x1, ..., θnxn) (6.2.5)

for h = φ, f, g, θ = (θ1, ..., θn) ∈ {−1, 1}n.
By applying the real toric resolution of singularities x = πR(y), ζ±(s; f, g, φ) can be

expressed as

ζ±(s; f, g, φ) =

∫
Rn
+

(
f(x)

g(x)

)s

±
φ(x)dx

=

∫
YΣ̂ ∩π−1

R (Rn
+)

(
(f ◦ πR)(y)
(g ◦ πR)(y)

)s

±
(φ ◦ πR)(y)|JπR(y)|dy,

where dy is a volume element in YΣ̂. It is easy to see that there exists a set of C∞
0 functions

{χσ : YΣ̂ → R+ : σ ∈ Σ̂(n)} satisfying the following properties:

• For each σ ∈ Σ̂(n), the support of the function χσ is contained in Rn(σ) and χσ identi-

cally equals one in some neighborhood of the origin.

•
∑

σ∈Σ̂(n) χσ ≡ 1 on the support of φ ◦ πR.

A set of these functions is called partition of unity on YΣ̂. Then, we have

ζ±(s; f, g, φ) =
∑

σ∈Σ̂(n)

ζ
(σ)
± (s;φ, f, g) (6.2.6)

with

ζ
(σ)
± (s;φ, f, g) :=

∫
Rn
+

(
(f ◦ πR(σ))(y)
(g ◦ πR(σ))(y)

)s

±
(φ ◦ πR(σ))(y)χσ(y)|JπR(σ)(y)|dy

=

∫
Rn
+

(
n∏

j=1

y
lf (a

j(σ))−lg(aj(σ))
j · fσ(y)

gσ(y)

)s

±

∣∣∣∣∣
n∏

j=1

y
⟨aj(σ)⟩−1
j

∣∣∣∣∣ χ̂σ(y)dy,

(6.2.7)

where χ̂σ(y) = (φ ◦ πR(σ))(y)χσ(y).

Consider the functions ζ
(σ)
± (s;φ, f, g) for each σ ∈ Σ̂(n). We easily see the existence of

finite sets of C∞
0 functions {ξk : Rn → R+}, {ηl : Rn → R+} and {κm : Rn → R+} satisfying

the following conditions.

• The supports of ξk, ηl and κm are sufficiently small and
∑

k ξk +
∑

l ηl +
∑

m κm ≡ 1

on the support of χ̂σ.
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• For each k, the function fσ/gσ is always positive or negative on the support of ξk.

• For each l, the support of ηl contains just one point in the set {y ∈ Supp(χ̂σ) : fσ(y) =

0} and the union of the support of ηl for all l contains the set {y ∈ Supp(χ̂σ) : fσ(y) =

0}.

• For eachm, the support of κm contains just one point in the set {y ∈ Supp(χ̂σ) : gσ(y) =

0} and the union of the support of κm for allm contains the set {y ∈ Supp(χ̂σ) : gσ(y) =

0}.

Remark 6.2.1. From Lemma 4.4.8, fσ and gσ do not vanish simultaneously on the TI(Rn)

which satisfies π(σ)(TI(Rn)) = 0. Hence, by shrinking their supports if necessary, we can

select the supports of ηl and κm satisfying that Supp(ηl) ∩ Supp(κm) = ∅ hold for all l and

m.

By using the functions {ξk}, {ηl} and {κm}, we have the following decomposition:

ζ
(σ)
± (s;φ, f, g) =

∑
k

I
(k)
±,σ(s) +

∑
l

J
(l)
±,σ(s) +

∑
m

K
(m)
±,σ (s) (6.2.8)

with

I
(k)
±,σ(s) =

∫
Rn
+

(
n∏

j=1

y
lf (a

j(σ))−lg(aj(σ))
j · fσ(y)

gσ(y)

)s

±

∣∣∣∣∣
n∏

j=1

y
⟨aj(σ)⟩−1
j

∣∣∣∣∣ ξ̂k(y)dy,
J
(l)
±,σ(s) =

∫
Rn
+

(
n∏

j=1

y
lf (a

j(σ))−lg(aj(σ))
j · fσ(y)

gσ(y)

)s

±

∣∣∣∣∣
n∏

j=1

y
⟨aj(σ)⟩−1
j

∣∣∣∣∣ η̂l(y)dy,
K

(m)
±,σ (s) =

∫
Rn
+

(
n∏

j=1

y
lf (a

j(σ))−lg(aj(σ))
j · fσ(y)

gσ(y)

)s

±

∣∣∣∣∣
n∏

j=1

y
⟨aj(σ)⟩−1
j

∣∣∣∣∣ κ̂m(y)dy,
(6.2.9)

where ξ̂k(y) = χ̂σ(y)ξk(y), η̂l(y) = χ̂σ(y)ηl(y) and κ̂m(y) = χ̂σ(y)κm(y). If the set {y ∈
Supp(χ̂σ) : fσ(y) = 0} ∩ Rn

+ (resp. {y ∈ Supp(χ̂σ) : gσ(y) = 0} ∩ Rn
+) is empty, then the

functions J
(l)
±,σ(s) (resp. K

(m)
±,σ (s)) do not appear in the decomposition (6.2.8).

6.2.2 Poles of I
(k)
±,σ(s), J

(l)
±,σ(s) and K

(m)
±,σ (s)

Let us consider the positions of poles of I
(k)
±,σ(s), J

(l)
±,σ(s) and K

(m)
±,σ (s) in (6.2.9). First, we

consider properties of poles of the functions I
(k)
±,σ(s). Since every yj is nonnegative in the
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integrand, we have

I
(k)
±,σ(s) =

∫
Rn
+

n∏
j=1

y
(lf (a

j(σ))−lg(aj(σ)))s+⟨aj(σ)⟩−1
j

(
fσ(y)

gσ(y)

)s

±
ξ̂k(y)dy.

Let

A(σ) := {j : lf (aj(σ))− lg(a
j(σ)) ̸= 0} ⊂ {1, ..., n}. (6.2.10)

By applying Proposition 6.1.2 to (5.2.3), we can see that each I
(k)
±,σ(s) can be analytically

continued to the whole complex plane as meromorphic functions and their poles are contained

in the set ∪
j∈A(σ)

PR(a
j(σ)). (6.2.11)

Second, we consider the case of the functions J
(l)
±,σ(s). By applying Lemma 4.4.1 and

Remark 4.4.4, J
(l)
±,σ(s) can be expressed as follows:

J
(l)
±,σ(s) =

∫
Rn
+

(ui − bi)
∏

j∈Al(σ)

u
lf (a

j(σ))−lg(aj(σ))
j

s

±

×

∣∣∣∣∣∣
∏

j∈Al(σ)

u
⟨aj(σ)⟩−1
j

∣∣∣∣∣∣ η̂l(u1, ..., ui − bi, ..., un)du,

where Al(σ) ⊂ {1, ..., n}, i /∈ Al(σ), bi > 0 and η̂l ∈ C∞
0 (Rn) has a support containing the

origin. Consider further changing the integral variables, we have

J
(l)
±,σ(s) =

∫
Rn
+

usi ∏
j∈Al(σ)

u
(lf (a

j(σ))−lg(aj(σ)))s+⟨aj(σ)⟩−1
j

 η̂l(u1, ...,±ui, ..., un)du. (6.2.12)

By applying Proposition 6.1.2 to (6.2.12), we can see that each J
(l)
±,σ(s) can be analytically

continued to the whole complex plane as meromorphic functions and their poles are contained

in the set ∪
j∈Ãl(σ)

PR(a
j(σ)) ∪ (−N), (6.2.13)

where Âl(σ) := {j ∈ Al(σ) : lf (a
j(σ))− lg(a

j(σ)) ̸= 0}.
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Finally, we consider the case of the functions K
(m)
±,σ (s). In a similar fashion to the case of

J
(l)
±,σ, we have

K
(m)
±,σ (s) =

∫
Rn
+

v−s
i

∏
j∈Am(σ)

v
(lf (a

j(σ))−lg(aj(σ)))s+⟨aj(σ)⟩−1
j

 κ̂m(v1, ...,±vi, ..., vn)dv, (6.2.14)

where Am(σ) ⊂ {1, ..., n}, i /∈ Am(σ), bi > 0 and κ̂m ∈ C∞
0 (Rn) has a support containing the

origin. By applying Proposition 6.1.2 to (6.2.14) again, we can see that each K
(m)
±,σ (s) can be

analytically continued to the whole complex plane as meromorphic functions and their poles

are contained in the set ∪
j∈Ãm(σ)

PR(a
j(σ)) ∪ N, (6.2.15)

where Âm(σ) := {j ∈ Am(σ) : lf (a
j(σ))− lg(a

j(σ)) ̸= 0}.
Considering the relation (6.2.1), (6.2.3) and above argument, the poles of ZR(s; f, g, φ) are

contained in the union of the sets (6.2.11), (6.2.13) and (6.2.15). This implies the assertion-(i)

in Theorem 6.0.2 for the case K = R.

6.2.3 The case of K = C

In the case of K = C, ZC(s; f, g, φ) can be written as

ZC(s; f, g, φ) =

∫
Cn\DC

∣∣∣∣f(x)g(x)

∣∣∣∣2s φ(x)dx ∧ dx.
Applying the complex toric resolution of singularities x = πC(w) and using the partition of

unity {χ̃σ : ỸΣ̂ → R+ : σ ∈ Σ̂(n)} on ỸΣ̂, we have

ZC(s; f, g, φ) =
∑

σ∈Σ̂(n)

Z̃σ(s; f, g) (6.2.16)

with

Z̃σ(s; f, g) =

∫
Cn

∣∣∣∣∣
n∏

j=1

w
lf (a

j(σ))−lg(aj(σ))
j · fσ(w)

gσ(w)

∣∣∣∣∣
2s

χ̌σ(w)

∣∣∣∣∣
n∏

j=1

w
⟨aj(σ)⟩−1
j

∣∣∣∣∣
2

dw ∧ dw, (6.2.17)

where χ̌σ = (φ ◦ πC)(w)χ̃σ(w). Furthermore, for each σ, we find finite sets of C∞
0 functions

{ξk : Cn → R+}, {ηl : Cn → R+} and {κm : Cn → R+} as in section 5.2 replaced χ̂σ with
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χ̌σ. Then, considering the polar coordinate wj = rje
iθj with rj ≥ 0 and θj ∈ [0, 2π] and

Remark 4.4.4, Z̃σ(s; f, g) is expressed as

Z̃σ(s; f, g) =
∑
k

Ĩ(k)σ (s) +
∑
l

J̃ (l)
σ (s) +

∑
m

K̃(m)
σ (s),

where

Ĩ(k)σ (s) =

∫
Rn
+

n∏
j=1

r
2(lf (a

j(σ))−lg(aj(σ)))s+2⟨aj(σ)⟩−1
j · Hk(r, s)dr, (6.2.18)

J̃ (l)
σ (s) =

∫
Rn
+

r2s+1
i

∏
j∈Al(σ)

r
2(lf (a

j(σ))−lg(aj(σ)))s+2⟨aj(σ)⟩−1
j · Hl(r)dr, (6.2.19)

K̃(m)
σ (s) =

∫
Rn
+

r−2s+1
i

∏
j∈Am(σ)

r
2(lf (a

j(σ))−lg(aj(σ)))s+2⟨aj(σ)⟩−1
j · Hm(r)dr (6.2.20)

with

Hk(r, s) =

∫
[0,2π]n

∣∣∣∣fσ(reiθ)gσ(reiθ)

∣∣∣∣2s · χ̌σ(re
iθ) · ξk(reiθ)dθ,

Hl(r) =

∫
[0,2π]n

χ̌σ(re
iθ) · η̃l(reiθ)dθ,

Hm(r) =

∫
[0,2π]n

χ̌σ(re
iθ) · κ̃m(reiθ)dθ.

Here, reiθ = (r1e
iθ1 , ..., rne

iθn) and η̃l(·), κ̃m(·) are C∞
0 functions whose supports contain the

origin. From the above expressions, it is easy to see that Hk(·, s) are C∞ functions for

any s ∈ C, Hk(r, ·) are holomorphic functions for any r ∈ R+ and Hl(·),Hm(·) are C∞

functions. Therefore, we can apply same argument in the proof of real case to the integrals

(6.2.18), (6.2.19) and (6.2.20). Consequently, in the case of K = C, we see that the poles of

ZC(s; f, g, φ) are contained in the set (6.0.3).

Order of poles

Next, let us consider the orders of poles of ZK(s; f, g, φ). At first, we give the proof of the

assertion-(ii) in Theorem 6.0.2.

Lemma 6.2.2.

max

{
− ⟨a⟩
lf (a)− lg(a)

: a ∈ V+

}
= − 1

d∞(f, g)
. (6.2.21)

min

{
− ⟨a⟩
lf (a)− lg(a)

: a ∈ V−

}
=

1

d0(f, g)
. (6.2.22)
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Proof. We only consider the case of d∞(f, g). By Proposition 5.2.1, for any a ∈ Rn
+, we have

the following equivalence:

d∞(f, g) ≥ d(f, g, a) =
lf (a)− lg(a)

⟨a⟩
⇐⇒ − 1

d∞(f, g)
≥ − ⟨a⟩

lf (a)− lg(a)
.

Moreover, from the construction of Σ̂, we see the existence of a ∈ V+ satisfying the equality

in the last inequality. Therefore, we have the equation in the lemma.

Obviously, each element of the left sets in (6.2.21), (6.2.22) is equal to the first element

of the arithmetic progression PK(a). This implies the assertions (ii) in Theorem 6.0.2.

Let us consider the orders of poles of ZK(s; f, g, φ) at s = −1/d∞(f, g) and s = 1/d0(f, g).

From the equations (5.2.1), (5.2.2), it suffices to analyze the poles of I
(k)
±,σ(s), J

(l)
±,σ(s) and

K
(m)
±,σ (s). Applying Proposition 6.1.2 to the integrals (5.2.3), (5.2.5) and (5.2.6), we see that

orders of poles at s = −1/d∞(f, g), 1/d0(f, g) of I
(k)
±,σ(s) are at most #A∞(σ), #A0(σ) and

those of J
(l)
±,σ(s) and K

(m)
±,σ (s) are at mostmin{#A∞(σ), n− 1} −1/d∞(f, g) /∈ Z,

min{#A∞(σ) + 1, n} −1/d∞(f, g) ∈ Z;

min{#A0(σ), n− 1} 1/d0(f, g) /∈ Z,

min{#A0(σ) + 1, n} 1/d0(f, g) ∈ Z.

Here, A∞(σ) and A0(σ) are as in (5.2.4).

To show the assertions (iii) and (iv) in Theorem 6.0.2, it suffices to show the esti-

mates #A∞(σ) ≤ m∞(f, g) and #A0(σ) ≤ m0(f, g). We can obtain these estimates from

Lemma 5.2.7 and Proposition 6.1.2.

6.3 First coefficients of ZK(s; f, g, φ)

In this section, we compute the coefficients of Laurent series of ZK(s; f, g, φ) at the (candi-

date) e-leading poles and give the conditions where the position and order of each e-leading

pole are determined by means of Newton data.
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6.3.1 The case of K = R

At first, we compute the coefficients of (s + 1/d∞(f, g))−m∞(f,g) and (s − 1/d0(f, g))
−m0(f,g)

in the Laurent series of Z±(s; f, g, φ) for the case of K = R. Respectively, we define

C± = lim
s→−1/d∞(f,g)

(s+ 1/d∞(f, g))m∞(f,g)ζ±(s; f, g, φ),

D± = lim
s→1/d0(f,g)

(s− 1/d0(f, g))
m0(f,g)ζ±(s; f, g, φ),

(6.3.1)

where ζ±(s; f, g, φ) is as in (6.2.4).

Here, we recall the definitions of important fans Σ̃
(n)
∞ , Σ̃

(n)
0 defined in Chapter 5.

Σ̃(n)
∞ := {σ ∈ Σ̂(n)

∞ : #A∞(σ) = m∞(f, g)},

Σ̃
(n)
0 := {σ ∈ Σ̂

(n)
0 : #A0(σ) = m0(f, g)}.

In this subsection, we use the following notation and symbols to decrease the complexity

in the expression of the integrals.

•
∏

j /∈A y
aj
j dyj means

∏
j /∈A y

aj
j ·
∏

j /∈A dyj with aj ≥ 0.

• L(A) :=
∏

j∈A(lf (a
j(σ))− lg(a

j(σ)))−1.

• TA(y) := {(y1, ..., yn) ∈ Rn : yj = 0 if j ∈ A}.

• Aσ
∞ := A∞(σ), Aσ

0 := A0(σ).

Here, A is a subset of {1, ..., n}.
First, let us consider the coefficients of (s+ 1/d∞(f, g))−m∞(f,g).

Proposition 6.3.1. Suppose that f · g is nondegenerate over R with respect to its Newton

polyhedron and at least one of the following conditions is satisfied.

(a) d∞(f, g) > 1;

(b) fσ(TAσ
∞(y)) does not vanish on Rn

+ ∩ π(σ)−1(U) for any σ ∈ Σ̃
(n)
∞ .

Then, we have explicit formulae for coefficients C± =
∑

σ∈Σ̃(n)
∞

C±(σ) =: G±(f, g, φ), where

G±(f, g, φ) are as in (6.3.8), (6.3.10), (6.3.11), (6.3.12) in the proof of this proposition.
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Proof. Let us compute the limit C± explicitly. Let

Mj(σ) := −(lf (a
j(σ))− lg(a

j(σ)))/d∞(f, g) + ⟨aj(σ)⟩.

Respectively, we define

C±(σ) := lim
s→−1/d∞(f,g)

(s+ 1/d∞(f, g))m∞(f,g)ζ
(σ)
± (s;φ, f, g),

where ζ
(σ)
± (s;φ, f, g) is as in (6.2.6). If σ /∈ Σ̃

(n)
∞ , then C±(σ) = 0 since the orders of poles of

ζ
(σ)
± (s;φ, f, g) at s = −1/d∞(f, g) is less than m∞(f, g). Thus, it suffices to consider the case

when σ ∈ Σ̃
(n)
∞ . We divide the computation into the following two cases: m∞(f, g) < n and

m∞(f, g) = n.

(The case: m∞(f, g) = N < n)

First, we consider the case when condition (a) is satisfied. Considering the equation (5.2.2)

and applying Proposition 6.1.3 to (5.2.3), (5.2.5) and (5.2.6), we have

C±(σ) =
∑
k

I
(k)
± (σ) +

∑
l

J
(l)
± (σ) +

∑
m

K
(m)
± (σ) (6.3.2)

with

I
(k)
± (σ) = L(Aσ

∞)

∫
Rn−N
+

(
fσ(TAσ

∞(y))

gσ(TAσ
∞(y))

)−1/d∞(f,g)

±
ξ̂k(TAσ

∞(y))
∏

j /∈Aσ
∞

y
Mj(σ)−1
j dyj (6.3.3)

and

J
(l)
± (σ) = L(Aσ

∞)

∫
Rn−N
+

η̂l(TAσ
∞(u1, ...,±ui, ..., un))

u
1/d∞(f,g)
i

∏
j∈Al(σ)\Aσ

∞

u
Mj(σ)−1
j duj, (6.3.4)

K
(m)
± (σ) = L(Aσ

∞)

∫
Rn−N
+

κ̂m(TAσ
∞(v1, ...,±vi, ..., vn))
v
−1/d∞(f,g)
i

∏
j∈Am(σ)\Aσ

∞

v
Mj(σ)−1
j dvj, (6.3.5)

where ξ̂k, η̂l, κ̂m, Al(σ), Am(σ), ui, vi are as in (5.2.3), (5.2.5), (5.2.6). The summations in

(6.3.2) are taken for all k, l,m satisfying that TAσ
∞(Rn)∩Supp(ξk) ̸= ∅ andAσ

∞ ⊂ Al(σ), Am(σ),

respectively. Since d∞(f, g) > 1, the integrals in (6.3.3), (6.3.4) are convergent as improper

integrals.

We remark that the values of I
(k)
± (σ), J

(l)
± (σ) and K

(m)
± (σ) depend on the cut-off functions

χσ, ξk, ηl, κm. In (6.3.3), (6.3.4) and (6.3.5), we deform the cut-off functions ξk, ηl and κm
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as the volume of the support of ηl and κm tend to zero for all l,m. Then the limits of the

values of Jl,±(σ) and Km,±(σ) are zero and we have

C±(σ) =
∑
k

I
(k)
± (σ). (6.3.6)

Furthermore, considering the support of
∑

k ξk(y), we have

C±(σ) = L(Aσ
∞)

∫
Rn−N
+

(
fσ(TAσ

∞(y))

gσ(TAσ
∞(y))

)−1/d∞(f,g)

±
χ̂σ(TAσ

∞(y))
∏

j /∈Aσ
∞

y
Mj(σ)−1
j dyj. (6.3.7)

Furthermore, let us compute the limits C± explicitly. If the cut-off function χσ is deformed

as the volume of the support of χσ tends to zero, then C±(σ) tends to zero. Since each Rn
+(σ)

is densely embedded in YΣ̂ and C± =
∑

σ∈Σ̃(n)
∞

C±(σ), for any fixed cone σ ∈ Σ̃
(n)
∞ , we have

C± = G±(f, g, φ) with

G±(f, g, φ) = L(Aσ
∞)

∫
Rn−N
+

(
fσ(TAσ

∞(y))

gσ(TAσ
∞(y))

)−1/d∞(f,g)

±
(φ ◦ π(σ))(TAσ

∞(y))
∏

j /∈Aσ
∞

y
Mj(σ)−1
j dyj.

(6.3.8)

We remark that the above integral does not depend on the cut-off functions. Let us give

the other formulae of G±(f, g, φ), which are more directly expressed by f, g, φ with principal

faces at infinity γ∞ := γ∞(σ) ∈ F∞[f ] and τ∞ := τ∞(σ) ∈ F∞[g] which is associated to each

other. From Lemma 4.4.2, we obtain

(fγ∞ ◦ πR(σ))(T 1
Aσ

∞
(y)) =

 ∏
j /∈Aσ

∞

y
lf (a

j(σ))
j

 · fσ(TAσ
∞(y)),

(gτ∞ ◦ πR(σ))(T 1
Aσ

∞
(y)) =

 ∏
j /∈Aσ

∞

y
lg(aj(σ))
j

 · gσ(TAσ
∞(y)).

(6.3.9)

By using the above equations, (6.3.8) can be rewritten as

G±(f, g, φ)

= L(Aσ
∞)

∫
Rn−N
+

(
(fγ∞ ◦ πR(σ))(T 1

Aσ
∞
(y))

(gτ∞ ◦ πR(σ))(T 1
Aσ

∞
(y))

)−1/d∞(f,g)

±

(φ ◦ πR(σ))(TAσ
∞(y))

∏
j /∈Aσ

∞

y
⟨aj(σ)⟩−1
j dyj.

(6.3.10)

Secondly, we consider the case when the condition (b) is satisfied. In this case, J
(l)
±,σ(s)

do not appear in the decompositions (5.2.2) and the integral in (6.3.3) is convergent since
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fσ(TAσ
∞(y)) does not vanish. Thus, we can obtain the equations (6.3.7) for σ ∈ Σ̃

(n)
∞ by the

same argument as in the case of condition (a). However, in this case, we must be careful

that C±(σ) do not always vanish even in the case when σ /∈ Σ̃
(n)
∞ . If −1/d∞(f, g) is an integer

and σ /∈ Σ̃
(n)
∞ satisfies #A∞(σ) = m∞(f, g) − 1, the assertion-(iii) in Theorem 6.0.2 implies

that J
(l)
±,σ(s) can have a pole at s = −1/d∞(f, g) of order m∞(f, g). Indeed, for such σ, the

orders of poles of I
(k)
±,σ(s) at s = −1/d∞(f, g) are at most m∞(f, g)− 1, so the value of C±(σ)

derives from the integral J
(l)
±,σ(s) only. Hence, coefficients C±(σ) can be computed in a similar

argument as in the proof of Proposition 6.1.3. From these computations, it is easy to see that

these coefficients tend to zero if the volume of the support of χσ tends to zero. Therefore,

the limits C± can be similarly computed as in (6.3.8) and (6.3.10).

(The case: m∞(f, g) = n)

In this case, by the same argument, we have

G±(f, g, φ) = L ·
(
fσ(0)

gσ(0)

)−1/d∞(f,g)

±
φ(0), (6.3.11)

where σ ∈ Σ̃
(n)
∞ and L = L({1, ..., n}). From the equation (6.3.9), we obtain another expres-

sion corresponding to (6.3.10):

G±(f, g, φ) = L ·
(
fγ∞(1)

gτ∞(1)

)−1/d∞(f,g)

±
φ(0). (6.3.12)

For the coefficients of (s− 1/d0(f, g))
−m0(f,g), we obtain similar result.

Proposition 6.3.2. Suppose that f · g is nondegenerate over R with respect to its Newton

polyhedron and at least one of the following conditions is satisfied.

(a) d0(f, g) > 1;

(b) gσ(TAσ
0
(y)) does not vanish on Rn

+ ∩ π(σ)−1(U) for any σ ∈ Σ̃
(n)
0 .

Then, we have explicit formulae for coefficients D± =
∑

σ∈Σ̃(n)
0

D±(σ) =: H±(f, g, φ), where

H±(f, g, φ) are as in (6.3.13), (6.3.15), (6.3.14), (6.3.16) in the proof of this proposition.

Proof. Let

mj(σ) := (lf (a
j(σ))− lg(σ))/d0(f, g) + ⟨aj(σ)⟩.
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Respectively, we define

D±(σ) := lim
s→1/d0(f,g)

(s− 1/d0(f, g))
m0(f,g)ζ

(σ)
± (s;φ, f, g).

By the same argument in the proof of Proposition 6.3.1, we obtain H±(f, g, φ) as follows:

if m0(f, g) = N < n,

H±(f, g, φ) = L(Aσ
0 )

∫
Rn−N
+

(
fσ(TAσ

0
(y))

gσ(TAσ
0
(y))

)1/d0(f,g)

±
(φ ◦ π(σ))(TAσ

0
(y))

∏
j /∈Aσ

0

y
mj(σ)−1
j dyj

(6.3.13)

and if m0(f, g) = n,

H±(f, g, φ) = L ·
(
fσ(0)

gσ(0)

)1/d0(f,g)

±
φ(0). (6.3.14)

where σ ∈ Σ̃
(n)
0 and L = L({1, ..., n}).

We obtain the other formulae of H±(f, g, φ) in a similar fashion to the proof of Proposi-

tion 6.3.1 with principal faces at zero τ0 := τ0(σ) ∈ F0[g] and γ0 := γ0(σ) ∈ F0[f ], which is

associated to each other. If m0(f, g) = N < n, then

H±(f, g, φ)

= L(Aσ
0 )

∫
Rn−N
+

(
(fγ0 ◦ πR(σ))(T 1

Aσ
0
(y))

(gτ0 ◦ πR(σ))(T 1
Aσ

0
(y))

)1/d0(f,g)

±

(φ ◦ πR(σ))(TAσ
0
(y))

∏
j /∈Aσ

0

y
⟨aj(σ)⟩−1
j dyj

(6.3.15)

and if m0(f, g) = n, then

H±(f, g, φ) = L ·
(
fγ0(1)

gτ0(1)

)1/d0(f,g)

±
φ(0). (6.3.16)

Finally, let us compute the coefficients of (s+1/d∞(f, g))−m∞(f,g) and (s−1/d0(f, g))
−m0(f,g)

in the Laurent series of Z±(s; f, g, φ) and ZR(s; f, g, φ). Respectively, we define

C± = lim
s→−1/d∞(f,g)

(s+ 1/d∞(f, g))m∞(f,g)Z±(s; f, g, φ),

C = lim
s→−1/d∞(f,g)

(s+ 1/d∞(f, g))m∞(f,g)ZR(s; f, g, φ);

D± = lim
s→1/d0(f,g)

(s− 1/d0(f, g))
m0(f,g)Z±(s; f, g, φ),

D = lim
s→1/d0(f,g)

(s− 1/d0(f, g))
m0(f,g)ZR(s; f, g, φ).
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Theorem 6.3.3. Suppose that f · g is nondegenerate over R with respect to its Newton

polyhedron and at least one of the following three conditions is satisfied:

(a) d∞(f, g) > 1;

(b) f is nonnegative or nonpositive on U ;

(c) fγ∞ does not vanish on U ∩(R\{0})n, where γ∞ is a principal face at infinity of Γ+(f).

Then, we obtain explicit formulae for coefficients in the following:

C± =
∑

θ∈{−1,1}n
G±(fθ, gθ, φθ) and C = C+ + C−, (6.3.17)

where fθ, gθ and φθ are as in (6.2.5) and G±(f, g, φ) are as in Propositions 6.3.1.

Furthermore, if φ satisfies that φ(x) ≥ 0 and φ(0) > 0 on its support, then C± are

nonnegative and C = C+ + C− is positive.

Proof. From the equation (6.2.3), (6.2.4), we must show that the conditions (a),(b),(c) imply

the conditions in Proposition 6.3.1 to obtain the formulae (6.3.17).

Since the case (a) is obvious, we only consider the cases (b) and (c). It suffices to show

that the conditions (b) and (c) imply that fσ(TAσ
−
(y)) does not vanish on Rn ∩ πR(σ)−1(U)

for any σ ∈ Σ̃
(n)
∞ .

Assume that for some σ ∈ Σ̃
(n)
∞ there exists a point b ∈ TAσ

∞(Rn) ∩ πR(σ)−1(U) such that

fσ(b) = 0. By Lemma 4.4.6, f is nondegenerate over R with respect to its Newton polyhedron

and Proposition 4.4.3 implies that there exists points b1, b2 ∈ TAσ
∞(Rn) ∩ πR(σ)

−1(U) near b

such that fσ(b1) > 0 and fσ(b2) < 0. From the equations (4.4.2), (6.3.9) and gσ(y) does not

vanish near b, it is easy to see that the conditions (b) and (c) induce the contradiction to the

existence of the above points b1, b2.

In order to see C = C+ + C− ̸= 0 from the formula (6.3.10), it suffices to show that

(gτ∞ ◦ πR(σ))(TAσ
∞(y)) does not identically equal to zero near the origin. This follows from

the equation (6.3.9) and gσ(0) ̸= 0.

Theorem 6.3.4. Suppose that f · g is nondegenerate over R with respect to its Newton

polyhedron and at least one of the following three conditions is satisfied:

(a) d0(f, g) > 1;
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(b) g is nonnegative or nonpositive;

(c) gτ0 does not vanish on U ∩ (R \ {0})n, where τ0 is a principal face at zero of Γ+(g).

Then, we obtain explicit formulae for coefficients in the following:

D± =
∑

θ∈{−1,1}n
H±(fθ, gθ, φθ) and D = D+ +D− (6.3.18)

where fθ, gθ and φθ are as in (6.2.5) and H±(f, g, φ) are as in Proposition 6.3.2.

Furthermore, assume that φ satisfies that φ(x) ≥ 0 and φ(0) > 0 on its support. If

m0(f, g) is odd, then D± are nonpositive and D = D+ +D− is negative. If m0(f, g) is even,

then D± are nonnegative and D = D+ +D− is positive

Proof. In a similar fashion to the proof of Theorem 6.3.3, we obtain the formulae (6.3.18)

under the one of above three conditions. The signature of D± and D are seen by checking

the signature of L(Aσ
0 ).

Theorems 6.3.3, 6.3.4 imply that ZR(s; f, g, φ) has at s = −1/d∞(f, g) (resp. 1/d0(f, g))

poles of orders m∞(f, g) (resp. m0(f, g)).

Poles on integers

Let us consider the properties of poles of Z±(s; f, g, φ) at integers. For λ ∈ N, define

A±λ(σ) := {j ∈ A(σ) : −(lf (a
j(σ))− lg(a

j(σ))λ+ ⟨aj(σ)⟩ − 1 ∈ ±N},

ρ±λ := min{max{#A±λ(σ) : σ ∈ Σ̂(n)}, n− 1},

where A(σ) is as in (5.2.4).

Proposition 6.3.5. Suppose that f · g is nondegenerate over R with respect to its Newton

polyhedron. If the support of φ is contained in a sufficiently small neighborhood of the origin,

then we have the following:

(i) The orders of poles of Z±(s; f, g, φ) at s = −λ ∈ −N are at most ρ−λ+1. In particular,

if −λ > −1/d∞(f, g), then these orders are at most 1. Moreover, let a±−λ be the coeffi-

cients of (s + λ)−ρ−λ−1 in the Laurent series of Z±(s; f, g, φ) at s = −λ, respectively.
Then we have a+−λ = (−1)λ−1a−−λ for −λ ∈ −N.
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(ii) The orders of poles of Z±(s; f, g, φ) at s = λ ∈ N are at most ρλ + 1. In particular, if

λ < 1/d0(f, g), then these orders are at most 1. Moreover, let a±λ be the coefficients of

(s−λ)−ρλ−1 in the Laurent series of Z±(s; f, g, φ) at s = λ, respectively. Then we have

a+λ = −(−1)λ−1a−λ for λ ∈ N.

Proof. Compared the forms of the integrals in (5.2.5), (5.2.6) and L1,±(s), L2,±(s) in (5.1.4),

we obtain above assertions by applying Lemma 6.1.4 to J
(l)
±,σ(s) and K

(m)
±,σ (s).

6.3.2 The case of K = C

Next, let us consider the case of K = C. In this case, from the proof in subsection 6.2.3,

there appear only one type decomposition as in (6.2.16), while two types decomposition ”ζ
(σ)
± ”

appear in the real case. Thus, the argument becomes a little simpler. In consequence, we

obtain similar results to the real case.

We define

C̃ = lim
s→−1/d∞(f,g)

(s+ 1/d∞(f, g))m∞(f,g)ZC(s; f, g, φ),

D̃ = lim
s→1/d0(f,g)

(s− 1/d0(f, g))
m0(f,g)ZC(s; f, g, φ).

(6.3.19)

Theorem 6.3.6. Suppose that f · g is nondegenerate over C with respect to its Newton

polyhedron and at least one of the following conditions is satisfied;

(a) d∞(f, g) > 1;

(b) fσ(TAσ
∞(y)) does not vanish on Cn ∩ πC(σ)−1 for any σ ∈ Σ̃

(n)
∞ .

Then, we have explicit formulae for coefficient C̃ as in (6.3.23), (6.3.24) and (6.3.25) in the

proof of this theorem. Furthermore, if the conditions (i) - (a) or (c) are satisfied, and φ

satisfies the conditions in Theorem 6.0.6, then C̃ is positive.

Proof. We define

C̃(σ) = lim
s→−1/d∞(f,g)

(s+ 1/d∞(f, g))Z̃σ(s; f, g), (6.3.20)

where Z̃σ(s; f, g) is as in (6.2.17). In this proof, we use same notations appearing in the proof

of Proposition 6.3.1, for instance,Mj(σ), L(A
σ
∞), TAσ

∞(·), T 1
Aσ

∞
(·), Al(σ), Am(σ), L. At first, we

assume that the condition (a) is satisfied.
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(The case : m∞(f, g) = N < n)

In a similar fashion to the proof of Proposition 6.3.1, we apply Proposition 6.1.3 to (6.2.18),

(6.2.19) and (6.2.20). Then, we have

C̃(σ) =
∑
k

Ĩ(k)(σ) +
∑
l

J̃ (l)(σ) +
∑
m

K̃(m)(σ),

where

Ĩ(k)(σ) = πNL(Aσ
∞)

∫
Rn−N
+

∫
[0,2π]n−N

∣∣∣∣fσ(TAσ
∞(reiθ))

gσ(TAσ
∞(reiθ))

∣∣∣∣−2/d∞(f,g)

ξ̌k(TAσ
∞(reiθ))

∏
j /∈Aσ

∞

r
2Mj(σ)−1
j drjdθj

(6.3.21)

and

J̃ (l)(σ) = πNL(Aσ
∞)

∫
Rn−N
+

∫
[0,2π]n−N

η̌l(TAσ
∞(reiθ))r

−2/d∞(f,g)
i

∏
j∈Al(σ)\Aσ

∞

r
2Mj(σ)−1
j drjdθj,

(6.3.22)

K̃(m)(σ) =
L(Aσ

∞)

2N

∫
Rn−N
+

(∫
[0,2π]n

κ̌m(TAσ
∞(r), θ)dθ

)
r
2/d∞(f,g)
i

∏
j∈Am(σ)\Aσ

∞

r
2Mj(σ)−1
j drj,

where ξ̌k(·) = χ̌σ(·)ξk(·), η̌l(·) = χ̌σ(·)η̃l(·), κ̌m(·) = χ̌σ(·)κ̃m(·). Note that the integrals

(6.3.21), (6.3.22) are convergent as improper integrals because of d∞(f, g) > 2. By deforming

the support of ξk, ηl and κm as in the proof of Proposition 6.3.1, we have

C̃(σ) = πNL(Aσ
∞)

∫
Rn−N
+

∫
[0,2π]n−N

∣∣∣∣fσ(TAσ
∞(reiθ))

gσ(TAσ
∞(reiθ))

∣∣∣∣−2/d∞(f,g)

χ̌σ(TAσ
∞(reiθ))

∏
j /∈Aσ

∞

r
2Mj(σ)−1
j drjdθj.

Then, for any fixed cone σ ∈ Σ̃
(n)
∞ , by deforming the support of χ̃σ in a similar fashion

to the functions {χσ} and considering the polar coordinate exchange again, we have explicit

formula for C̃ as

C̃ =
πNL(Aσ

∞)

(2i)n−N

∫
Cn−N

∣∣∣∣fσ(TAσ
∞(w))

gσ(TAσ
∞(w))

∣∣∣∣−2/d∞(f,g)

(φ◦πC(σ))(TAσ
∞(w))

∏
j /∈Aσ

∞

|wj|2Mj(σ)−2dwj∧dwj.

(6.3.23)

Furthermore, by using equations in (6.3.9), (6.3.23) can be rewritten as
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C̃ =
πNL(Aσ

∞)

(2i)n−N

∫
Cn−N

∣∣∣∣∣(fγ∞ ◦ πC(σ))(T 1
Aσ

∞
(w))

(gτ∞ ◦ πC(σ))(T 1
Aσ

∞
(w))

∣∣∣∣∣
−2/d∞(f,g)

(φ ◦ πC(σ))(TAσ
∞(w))

×
∏

j /∈Aσ
∞

|wj|2⟨a
j(σ)⟩−2dwj ∧ dwj.

(6.3.24)

(The case : m∞(f, g) = n)

We have similar formulae to (6.3.11), (6.3.12) in the case of K = R.

C̃ = πnL · φ(0) ·
∣∣∣∣fσ(0)gσ(0)

∣∣∣∣−2/d∞(f,g)

= πnL · φ(0) ·
∣∣∣∣fγ∞(1)

gτ∞(1)

∣∣∣∣−2/d∞(f,g)

. (6.3.25)

These computations are applicable if the condition (b) is satisfied by the same reason

discussed in the proof of Proposition 6.3.1.

Similarly, the formulae of the coefficients of (s− 1/d0(f, g))
−m0(f,g) are obtained.

Theorem 6.3.7. Suppose that f · g is nondegenerate over C with respect to its Newton

polyhedron and at least one of the following conditions is satisfied;

(a) d0(f, g) > 1;

(b) fσ(TAσ
0
(y)) does not vanish on Cn ∩ πC(σ)−1 for any σ ∈ Σ̃

(n)
0 .

Then, we have explicit formulae for coefficient D̃ as in (6.3.26), (6.3.27) and (6.3.28) in the

proof of this theorem. Furthermore, if the conditions (ii) - (a) or (c) are satisfied, and φ

satisfies the conditions in Theorem 6.0.6, then D̃ is positive (resp. negative) when m0(f, g)

is an even (resp. odd) integer.

Proof. The notations mj(σ), L(A
σ
0 ), TAσ

0
(·), T 1

Aσ
0
(·), Al(σ), Am(σ), L are same as in the proof

of Proposition 6.3.2. By the same argument in the proof of Theorem 6.3.6, we obtain explicit

formulae for D̃ as follows:

if m0(f, g) = N < n, then

D̃ =
πNL(Aσ

0 )

(2i)n−N

∫
Cn−N

∣∣∣∣fσ(TAσ
0
(w))

gσ(TAσ
0
(w))

∣∣∣∣2/d0(f,g) (φ ◦ πC(σ))(TAσ
0
(w))

∏
j /∈Aσ

0

|wj|2mj(σ)−2dwj ∧ dwj.

(6.3.26)
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Furthermore, we obtain the following other formulae of D̃ with principal faces at zero

τ0 := τ0(σ) ∈ F0[g] and γ0 := γ0(σ) ∈ F0[f ], which is associated to each other:

D̃ =
πNL(Aσ

0 )

(2i)n−N

∫
Cn−N

∣∣∣∣∣(fγ0 ◦ πC(σ))(T
1
Aσ

0
(w))

(gτ0 ◦ πC(σ))(T 1
Aσ

0
(w))

∣∣∣∣∣
2/d0(f,g)

(φ ◦ πC(σ))(TAσ
0
(w))

×
∏
j /∈Aσ

0

|wj|2⟨a
j(σ)⟩−2dwj ∧ dwj.

(6.3.27)

If m0(f, g) = n, then

D̃ = πnL · φ(0) ·
∣∣∣∣fσ(0)gσ(0)

∣∣∣∣2/d0(f,g) = πnL · φ(0) ·
∣∣∣∣fγ0(1)gτ0(1)

∣∣∣∣2/d0(f,g) . (6.3.28)





Chapter 7

Integral transforms and asymptotics

of oscillatory integrals

In this chapter, we will show some theorems and lemmas on two important integral trans-

forms. Indeed, these lemmas connect the poles of local zeta function ZR(s; f, g, φ) with the

asymptotic behavior of Iφ(t; f, g) via Gelfand-Relay function K(u). After that, we will give

the proofs of main theorems of this paper.

7.1 Mellin transform and Fourier transform

First, we introduce two integral transforms, Mellin transform and Fourier transform, which

play important roles in the analysis of oscillatory integrals.

Definition 7.1.1. Let f be continuous and locally integrable function on R+. Then the

Mellin transform of f is defined by

(Mf)(s) :=

∫ ∞

0

xs−1f(x)dx (s ∈ C). (7.1.1)

Remark 7.1.2. Let f be as in Definition 7.1.1 and satisfy the following conditions

(i) f(x) = O(x−(a+ε)) as x→ +0;

(ii) f(x) = O(x−(b−ε)) as x→ +∞,

where a, b are real constants with a < b and ε > 0 is sufficiently small. Then, the integral in

(7.1.1) absolutely converges and defines holomorphic function on the region {a < Re(s) < b}.

71
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The inverse transform of the Mellin transform is defined by the following contour integral

(M−1F )(x) :=
1

2πi

∫ c+i∞

c−i∞
x−sF (s)ds,

where a < c < b. For the convergence of the above integral, F (s) is required to be analytic

in the strip {a < Re(s) < b} and tend to zero uniformly as Im(s) → ±∞ for a < Re(s) < b.

The Fourier transform is defined as the integral below.

Definition 7.1.3. Let f be an absolutely integrable function. Then the Fourier transform

of f is defined by

(Ff)(t) :=
∫ ∞

−∞
eitxf(x)dx.

It is known that if f is a rapidly decreasing function, then so is (Ff).

7.1.1 Relationship between Iφ(t; f, g) and ZR(s; f, g, φ)

Now, let us consider the transformation of Iφ(t; f, g) in (i-3) and Z±(s; f, g, φ) in (6.2.2).

Define the Gelfand-Leray function K : R → R as

K(f, g, φ;u)(:= K(u)) =

∫
Wu

φ(x)ω,

where Wu = {x ∈ Rn \ g−1(0) : f(x)/g(x) = u} for u ∈ R and ω is the surface element on

Wu which is determined by d(f/g) ∧ ω = dx1 ∧ · · · ∧ dxn.

Considering the change of variable f(x)/g(x) = u and Fubini’s theorem to Iφ(t; f, g), we

have

Iφ(t; f, g) =

∫
Rn\g−1(0)

eit
f(x)
g(x)φ(x)dx =

∫
Wu+W−u

eit
f(x)
g(x)φ(x)dx

=

∫ ∞

−∞
eituK(u)du.

This shows that the oscillatory integral Iφ(t; f, g) is a Fourier transform of K(u). On the

other hand, consider the same change of variable and Fubini’s theorem to Z±(s; f, g, φ), we

have
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Z±(s; f, g, φ) =

∫
Rn\DR

(
f(x)

g(x)

)s

±
φ(x)dx =

∫ ∞

0

∫
W±u

(±u)sφ(x)du ∧ ω

=

∫ ∞

0

(±u)sK(±u)du.

Thus, we have

ZR(s; f, g, φ) = Z+(s; f, g, φ) + Z−(s; f, g, φ) =

∫ ∞

−∞
usK(u)du.

The last integral indicates that local zeta function ZR(s; f, g, φ) is a Mellin transform of K(u).

Since Iφ(t; f, g) is a Fourier transform of K(u), our main object of investigation is K(u). In

particular, we will focus on the influence of the critical points of f and g. To be more specific,

since u = f(x)/g(x), the properties of such singularities in K(u) are appearing when |u| tends
to zero and infinity, which correspond to the case when f(x) → 0 and g(x) → 0, respectively.

In the next subsection, we investigate the properties of K(u) as an inverse Mellin transform

of ZR(s; f, g, φ).

7.1.2 Asymptotic expansion of the Gelfand-Relay function

Let us consider the asymptotic expansion of the Gelfand-Relay function K as its parameter

|u| → 0 and ∞.

Theorem 7.1.4. Let 0 < p1 < p2 < · · · be positive real numbers and kj be nonnegative

integers. Suppose that Z±(s; f, g, φ) has poles at s = −pj of order kj for every j and a±j,k are

the coefficient of the term (s+pj)
−k of Laurent series of Z±(s; f, g, φ) at s = −pj, respectively.

Then, we have the asymptotic expansion of the form:

K(u) ∼
∞∑
j=1

kj∑
k=1

Aj,k|u|pj−1(log |u|)k−1 (7.1.2)

as |u| → 0 and

Aj,k =
(−1)k−1

(k − 1)!
· (a+j,k + a−j,k).

Proof. According to Theorem 6.0.1, there exist positive constants a, b such that Z+(s; f, g, φ)

is a holomorphic function on the region {−a < Re(s) < b}. Furthermore, by an integration
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by parts to the integrals in (6.2.7), we see that Z+(s; f, g, φ) is uniformly dominated by

Im(s)−1 for any s where Z+(s; f, g, φ) is holomorphic. Hence, we can apply the inverse

Mellin transform to Z+(s; f, g, φ) as

K(u) =
1

2πi

∫ c+i∞

c−i∞
u−s−1Z+(s; f, g, φ)ds (7.1.3)

for −a < c < b.

By applying the Cauchy’s integral formula to (7.1.3), we move the integral contour to the

left side. Then, for λ ∈ R with λ < c and λ ̸= −pj, we have

K(u) =
1

2πi

∫ c+i∞

c−i∞
u−s−1Z+(s; f, g, φ)ds

=
1

2πi

∫ λ+i∞

λ−i∞
u−s−1Z+(s; f, g, φ)ds+

∑
λ<−pj<c

1

2πi

∫
∂Bj

u−s−1Z+(s; f, g, φ)ds, (7.1.4)

where Bj is the sufficiently small circle with center s = −pj . It is easy to see that the first

integral in the right-hand side of (7.1.4) is estimated as∣∣∣∣ 1

2πi

∫ λ+i∞

λ−i∞
u−s−1Z+(s; f, g, φ)ds

∣∣∣∣ ≤ R · u−λ−1

with positive constant R. On the other hand, by the residue formula, the second term in

(7.1.4) is

∑
λ<−pj<c

1

2πi

∫
∂Bj

u−s−1Z+(s; f, g, φ)ds =
∑

λ<−pj<c

upj−1

kj∑
k=1

(−1)k−1

(k − 1)!
a+j,k(log u)

k−1.

Since λ is arbitrary, the following asymptotic expansion is obtained:

K(u) ∼
∞∑
j=1

kj∑
k=1

(−1)k−1

(k − 1)!
a+j,ku

pj−1(log u)k−1 (7.1.5)

as u → +0. For Z−(s; f, g, φ), the same argument gives us the following asymptotic expan-

sion:

K(−u) ∼
∞∑
j=1

kj∑
k=1

(−1)k−1

(k − 1)!
a−j,k(−u)

pj−1(log(−u))k−1 (7.1.6)

as −u→ +0. Owing to (7.1.5) and (7.1.6), the asymptotic expansion (7.1.2) holds.
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Similarly, we have the asymptotic expansion of K(u) as |u| → ∞.

Theorem 7.1.5. Let 0 < q1 < q2 < · · · be positive real numbers and kj be nonnegative

integers. Suppose that Z±(s; f, g, φ) has poles at s = qj of order kj for every j and b±j,k are

the coefficient of the term (s− qj)
−k of Laurent series of Z±(s; f, g, φ) at s = qj, respectively.

Then, we have the asymptotic expansion of the form:

K(u) ∼
∞∑
j=1

kj∑
k=1

Bj,k|u|−qj−1(log |u|)k−1 (7.1.7)

as |u| → ∞ and

Bj,k =
(−1)k−1

(k − 1)!
· (b+j,k + b−j,k). (7.1.8)

Proof. By deforming the integral contour in (7.1.3) to the right side, we have the above

asymptotic expansion.

7.1.3 Some Fourier transforms

For analysis in next section, we prepare some important lemmas concerning with the Fourier

transform of some functions. To prove main theorems, we consider the Fourier transform

of each term appearing in the asymptotic expansion (7.1.2) and (7.1.7). However, to find

clear transformation of each term is difficult. So we consider the asymptotic formulae of each

Fourier transform.

Throughout this subsection, we use the following notation: Let f(t), g(t) be functions

defined on an interval I ⊂ R.

• f(t) ≡ g(t) mod S(I) means that f(t)− g(t) ∈ S(I).

• f(t) ≡ g(t) mod C∞(I) means that f(t)− g(t) ∈ C∞(I).

• When n ≤ a < n+ 1 for n ∈ Z, we set ⌊a⌋ = n.

• Γ(·) means a gamma function.

The following lemmas are useful for the estimate below.
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Lemma 7.1.6. For a real number λ, the following inequation holds:∫ ∞

t

e−xxλ−1dx ≤ Ce−t/2 for t ≥ 1, (7.1.9)

where C is a positive constant independent of t.

Proof. When λ ≤ 1, we have a direct estimate as∫ ∞

t

e−xxλ−1dx ≤
∫ ∞

t

e−x = e−t

for x ≥ t ≥ 1. If λ > 1, an integration by parts implies∫ ∞

t

e−xxλ−1dx = e−ttλ−1 + (λ− 1)

∫ ∞

t

e−xxλ−2dx.

By repeating this process, we see that this case can be reduced to the case of λ ≤ 1, which

implies inequation (7.1.9) holds for all λ.

Lemma 7.1.7. If 0 < α < 1, then∫ ∞

0

e±ix
1
α dx = α

∫ ∞

0

e±iyyα−1dy = e±
α
2
πiΓ(α + 1).

Proof. The first equality is obtained by the change of variable x
1
α = y. When α = 1/2, the

first integral is called the Fresnel integral. Thus, the first integral is generalization of the

Fresnel integral and it can be computed in a similar way by using an elementary method of

complex analysis. Details are written in [15], [28], [33].

Fourier transform of xλ−1

Let λ ∈ R, ρ ∈ N and χ1 : R → R be a C∞ function satisfying that

χ1(x) =

1 if 0 ≤ x ≤ L,

0 if M ≤ x

for positive constants L < M . We define integrals F
(1)
λ,ρ(t) as

F
(1)
λ,ρ(±t) :=

∫ ∞

0

e±itx|x|λ−1(log |x|)ρ−1χ1(|x|)dx. (7.1.10)
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Note that the integral F
(1)
λ,ρ(t) + F

(1)
λ,ρ(−t) is the Fourier transform of the function x 7→

|x|λ−1(log |x|)ρ−1χ1(|x|) and each integral in (7.1.10) absolutely converges. It is easy to see

that the relation

F
(1)
λ,ρ(±t) =

∂ρ−1

∂λρ−1
F

(1)
λ,1 (±t) (7.1.11)

holds. From this relationship, it suffices to investigate the asymptotic behavior of the case

ρ = 1.

Lemma 7.1.8. If λ > 0, then F
(1)
λ,1 (t) ≡ Aλt

−λ mod S(R), where Aλ = e
λ
2
πiΓ(λ).

Proof. By change of integral variable s = −itx, we have a contour integral on the imaginary

line as follows.

F
(1)
λ,1 (t) =

∫ ∞

0

eitxxλ−1χ̂1(x)dx =
1

(−it)λ

∫ −it∞

0

e−ssλ−1χ̂1

(
s

−it

)
ds

= e
λ
2
πit−λ

∫ −it∞

0

e−ssλ−1χ̂1

(
is

t

)
ds.

(7.1.12)

Here, we extend the real function χ1 to the complex function χ̂1 by defining χ̂1(s) := χ1(|s|)
for s ∈ C. Note that the support of χ̂1 is contained in a disk D(M) = {s ∈ C : |s| < M}. Let
G be a domain in C whose boundary is anticlockwise oriented and consists of the following

three curves;

G1 : s = x (0 ≤ x ≤M ′t),

G2 : s = iy (−M ′t ≤ y ≤ 0),

G3 : s =M ′teiθ
(
−π
2
≤ θ ≤ 0

)
,

where M ′ is a positive constant with M < M ′. Applying Green’s theorem to the contour

integral along the boundary of G, we have∫
G1+G2+G3

{
e−ssλ−1χ̂1

(
is

t

)
ds+ 0 · ds

}
= −

∫∫
G

∂

∂s

(
e−ssλ−1χ̂1

(
is

t

))
dsds. (7.1.13)

Since e−s and sλ−1 are holomorphic on G, the right integral in (7.1.13) becomes

−
∫∫

G

e−ssλ−1 ∂

∂s
χ̂1

(
is

t

)
dsds. (7.1.14)

On the other hand, since the curve G3 is outside of the support of χ̂1, we see that the left

integral in (7.1.13) is equal to

−
∫ ∞

0

e−xxλ−1χ̂1

(
ix

t

)
dx+

∫ −it∞

0

e−yyλ−1χ̂1

(
iy

t

)
dy. (7.1.15)
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From (7.1.12), (7.1.13), (7.1.14) and (7.1.15), we have

F
(1)
λ,1 (t) = I(t)− J (t)

with

I(t) = e
λ
2
πit−λ

∫ ∞

0

e−xxλ−1χ̂1

(
ix

t

)
dx,

J (t) = e
λ
2
πit−λ

∫∫
G

e−ssλ−1 ∂

∂s
χ̂1

(
is

t

)
dsds.

(I(t))
From the definition of χ̂1(s), we have

I(t) = e
λ
2
πit−λ

∫ ∞

0

e−xxλ−1χ1

(x
t

)
dx

= e
λ
2
πit−λ

∫ ∞

0

e−xxλ−1dx− e
λ
2
πit−λ

∫ ∞

0

e−xxλ−1
(
1− χ1

(x
t

))
dx

= e
λ
2
πiΓ(λ)t−λ − e

λ
2
πit−λ

∫ ∞

Lt

e−xxλ−1
(
1− χ1

(x
t

))
dx.

(7.1.16)

The last integral in (7.1.16) is estimated as∣∣∣∣∫ ∞

Lt

e−xxλ−1
(
1− χ1

(x
t

))
dx

∣∣∣∣ ≤ ∫ ∞

Lt

e−xxλ−1dx ≤ Ce−(Lt)/2 (7.1.17)

by using Lemma 7.1.6. From (7.1.16) and (7.1.17), we see that I(t) − Aλt
−λ is rapidly

decreasing function.

(J (t))

Let D(r) be a dick in C centered at the origin with radius r, that is

D(r) := {s ∈ C : |s| < r},

where r is a positive real number. Note that ∂
∂s
χ̂1 ≡ 0 on D(L), since χ̂1(s) ≡ 1 on D(L).

Consider the change of integral variable s = t(x+ iy) to J (t), we have

J (t) = e
λ
2
πit−λ

∫∫
G

e−ssλ−1 ∂

∂s
χ̂1

(
is

t

)
dsds

= −2ie
λ
2
πi

∫ ∞

0

∫ ∞

0

e−tx−ity(x+ iy)λ−1∂χ̂1(ix− y)dxdy,
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where ∂ is a differential operator defined by ∂ = 1
2
( ∂
∂x

+ i ∂
∂y
) and we use the relation dsds =

(2i)dxdy. Define the function H(y) as

H(y) =

∫ ∞

0

e−tx(x+ iy)λ−1∂χ̂1(ix− y)dx,

then the function J (t) can be regarded as a Fourier transform of H(y), that is,

J (t) = −2iei
λπ
2

∫ ∞

0

e−ityH(y)dy.

Since the support of ∂χ̂1(ix − y) is contained in D(M) \D(L), H(y) is a C∞
0 function and

this implies J (t) is a rapidly decreasing function.

Consequently, the assertion in lemma is shown.

As a corollary of the above lemma, from the relation (7.1.11), we have the following

asymptotic formulae.

Corollary 7.1.9.

F
(1)
λ,ρ(±t) = (±1)λAλt

−λ(log t)ρ−1 +O(t−λ(log t)ρ−2)

as t→ ∞. Here, Aλ is as in Lemma 7.1.8.

Fourier transform of x−λ−1

Let λ ∈ R>0, ρ ∈ N and χ2 : R → R be a C∞ function satisfying that

χ2(x) =

1 if M ≤ x,

0 if x ≤ L
(7.1.18)

for positive constant L < M . We define the integrals F
(2)
λ,ρ(t) as

F
(2)
λ,ρ(±t) :=

∫ ∞

0

e±itx|x|−λ−1(log |x|)ρ−1χ2(|x|)dx. (7.1.19)

Note that the integral F
(2)
λ,ρ(t) + F

(2)
λ,ρ(−t) is the Fourier transform of the function x 7→

|x|−λ−1(log |x|)ρ−1χ2(|x|) and each integral in (7.1.19) absolutely converges. It is easy to

see that the relation

F
(2)
λ,ρ(±t) = (−1)ρ−1 ∂

ρ−1

∂λρ−1
F

(2)
λ,1 (±t) (7.1.20)
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holds. Thus, it suffices to investigate the property of F
(2)
λ,1 (t) as well. Unlike Lemma 7.1.8,

its asymptotic behavior is a little different whether λ is an integer or not.

At first, we state the case when λ is not an integer.

Lemma 7.1.10. If λ > −1 is not an integer, then F
(2)
λ,1 ≡ Bλt

λ mod C∞(R), where Bλ =

e
−λ
2

πiΓ(−λ). Here, the branch of tλ for t < 0 is chosen as tλ = eπλi|t|λ.

Proof. (−1 < λ < 0) First, we consider the case where λ ∈ (−1, 0). By using χ2(x) in (7.1.18),

F
(2)
λ,1 (t) is divided into two parts as follows,

F
(2)
λ,1 (t) =

∫ ∞

0

eitxx−λ−1dx−
∫ ∞

0

eitxx−λ−1(1− χ2(x))dx. (7.1.21)

Since the support of (1− χ2(x)) is compact, the second integral in (7.1.21) is a C∞ function

of t. When t > 0, by the change of integral variable, the first integral in (7.1.21) can be

written as ∫ ∞

0

eitxx−λ−1dx = tλ
∫ ∞

0

eiyy−λ−1dy = tλe
−λ
2

πiΓ(−λ) (7.1.22)

by using Lemma 7.1.7. When t < 0, by choosing the branch of tλ as in this lemma, we have∫ ∞

0

eitxx−λ−1dx = |t|λ
∫ ∞

0

e−iyy−λ−1dy = |t|λe
λ
2
πiΓ(−λ) = tλe

−λ
2

πiΓ(−λ).

Therefore, the equation (7.1.22) holds for λ ∈ (−1, 0).

(0 < λ)

Next, let us consider the case where λ ∈ R+ \ Z. Since χ2(x) = 0 for x ≤ L, an integration

by parts implies∫ ∞

0

eitxx−λ−1χ2(x)dx =
it

λ

∫ ∞

0

eitxx−λχ2(x)dx+
1

λ

∫ ∞

0

eitxx−λχ′
2(x)dx. (7.1.23)

From the definition of χ2 in (7.1.18), the support of χ′
2 is contained in [L,M ] and this leads

to that the second integral in (7.1.23) is a C∞ function. Since there uniquely exist m ∈ N
and q ∈ (−1, 0) such that λ = q +m, by repeating the above process m times, we have

F
(2)
λ,ρ(t) ≡

(it)m

λ(λ− 1) · · · (q + 1)

∫ ∞

0

eitxx−q−1χ2(x)dx modC∞(R). (7.1.24)

Since q ∈ (−1, 0), we can apply (7.1.22) to (7.1.24) and we obtain F
(2)
λ,1 (t) ≡ Ãλt

λ mod

C∞(R), where

Ãλ =
im

λ(λ− 1) · · · (q + 1)
Aq =

(−i)m

(−λ)(−λ+ 1) · · · (−q − 1)
e−

q
2
πiΓ(−q).



7.1 Mellin transform and Fourier transform 81

Using the property of gamma function, Γ(α+1) = αΓ(α) for α ∈ R\Z, we see that Ãλ = Aλ

and the equation in the lemma holds for λ ∈ R+ \ Z.

On the other hand, when λ is an integer, a logarithmic function appears in the singularity

of F
(2)
λ,1 (t).

Lemma 7.1.11. If λ is a nonnegative integer, then F
(2)
λ,1 ≡ Cλt

λ log t mod C∞(R+), where

Cλ = −iλ/λ!.

Proof. It is sufficient to show the lemma in the case of λ = 0. Indeed, we can easily deal

with the general case in a similar argument to that in Lemma 7.1.10.

We divide the integral F
(2)
0,1 as follows.

F
(2)
0,1 (t) =

∫ 1/t

L

eitxx−1χ2(x)dx+

∫ ∞

1/t

eitxx−1χ2(x)dx

=

∫ 1/t

L

x−1χ2(x)dx+

∫ 1/t

L

(eitx − 1)x−1χ2(x)dx+

∫ ∞

1/t

eitxx−1χ2(x)dx

=: G(t) +H(t) +K(t) for t ∈ R+.

For the integral G(t), by an integration by parts, we have

G(t) = − log t · χ2(1/t)−
∫ 1/t

L

log x · χ′
2(x)dx

≡ − log t · χ2(1/t) mod C∞(R+)

≡ − log t mod C∞(R+).

The last equivalence is obtained by dividing χ2(1/t) as χ2(1/t) = 1 + (χ2(1/t)− 1).

Next, let us show that H(t) is a C∞ function on R. We define two C∞ functions g, h as

the following convergence series:

g(x, t) =
∞∑
n=1

in

n!
tnxn−1, h(x, t) =

∞∑
n=1

in

nn!
tnxn (|xt| < 1).

Note that g(x, t) = (eitx − 1)x−1 and ∂
∂x
h(x, t) = g(x, t) for |xt| < 1. Then, by an integration

by parts, we have

H(t) =

∫ ∞

L

g(x, t)χ2(x)dx = h(1/t, t)−
∫ M

L

h(x, t)χ′
2(x)dx for t ∈ R+. (7.1.25)
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It is easy to see that H(1/t, t) is a constant and that the last integral in (7.1.25) is a C∞

function of t on R+.

Finally, let us consider the integral K(t). By changing the integral variable y = tx, we

have

K(t) =

∫ ∞

1/t

eitxx−1χ2(x)dx =

∫ ∞

1

eiyy−1χ2(y/t)dy

=

∫ ∞

1

eiyy−1dy −
∫ ∞

1

eiyy−1(1− χ2(y/t))dy for t ∈ R+. (7.1.26)

The first integral in (7.1.26) is a constant defined by a convergent improper integral. It is

easy to see that the second integral in (7.1.26) is a C∞ function of t on R+.

Putting together the above results, we can see that F
(2)
0,1 (t) + log t is a C∞ function on

R+.

From the relation (7.1.20), we have the following asymptotic formulae.

Corollary 7.1.12. (i) If λ > −1 is not an integer, then

F
(2)
λ,ρ(±t) = (±1)λ · (−1)ρ−1Bλt

λ(log t)ρ−1 +O(tλ(log t)ρ−2) as t→ 0.

(ii) If λ is a nonnegative integer, then

F
(2)
λ,ρ(±t) = (±1)λ · (−1)ρ−1Cλt

λ(log t)ρ +O(tλ(log t)ρ−1) as t→ 0.

Here, Bλ, Cλ are as in Lemmas 7.1.10, 7.1.11.

Finally, we prepare a lemma for the analysis in next section which are useful to estimate

the remainder terms.

Lemma 7.1.13. Suppose that h(x) = O(x−λ−1(log x)ρ) as x→ ∞, then the following holds:∫ ∞

0

eitxh(x)χ2(x)dx =
L∑

j=0

cjt
j +O(tλ(log t)ρ) as t→ 0, (7.1.27)

where L is an integer satisfying that L ≤ λ < L+ 1.

Proof. We set EL(X) := eX−
∑L

j=1X
j/j! = XL+1

∑∞
j=L+1X

j−L−1/j! = XL+1ϕ(X) with C∞

function ϕ on R. Let us consider the following integral∫ ∞

M

EL(itx)h(x)χ2(x)dx =

∫ 1/t

M

EL(itx)h(x)χ2(x)dx+

∫ ∞

1/t

EL(itx)h(x)χ2(x)dx. (7.1.28)
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Then, by a change of variable y = tx, the first integral of right-hand side in (7.1.28) is

estimated as∣∣∣∣∣
∫ 1/t

M

(itx)L+1ϕ(itx)h(x)χ2(x)dx

∣∣∣∣∣ ≤ CtL+1

∫ 1/t

M

xL−λ(log x)ρdx

= CtL+1

∫ 1

Mt

(y
t

)L−λ

(log y − log t)ρ
1

t
dy

= Ctλ
ρ∑

k=0

(
ρ

k

)
(− log t)k

∫ 1

Mt

yL−λ(log y)ρ−k−1dy,

(7.1.29)

where C is a positive constant and
(
ρ
k

)
means a binomial coefficient. Each integral in the last

term in (7.1.29) is estimated as∫ 1

Mt

yL−λ(log y)ρ−k−1dy ≤
∫ 1

0

yL−λ(log y)ρ−k−1dy

and converges because of L − λ > −1 and it is easy to see that all the terms in (7.1.29) is

dominated by tλ(log t)ρ. The second integral is also estimated as∣∣∣∣∫ ∞

1/t

EL(itx)ϕ(itx)h(x)χ2(x)dx

∣∣∣∣ ≤ C ′
∫ ∞

1/t

x−λ−1(log x)ρdx

= C ′tλ
ρ∑

k=0

(
ρ

k

)
(− log t)k

∫ ∞

1

y−λ−1(log y)ρ−k−1dy

(7.1.30)

and the last integral is convergent because of −λ − 1 < −1. Thus, all the terms in (7.1.30)

is dominated by tλ(log t)ρ. For these arguments, we have the following equation:∣∣∣∣∫ ∞

M

EL(itx)h(x)χ2(x)dx

∣∣∣∣ ≤ C ′′tλ(log t)ρ as t→ 0

and this implies the equation (7.1.27).

7.2 Proof of main theorems

In this section, we apply the inverse Mellin transform to ZR(s; f, g, φ) of real case and lemmas

concerning the Fourier transform to K(u). Mixing the results obtained in Chapter 6, we will

give the proof of main theorems in Chapter 3.
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7.2.1 Asymptotic of Iφ(t; f, g) as t→ ∞

At first, let us consider the case of the parameter t is sufficiently large. In this case, the

negative poles of ZR(s; f, g, φ) appear in the asymptotic expansions.

By using Theorem 7.1.4 to ZR(s; f, g, φ), we have asymptotic expansion of K(u) at |u| → 0

as in (7.1.8). In particular, the coefficient A of |u|−α(log |u|)k−1 in this expansion is expressed

as

A =
(−1)k−1

(k − 1)!
[A+ + A−],

where A± are the coefficients of Laurent expansion of Z±(s; f, g, φ) at s = −α, that is,

Z±(s; f, g, φ) =
A±

(s+ α)k
+O

(
1

(s+ α)k−1

)
.

Applying Corollary 7.1.9 to each term in the asymptotic expansion of K(u), we have the

asymptotic expansion of Iφ(t; f, g) as t → ∞ as in (i-4). It is obvious that the component

−α runs through the all negative poles of ZR(s; f, g, φ) which are quantitatively computed

in Theorem (6.0.2). Furthermore, the term in the asymptotic expansion of Iφ(t; f, g) corre-

sponding to the term |u|−α(log |u|)k−1 is Ãt−α(log t)k−1 and its coefficient is given by

Ã =
Γ(α)

(k − 1)!
[eiπα/2A+ + e−iπα/2A−], (7.2.1)

where Γ is the Gamma function.

Remark 7.2.1. If α is not an odd integer, then

Re(Ã) =
2Γ(α) cos(πα/2)

(k − 1)!
[A+ + A−].

In order to decide the vanishing of the coefficient, the above equation is helpful.

Next, let us consider the coefficient of leading term in the above expansion. From the

relationship between Iφ(t; f, g) and Z±(s; f, g, φ) and the equation (7.2.1), we give explicit

formulae for the coefficient of the leading term of the asymptotic expansion (i-4) of Iφ(t; f, g)

at infinity.

Theorem 7.2.2. If f, g and φ satisfy the conditions in Theorem 3.0.2, then we have

lim
t→∞

t1/d∞(f,g)(log t)−m∞(f,g)+1 · Iφ(t; f, g)

=
Γ(1/d∞(f, g))

(m∞(f, g)− 1)!

[
eiπ/(2d∞(f,g))C+ + e−iπ/(2d∞(f,g))C−

]
,

where C± are as in (6.3.17).
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7.2.2 Proof of Theorems 3.0.1 and 3.0.2

Applying the argument in Subsection 7.2.1 to the results relating to ZR(s; f, g, φ) in Chap-

ter 6, we obtain the Theorems 3.0.1 and 3.0.2.

Proof of Theorem 3.0.1. This theorem follows from Theorem 6.0.2. If d∞(f, g) < 1, there

may appear terms derived from the negative trivial poles of ZR(s; f, g, φ), whose decay rates

are larger than t−1/d∞(f,g)(log t)m∞(f,g)−1. However, Proposition 6.3.5 and the relationship

(7.2.1) induce the cancellation of the coefficients of such terms and the assertion in Theo-

rem 3.0.1 holds.

Proof of Theorem 3.0.2. This theorem follows from Theorem 7.2.2 by considering the asser-

tions in Theorem 6.3.3. If the condition (b) is satisfied, either Z+(s; f, g, φ) or Z−(s; f, g, φ)

is equivalently zero and cancellation of the coefficient does not occur. Note that the necessity

of the condition in (c), ”1/d∞(f, g) is not an odd integer”, follows from Remark 7.2.1.

7.2.3 Asymptotic expansion of Iφ(t; f, g) as t→ 0

Next, we consider the case of the parameter t is sufficiently small. In this case, by apply-

ing Theorem 7.1.5 to Z±(s; f, g, φ) we have asymptotic expansion of K(u) at |u| → ∞ as

in (7.1.7). Then, we have asymptotic expansion of Iφ(t; f, g) as t → 0 as in (i-5) by ap-

plying Corollary 7.1.12 and Lemma 7.1.13 to each term of (7.1.7). Here, we can see more

explicit relationship between the coefficients of the asymptotic expansion of Iφ(t; f, g) ans

the coefficients of Laurent expansions of Z±(s; f, g, φ).

Let Z±(s; f, g, φ) have the following Laurent expansion at s = β:

Z±(s; f, g, φ) =
B±

(s− β)l
+O

(
1

(s− β)l−1

)
,

then the corresponding parts of the asymptotic expansions K(u) at |u| → ∞ is

(−1)l−1

(l − 1)!
B±|u|−β−1(log |u|)l−1 +O(|u|−β−1(log |u|)l−2).

Be careful to whether β is an integer or not, we have the following two asymptotic formulae

by applying Corollary 7.1.12 and Lemma 7.1.13 to these terms

B̃(β)tβ(log t)l−1 +

⌊β⌋∑
j=0

c̃j(β)t
j +O(tβ(log t)l−2) (β /∈ Z),
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B̃(β)tβ(log t)l +

β−1∑
j=0

c̃j(β)t
j +O(tβ(log t)l−1) (β ∈ Z)

with

B̃(β) =


Γ(−β)
(l − 1)!

[e−βπi/2B+ + eβπi/2B−] (β /∈ Z),

−1

(l − 1)!

iβ

β!
[B+ + (−1)βB−] (β ∈ Z).

(7.2.2)

Remark 7.2.3. If β is not an integer, then

Re(B̃(β)) =
Γ(−β) cos(βπ/2)

(l − 1)!
[B+ +B−].

In a similar fashion to the previous section, we obtain the explicit formula of the coefficient

of leading term in the asymptotic expansion (i-5).

Theorem 7.2.4. If f, g and φ satisfy the conditions in Theorem 3.0.6, then we have the

followings:

(i) If 1/d0(f, g) is not an integer, then

lim
t→0

t−1/d0(f,g)(log t)−m0(f,g)+1 · Iφ(t; f, g)

=
Γ(−1/d0(f, g))

(m0(f, g)− 1)!
[e−iπ/(2d0(f,g))D+ + eiπ/(2d0(f,g))D−].

(ii) If 1/d0(f, g) is an integer, then

lim
t→0

t−1/d0(f,g)(log t)−m0(f,g) · Iφ(t; f, g)

=
−1

(m0(f, g)− 1)!

eπi/(2d0(f,g))

(1/d0(f, g))!
[D+ + (−1)1/d0(f,g)D−].

(7.2.3)

Here, D± are as in (6.3.18).

7.2.4 Proof of Theorems 3.0.4 and 3.0.6

Proof of Theorem 3.0.4. This theorem follows from Theorem 6.0.2. If d0(f, g) < 1, we see

that Proposition 6.3.5 and the relationship (7.2.2) induce the cancellation of the coefficients

of terms derived from positive trivial poles .

Proof of Theorem 3.0.6. The assertions follow from the formulae in Theorem 7.2.4 by con-

sidering the assertions in Theorems 6.3.4. The condition in (ii)-(b), ”1/d0(f, g) is an even

integer” is necessary since the coefficient in (7.2.3) cancels when D+ = D−.
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7.3 Some general case in one-dimension

Here, we consider the case of n = 1. In this case, we can obtain the same results in Chapter 3

by using of a Taylor series of φ. Furthermore, through the argument below, we can extend

Theorem 3.0.6 to more general phase functions containing even non-smooth functions at the

origin. Precise explanation and arguments are written in [15].

Let us consider the following integral

Iα(t) =

∫ ∞

0

eitx
−α

φ(x)dx,

where α is a positive real number and φ is a C∞
0 function on R. In this section, we use the

following notations.

• When n− 1 < a ≤ n for n ∈ Z, we set ⌈a⌉ = n.

• For a smooth function f and k ∈ Z+, f
(k) means the k-th derivative of f .

Theorem 7.3.1 ([15]). (i) If α is a rational number, then for any positive integer N ,

Iα(t) =
N∑
j=1

Ajt
j/α +

N∑
j=1

Bjt
j/α log t+ ψN(t) for t ∈ R+,

where ψN(t) is a C
⌈(N+1)/α⌉−1 function on R+ and

Aj =
e(−j/2α)πi

α

φ(j−1)(0)

(j − 1)!
Γ(−j/α) if j/α /∈ N, Aj = 0 if j/α ∈ N,

Bj =
−1

α

φ(j−1)(0)

(j − 1)!

ij/α

(j/α)!
if j/α ∈ N, Bj = 0 if j/α /∈ N

(7.3.1)

for j ∈ N, where Γ means the Gamma function.

(ii) If α is not a rational number, then for any positive number N ,

Iα(t) =
N∑
j=1

Ajt
j/α + ϕN(t) for t ∈ R+, (7.3.2)

where ϕN(t) is a C
⌈(N+1)/α⌉−1 function on R and Aj are as in (7.3.1).

Remark 7.3.2. (1) If the branch of tj/α for t < 0 is chosen as tj/α = eijπ/α|t|j/α, then the

equation in (7.3.2) holds for all t ∈ R.
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(2) We can obtain a similar result to (7.3.1) in the case where t ≤ 0. If α > 0 is a rational

number, then for any positive integer N ,

Iα(t) =
N∑
j=1

Ajt
j/α +

N∑
j=1

Bjt
j/α log |t|+ ψN(t) for t ∈ R−,

where Bj are as in (7.3.1) and ψN(t) is a C
⌈(N+1)/α⌉−1 function on R−.

After changing of integral variable x−α = y, by substituting the Taylor series of φ at the

origin, we can apply Lemmas 7.1.10 and 7.1.11 and prove the above theorem. This method is

not available for the case of n ≥ 2. In the case of n = 1, it is easy to see that for any non-flat

smooth functions f(x), g(x), f(x)/g(x) can be expressed as a monomial xm with m ∈ Z by

an implicit function theorem. Thus, the case when m is a negative integer is contained in

the above theorem with α ∈ Z+ (The case of m ∈ Z+ corresponds to Proposition 2.1.4).

Furthermore, as a corollary, if f(x) is a non-smooth function which can be expressed by the

following particular form, we have similar result to Theorem 7.3.1.

Corollary 7.3.3. Let α > 0 be non-integer. Let f be a function which can be expressed

as f(x) = xαg(x) where g is a smooth function on R satisfying that g(0) = g′(0) = · · · =
g(k−1)(0) = 0 and g(k)(0) ̸= 0. Then, for any positive integer N , the integral

Jα(t) =

∫ ∞

0

eit/f(x)φ(x)dx

can be written as

Jα(t) =
N∑
j=1

Ãjt
j/(α+k) +

N∑
j=1

B̃jt
j/(α+k) log t+ ψN(t) for t ∈ R+,

where ψN is a C⌈(N+1)/(α+k)⌉−1 function on R+.

Note that the coefficients Ãj, B̃j are slightly different from Aj, Bj in Theorem 7.3.1. These

coefficients depend on α, k and the derivatives of g at the origin.
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