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by Hiroki Ishikura

Recent advances in computing, cameras, and sensors have significantly improved their performance and

expanded the range of applications for mathematical optimization and deep learning. This technological

evolution is also reflected in the industrial sector, where the acquisition and utilization of diverse data

is becoming more important. In addition, more and more applications and services utilizing these

technologies are emerging. This paper deals with two studies aimed at solving real-world problems

using mathematical optimization. The first is optimizing the wiring design for optical fibers with a

film-type system. When optical fibers are routed on film, various conditions impose constraints on the

fibers to be routed. It is challenging to find a way to minimize the number of film fibers used while

keeping these restrictions. Therefore, we formulated this problem as a mixed integer programming

problem to find a wiring method that minimizes the number of films used. Numerical experiments

confirmed that the proposed method uses fewer films than the rule-based wiring method. The second

is mobility optimization in an automated warehouse. Automated warehouses contain multiple transport

machines. In the automated warehouse used by Rohto Pharmaceutical Co., the subject of this study,

multiple transporters are used to transport goods. It is not easy to use these transporters efficiently

because each transporter’s behavior affects the state of the others. Therefore, we modeled the movement

of all transporters and cargo using a time expansion network and devised a problem to optimize the

behavior of the transporters as an integer programming problem. Using this problem, we confirmed that

the total time required to transport the cargo is reduced compared to the rule-based transport method.
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Chapter 1

Introduction

In recent years, the performance of computers, cameras, and other sensors has improved significantly, and

the scope of applications for mathematical optimization and deep learning has expanded. In response

to this trend, the industrial world is also moving toward acquiring and utilizing various types of data.

An example is the inspection of defective products in the manufacturing industry. Until now, defective

products have been inspected manually. However, the inspection of defective products was very costly

because of the high workload placed on workers, who were often replaced after only a short time cycle.

Today, the company uses cameras to capture images of parts and products and automatically determines

defective products using machine learning and deep learning. Mathematical optimization is also being

used to formulate delivery plans. For example, in the task of LP gas delivery, mathematical optimization

is used to select the optimal delivery destination based on the prediction of each customer’s remaining

gas volume and to formulate a route to visit the selected delivery destination efficiently. Thanks to a series

of tasks, it is now possible to automatically select appropriate delivery destinations based on the amount

of remaining gas and even to automatically formulate routes, which previously had to be thought up

by delivery staff. The data acquired using such diverse IoT devices can be used to improve operational

efficiency and reduce the workload of workers.

A social system that maximizes the use of these technologies is called a Cyber Physical System (CPS).

In a society where CPSs are realized, we can expect to build more efficient social systems and improve the

quality of our lives by modeling and databasing real-world phenomena, analyzing them in cyberspace,

acquiring new knowledge, and feeding them back into the real world. The smart factory is the realization

of this system on the platform of a factory. The smart factory acquires IoT devices such as cameras

and beacons, machines used in the manufacturing process, and data created by human factors such

as production planning. It analyzes digitized production activities to realize production planning to

increase throughput and improve worker safety in the factory. Numerical optimization is also a necessary

technology for realizing smart factories. In order to determine the optimal production schedule based

on the acquired data and to optimize the flow of people, products, and other items in the factory, these

problems are formulated as optimization problems.

Thus, the demand from the real world to solve social problems using mathematical optimization and



Chapter 1. Introduction 2

deep learning is increasing yearly. This paper focuses on the optical fiber routing optimization problem

using mixed integer programming and mobility optimization in automated warehouses using integer

programming. In Chapter 2, we aim to automatically determine the wiring method of optical fibers,

which the workers themselves have considered, and to minimize the number of film components used in

the wiring process. In Chapter 3, we consider optimizing the mobility of loads in an automated warehouse

installed in a factory. Research on automated warehouses is one of the project’s research areas for the

realization of smart factories.
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Chapter 2

Optimization of film-type optical fiber
wiring design using mixed-integer
programming problem

2.1 Background

Optical fiber technology is among the technologies that support modern communication. It is a com-

munication technology that passes light through a fiber consisting of two overlapping materials with

different refractive indices. Due to the nature of light as a medium, optical fiber technology offers faster

communication speeds and minor transmission loss than conventional coaxial cables. Therefore, it is

used in various communications, such as in submarine cables for international communication and in

enterprises’ high-speed communication lines. This is possible because optical fiber technology enables

long-distance communications. Optical fiber is also used for inter-node communication in server design

because it is necessary to increase the communication speed between nodes when communicating a large

amount of data or performing large-scale calculations. Additionally, the demand for optical fiber has been

increasing in recent years as the amount of data communication continues to increase with the spread of

smartphones, cloud computing, and the Internet of Things.

There are two optical fiber wiring methods: spatial and film. In spatial wiring, only the top and

bottom ends of an optical fiber are fixed, and wiring is performed without fixing the interconnections

between them. In this method, there is no need to design the wiring section between the upper and lower

ends, and wiring can be done manually. However, a drawback is the risk of transmission loss because

optical fibers’ bending shape cannot be fixed. On the other hand, in film wiring, the optical fiber is

fixed to a rectangular film using adhesive during the wiring process. In this method, the fibers’ bending

shape can be maintained, and the risk of transmission loss is minimal. It also has the advantage of high

flexibility due to its sheet form. However, it is necessary to satisfy several design requirements for fixing

optical fibers, such as bending geometry and equipment restrictions. Therefore, there is a limit to the

number of optical fibers that can be wired per layer of film, and wiring design must be done in advance.
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Furthermore, the number of films required for wiring must be as small as possible to reduce the cost of

films and other materials. In addition, the time required for wiring should not be excessively long.

We previously collaborated with Sumitomo Electric Industries, Ltd. (here-after referred to as Sum-

itomo Electric) on work on film optical fiber interconnects, in which optical fibers are routed from the

film’s top to the bottom (one-direction layer-based optical fiber arrangement, 1d-LOFA). This study is the

latest version of that work. This study proposes an exact solution method using integer programming

problems. Integer programming problems have been used to solve various real-world problems, such as

routing [3, 13, 30], scheduling [19, 21, 22], and portfolio problems [4, 23]. In this study, we exploited the

expressive power of integer programming problems to formulate 1d-LOFA. We also devise a heuristic

method to efficiently solve problems of a scale that exact solution methods cannot handle.

Related studies include wiring problems in integrated circuits and piping design problems in ship-

building. The differences between the problems addressed in this study and the problems mentioned

above are the dimension of the wiring space, the presence or absence of obstacles in the wiring space,

and whether lines are allowed to cross each other. For wiring problems in integrated circuits, there are

approaches such as the maze wiring method and genetic algorithms [18]. Regarding the place-and-route

problem, which includes the placement of circuit elements, a component of the wiring problem, methods

based on neural networks and simulated annealing have been proposed [17, 8]. For the piping design

problem in shipbuilding, approaches have been proposed that divide the problem into multiple mixed-

integer programming problems [12] and those that apply genetic algorithms [26]. Angilella et al. also

solved the network design problem using integer linear programming [1].

The remainder of this paper is organized as follows. Section 2.2 describes the design requirements

for film-based interconnection design and defines the 1d-LOFA. Section 2.3 defines the present routing

problem and proposes an exact solution method and a heuristic method, including a formulation as a

mixed-integer programming problem. In Sect. 2.4, we report experiments using sample data prepared

based on the data Sumitomo Electric provided; we discuss the results comparatively.

2.2 Problem description

Section 2.2.1 briefly introduces optical fibers and explains the points to be considered when routing them.

Section 2.2.2 introduces the optical fiber routing problem.

2.2.1 Design requirements

This section discusses the design requirements for film optical fibers. An optical fiber consists of a core

with a high refractive index, a cladding with a low refractive index, and a coating covering them (Fig. 2.1).

The core and cladding are two-layered glass structures, and light incident on the core propagates in the

optical fiber by total reflection at the boundary surface with the cladding. When an optical fiber is bent
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steeply, the angle of light incidence on the boundary surface becomes significant at the bent part, resulting

in a partial loss of light instead of total reflection [9, 16].

In film wiring, optical fibers are wired while being fixed to a rectangular film with adhesive. In this

method, each fiber’s path and distributing the fibers to the film are decided according to maintaining the

fibers’ bending shape. This method can minimize the risk of transmission loss. To reduce transmission

loss, it is first necessary to avoid the sudden bending of optical fiber cables during routing. The following

restrictions are set to satisfy this condition.

(a) The path curvature radius must be greater than the specified value. The minimum value is denoted

by R and is called the minimum radius of the curvature. It is represented by a positive real number

R > 0.

!"#$%&'

!(#))%&'

!"*+

Figure 2.1: Structure of an optical fiber
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Figure 2.2: Intersection of two optical fibers

Optical fiber intersections must also be considered. For example, in a film arrangement, fibers overlap

other fibers at intersections (Fig. 2.2). Bending near these intersections can cause transmission loss or

breakage. Considering these factors, the following requirements are set for fiber intersections.

(b) At intersections, optical fibers are on straight lines and do not intersect during bending.

(c) No more than three optical fibers shall intersect at a single point.

(d) At intersections, fibers must be orthogonal.

These conditions can prevent fiber breakage. These conditions can also reduce transmission losses at

the crossing. When fibers overlap, fibers bend, and transmission loss occurs. Therefore, by limiting fiber

crossings to two fibers and making the crossings orthogonal, overlapping fibers can be minimized, and

transmission loss can be expected to be suppressed.

Additionally, the following requirements for manufacturing facilities are to be considered.
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(e) Two parallel wired fibers must be at least a certain distance apart. Let d > 0 denote the minimum

distance between two parallel fibers. d is called the minimum adjacency space.

In this study, (a)–(e) are referred to as design requirements.

2.2.2 Problem definition

Let F be the set of optical fibers to be routed and L be the set of films for routing. Define W and H as the

width and height of the film, respectively. The point at the upper left of the film is the origin; the x-axis

is taken in the width direction, and the y-axis is in the height direction. Each fiber f ∈ F has pre-defined

endpoints
(
xf0 , y

f
0

)
and

(
xf1 , y

f
1

)
on the film edge. Fibers are routed from

(
xf0 , y

f
0

)
to
(
xf1 , y

f
1

)
. Depending

on the position of the endpoints, the fiber may need to be bent. Additionally, there are restrictions on

how fibers are routed to each other depending on the endpoints’ positional relationship. Therefore, the

number of films required to wire all fibers may vary greatly depending on the fiber wiring method. The

LOFA is the optimization problem to minimize the number of films required for fiber routing.

We define the LOFA handled in this study as the one-directional LOFA (1d-LOFA) based on the

direction of the optical fiber to be inserted. The 1d-LOFA is routed only from the top edge of the film to

the bottom edge. If necessary, the fiber must be bent during routing to comply with design requirements.

In order to comply with the design requirements, some fibers cannot be routed on the same film, and

some fibers introduce bending restrictions when routing. Therefore, the fiber routing method significantly

impacts the number of films required. Therefore, we devised an algorithm to identify the wiring method

using a mixed-integer programming problem for 1d-LOFA.

2.3 Two methods to solve 1d-LOFA

This section describes the methodology for solving 1d-LOFA as a mixed integer programming problem.

First, Sect. 2.3.1 introduces 1d-LOFA in detail. Next, Sect. 2.3.2 describes the formulation of the 1d-LOFA.

The design requirements are formulated as constraints, and the number of layers is minimized using

an objective function. Finally, Sect. 2.3.3 presents a heuristic algorithm for solving 1d-LOFA fast. When

solving the formulated problem, the computation may be time-consuming. Therefore, we devised a

heuristic algorithm to find the fiber optic wiring fast.

2.3.1 Problem definition of 1d-LOFA

The 1d-LOFA is a wiring optimization problem for wiring fibers only from the top edge of the film to its

bottom edge. In this study, to simplify the wiring problem, we restrict the fiber wiring method with the

following constraints. These conditions are the primary wiring methods for the 1d-LOFA, as discussed

and determined with Sumitomo Electric. Adhering to these conditions will make it easy to find wiring
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that meets the design requirements described in Sect. 2.2.1. These restrictions also narrow the solution

search range but make the optimization problem easier to handle.

(A) Each fiber is routed parallel to the x and y-axis except for bent portions.

(B) Each fiber can be bent up to two times.

Restriction (A), in other words, prohibits wiring that goes straight in a diagonal direction to the top or

bottom edge of the film. This restriction means that when fibers cross, they always are orthogonal except

for the bent portion. Therefore, if design requirement (b) is satisfied, design requirement (d) is naturally

satisfied. Furthermore, since the fibers are routed along the x, and y-axes and intersections only occur at

the straight sections of the fibers, three or more fibers never intersect at a single point unless they share x

and y coordinates. In other words, design requirement (c) can also be satisfied.

Optical fiber f is routed from the pre-defined top end to the bottom end. If the x coordinates of the

top and bottom ends are different, the fiber must be bent to observe the restriction (A). However, when

fibers are bent, transmission loss will likely occur at the bent portion. In other words, bending a fiber

many times will adversely affect the transmission of information. The restriction (B) can reduce overly

complicated paths and unnecessary intersections caused by fiber bending.

Due to these restrictions, three bending methods depend on the position of the fiber endpoints

(Fig. 2.3). Let the x coordinate of the top end of the fiber be xf0 and the x coordinate of the bottom end be

xf1 . The fiber bends at |xf1 − xf0 | > 2R, 0 < |xf1 − xf0 | ≤ 2R, and |xf1 − xf0 | = 0. When |xf1 − xf0 | > 2R, the

fiber consists of two sections parallel to the y-axis, two bending sections, and one section parallel to the

x-axis. When 0 < |xf1 − xf0 | ≤ 2R, the fiber consists of two sections parallel to the y-axis and two bending

sections. When |xf1 −xf0 | = 0, the fiber consists of one section parallel to the x axis. The red and blue lines

in Fig. 2.3 represent the bending sections.

!!
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Figure 2.3: Examples of optical fiber arrangements

Under these conditions, fiber f is routed as follows (Fig. 2.4). First, f is extended straight from the top

end of the film. Next, bend f to an appropriate shape and extend f straight to the bottom end of the film.
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When bending f , bend it to form an arc with a minimum bending radius of R. The central angle of the

fan-shaped radius R with this arc is called the bending angle and is defined as θf ∈ [0, π2 ]. Furthermore,

to consider the wiring conditions, yf is defined as the bending height to match the bending portion of the

fiber. In the case of |xf1 −xf0 | > 2R, yf is the y coordinate of the section parallel to the x-axis. On the other

hand, in the case of 0 < |xf1 − xf0 | ≤ 2R, yf is the y coordinate of the point where the two bend sections

are connected. In the case of |xf1 − xf0 | = 0, the value of yf is treated as 0 because there is no bending part

in the fiber.

Figure 2.4: Examples of fiber curves

2.3.2 Exact solution method

For the 1d-LOFA restricted by (A) and (B), we give the formulation as a mixed-integer programming

problem. When formulating the 1d-LOFA, it is necessary to express the design requirements (b) and

(e) as constraint expressions. Since these design requirements refer to pairs of optical fibers, their form

depends on their respective positions in the fiber pair. Specifically, the more or lower height that can be

bent in each fiber pair is determined by the higher or lower x coordinates of each start and end point.

This section describes the constraints set to satisfy two types of design requirements. Constraints

(b) and (e) have eight and four constraint conditions, respectively. In this paper, each condition is

denoted by B = {bi|i ∈ [0, 7]}, E = {ei|i ∈ [0, 3]}, and the corresponding set of fiber pairs is denoted by

Cbi(i ∈ [0, 7]), Cei(i ∈ [0, 3]). The applicable conditions for a given pair of fibers are determined by the

relationship between the fibers’ starting and ending points.

The condition for design requirement (b) is that the two fibers f1, f2 should be routed to not overlap

at their bend positions. Possible conditions for this are as follows.

(b0) cannot be wired in the same layer

(b1) yf2 ≤ yf1 −R sin θf2

(b2) yf2 ≥ yf1 +R sin θf2
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(b3) yf2 ≥ yf1

(b4) yf2 ≤ yf1 −R sin θf1

(b5) yf2 ≥ yf1 +R sin θf1

(b6) yf2 ≤ yf1

(b7) can be freely wired

The following explains the constraints in (b0) and (b1) based on a concrete example. Here, we use two

fibers, f1 and f2, which are |xf0 − xf1 | > 2R. Due to the symmetry of the wiring method, we assume

xf10 ≤ xf11 to exclude patterns with the same bending method.

The b0 indicates that two different fibers cannot be routed to the same film; Fig. 2.5 shows an example.

We consider the case where the top end of fiber f2 is xf20 > xf11 +gf1 , and the bottom is xf11 −gf1 < xf21 < xf11 ,

where gf1 = R(1−cos θf1) represents the bent section’s length on the x-axis. No matter where these fibers

f1, f2 are bent in height, the other fiber always overlaps one fiber’s bent portion. Therefore, these two

fibers cannot be routed to the same film.

!!
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Figure 2.5: Example of optical fibers that cannot be routed to the same film

An example of the routing of b1 to b6 is shown in Fig. 2.6, where the coordinates of the two fibers’

endpoints constrain the location of the fiber bend. For example, if the top end of fiber f2 is at xf10 < xf20 <

xf10 + gf1 and the bottom end is at xf10 + gf1 < xf21 < xf11 − gf1 , fiber f2 must be bent at a position higher

than R sin θf2 for the bending height of f1. If the bend is lower than that, the red bend in f1 and f2 or

the blue bend in f2 intersects with the other fiber. Therefore, if these fibers are routed to the same film,

the b1 constraint must be satisfied. We consider b2 through b6 similarly, with each constraint occurring

when routing to the same film. The relationships between all fiber pairs and constraints are described in

Appendix A.1.2.
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Figure 2.6: Examples of wiring from b1 to b6. gf is defined as R(1− cos θf ), where R is the minimum radius of the
curvature and θf is the bending angle of fiber f
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The condition in design requirement (e) means that when routing two fibers f1, f2, a space must be

opened above a specific spacing. The conditions considered for this are as follows.

(e0) cannot be wired in the same layer

(e1) yf2 ≥ yf1 + d× α(f2)

(e2) yf2 ≤ yf1 − d× α(f2)

(e3) can be freely wired

The function α within constraints (e1) and (e2) is defined as follows;

α (f) =


1 Optical fiber f ∈ F is routed with bending

0 otherwise
.

When bending fibers, these conditions allow the spacing between fibers to be greater than or equal to

the minimum adjacent spacing d. The relationship between all fiber pairs and constraints is described

in Appendix A.1.2. Additionally, for all combinations of fibers to be routed on the same film, the

corresponding constraints of (b0) – (b7) and (e0) – (e3) must be satisfied.

We formulated the 1d-LOFA as a mixed-integer programming problem based on the above constraints.

The following summarizes the sets, constants, variables, and a function used in the formulation.

1. Sets

• F : Optical fiber set to be routed

• L = {0, . . . , n − 1} : The set of films to be wired, where n is the maximum number of films

available

• B = {b0, . . . , b7} : The set that manages the constraints of design requirement (b)

• E = {e0, . . . , e3} : The set that manages the constraints of design requirement (e)

• Ci ⊂ F × F (i ∈ B ∪ E) : The set of fiber pairs corresponding to the constraint i

• IBf1,f2 ⊂ B : Constraints in design requirement (b) that arise when routing two fibers f1, f2 ∈ F

on the same film

• IEf1,f2 ⊂ E : Constraints in design requirement (e) that arise when routing two fibers f1, f2 ∈ F

on the same film

2. Constants

• R ∈ R+
0 : The minimum radius of the curvature



Chapter 2. Optimization of film-type optical fiber wiring design 12

• H ∈ R+ : The film height

• d ∈ R+ : The minimum adjacency space

• θf ∈ [0, π2 ] : The bending angle of fiber f

3. Variables

• xl,f =


1 Optical fiber f ∈ F is wired to film l ∈ L

0 otherwise

• ul =


1 Film l ∈ L is used

0 otherwise

• zif1,f2 =


1 Fiber pairs f1, f2 ∈ F satisfy design requirement i ∈ B ∪ E

0 otherwise

• yf ∈ [0,H] : A continuous variable that determines the bending height of fiber f ∈ F

4. Function

• α(f) =


1 Fiber f needs to be bent.

0 otherwise
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Problem 1. 1d-LOFA

minimize
u,x,y,z

∑
l∈L

ul (2.1)

subject to ul ≤ ul−1
∀l ∈ L \ {0} (2.2)∑

f∈F

xl,f ≤ |F | × ul
∀l ∈ L (2.3)

∑
l∈L

xl,f = 1 ∀f ∈ F (2.4)

xl,f1 + xl,f2 ≤ 1 ∀(f1, f2) ∈ Cb0 ∪ Ce0 ,
∀l ∈ L (2.5)

yf2 − yf1 +R sin θf2 ≤
(
1− zb1f1,f2

)
×M ∀(f1, f2) ∈ Cb1 (2.6)

yf1 − yf2 +R sin θf2 ≤
(
1− zb2f1,f2

)
×M ∀(f1, f2) ∈ Cb2 (2.7)

yf1 − yf2 ≤
(
1− zb3f1,f2

)
×M ∀(f1, f2) ∈ Cb3 (2.8)

yf2 − yf1 +R sin θf1 ≤
(
1− zb4f1,f2

)
×M ∀(f1, f2) ∈ Cb4 (2.9)

yf1 − yf2 +R sin θf1 ≤
(
1− zb5f1,f2

)
×M ∀(f1, f2) ∈ Cb5 (2.10)

yf2 − yf1 ≤
(
1− zb6f1,f2

)
×M ∀(f1, f2) ∈ Cb6 (2.11)

yf1 − yf2 + d× α (f2) ≤
(
1− ze1f1,f2

)
×M ′ ∀(f1, f2) ∈ Ce1 (2.12)

yf2 − yf1 − d× α (f2) ≤
(
1− ze2f1,f2

)
×M ′ ∀(f1, f2) ∈ Ce2 (2.13)

xl,f1 + xl,f2 − 1 ≤
∑

i∈IB
f1,f2

zif1,f2
∀f1, f2 ∈ F, f1 ̸= f2,

∀l ∈ L (2.14)

xl,f1 + xl,f2 − 1 ≤
∑

i∈IE
f1,f2

zif1,f2
∀f1, f2 ∈ F, f1 ̸= f2,

∀l ∈ L (2.15)

M = R+H + 1 (2.16)

M ′ = H + d+ 1 (2.17)

The objective function and each constraint equation are as follows;

• (1) denotes the objective function. In this research, we aim to minimize the number of films used.

• (2) guarantees that the film with the smallest number is used first.

• (3) guarantees that the film to which the fiber is routed has already been used.

• (4) guarantees that all fibers are routed to one of the films.

• (5) is a constraint that controls pairs of fibers that cannot be routed to the same film.

• (6) through (11) are constraints to satisfy design requirement (b).

• (12) and (13) are constraints to satisfy design requirement (e).

• (14) and (15) are the relationship between variables x and z.

• (16) and (17) represent big-M.
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2.3.3 Heuristic method

Next, we describe a heuristic algorithm for Problem 1. This problem often fails to find a feasible solution

within the desired computation time because the computation time increases when the number of optical

fibers is large or the film height H is small. Therefore, we propose a heuristic algorithm to find a feasible

solution quickly.

The heuristic algorithm uses the solution to the following problem as a lower bound on the number

of layers used.

Problem 2. Film number minimization problem

minimize
u,x,y,z

∑
l∈L

ul

subject to ul ≤ ul−1
∀l ∈ L \ {0}

xl,f1 + xl,f2 ≤ 1 ∀(f1, f2) ∈ Cb0 ∪ Ce0 ,
∀l ∈ L

xl.f ≤ ul
∀f ∈ FCb0

∪Ce0
, ∀l ∈ L

xl,f ∈ {0, 1} ∀f ∈ FCb0
∪Ce0

, ∀l ∈ L

ul ∈ {0, 1} ∀l ∈ L

Problem 2 is a version of Problem 1 in which the target of the optimization problem is restricted to

optical fibers (FCb0
∪Ce0

) belonging to Cb0 ∪ Ce0 , and the constraints on the fibers are restricted to b0, e0.

Therefore, the optimal solution to Problem 2 is the lower bound of Problem 1. This problem assigns the

fibers to the film, like “Number Place,” where the numbers are arranged according to the conditions [2].

In this section, the optimal objective function value of Problem 2 is NLB . Further, solving Problem 2 yields

the tentative assignment to films of optical fibers belonging to Cb0 ∪ Ce0 . For each film, 0, . . . , NLB − 1,

denote the set of fibers assigned to Fl(l = 0, . . . , NLB − 1).

Using Fl obtained by solving Problem 2, we consider each film’s optimal optical fiber wiring method.

This paper uses this routing method to maximize the number of fiber wires assigned to film l. This

problem can be expressed as Problem 3.
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Problem 3. Optical fiber routing maximization problem

maximize
x,y,z

∑
f∈F ′

l

xf

subject to xf1 + xf2 ≤ 1 ∀(f1, f2) ∈ C′
l,b0 ∪ C′

l,e0

yf2 − yf1 +R sin θf2 ≤
(
1− zb1f1,f2

)
×M ∀(f1, f2) ∈ C′

l,b1

yf1 − yf2 +R sin θf2 ≤
(
1− zb2f1,f2

)
×M ∀(f1, f2) ∈ C′

l,b2

yf1 − yf2 ≤
(
1− zb3f1,f2

)
×M ∀(f1, f2) ∈ C′

l,b3

yf2 − yf1 +R sin θf1 ≤
(
1− zb4f1,f2

)
×M ∀(f1, f2) ∈ C′

l,b4

yf1 − yf2 +R sin θf1 ≤
(
1− zb5f1,f2

)
×M ∀(f1, f2) ∈ C′

l,b5

yf2 − yf1 ≤
(
1− zb6f1,f2

)
×M ∀(f1, f2) ∈ C′

l,b6

xf1 + xf2 − 1 ≤
∑

i∈IB
f1,f2

zif1,f2
∀f1, f2 ∈ F ′

l , f1 ̸= f2

yf1 − yf2 + d× α (f2) ≤
(
1− ze1f1,f2

)
×M ′ ∀(f1, f2) ∈ C′

l,e1

yf2 − yf1 − d× α (f2) ≤
(
1− ze2f1,f2

)
×M ′ ∀(f1, f2) ∈ C′

l,e2

xl,f1 + xl,f2 − 1 ≤
∑

i∈IE
f1,f2

zif1,f2
∀f1, f2 ∈ F ′

l , f1 ̸= f2

xf ∈ {0, 1} ∀f ∈ F ′
l

yf ∈ [0, H] ∀f ∈ F ′
l

zif1,f2 ∈ {0, 1} ∀f1, f2 ∈ F ′
l , f1 ̸= f2,

∀i ∈ B ∪ E

M = R+H + 1

M ′ = H + d+ 1

The fiber routing decision is made as follows. First, we solve Problem 2 only for the fibers belonging

to Cb0 ∪Ce0 among the fibers to be routed. Based on the result, tentatively assign (Fl(l ∈ L)) from among

the optical fibers belonging to Cb0 ∪ Ce0 . Next, solve Problem 3 sequentially, starting with the film with

l = 0 to assign the fiber to the film. The target optical fibers for Problem 3 are F0 fibers and the fibers not

in all the fiber pairs in Cb0 ∪ Ce0 . We solve this to determine the fiber assignment and bend position for

l = 0. Let FNG
0 be the fiber that could not be routed, and use it as input when solving the routing problem

for the film with l = 1. In other words, when solving Problem 3 for a film with l = 1, the optimization

problem’s target fibers areF1 andFNG
0 . This process is repeated until all the fibers are wired. This process

is shown in Algorithm 1.
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Algorithm 1 Heuristic method

Require: F : Optical fibers set , Ci ⊂ F×F (∀i ∈ B∪E) : Sets of fiber pairs corresponding to the constraint

i

1: Solve Problem 2 for FCb0
∪Ce0

to obtain the tentative assignment Fi(i = 0, . . . , NLB − 1).

2: l = 0

3: F ′
0 ← F0 ∪ (F \ FCb0

∪Ce0
)

4: while True do

5: Solve Problem 3 with F ′
l as input to obtain FNG

l for the film l

6: F ′
l+1 ← Fl+1 ∪ FNG

l

7: l← l + 1

8: if All fibers are wired then

9: break

10: end if

11: end while

2.4 Numerical Experiments

2.4.1 Problem Setting

We used sample data from the data used in our joint research with Sumitomo Electric. An example is

shown in Fig. 2.7. At the top and bottom ends of a wiring area with width W = 423[mm] and height

H = 160[mm], 12 optical fibers are lined up in groups of 12 fibers each. At the top end, the fibers in

line are designated A1, ..., A12, B1, ..., B12, ..., L1, ..., L12 from the left. At the lower end, the fibers are

arranged in the order of A1, ..., L1, A2, ..., L2, ..., A12, ..., L12 from the left. The distance between each

group is 30[mm], and the distance between each fiber is 0.25[mm].
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Figure 2.7: An example of fibers and a film

The rule-based wiring method used in the experiment is introduced here. Optical fiber wiring using

film is a new method, and the rule-based method should be simple due to its expandability. Four rule-

based methods to make it easy for workers to perform wiring tasks have been prepared for comparison.

R1: Randomly select and route fibers. The bend position should be at the bottom of the film whenever

possible when bending fibers.

R2: Randomly select and route fibers. The bend position should be at the top of the film whenever

possible when bending fibers.

R3: Wire in the order of A1, ... , A12, B1, ..., B12, ..., L1, ..., L12. The bend position should be at the

bottom of the film whenever possible when bending fibers.

R4: Wire in the order of A1, ... , A12, B1, ..., B12, ..., L1, ..., L12. The bend position should be at the top

of the film whenever possible when bending fibers.

Additionally, when executing the exact solution method described in Sect. 2.3.2, it is necessary to

determine the number of usable films (n) in advance. In this experiment, Problem 1 is calculated from

n = 1, and if a solution cannot be found, the value of n is increased by one, and the calculation is repeated.

This loop is repeated until a solution is found and the wiring method is obtained. In the heuristic method,

when solving Problem 2, the calculation is repeated with increasing values of n from n = 1 until a solution

is found.
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This paper evaluated the proposed method’s performance based on sample data and settings generated

from previous studies. The various settings were then modified to explore the conditions under which

the number of films used could be efficiently reduced.

2.4.2 Experiments setting

This section first describes the settings related to the experiments reported in this paper. The settings used

in the experiments are shown in Table 2.1. “exp1” is the basic setup. “exp2” and later are modifications

of the wiring environment that depart from “exp1.”

Table 2.1: Experiments setting. Where R is the minimum radius of curvature, s is the spacing of the optical fibers
within the group, H is the height of films, and d is the minimum radius of curvature of the optical fibers

R [mm] s [mm] H [mm] d[mm]

exp1 15 0.25 160 0.1

exp2 50 0.25 160 0.1

exp3 10 0.25 160 0.1

exp4 15 0.5 160 0.1

exp5 15 0.1 160 0.1

exp6 15 0.25 80 0.1

exp7 15 0.25 320 0.1

exp8 15 0.25 160 0.2

exp9 15 0.25 160 0.01

Additionally, we set a time limit for solving the optimization problem with the proposed method. This

limit prevents the computation from taking an enormous amount of time to find the optimal solution,

preventing the completion of the computation. We set the time limit based on the time required to find

a tentative solution. In this problem set-up, a tentative solution close to the optimal solution could be

obtained in less than one hour for most problems. Therefore, the time limit for solving one optimization

problem was one hour.

The computer environment for each experiment and the optimization solver used to solve the opti-

mization problem are shown in Table 2.2. Each experiment was run five times. The resulting values are

the average of the five runs. Twenty central processing unit (CPU) cores were used to solve the optimiza-

tion problems using the exact solution and heuristic methods. Computation time was measured for all

experiments as the time taken from the start of the run to the determination of the wiring method.

2.4.3 Experimental results

Basic Setting
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Table 2.2: Computational Environment

CPU Intel(R) Xeon(R) Silver 4214R CPU

Clock rate 2.40GHz

Memory 192GiB

Solver Gurobi 10.0.1

The results of “exp1” are shown in Fig. 2.8. R1 to R4 required 9 or more sheets of film. On the other hand,

the exact solution method, which utilizes an optimization problem, reduced the number of films used to

two. The heuristic method, devised based on the exact solution method, reduced the number of films to

three. In terms of computation time, each of the rule-based methods took only about 15 seconds. The

exact solution and heuristic methods using optimization problems were able to find the wiring method

in about 30 minutes.

Based on these results, the proposed method utilizing the optimization problem can find a way to

route optical fibers using fewer films than the rule-based method. However, differences in the number of

films used occurred between the exact solution and heuristic methods. These differences are thought to

be because the more options there are for wiring methods when routing fibers, the easier it is to reduce

the number of films used. The rule-based method determines how to route each optical fiber to which

film one by one. In the heuristic method, fibers that cannot be routed to the same film are assigned to a

film first, and then the fiber routing is considered for each film. In the exact solution method, all optical

fibers are considered in terms of how to assign them to films and how to wire them. In other words, the

number of films used is affected by the complexity of how optical fibers are assigned to films.

On the other hand, the computation time required to find the optical fiber routing method tends

to be longer for heuristic and exact solution methods that use optimization problems than for rule-

based methods. However, the actual time taken was about 30 minutes. Wiring optical fibers requires

determining the wiring method in advance rather than considering it in real time during manufacturing.

Therefore, a certain amount of calculation time can be secured for practical use. Hence, it can be said that

the exact solution and heuristic methods, which can determine the wiring method in about 30 minutes,

can be put to practical use without problems.

The computation time for optimization problems varies greatly depending on the problem set. For

example, with the “exp1” setting, the calculation can be completed in about 30 minutes. However, the

calculation time can vary significantly when conditions such as bend radius and film height change. In

the next section, we consider more suitable conditions for optical fiber wiring based on changes in the

number of films used and the calculation time by modifying the wiring conditions.
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Figure 2.8: Result of “exp1.” “heur” represents the heuristic method (Sect. 2.3.3), and “exact” represents the exact
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Effective wiring design studies

We examined whether changing the related settings makes more efficient wiring possible. In Table 2.1,

“exp2” to “exp9” are the wiring conditions in which one of “bend radius,” “fiber spacing within a group,”

“film height,” or “minimum adjacent distance” is changed to depart from the primary setting, “exp1.”

We discuss better LOFA settings based on the number of films used and the calculation time.
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Figure 2.9: Comparison of the number of films used and computation time. Bar graphs represent the number of
films used. The bar on the left side of each experiment represents the heuristic method results, and the bar on the
right side represents the exact solution method results. The axis uses the values on the left side. Line graphs show
the time taken to find the solution. The axis of line graphs uses the numbers on the right

The number of films obtained using the exact solution and heuristic methods in each experimental

setting is shown in the line graph in Fig. 2.9. The time used for the calculations is shown in the bar graph

in Fig. 2.9. The color and shape of the graphs change with the type of problem solved and the post-

calculation status. The post-calculation status was determined by whether the solver found a solution to
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Table 2.3: The film setup used in each experiment and the film’s cost. H is the height of the film, and W is the
width of the film. “cost” was calculated as the ratio of the size of each film when the area of the film in “exp1” was
set to 1

Film

H W Cost

exp1 160 423 1.00

exp2 160 423 1.00

exp3 160 423 1.00

exp4 160 456 1.08

exp5 160 403.2 0.95

exp6 80 423 0.50

exp7 320 423 2.00

exp8 160 423 1.00

exp9 160 423 1.00

the problem and whether the calculation was completed within the time limit. Among all experiment

settings, “exp3,” “exp4,” “exp7,” and “exp8” obtained results equivalent to “exp1,” the basic setting.

Furthermore, the time taken to find the solution is compared. The results show that “exp3” and “exp7”

obtained solutions faster than “exp1” among the four settings that obtained results equivalent to “exp1.”

“exp4” took almost as long as “exp1” to obtain a solution, and “exp8” took longer than “exp1.” Some

settings require more than one hour to find a solution when using the exact solution method.

These differences are discussed in terms of the different experimental setups. “exp3” reduces the size

of the bending radius R. This alteration makes the bending area smaller in the wiring and increases

the number of places where fibers can cross each other. In other words, this increases the number of

optical fibers that can be wired to a single film. “exp7” increases the optical fibers wired in a single film by

increasing the film height H . On the other hand, in “exp8,” the minimum adjacent spacing d is larger than

in “exp1.” This alteration means fewer optical fibers wired in a single film. In addition, “exp4” increases

the fiber spacing within a group, making it harder for bends to overlap with neighboring fibers. However,

“exp4” did not show any significant difference from the result of “exp1.” This result is probably because

the minimum bend radius is so large compared to the size of the adjacent fiber spacing that the number

of optical fibers routed on a single film is not significantly different from “exp1.” Based on these results,

we consider that designing films with more optical fibers that can be routed on a single film reduces the

time required to find the routing.

Next, let us consider the feasibility of these settings. “exp4” and “exp7” affect the size of the film.

The specific values are shown in the “Film” column of Table 2.3. In this paper, we assume that the cost

associated with film production is proportional to the area of the film. The cost of each set when the cost
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of “exp1” is set to one is listed in the “Cost” section of Table 2.3. These values are directly related to the

size of the film used, i.e., the cost related to the fabrication of the film used. Thus, “exp4” and “exp7” are

wiring designs that have higher film production costs than “exp1.” On the other hand, the film-related

settings for “exp3” are the same as for “exp1.” The film production cost is the same as for “exp1.” In other

words, the “exp3” setting is a design that can reduce the wiring cost, having the same film production

cost as “exp1.”

From the above, we think it is important to set the number of optical fibers routed on a single film to

be significant to consider a better LOFA. For this purpose, it is considered to be a good idea to change

the height of the film, the spacing of fibers in a group, and the fibers’ bending radius. However, since

the film’s height and the fibers’ spacing in a group affect the cost of fabricating the film, it is necessary to

consider the balance with the cost of wiring. Additionally, when the fiber’s bending radius is reduced,

the risk of transmission loss is adversely affected. Therefore, when determining the wiring design, using

the smallest value of the allowable bending radius is desirable.

Computation time characteristics differ significantly between Problem 1, 3, and Problem 2. Problem 1

and 3 are mixed integer programming problems, while Problem 2 is an integer programming problem.

Problem 2 was solved within approximately five seconds in all experimental conditions. Problems 1

and 3 required more time to solve each problem than Problem 2, which had different characteristics. For

Problem 1, the computation time it differed greatly depending on the problem setup and the number of

available films (n). For n = 1, the problem was found to be infeasible in a very short time, less than 0.1

seconds. After n = 2, finding the optimal solution for some problems was possible. When it was possible

to find the optimal solution, the time required to find the solution varied depending on the conditions

of the experiment. It took about 80 seconds in the shortest (exp7) and the longest, about 2,000 seconds

(exp8, 9). When n was more significant than two, most cases where the problem could not be solved

were those where no solution could be found within an hour (exp2, 6). In Problem 3, there were no cases

where the problem was not solved. Problem 3 cannot be solved when not a single fiber can be routed to a

film. However, at least one fiber can always be routed to one film. Therefore, we consider that there was

no case in which Problem 3 could not be solved.

Also, let us consider the total time taken for the calculation. For “exp2” and “exp6,” obtaining even a

tentative solution in one hour was impossible when n was small. In these cases, the heuristic method can

find a solution faster than the exact solution method. Therefore, it is necessary to appropriately select the

method to be used depending on the conditions of the problem. For example, in this experiment, when

the number of fibers that can be wired to a single film is greater than the number of fibers in “exp1,” it

is thought that the exact solution method can also find a wiring method in a certain amount of time. On

the other hand, if the film size becomes smaller than the “exp1” setting, for example, and the number

of fibers that can be wired to a film becomes smaller, it becomes difficult to solve the problem using the

exact solution method. Therefore, heuristic methods are an effective tool in such situations.
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Chapter 3

Scheduling system for automated storage
and retrieval system with multiple
machines using a time-expanded network

3.1 Background

In recent years, automated storage and retrieval systems (AS/RSs) have become popular in the industrial

world owing to developments in control technology. AS/RSs are equipped with storage/retrieval (S/R)

machines, which can store and retrieve loads without human labor. Efficient operation of AS/RSs signifi-

cantly improves warehouses’ operational efficiency and shortens the lead time required for production.

An AS/RS generally consists of racks arranged on either side of one or more parallel aisles. Loads are

stored and managed in a place called a cell, and a rack consists of several cells. The AS/RS also stores and

retrieves loads and automatically transports loads using S/R machines. The AS/RS has input/output

(I/O) stations, where loads are taken in and out. There are two types of requests: storage requests, which

take and store loads in the AS/RS, and retrieval requests, which take loads in the AS/RS outside. When a

user inputs a retrieval request, the corresponding load is selected from the AS/RS and retrieved to an I/O

station by a specific S/R machine. When a user inputs a storage request, the AS/RS allocates a storage

cell, and an S/R machine receives the load at an I/O station and transports the loads into the storage cell.

Using S/R machines drastically reduces human resources required for receiving and storing compared

with conventional warehouses. Moreover, by controlling S/R machines appropriately and shortening

loading and unloading times, the AS/RS can transport loads efficiently.

Research on improving the efficiency of AS/RSs has been widely conducted. Roodbergen and Vis [24]

classified studies on AS/RSs according to their objectives and led a comprehensive survey. Boysen and

Stephan [5] classified AS/RSs according to their layouts, request characteristics, and objective functions

and investigated the scheduling problem for a single S/R machine in an AS/RS.

In many studies, an S/R machine departs from an I/O station, visits cells, and returns to an I/O

station. This movement is often called a cycle. The problem of scheduling requests in an AS/RS is often
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similar to the traveling salesman problem (TSP) because the S/R machine moves between I/O stations

and multiple cells [5]. Gharehgozli et al. [11] modeled the problem as an asymmetric TSP to minimize the

total travel time of a single S/R machine, given a set of storage and retrieval requests, where I/O stations

are located at both ends of an aisle. They proposed an algorithm for determining the optimal solution

in polynomial time under several assumptions. When an S/R machine can transport multiple loads at a

time, the combination of loads to be transported and the optimal route can be simultaneously found by

formulation as TSP [29, 7].

There are different AS/RSs from the conventional AS/RSs in which the S/R machine moves directly

between racks and I/O stations. Hu et al. [15] proposed a split-platform AS/RS (SP-AS/RS) that uses

multiple S/R machines to transport loads. An SP-AS/RS has vertically moving S/R machines and

horizontally moving S/R machines for efficiently transporting additionally heavy loads, such as marine

containers. In an SP-AS/RS, the movement range is limited for each S/R machine. Vertically moving S/R

machines have access to I/O stations, whereas horizontally moving S/R machines have access to cells.

That is, the load moves between the cell and I/O station using multiple S/R machines. Carlo and Vis [6]

devised an algorithm that allows multiple S/R machines to move vertically and share a path to execute a

given request without collision, eliminating the SP-AS/RS bottleneck.

In our study, we aim to minimize the operation time required to complete storage and retrieval requests

in more complex AS/RS as a joint study with Rohto Pharmaceutical Co. (Rohto). We targeted an AS/RS

installed in one factory located in Japan but modeled it as a generic warehouse to be deployed in other

factories owned by Rohto. Rohto does not use additionally heavy loads, thereby eliminating vertical and

horizontal restrictions on the movement direction of the S/R machine and enabling a more flexible AS/RS

design. In addition, the consideration of optimization only for the vertical scheduling of S/R machines

was sufficient for the split-platform AS/RS. However, in Rohto’s AS/RS, particular S/R machines do

not become bottlenecks owing to the size of loads to be transported, AS/RS structure, and performance

of S/R machines. Therefore, by optimizing the scheduling of all S/R machines simultaneously, we can

now reduce the time required to complete all storage and retrieval requests in an AS/RS in which each

S/R machine works independently and multiple S/R machines carry loads. We called AS/RSs with

these characteristics multi-control AS/RSs (MC-AS/RSs). Rohto uses cranes and sorting transfer vehicles

(STVs) as S/R machines. Figure 3.1 shows an example of an MC-AS/RS.

Among MC-AS/RSs, we focused on optimizing the scheduling for the MC-AS/RS, which is a unit-

load AS/RS. That is, the AS/RS handles each load as a unit called a pallet and moves and stores loads

according to requests. In addition, the MC-AS/RS has buffer stations, which are temporary storage areas

used by one S/R machine to pass pallets to another S/R machine. As all buffer stations have the capacity,

controlling each S/R machine requires paying attention to whether pallets can be placed on buffer stations.

This paper proposes a method for the MC-AS/RS to transport loads efficiently. In our target AS/RS,

requests are automatically assigned to S/R machines according to the input order. Therefore, we present
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a method for scheduling storage and retrieval requests and creating a request order to be given to S/R

machines. The MC-AS/RS simultaneously controls multiple S/R machines to transport loads, making

its structure and control methods complex; thus, the sequence and timing of conveyance and AS/RS

state must be considered. As the number of requests and S/R machines increases, the number of

combinations increases, making devising efficient operations difficult. We modeled the MC-AS/RS using

a time-expanded network (TEN) to consider these combinations. TEN is a dynamic graph with time

information converted into a static graph. In this study, TEN represents the travel paths of requests and

S/R machines in the AS/RS. We formulate the operational efficiency of the MC-AS/RS as a problem of

minimizing the sum of requested execution times on the TEN. We generate the requests order for practical

use based on solving this problem. In the MC-AS/RS targeted in this study, the area in which each S/R

machine can operate is limited. Furthermore, only one S/R machine is operating in an area. Therefore,

collisions between S/R machines are not considered. However, the MC-AS/RS can cause deadlocks at

buffer stations while carrying loads. If deadlocks occur, loads cannot be transported. The deadlocks in

this paper are described in detail in Sect. 3.3.3. Deadlocks are avoided by generating the buffer stations’

situations.

The proposed method was tested using a simulator created based on AS/RS, owned by Rohto and

installed at one of its factories. With this AS/RS, obtaining the data necessary to optimize the scheduling

of the S/R machines for a day’s work at the start of operations is impossible. For example, some storage

requests involve storing loads transported by trucks from outside locations or warehouses. Storage

requests for these loads are generated when trucks arrive at the AS/RS and preparations for storage are

completed. However, predicting accurately when the trucks will arrive at the AS/RS is impossible. For

some other reasons, due to manual work in the pharmaceutical process, the loading and unloading of

loads depend on the actions of the workers. In other words, the time when requests occur is determined

dynamically as the workers perform the work. For these reasons, optimizing the schedule of S/R machines

at once is not easy. Therefore, we first devised a method to optimize the short-term schedule of S/R

machines. This paper aims to finish executing the generated requests as soon as possible. This objective

was set at the demand of Rohto. The experiment used a simulator to check whether the generated requests

were executed as quickly as possible.

The remainder of this paper is organized as follows. Section 3.2 overviews the AS/RS and problem

addressed in this paper, and Sect. 3.3 describes our proposed method. The performance of the proposed

method is verified in Sect. 3.4.

3.2 Problem description

Since 2019, we have conducted our research using the model case of a factory in Mie Prefecture, Japan,

owned by Rohto. It has an MC-AS/RS installed in the factory that manufactures cosmetics and pharmaceu-

ticals. The MC-AS/RS stores and retrieves raw materials, semi-finished products, and finished products
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Figure 3.1: Overview of multi-control AS/RS

required for manufacturing. This section describes the overall setup of our target AS/RS (target-AS/RS)

and problem encountered when creating a request order. The target-AS/RS is an MC-AS/RS based on the

AS/RS used in the model case. Section 3.4.1 describes detailed settings for the number of target-AS/RS

racks and S/R machine performance.

3.2.1 MC-AS/RS settings

An MC-AS/RS, including the target-AS/RS, has the following features in its structure and setting:

• Each S/R machine operates independently.

• Loads are transported using multiple S/R machines.

• There are temporary storage places for loads called buffer stations. These are used when an S/R

machine transfers a load to another S/R machine.

• Buffer stations have capacity. That is, the number of pallets that can simultaneously exist in a buffer

station is limited.

• The target-AS/RS is a unit-load AS/RS. In the target-AS/RS, a pallet is used as a unit.

3.2.2 Target-AS/RS settings

The target-AS/RS has the following assumptions as an AS/RS. These are based on the settings adopted

in the model case:
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• Only one pallet can be stored in a cell.

• Each S/R machine exists only one in its operating range. That is, the collision between S/R machines

is not considered.

• An S/R machine can accept a request at any location and stand by without loading/unloading.

These settings include many settings in the existing researches (e.g. [27, 5, 11]) and we focus on AS/RSs

that have multiple S/R machines and use multiple S/R machines to carry pallets.

3.2.3 S/R machines settings

We describe the settings of S/R machines installed in the target-AS/RS. These are based on the S/R

machines installed in the model case:

• The capacity of an S/R machine is one. That is, one S/R machine can carry only one pallet.

• Some S/R machines do not have direct access to the racks in the AS/RS.

• A pallet is stored in a buffer station by one S/R machine to pass the pallet to another S/R machine.

That is, buffer stations must be used if multiple S/R machines transport a pallet.

• S/R machines work to execute requests according to the order of the request order.

The target-AS/RS has two types of S/R machines, cranes and STVs. In the target-AS/RS, cranes can

access cells in racks and buffer stations, and STVs can transport pallets between I/O stations and buffer

stations. For example, when a storage request is executed, an STV first transports the pallet from the I/O

station to the buffer station. Then, the crane moves the pallet from the buffer station to the storage cell,

completing the request. We consider that this method applies to AS/RSs, where S/R machines operate

independently.

3.2.4 Storage and retrieval request settings

This section describes how to set up storage and retrieval requests. In the target-AS/RS, S/R machines

carry pallets according to requests. Requests contain the following information:

• A pallet transfer source.

• A pallet transfer destination.

• Occurrence time of a request.

The S/R machines used by requests are determined by the source and destination information. If the

request is a storage request, the destination cell is assumed to be vacant in advance. If the request is a
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retrieval request, a pallet is assumed to be stored in the retrieval source cell in advance. That is, storage

and retrieval requests for the same pallet do not co-occur, and the pallet of the storage request is not stored

in the cell vacated by the execution of the retrieval request. Therefore, considering dependencies between

requests in terms of their execution order is unnecessary.

3.3 Proposed method

In this section, we describe our proposed methodology. The proposed methodology is primarily divided

into a generator, optimizer, and scheduler. First, the generator takes requests, S/R machines, and the AS/RS

structures as input and models the target-AS/RS as a TEN [10]. Next, the optimizer formulates and solves

the problem of improving the efficiency of the AS/RS using information from requests, S/R machines,

and TEN. This paper aims to minimize the total execution time of requests to improve AS/RS efficiency.

Finally, the scheduler generates the request order for the S/R machines based on the solution computed

by the optimizer.

If S/R machines carry pallets only according to the request order, they may be unable to carry pallets

and process requests. This situation is called a deadlock. Section 3.3.3 describes examples of deadlocks.

Deadlocks occur when buffer stations have a limited capacity. Therefore, the scheduler also generates the

transition of each buffer station from the optimizer’s solution. We confirmed that a deadlock does not

occur via simulation using the request order and the transition of buffer stations.

Figure 3.2 overviews our proposed method. The proposed method acquires information from running

the AS/RS, generates transport instructions using a graph, and verifies that deadlock does not occur. By

giving a request order to the AS/RS, the operation of the AS/RS can be optimized. In this study, we

address the problem of performing this cycle once. We consider that repeating this cycle improves the

operational efficiency of AS/RSs.

Section 3.3.1 describes creating a TEN for the AS/RS to be executed in our generator. Then, Sect. 3.3.2

describes the formulation of the optimization problem on the TEN performed by the optimizer, and

Sect. 3.3.3 describes the deadlock and basic idea of how to avoid it. Finally, Sect. 3.3.4 describes the

algorithm that our scheduler executes.

3.3.1 Construction of an AS/RS time-expand network

This section describes how our generator uses information from an AS/RS, storage and retrieval requests

and S/R machines to model AS/RS. A graph G = (N,A) is created based on the information of requests,

S/R machines, and the AS/RS. R is a set of requests. Node n ∈ N represents a specific location in the

AS/RS corresponding to I/O stations, buffer stations, and cells. In particular, only the locations necessary

to transport loads in requests are nodes in the graph. Every request uses the corresponding I/O station,

buffer station, and cell once. If the initial location of each S/R machine is not included in N , that location
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Figure 3.2: Flowchart of the proposed method. A cycle starts from the factory and proceeds clockwise

Figure 3.3: Example of graph G constructed from two requests

is also added to N as a node. An arc a ∈ A from n ∈ N to n′ ∈ N represents how a single S/R machine can

move the pallet between the two nodes; restricting N to the set of the start and end points of all requests

in R and initial points of all S/R machines does not affect the subsequent optimization process.

Figure 3.3 shows an example of G. Assume that there are one retrieval request and one storage request

in R. In this case, the graph nodes are the places where the two requests pass through. In other words,

four nodes are created: I/O station, buffer station, cell 1, and cell 2. Then, if the initial position of the

transporter does not exist among the nodes created so far, it is added to graph G as a node. Arcs are

added between two points where the transporter can move directly.

We construct a TEN GT = (NT , AT ) based on graph G. The symbols used in TEN are defined as

follows:

• ∆ ∈ R+: A time granularity.

• U ∈ N+: An optimization period.
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• T : A discretization of [0, U ], representing a set of time points. The number of elements of T is

⌈U/∆⌉.

• NT : A set of nodes. NT can be written as a disjoint union: NT = NT
G ∪ L.

– NT
G : A set of nodes N expanded by T .

– L: A set of supersources and supersinks.

• AT : A set of arcs. AT can be written as a disjoint union: AT = AT
G ∪HT ∪AL.

– AT
G: A set of arcs A expanded by T .

– HT : A set of staying arcs.

– AL: A set of arcs about supersource and supersink.

– δ+(n) ⊂ AT : A set of arcs whose head is n.

– δ−(n) ⊂ AT : A set of arcs whose tail is n.

Let ∆ ∈ R+ denote the unit time for discretizing time on TEN. If the optimization period is U ∈ N+, U

can be divided into ⌈U/∆⌉ points using ∆. For example, when U = 600 s and ∆ = 10 s, the TEN contains

#T = ⌈U/∆⌉ = 60 periods. We define T = {0, 1, . . . , ⌈U/∆⌉ − 1} as the discretized time set of these time

points. ∆ and U should be determined appropriately depending on the AS/RS and requests.

We extend graph G using the time-point set T . Figure 3.4 shows an example. First, node set N in

graph G is extended with T . A node n(t) ∈ NT
G denotes a node n ∈ N at time t ∈ T . Then, all arcs

are extended with T . The travel time from the start point to the endpoint is defined for each arc of G.

Consider the expansion of the arc using this travel time and NT
G . For example, an arc a = (n,m) ∈ A

expands as follows. First, note that arc a has two different travel times.

(1) Time required for S/R machines to move from n ∈ N to m ∈ N .

(2) Time required by S/R machines to move from n ∈ N to m ∈ N + time required to load and unload

pallets.

Let tn,m be the discretization of (1) and t′n,m the discretization of (2). For tn,m ̸= t′n,m, AT
G has both

arcs (n(t),m(t + tn,m)) and (n(t),m(t + t′n,m)), where ∀t, t + tn,m, t + t′n,m ∈ T . Request flows can only

pass through (n(t),m(t + t′n,m)), while S/R machine flows can pass through (n(t),m(t + tn,m)) and

(n(t),m(t + t′n,m)). For tn,m = t′n,m, AT
G has arcs (n(t),m(t + tn,m)), where ∀t, t + tn,m ∈ T . We also add

staying arcs HT , which indicate that the pallets and S/R machines are stationary and not moving. A

staying arc moves from nodes n(t) ∈ NT
G to n(t + 1) ∈ NT

G . These are the arcs shown in Fig. 3.4 (b) that

connect from one of the nodes in Fig. 3.4 (a) to the same node.

In addition, supernodes are created for request and S/R machine flows. First, we create a supersource

(lr or lµ) for each request (r) and S/R machine (µ). Then, an arc is added from each supersource to each
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initial position of the requests and S/R machines. For example, Fig. 3.4 (b) has these arcs connected to

nodes in the AS/RS from outside the AS/RS. Next, supersinks (l′r) are set for each request r. For example,

let nr be the destination of a request r. We can then check whether r has completed its transportation

by checking whether the flow of r flowed from node nr(t) to the supersink at time t ∈ T . Requests that

cannot be completed by the end time pass through an arc leading from the node at the end time to the

supersink. Moreover, the supersink (l′µ) of S/R machine µ guarantees that the flow will finish flowing by

connecting the arc from the last time of all nodes that µ can pass through. These arcs connect from the

graph of the AS/RS to a node outside the AS/RS in Fig. 3.4 (b).

Figure 3.4: Example of the time-expanded network GT . Graph G in (a) is expanded by T = {0, 1, 2, 3} (see (b))

3.3.2 Formulation of the improvement of an AS/RS efficiency

Given a TEN GT , set of requests R, and set of S/R machines M , the optimization problem to make the

AS/RS efficient can be formulated as follows. First, let xr,a be a binary variable indicating whether the

flow of request r ∈ R passes through arc a ∈ AT . Then, let yµ,a be a binary variable for the flow of S/R

machine µ ∈M .

min
x,y

∑
r∈R

{(∑
t∈T

t× xr,(nr(t),l′r)

)
+

(
1−

∑
t∈T

xr,(nr(t),l′r)

)
× U − τr

}
(3.1)

The objective function (3.1) minimizes the sum of execution times of all requests, where τr denotes the

time when request r occurs. When the request is completed,
∑

t∈T xr,(nr(t),l′r)
= 1 is obtained. Therefore,∑

t∈T t × xr,(nr(t),l′r)
− τr is added to the objective function as the execution time of a request r. If the

request is not completed,
∑

t∈T xr,(nr(t),l′r)
= 0 is obtained, and U − τr is added to the objective function

as a penalty.
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Constraints are∑
r∈R

xr,a ≤ 1 (∀a ∈ AT
G ∪AL) (3.2)

∑
µ∈M

yµ,a ≤ 1 (∀a ∈ AT ) (3.3)

∑
a∈δ+(n)

xr,a −
∑

a∈δ−(n)

xr,a =



−1 (n = lr)

1 (n = l′r)

0 (Otherwise)

(∀r ∈ R, ∀n ∈ NT ) (3.4)

∑
a∈δ+(n)

yµ,a −
∑

a∈δ−(n)

yµ,a =



−1 (n = lµ)

1 (n = l′µ)

0 (Otherwise)

(∀µ ∈M, ∀n ∈ NT ) (3.5)

∑
r∈R

xr,a ≤
∑
µ∈M

yµ,a (∀a ∈ AT
G) (3.6)

∑
r∈R

∑
a∈δ+(b(t))

xr,a ≤ w(b) (∀b(t) ∈ BT ) (3.7)

xr,a = 0 (∀r ∈ R,∀ a ∈ AT \AT
r ) (3.8)

yµ,a = 0 (∀µ ∈M,∀ a ∈ AT \AT
µ ) (3.9)

xr,a ∈ {0, 1} (∀r ∈ R,∀ a ∈ AT ) (3.10)

yµ,a ∈ {0, 1} (∀µ ∈M,∀ a ∈ AT ) (3.11)

Constraints (3.2) and (3.3) represent the capacity constraints of arcs on the TEN. Constraints (3.4)

and (3.5) denote flow conservation. lr and l′r denote the supersource and supersink of a request r ∈ R,

respectively. In addition, lµ and l′µ denote the supersource and supersink of an S/R machine µ ∈

M , respectively. These ensure that all flows flow over the TEN from the corresponding supersource

to the supersink. Constraint (3.6) indicates that the corresponding request and S/R machine flows

simultaneously move on the same arc when transporting a pallet. This condition arises from the limitation

of having to use the S/R machine to transport pallets. Buffer stations (B) have limits on the number of

pallets that can be placed simultaneously. We define this as the capacity w(b) of a buffer station b ∈ B.

Here, BT represents the node set of the buffer stations on the TEN, and b(t) ∈ BT represents the buffer

station b at time t. The left-hand side of constraint (3.7) represents the number of pallets in a buffer station

b at time t. Therefore, constraint (3.7) allows us to restrict the number of pallets at buffer stations to be

less than or equal to w(b) at any time t. Constraint (3.8) restricts the arcs through which the request flow
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can pass. When a request moves through the warehouse, loading and unloading by the S/R machine

occurs. Therefore, there are arcs in the TEN that cannot be passed through (Sect. 3.3.1). AT
r represents

the arcs in the TEN through which request r can pass. In addition, each S/R machine has a limit on the

range in which it can operate. Let AT
µ be the set of arcs that the S/R machine µ can move. S/R machine

µ ∈M cannot go through arcs other than AT
µ (constraint (3.9)). Constraints (3.10) and (3.11) indicate that

variables x and y are binary, respectively.

3.3.3 Creating operations for S/R machines without deadlocks

Here, we present how our scheduler controls S/R machines from the solution of the optimization problem

described above. By referring to the solution to the optimization problem, we can obtain the timing

required to execute each request. However, the travel times of S/R machines are rounded for discretization.

Therefore, if we completely reproduce the start time of requests according to the obtained solution, the S/R

machines wait needlessly until the start time of requests. This is more pronounced as the discretization

interval increases.

To avoid this inefficiency, we consider the scheduler using the order of requests to be executed obtained

from the optimization result instead of the request start time. The basic rule of the scheduler is that

each S/R machine µ executes requests independently without pausing according to the request order Oµ.

However, as explained in the following paragraph, this simple scheduler can deadlock S/R machines.

Therefore, in Sect. 3.3.4, we introduce the technique to avoid deadlock.

Figure 3.5 shows an example of deadlock occurring using the simple scheduler. The middle node

represents a buffer station whose capacity is two. This buffer station can access two S/R machines: α

and β. Case (1) shows the history of pallets in and out of the buffer station according to the optimization

result. The status of the buffer station changes from left to right with time. First, S/R machine β places

pallet B on the buffer station and picks up pallet A. Second, S/R machine α places pallet C on the buffer

station and picks up pallet B.

Based on the optimization result of case (1), the requests order in which S/R machines execute is as

follows.

• Oα: (Storage C)→ (Retrieval B)

• Oβ : (Retrieval B)→ (Storage A)→ (Storage C)

Case (2) shows how a deadlock occurs in a situation in which S/R machinesα andβ operate independently

according to their request orders Oα and Oβ , respectively. In this case, S/R machine α executes Storage C

before Retrieval B of S/R machine β. S/R machine β wants to execute Retrieval B but cannot perform this

operation because the buffer station is already full. Furthermore, S/R machine α cannot execute Retrieval

B until S/R machine β places pallet B on the buffer station, i.e., a deadlock occurs.
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Figure 3.5: Case (1) is an example of processing a request based on the problem’s solution formulated in Sect. 3.3.2.
In this example, deadlock does not occur. Case (2) is an example in which deadlock occurs because of the order of
arrival and departure at the buffer station. Case (3) is an example of avoiding deadlock by maintaining arrival and
departure times at the buffer station

A manner of avoiding deadlocks as in Case (2) in Fig. 3.5 is to make S/R machines maintain the request

order of Case (1) in and out of buffer stations. In this case, avoiding deadlocks is possible by preventing

S/R machine α from executing Storage C until S/R machine β executes Retrieval B and Storage A, even if

α can execute Storage C. In the following subsection, we generalize this observation.

3.3.4 Scheduling technique to avoiding deadlocks

We call the input and output requests for a buffer station put and pick-up requests, respectively, in this

subsection. To avoid deadlocks, we should properly control the execution order of put and pick-up

requests on buffer stations. However, the order of requests to buffer stations is not uniquely determined

from the optimization results. For example, at a buffer station b, multiple xr,a are allowed to be 1 for
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a ∈ δ+(b(t)), which represents multiple S/R machines placing pallets on b at time window t. The same

applies to pick-up requests. Therefore, we can reorder these requests in the same time window. Let

r1, . . . , rk be the put and pick-up requests in time window t for a buffer station. Owing to the physical

constraints on pallets and S/R machines, the order of the requests in the same time window must satisfy

the following constraints.

(i) If there exists a put request ri and pick-up request rj for the same pallet, then i < j. The placing of

a pallet onto the buffer station must precede the pick-up of the same pallet.

(ii) If there exists a put request ri and pick-up request rj by the same S/R machine, then i < j. This

ensures the integrity of the S/R machine’s movement.

(iii) s +
∑i

j=1 h(rj) ≤ w must hold for any i ≤ k, where s is the total number of arcs whose head is the

buffer station in that time window, h is a function that returns 1 if the input is a put request (else -1),

and w is the capacity of the buffer station.

s+
∑i

j=1 h(rj) represents the number of pallets in the buffer station immediately after executing requests

r1, . . . , ri. Hence, the third condition requires that the number of pallets in the buffer station is always

less than or equal to the capacity. In general, there are several possible orderings of requests r1, . . . , rk

that satisfy these conditions. We describe the procedure for obtaining one of them as follows.

(1) If there are any S/R machines without put requests, we first list the pick-up requests by these S/R

machines, only if there is no put request for the same pallet. Let k1 be the number of requests listed

here, and the requests order becomes r1, . . . , rk1 .

(2) Next, all put requests are arranged in rk1+1, . . . , rk1+k2 , where k2 is the number of these requests.

(3) Finally, the remaining requests are arranged in rk1+k2+1, . . . , rk.

The request order obtained by this procedure satisfies conditions (i) and (ii) because the pick-up requests

associated with conditions (i) and (ii) are listed last at step (3). In addition, we can confirm that the request

order satisfies condition (iii) because s + k2 ≤ w holds owing to the constraints (3.7) of the optimization

problem, and s+
∑i

j=1 h(rj) ≤ s+ k2 holds for any i from the steps (1) and (2).

We summarize the control of the S/R machine by our scheduler. We extract the request order Oµ

for each S/R machine µ from the optimization results. We also determine the order of put and pick-up

execution Ob for buffer station b in the above procedure. The scheduler assigns requests to each S/R

machine according to the Oµ independently. If the request is a put or pick-up request to a buffer station b,

the scheduler suspends the S/R machine’s execution of the request, if necessary, to maintain the execution

order Ob.
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3.4 Numerical experiments

In this section, we show the performance of our scheduling methods by simulating the target-AS/RS. In

this section, we show the performance of our scheduling methods by simulating the target-AS/RS. As

described in Sect. 3.1, the experiments in this paper were designed to optimize the short-term schedule

of S/R machines. The evaluation metric used was the sum of the execution times of all requests based on

Rohto’s demand. The execution time of one request is the time required from when the request occurs

until the target pallet is transported to the requested destination. The smaller this value, the better the

scheduling performance.

Section 3.4.1 describes the details of the target-AS/RS used in this experiment and experimental

setup, including the method for generating requests for our experiments. We discuss the preliminary

experiments conducted to determine the time granularity used in the proposed method in Sect. 3.4.2.

In Sects. 3.4.3 and 3.4.4, we discuss the experiments conducted using the randomly generated request

data. Section 3.4.3 used randomly generated information on all requests, and Sect. 3.4.4 conducted two

types of experiments with a biased ratio of storage requests to retrieval requests. In addition, the two

experiments were conducted without restrictions on the time required to solve the optimization problem.

However, when our proposed method is applied to the AS/RS in continuous operation, as in the model

case, the calculation time required to solve the problem is limited, as discussed in Sect. 3.3.2. Therefore,

we investigated the relationship between the performance of the proposed method and its calculation

time length by the experiment in Sect. 3.4.5. Based on the experiment, we discuss the real-time application

of the proposed method. Appendix A.5 shows the computer environment used in the experiments.

3.4.1 Common experimental settings

This section describes the standard settings used in the following experiments. First, we describe the

details of the target-AS/RS used in the experiments. Second, the request data used were generated as

described. Finally, we describes the allocation method used as the baseline for the experiments.

Detailed settings of the target-AS/RS

This section describes the detailed settings for the target-AS/RS. Figure 3.6 shows a schematic of target-

AS/RS. The target-AS/RS has a two-story workspace with one I/O station on each floor’s left and right

sides. A different STV corresponds to each I/O station. The target-AS/RS has six racks with 8 rows and

27 columns of identical cells in each rack. The capacity of a buffer station is four. That is, each buffer

station can hold up to four pallets.

The crane moves horizontally at a speed of 2.67 m/s and vertically at 1.34 m/s and requires 10 s to

load and unload a pallet. The movement speed of the STV is 2.67m/s, and loading/unloading one pallet

requires 10 s. The S/R machine always moves at a constant speed. The crane can move horizontally and

vertically independently.
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Figure 3.6: Overview of the target-AS/RS. We assume that the first and second floors of the target-AS/RS are the
same structures

Requests data for our experiments

This section describes the method for generating request data for the experiment. Requests are generated

randomly. In this case, storage requests are generated, their pallets are stored in blank cells in the AS/RS,

and only pallets already stored are subject to retrieval requests. Note that the same cell is never used

with the same data, and the same pallet is never retrieved and stored with the same data, as explained

in Sect. 3.2.3. It is also assumed that all requests occurred simultaneously at time 0. In other words,

equations ∀r ∈ R, τr = 0 hold. The following three types of data were generated for each experiment.

1. Rn
random: Randomly generated storage/retrieval requests. The number of requests generated is n.

2. Rn
in: Generate requests such that the number of storage requests accounts for 80% of n. The number

of requests generated is n.

3. Rn
out: Generate requests such that the number of retrieval requests accounts for 80% of n. The

number of requests generated is n.

Description of the baseline method used in experiments

In this section, we introduce two rule-based assignment methods that we prepared as baselines. Rule-

based allocation generation algorithms have been developed for a long time. Most algorithms only

consider one or two I/O stations. Among them, nearest-neighbor (NN) [14, 25] and first-come-first-

served (FCFS) [20, 28] are well known. With NN, each S/R machine transports the pallet closest to

its current position. The request to be executed is selected from those already generated and available

for transport. FCFS searches for available requests according to the order in which they are generated,

and S/R machines execute them. Even with these methods, we must also take care of S/R machines’

deadlocking. Appendix A.3 describes how to avoid deadlock with the baselines.

3.4.2 Preliminary experiments for determining time granularity

This section describes preliminary experiments conducted to determine the time granularity ∆ for the

experiments in Sect. 3.4.3, 3.4.4, and 3.4.5. ∆ should be set appropriately according to the characteristics
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of the AS/RS to be applied. This reduces the error in discretizing the travel time of requests and S/R

machines. In this study, two experiments were conducted to obtain an appropriate ∆.

First, we compared the execution status of requests on the TEN with that of the simulation based on

the order generated by our scheduler. As the time information is discretized in the TEN, the execution

status of requests deviates from it in the target-AS/RS, which can be executed continuously. However, if

the discretization is too fine, the problem described in Sect. 3.3.2 becomes great, and the calculation time

increases. Therefore, we ran our proposed method with different time granularity ∆, which determine

the discretization width.

These experiments were conducted at R40
random. The optimization period U was determined by the

method described in Appendix A.4. The calculation time was not limited to accurately measuring the

performance of the proposed method. Five runs were performed for one dataset.

Figure 3.7: The relationship between time granularity, calculation time, and discretization errors. The dotted
line represents the time required to solve the problem in Sect. 3.3.2 when the time granularity is changed. When
changing the time granularity, the solid line is the sum of the error between actual travel time and discretized time.
As the time granularity decreases, the calculation time tends to increase. However, the error becomes smaller as
the time granularity is reduced

Figure 3.7 shows the results. The dotted lines represent the calculation time for each time granularity.

The smaller this value is, the faster the problem formulated in Sect. 3.3.2 can be solved. In addition, a

discrepancy was observed between the end time of a request recorded on the TEN and simulation. The

solid line represents the sum of the absolute values of the discrepancies at the end time for each request.

The figure shows that the calculation time tends to decrease as ∆ increases. This result is considered

to be since the larger the time granularity, the fewer the number of discretized time points generated when

splitting the problem, and thus the smaller the problem size. Furthermore, the sum of the differences

in the end times measured for each request is smaller for smaller values ∆. This result implies that the

smaller ∆ is, the smaller the difference between the motion on the TEN and motion in the simulation can
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be. Therefore, it is considered that the smaller the value ∆, the more accurately the actual movement time

can be represented on the TEN. That is, the approximation can be said to be performed with minor errors.

We also compared the total execution time in the simulations for different values of ∆. In this

experiment, we can see the similarity degree’s effect on the total execution time. Figure 3.8 shows the

violin plots of five runs for each dataset. These results show that the total execution time is best when

∆ = 10.

Figure 3.8: This figure shows the distribution of evaluation indices measured at each time granularity. The
evaluation index represents the sum of the execution times of all requests. Five runs were performed for each time
granularity, and the results are shown as a violin plot. The smaller the value of the evaluation index, the more
efficiently the AS/RS is controlled. The smaller the time granularity, the greater the likelihood of good control

These results indicate a trade-off between good approximation and calculation time in setting of ∆.

A good approximation can be said to increase the possibility of obtaining better results. Therefore, in

Sects. 3.4.3, 3.4.4, and 3.4.5, we use small ∆s to evaluate the potential of the proposed method, focusing

on the approximation accuracy. Appendix A.4 describes the specific determination method. The optimal

∆ for each instance was calculated in this manner, and ∆ = 10 was obtained for almost all instances.

Hence, ∆ = 10 was used in the following experiments. In Sect. 3.4.5, we discuss the relationship between

calculation time and scheduling performance by analyzing the evolution of the tentative solutions.

3.4.3 Experiments with random inputs

To evaluate the basic performance of the proposed algorithm, we conducted experiments on randomly

generated data Rn
random. The ns used in the experiments were 10, 20, 30, and 40. We determined the

number of requests based on the status of the AS/RS operation in the Rohto. Five datasets were created

for each number of jobs. In this section, we describe the method and results of the experiments.
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To execute the proposed method, we used Rn
random as input for the requests data. First, our generator

and optimizer formulated and solved the problem of minimizing the sum of execution times according

to Sect. 3.3. Our scheduler then generated the request order and state of buffer stations. Then, we ran

the simulation using the request order generated. For the baseline, the simulation was performed based

on the rules described in Sect. 3.4.1. That is, the S/R machines were simulated according to the rules,

executing the available requests in order. All of these requests were assumed to occur simultaneously. The

experiment was performed five times for each dataset, and the average value was calculated. Note two

points when conducting this experiment. One is that the performance of the baseline method depends

on the order in which the input data are listed. The other is that the time required for the optimizer to

solve the problem formulated in Sect. 3.3.2 varies with the order of the requests listed in the data. This

difference occurs because the solver used can produce differences in computation time depending on

the order of variables, even for the same formulated problem. In this experiment, the order of the input

request data affects the order of the variables. In other words, even for the same request set, there may

be differences in computation time depending on the order in which the data are listed. Therefore, we

randomly changed the order in which the input data were listed for each run.

Table 3.1 lists the results. Execution Time is the sum of the time required to execute each request

and represents the average of the five runs, with the standard deviation shown in parentheses. The

best method for each dataset is shown in bold, and the second-best method is underlined. Diff shows

how much time the proposed method saves compared with the best method among the other methods.

Calculation Time is the mean and standard deviation of the time taken to compute the optimization problem

in the optimizer. The time used by our generator and our scheduler is very small compared to the time

used by the optimizer (Figure 3.9). Therefore, we decided to compare the time used by the optimizer in

this paper.



Chapter 3. Scheduling system for MC-AS/RS using a time-expanded network 41

Table 3.1: Comparison of the rule-based assignment with the proposed method. Each method was run five times
on one dataset, and the average of the five runs is shown. Bolded results represent the best performance results, and
underlined results are the second-best performance results. The numbers in parentheses represent the standard
deviation of each value. #Rqs. refers to the number of requests

Execution Time [s]

#Rqs. data FCFS NN Ours(Proposed) diff
Calculation

Time [s]

10

A 2,070.8(±4.87) 2,036.0(±3.29) 1,904.8(±12.35) -131.2 0.30(±0.01)

B 1,854.2(±17.51) 1,732.6(±32.33) 1,551.2(±9.60) -181.4 0.50(±0.02)

C 1,576.6(±55.36) 1,559.4(±36.44) 1,480.8(±2.40) -78.6 0.31(±0.02)

D 2,233.2(±51.30) 1,876.0(±7.35) 1,756.2(±0.98) -119.8 0.66(±0.09)

E 2,178.0(±24.79) 1,921.8(±19.69) 1,640.4(±1.96) -281.4 0.34(±0.01)

20

F 5,739.2(±138.08) 4,743.2(±131.34) 4,399.2(±16.76) -344.0 4.65(±0.82)

G 5,509.0(±104.59) 4,974.2(±34.63) 4,270.0(±11.40) -704.2 3.90(±0.54)

H 6,413.8(±67.09) 5,316.2(±23.56) 4,466.4(±10.78) -849.8 5.46(±0.32)

I 6,393.0(±113.50) 4,926.4(±20.20) 4,357.0(±7.46) -569.4 4.55(±0.76)

J 6,190.0(±135.01) 4,886.6(±62.79) 4,433.6(±5.54) -453.0 5.91(±0.65)

30

K 12,225.6(±210.47) 9,629.6(±56.06) 8,844.6(±10.50) -785.0 306.28(±92.29)

L 12,134.0(±138.16) 8,967.6(±139.99) 8,563.6(±4.63) -404.0 160.45(±54.05)

M 12,078.4(±101.20) 8,736.0(±84.53) 7,916.2(±19.45) -819.8 284.18(±128.95)

N 13,395.0(±247.19) 9,835.2(±136.96) 8,711.6(±12.14) -1,123.6 26.00(±3.40)

O 14,326.6(±170.25) 10,523.4(±144.19) 9,936.6(±24.65) -586.8 18.68(±6.53)

40

P 20,750.0(±340.42) 14,695.0(±76.65) 13,353.2(±54.68) -1,341.8 8,215.45(±1,413.75)

Q 20,616.0(±156.47) 14,522.6(±123.26) 13,505.0(±49.67) -1,017.6 581.65(±250.51)

R 20,789.8(±248.05) 15,221.2(±270.75) 13,279.8(±26.03) -1,941.4 4,090.23(±272.11)

S 22,919.0(±593.57) 16,416.8(±121.63) 14,944.4(±54.75) -1,472.4 182.71(±41.34)

T 20,345.2(±363.01) 15,572.4(±206.49) 13,896.6(±43.23) -1,675.8 3,286.66(±362.79)
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Figure 3.9: The computation time required by our generator, optimizer, and scheduler, respectively. The calculations
were performed on five data types for each Rn

random(n = 10, 20, 30, 40). The mean and standard deviation of the
calculation time for five different data types are shown in these bar graphs. The axis representing the computation
time is on the logarithmic axis.

For all problems, the proposed method has the best value. Therefore, it is effective for minimizing the

total execution time. In addition, we consider that the proposed method can improve the efficiency of

actual operations because many pallets can reach their destinations earlier owing to the shorter execution

time.

3.4.4 Performance evaluation when requests are biased

In Sect. 3.4.3, we confirm the basic performance of our method. Rohto, which operates the AS/RS in the

model case, may receive many storage/retrieval requests depending on the time of the day. For example,

in the model case, trucks store many raw materials in the AS/RS in the morning. In this case, storage

requests account for many of the total requests in the early hours. Conversely, the number of retrieval

requests in the evening tends to increase owing to the decrease in incoming goods. Thus, depending on

the time of day, storage/retrieval requests may be biased. Therefore, we compared the performance of

each method for requests Rn
in and Rn

out.
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The experiment was performed as in Sect. 3.4.3. Table 3.2 lists the results. The entries in the table are

the same as in Table 3.1. 20 (Sto.) indicates that the number of requests is 20 and biased toward storage

requests.

In all cases, the proposed method performs best. Therefore, the proposed method is expected to

reduce the execution time of requests, even when storage/retrieval requests are biased, and contribute to

improving the efficiency of operations.

Table 3.2: Comparison of the proposed method with the rule-based assignment when the data are biased. The
view of this table is the same as in Table 3.1

Execution Time [s]

#Rqs. data FCFS NN Ours(Proposed) diff
Calculation

Time [s]

20(Sto.)

A’ 5,983.0(±203.43) 5,351.4(±56.83) 4,715.2(±3.37) -636.2 2.52(±0.12)

B’ 6,737.0(±128.09) 5,601.4(±102.21) 4,873.6(±12.16) -727.8 2.67(±0.39)

C’ 5,633.2(±134.39) 5,110.8(±10.78) 4,704.6(±4.22) -406.2 7.35(±1.64)

D’ 5,758.6(±202.33) 5,438.6(±0.49) 4,513.4(±8.36) -925.2 13.33(±2.00)

E’ 5,702.8(±179.40) 4,997.8(±70.28) 4,312.4(±3.98) -685.4 5.90(±1.01)

40(Sto.)

F’ 20,157.4(±512.96) 17,293.4(±29.12) 15,346.4(±30.02) -1,947.0 2,687.53(±456.11)

G’ 20,702.0(±413.07) 17,139.0(±191.02) 15,203.6(±40.44) -1,935.4 699.02(±124.37)

H’ 22,936.4(±207.66) 19,125.0(±64.88) 17,945.0(±85.06) -1,180.0 59.12(±3.45)

K’ 20,642.0(±306.55) 16,815.0(±227.05) 15,486.4(±11.74) -1,328.6 1,273.52(±141.08)

J’ 21,194.2(±198.13) 17,180.2(±107.01) 15,754.6(±31.31) -1,425.6 3,736.80(±521.17)

20(Ret.)

A” 6,161.4(±132.14) 5,792.0(±36.74) 4,683.6(±19.27) -1,108.4 8.69(±0.31)

B” 6,164.2(±135.77) 5,504.6(±36.24) 4,783.8(±7.98) -720.8 4.10(±0.99)

C” 6,331.8(±104.66) 5,774.6(±59.28) 4,607.8(±15.42) -1,166.8 9.82(±0.72)

D” 5,943.0(±96.51) 5,299.4(±33.80) 4,640.0(±6.10) -659.4 5.60(±0.50)

E” 5,893.6(±119.27) 5,391.6(±45.98) 4,822.6(±15.91) -569.0 13.94(±3.88)

40(Ret.)

F” 19,576.2(±205.83) 16,008.4(±75.77) 14,879.6(±58.37) -1,128.8 410.73(±147.34)

G” 21,314.6(±544.15) 18,315.2(±33.46) 15,753.8(±13.44) -2,561.4 1,537.86(±422.13)

H” 19,549.8(±411.88) 15,673.8(±147.35) 14,786.6(±55.78) -887.2 48.02(±7.02)

I” 20,497.8(±469.43) 16,718.8(±147.51) 15,613.6(±13.81) -1,105.2 618.59(±216.32)

J” 21,565.4(±804.86) 19,367.4(±79.77) 17,004.8(±43.61) -2,362.6 271.10(±172.34)

3.4.5 Relationship between calculation time and total execution time

The time required to compute the optimization problem increases with the number of requests. Consid-

ering the ongoing operations of AS/RSs, a large calculation time is undesirable. In addition, obtaining

information on all requests executed by AS/RSs in advance is impractical. That is, calculating the request

order is impossible before the AS/RSs being operating. Therefore, the proposed method is assumed to



Chapter 3. Scheduling system for MC-AS/RS using a time-expanded network 44

be used in practical applications with insufficient calculation time. In this section, we discuss the impact

of calculation time on the accuracy of the proposed method. While performing calculations, the total

execution time is calculated when a feasible tentative solution is calculated, and the transition of the total

execution time is observed.

Figure 3.10: The figure shows the difference between the evaluation index calculated based on the output of the
proposed method generated from the tentative solution and the NN evaluation index

In the experiment, we used five datasets from request set R40
random. Figure 3.10 shows the results. This

figure shows the difference between the evaluation index calculated by running our proposed scheduler

using the tentative solution and NN evaluation index calculated via simulation based on the outputs

generated. Each point represents the time required to obtain a tentative solution and the difference

between the evaluation index calculated based on that solution and NN evaluation index. Note that

because the travel time is discretized when generating the TEN, the difference is not necessarily large,

even if it is better as a tentative solution owing to errors introduced at that time. However, data3 has only

one point because the optimal solution was obtained first. The right figure plots the percentage of the

NN evaluation index that the reductions calculated in the left figure represent.

Once a feasible provisional solution is obtained, a better request order than the best performing

baseline NN can be obtained. However, if the calculation cannot be performed in time, no solution can

be obtained, and no request order can be generated. Moreover, predicting the time required to obtain a
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tentative solution is difficult. Therefore, in actual operation, using this method with a method that can

be executed quickly, such as NN, is desirable. For example, data0 in Fig. 3.10 required 446 s to obtain the

first tentative solution. Therefore, if more than 446 s can be used to compute data0, the proposed method

can be used to create the request order. However, if less than 446 s are available, NN is used. This method

enables us to maintain AS/RSs running at any time of day.



46

Chapter 4

Conclusion

This paper dealt with solving real-world problems using mathematical optimization. It focused on

optimizing optical fiber routing in film-type wiring systems using mixed integer programming problems

and the mobility optimization of automated warehouses using integer programming problems.

In the first half of this paper, we considered a method for routing optical fibers that employs a new

routing method that uses films, using a mixed integer programming problem to reduce the number of

films used as much as possible. This time, we formulated the problem as a mixed integer programming

problem for 1d-LOFA, in which the wiring is done from the top end to the bottom end of the film, and

the number of films to be used is minimized. Developing an algorithm that can automatically determine

the wiring conditions will be necessary in the future. Each wiring condition was obtained this time by

dividing the wiring conditions into cases, but it is not realistic to do this manually at every wiring stage.

Also, there is a risk of overlooking necessary conditions due to the many combinations. Therefore, it is

very effective in practical use to automatically check the wiring conditions based on the wiring position

of the fiber and consider the appropriate conditions.

There is also a four-direction LOFA (4d-LOFA) for film-type wiring, in which the fiber inserted from

the top end is routed toward all four sides of the film. This problem increases the bending of the fiber.

This feature complicates the conditions under which two optical fibers are routed to the same film. The

formulation of the solution given for the 4d-LOFA becomes very complicated, and it is considered difficult

to find a solution. Therefore, it is necessary to develop an algorithm that can efficiently reduce the number

of films used.

In the second half of the study, mobility optimization of transportation machines that transport goods

to and from a factory was studied for an automated warehouse installed in a factory. MC-AS/RS, which

requires multiple transporters to transport goods, is difficult to optimize because the movement of each

machine affects the operational status of other machines. Therefore, we treated the mobility of objects in

automated warehouses in a single optimization problem by representing the movement of transporters

and requests on a TEN. Our method reduced the transport time compared to the transporter, which

performs transport rule-based.

In the future, we plan to use this model in an actual AS/RS. In this study, due to various limitations
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in the research, only simulation experiments were conducted using a simulator. However, requests are

constantly generated in the actual AS/RS, and the transport must be operated accordingly. For example,

while solving one optimization problem, a new request is generated, and the transport already assigned

to carry the request continues to carry it out. It is required to accurately predict the future state of the

warehouse to some extent and then to find a quick solution to apply this method in such an environment.

By addressing these issues, we can expect further systemic progress toward better operation methods for

automated warehouses and smart factories.
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Appendix A

Appendix

A.1 Constraints on optical fiber pair routing

This section discusses the limitations of routing two fibers on the same film; for a single pair of fibers, there

are limitations derived from design requirements (b) and (e). Design requirement (b) is the restriction

that the fibers must not intersect at bends. Design requirement (e) is the restriction that two fibers wired

in parallel must be spaced at least a certain distance apart. Both of these restrictions must be observed.

A.1.1 Modeling of wiring paths

To consider wiring conditions, model the wiring path. The routing path combines portions parallel to

the x-axis, portions parallel to the y-axis, and bent portions, depending on the routing restrictions set

in Sect. 2.3.1. Since the fiber follows design requirement (a), the bent portion draws a circular arc with

a radius R. Let pf be the routing path of a certain fiber f , and h be the height of the bend. It can be

expressed as follows using the mediating variable t.

pf (t) =



(
xf0 , y

f
0 + 5t (h−R sin θf )

) (
0 ≤ t < 1

5

)(
xf0 +R(1− cos θ(t))sgnf , h−R sin θf +R sin θ(t)

) (
1
5 ≤ t < 2

5

)(
xf
0+xf

1
2 + 5

(
t− 1

2

)
sgnf ·max

{
0,
∣∣∣xf1 − xf0

∣∣∣− 2R
}
, h

) (
2
5 ≤ t < 3

5

)
(
xf1 −R (1− cos θ′(t)) sgnf , h+R sin θf −R sin θ′(t)

) (
3
5 ≤ t < 4

5

)(
xf1 , h+R sin θf + 5

(
t− 4

5

)
{H − h+R sin θf}

) (
4
5 ≤ t ≤ 1

)
(A.1)

We defined sgnf as follows;

sgnf =


−1

(
xf1 − xf0 < 0

)
0

(
xf1 − xf0 = 0

)
1

(
xf1 − xf0 > 0

) .
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Additionally, θf ∈
[
0, π2

]
represents the optical fiber’s bend angle and is defined as follows;

θf := arccos

1− 1

R
min


∣∣∣xf1 − xf0

∣∣∣
2

, R

.

Using this, θf (t), θ′f (t) is defined as follows;

θf (t) = 5θf

(
t− 1

5

) (
1

5
≤ t <

2

5

)
,

θ′f (t) = 5θf

(
4

5
− t

) (
3

5
≤ t <

4

5

)
.

A.1.2 Constraints on optical fiber pairs

Now, we consider two different fibers f1, f2 ∈ F . The condition for routing the fibers so they do not

intersect at the bend depends on the position of the x coordinates of the top and bottom ends of f1.

For example, let x coordinates of the top end of the optical fiber f ∈ F be xf0 and x coordinates of the

bottom end be xf1 . Then, to omit the same bending combination from the symmetry of the optical fiber,

let xf10 ≤ xf11 .

The overlap of the other fiber at each bend determines whether f1 and f2 satisfy design requirement

(b). Optical fibers should be routed to be parallel to the x- and y-axes except at the bends. Therefore,

design requirement (b) is due to whether, for a given fiber f1, f2 passes inside or outside the bend of

f1. Furthermore, the bending height depends on the space between f1 and f2. The constraints in design

requirement (b) for the fiber f1, f2 should be considered with these things in mind.

Here, the shape of the fiber routing path is partitioned to obtain the condition that no other fiber

intersects the bend. Depending on the x coordinates xf0 , x
f
1 of the upper and lower ends of f , the shape

of the routing path differs significantly (see Fig. 2.3). At
∣∣∣xf1 − xf0

∣∣∣ > 2R, 2
5 ≤ t < 3

5 , the fiber is stretched

parallel to the x axis. This means that they can intersect other fibers in this section. At 0 <
∣∣∣xf1 − xf0

∣∣∣ ≤ 2R,

the section at 2
5 ≤ t < 3

5 is a single point. Therefore, it cannot intersect with other fibers at the section

of 2
5 ≤ t < 3

5 . At
∣∣∣xf1 − xf0

∣∣∣ = 0, the fiber does not bend. Therefore, there is no bent section in this fiber.

Additionally, at R <
∣∣∣xf1 − xf0

∣∣∣ ≤ 2R, the bending section of fiber f , 1
5 ≤ t < 4

5 , completely intersects

the bending section of the other fiber. From these facts, the constraint condition is considered for four

patterns in xf11 − xf10 > 2R (Fig. A.1 (1)), R < xf11 − xf10 ≤ 2R (Fig. A.1 (2)), 0 < xf11 − xf10 ≤ R (Fig. A.1 (3)),

xf11 − xf10 = 0 (Fig. A.1 (4)), paying attention to xf10 ≤ xf11 .

Here, we consider the wiring condition for fiber f1 where xf11 −xf10 > 2d. What is necessary to observe

the design requirement (b) is to wire the bends so that they do not overlap each other. For example, if

both ends of f2 are to the left of xf10 − gf2 (bottom left-most area in Fig. A.1 (1)), the bent portions of f1 and
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f2 will not overlap at any bend height. Therefore, for these two fibers, f1 and f2, there are no restrictions

on wiring; if the top end of f2 is to the left of xf10 − gf2 and the bottom end is between xf10 and xf10 + gf1 ,

they cannot be wired to the same film unless yf2 ≥ yf1 . Under other conditions, the bent portion of f1
and the bent portion of f2 would overlap with the other.

Considering the wiring conditions for two fibers in a certain positional relationship, it is also possible to

consider the wiring conditions for fibers in other positional relationships, where the positional relationship

is rotated 180 degrees for the center point of the film. For example, consider the third condition from

the bottom of the first left column in Fig. A.1 (1) (xf20 ≤ xf10 − gf2 and xf10 ≤ xf21 ≤ xf10 + gf1 , in Fig. 2.6

(b3)), rotated 180 degrees. The top, bottom, left, and right sides are interchanged in this operation, so

the vertical and horizontal magnitude relationships are interchanged. In other words, the inequality

sign relationship is reversed, and the plus and minus signs are also swapped. In addition, since the

top and bottom edges are also swapped, xf0 and xf1 are swapped. In other words, the inverted state of

“xf20 ≤ xf10 − gf2 and xf10 ≤ xf21 ≤ xf10 + gf1” becomes “xf11 − gf1 ≤ xf20 ≤ xf11 and xf21 ≥ xf11 + gf2”. The

given constraint condition is also reversed from yf2 ≥ yf1(in Fig. 2.6 b3) to yf2 ≤ yf1(in Fig. 2.6 b6). In this

way, once the routing conditions for a specific fiber pair are determined, the routing conditions for its

reversed state can also be obtained. However, it should be noted that the wiring conditions do not change

even if the inversion is made when wiring is not possible (b0) and when there are no constraints at the

time of wiring (b7).

The constraints for each pattern are shown in Fig. A.1. The g(f) = R(1− cos θf ) represents the length

of the bend on the x-axis. The dotted lines in Fig. A.1 are the boundaries where the conditions change. The

most stringent constraint among adjacent constraints is adopted when a fiber pair falls on a line segment

or at the intersection of dotted lines. For example, consider the upper left intersection in Fig. A.1. Here,

the regions b5, b4, b5, b4, and b0 are adjacent. The most stringent constraint among these is b0. Therefore,

pairs of fibers in this point condition cannot be routed to the same film. Additionally, note that no fibers

share the same coordinates at their endpoints. In other words, no two or more fibers are inserted from

the same location, and no fibers are put out at the same location.

The constraints in design requirement (e) are also considered in fiber f1, f2 as in (b). Again, xf10 ≤ xf11 is

assumed due to the symmetry of the wiring. According to the condition in design requirement (e), fibers

must be spaced at least a certain distance apart when wiring. Additionally, the wiring conditions are

considered for three patterns where the endpoint of f1 is xf11 −xf10 > 2d, 0 < xf11 −xf10 ≤ 2d, xf11 −xf10 = 0.

Fig. A.2 shows the constraint conditions for each pattern. As in (b), the condition on the boundary line

adopts the most severe constraint among the adjacent conditions.
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A.2 Time-expanded network generation details

In this section, we describe the details of the method for generating the TEN used in the proposed method

(Sect. 3.3.1).

From the information in an AS/RS, S/R machines, and requests, we generate a graph G = (N,A) that

represents the locations involved in node movements and movement between nodes as directed arcs. G

is generated according to Algorithm 2. Let Nr = {n0, n1, . . . , nmr} ⊂ N denote the source, via points,

and destination of request r. In addition, we define sµ as the node representing the initial point of S/R

machine µ.

TENGT = (NT , AT ) is generated according to Algorithm 3. Let nsourr be the initial position of request

r and sµ the initial position of S/R machine µ. Furthermore, the destination of request r is denoted as

ndestr . Section 3.3.1 defines the supersource and supersink of request r and S/R machine µ.

Algorithm 2 Generating graph G

Require: Rsto: A set of storage requests, Rret: A set of retrieval requests, M : A set of S/R machines, Nr:
A set of nodes of request r ∈ Rsto ∪Rret

1: N = ∅, A = ∅
2: for r ∈ Rsto ∪Rret do
3: N ← N ∪Nr // Add the point through which request r passes to node set;
4: end for
5: for µ ∈M do
6: N ← N ∪ {sµ}. // Add initial position sµ of S/R machine µ to node set;
7: end for
8: for (n,m) ∈ N ×N do
9: if n ̸= m then

10: if There are some S/R machines that can move between n, m then
11: A← A ∪ {(n,m), (m,n)}. // Add arcs (n,m) and (m,n) to arc set;
12: end if
13: end if
14: end for

To model arcs, A in a graph G using T , define ṫi,j = max(1, [ti,j/∆]) ∈ N as the travel time of an arc

(i, j) ∈ A on the graph, where ta,b is the time required to move from node a to node b. For example, define

a moving arc (i(t), j(t+ ṫi,j)) for all t ∈ T satisfying t+ ṫi,j ≤ max T . The set of staying arcs HT is defined

as (n(t), n(t+ 1)) for each node n ∈ N and period t ∈ [0,max T − 1]. AL is the set of arcs flowing from

the supersource to the corresponding node and from the corresponding node to the supersink. Arcs of

AL are defined for all S/R machines and requests.

The arcs leaving supersource lµ ∈ L for S/R machine µ ∈ M are denoted by (lµ, sµ(0)) ∈ AL using

node sµ at the initial position. The arcs entering supersink l
′
µ ∈ L are denoted by (n(max T ), l′µ) for any

node ∀n ∈ N .

The arc leaving the supersource lr ∈ L of request r ∈ R is denoted by (lr, nsourr(τr)) ∈ AL, using

node nsourr at the initial position nsourr of request r at time τr. τr is the time when request r occured.

The arc entering supersink l
′
r ∈ L is denoted by ∀t ∈ T , (ndestr(t), l

′
r) ∈ AL for the destination ndestr ∈ N
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of r. Request r passes through this arc, indicating that the transfer is complete. We also add ∀n ∈

N \ {ndestr}, (n(max T ), l′r) ∈ AL to allow for the case in which the conveyance is not completed even at

the end time max T .

Algorithm 3 Generating a time-expanded network
Require: G = (N,A): Graph G, T : Set of time periods, R: Set of requests, M : Set of S/R machines, τr:

Time when request r ∈ R occurred, lr: Request r ∈ R supersource, l′r: Request r ∈ R supersink, lµ:
S/R machine µ ∈M supersource, l′µ: S/R machine µ ∈M supersink

1: NT = ∅, AT = ∅
2: for t ∈ T do
3: for a = (n,m) ∈ A do
4: // Expand graph G by T without loads;
5: if t+ tn,m ≤ max T then
6: AT ← AT ∪ {(n(t),m(t+ tn,m))}
7: NT ← NT ∪ {n(t),m(t+ tn,m)}
8: end if
9: // Expand graph G by T with loads;

10: if t+ t′n,m ≤ max T then
11: AT ← AT ∪ {(n(t),m(t+ t′n,m))}
12: NT ← NT ∪ {m(t+ t′n,m)}
13: end if
14: // Add staying arc;
15: if t+ 1 ≤ max T then
16: AT ← AT ∪ {(n(t), n(t+ 1))}
17: NT ← NT ∪ {n(t), n(t+ 1)}
18: end if
19: end for
20: end for
21: for r ∈ R do
22: // Add arcs regarding the supernode of request r;
23: AT ← AT ∪ {(lr, nsourr(τr))}
24: for n ∈ N \ {ndestr} do
25: AT ← AT ∪ {(n(max T ), l′r)}
26: end for
27: for t ∈ T do
28: AT ← AT ∪ {(ndestr(t), l

′
r)}

29: end for
30: NT ← NT ∪ {lr, l

′
r}

31: end for
32: for µ ∈M do
33: // Add arcs regarding the supernode of S/R machine µ;
34: AT ← AT ∪ {(lµ, sµ(0))}
35: for n ∈ N do
36: AT ← AT ∪ {(n(max T ), l′µ)}
37: end for
38: end for

A.3 Method for avoiding deadlocks in baselines

This section describes methods for avoiding deadlocks in NN and FCFS, which are used as baselines.

Unlike the proposed method, these methods are executed immediately. Therefore, the deadlock avoidance
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methods should also execute immediately. A deadlock is caused by a pallet unready for transportation.

Hence, we use a method that guarantees the pallet to be reliably moved and that can execute immediately.
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Figure A.3: Example of using the virtual pallet to avoid deadlocks when operating an AS/RS by NN or FCFS

For example, Fig. A.3 (1) shows an example of a deadlock caused by S/R machines α and β being

assigned requests independently. In this case, β, initially executing the request, must unload pallet B to

the buffer station first and then retrieve pallet A from the buffer station. However, because α can arrive at

the buffer station before β, pallet C carried by α enters the buffer station first. Therefore, β, who arrives

later, cannot unload B, resulting in a deadlock. To avoid this situation, we place a virtual pallet at the

next destination of the request when the request begins execution. Then, by calculating the capacity of

the buffer station, including the virtual pallet, the request is guaranteed to be reliably placed at the next

destination. Therefore, the pallet can be reliably moved.

A.4 Hyperparameter determination method

To implement the proposed method, the optimization period U and time granularity ∆ required for

formulation must be set in advance. This section describes how we determine the parameters used in our

experiments.

Setting these values by the actual conditions of the target AS/RS is desirable. However, in this

experiment, determining these values appropriately from the AS/RS information used in the model case

was difficult. Therefore, the following method was used.

U is obtained as follows. First, let tmax by the time required for the most time-consuming transfer

among the transfers in the target-AS/RS. Then, for the request setR to be optimized, we setU = #R×tmax.



Appendix A. Appendix 58

This method makes it possible to handle the requests in R as much as possible until the completion of the

transfer in a single optimization problem.

∆ was determined as follows. First, a graph G = (N,A) was generated according to Algorithm 2.

Next, the travel times of all arcs in A were calculated. The lower bound of ∆ was set to l. If the time is

required to move an arc a is denoted as ta, the discretized time is denoted as max(1, [ta/d]) using time

granularity d. Using ta, ∆ was obtained by the following equation:

∆ = arg min
l≤d≤2l

∑
a∈A
∥ta −max(1, [ta/d])∥ (A.2)

The lower limit of l is set to l = 10 based on the preliminary experiment results (Sect. 3.4.2).

A.5 Computational environment

In the computational environment using our experiments, the CPU was an Intel (R) Core (TM) i9-7940X

with a 3.10GHz CPU frequency, and the memory was 128GB. We used Gurobi Optimizer v9.5.1 to solve

the optimization problem to make AS/RS operations efficient, and 10 threads were used to solve the

problem.
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