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Abstract

Theoretical studies were carried out to investigate effective interactions between a
guest and a host in molecular recognition phenomena in liquids. When the degrees
of freedom of solvent particles are ignored, the recognition, namely the association
between a host and a guest, could reduce the system entropy. However, we now
address the idea of entropic attraction driven by the translational motion of solvent
particles existing in a system. From the viewpoint of the van der Waals picture, we
consider our approach essential, especially in molecular recognition phenomena in
nonpolar solvents. Thermodynamic experiments for molecular recognition suggest
the contribution of entropy gain. I think that the number of experiments cannot be
negligible.

First, a theoretical analysis of molecular recognition by model cyclic molecules,
such as cyclodextrins, was carried out using integral equation theory. Because we
are dealing with a nonspherical solute system here, such as molecular recognition, a
theory that can be described on a 3D grid we adopted. Some approximations were
made, the accuracies of which have not yet been examined in the case of nonspher-
ical solutes. Thus, an assessment studies were carried out to determine an adequate
theory for molecular recognition, using a dimer of two spheres in contact as the so-
lute. Three approximations were employed: PY, HNC, and MHNC closures. The
theory’s accuracy was assessed by comparing it with exact results given by the grant
canonical Monte Carlo (GCMC) simulations. The comparison indicated that the
MHNC results were in almost full agreement with the GCMC results, more so than
with PY and HNC. Analyses of the triplet distribution function were also performed.
In terms of the triplet distribution function, the MHNC theory did not necessarily

have an improvement in the triplet correlation.



In a further study, calculations were carried out to determine the potential of mean
force (PMF) between a cyclic host molecule and a guest molecule that fits into the
host cavity. The MHNC theory was adopted because the GCMC calculation was hard
for the calculation for multicomponent systems, and the accuracy of the MHNC was
noted to be the best in the above test calculations. I observed entropic stabilization at
the recognition conformation and a free energy barrier in a multicomponent system.
Compared with the PMF for the one-component system, that for a multicomponent
system was less oscillatory, and the free energy barrier was significantly reduced.
This difference is caused by the interference of the density wave of solvents, caused
by the solute molecules. On the other hand, the free energy stabilization in the multi-
component systems was sufficiently large. The stability of multicomponent systems
1s, however, slightly lower than that of one-component systems. These results in-
dicated that, in a multicomponent system, the free energy barrier can be overcome
with less energy, and stability almost identical to that in one-component systems can

be achieved.
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Chapter 1

General introduction

The aim of this study is to describe molecular associations between macromolecules
in a solution, such as protein—protein associations. Such molecular recognition phe-
nomena have been discussed in biophysics and chemical physics [1,2]. The phenom-
ena are now discussed from a unique aspect, based on a liquid theory, the so-called
“van der Waals picture [3-8].”

In this study, we shed light on the granularity of the solvent in the association pro-
cess in liquid phases. Most researchers, especially in the field of biochemistry, have
assumed that the dominant driving force for association is direct interactions between
associated molecules [9-12]. If the solvent is considered an inert background, then
it could be a reasonable premise. In other words, the direct interactions between
host and guest molecules could lead to the stabilization of complex formation and
compete with the conformational entropy loss in the assumption. However, the above
assumption is often in conflict with thermodynamic experiments. For example, it has
been observed, experimentally, that both enthalpy and entropy changes in molecular
recognition of the HIV protease are positive, that is, entropy driven [13, 14]. Thus,
these examples contradict the assumption, meaning that in molecular recognition
studies in the liquid phase it is important to understand the total system from a ther-
modynamic aspect. The entropy factor implies, inter alia, the need to observe the
translational motion of solvent particles.

The structure of this chapter is as follows. In Section 1.1, the current interpreta-
tions of molecular recognition and the concepts of this study are explained. Some

experimental results are also shown in this section. In Section 1.2, the properties of



liquids are explained based on the van der Waals equation of state [7]. The thermody-
namic theory reveals the importance of the repulsive part of the interaction between
molecules. It gives us the van der Waals picture of liquid structure, which explains
that “the structure of liquid is determined primarily by the repulsive part of the two-
body potential [3—5].” Therefore, attention will here be given to the repulsive part of
the direct interaction between particles, and an explanation is provided for the idea
of entropy-driven attraction or ordering in a solution phase in Section 1.3. In Section

1.4, the aim of this study is presented in detail.

1.1 Molecular recognition in liquids

The goal of this study was to clarify the molecular recognition mechanism. Molec-
ular recognition refers to a process in which a host molecule recognizes a specific
guest molecule to form a complex. Molecular recognition is usually found in a liquid
phase that consists of solvent, host, and guest molecules. It is well known that the
molecular recognition phenomenon plays important roles in various biological sys-
tems, such as enzyme—substrate reactions [2]. Many studies have focused only on
host and guest molecules. However, molecular recognition in the liquid phase must
be understood to understand the whole system [9-12]. Thermodynamics is the most
powerful tool for discussing molecular recognition in a liquid system.

Here, we introduce some experimental results for molecular recognition between
HIV protease and indinavir. The free-energy differences between the initial separa-
tion and the final recognized states were obtained experimentally. The differences
were divided into enthalpy and entropy contributions (Table 1.1 [13,14]). In the case

of indinavir here, the enthalpy change was positive, and the molecular recognition

Table 1.1: Binding affinity between indinavir and HIV protease [13, 14]
AG(kcal/mol) AH(kcal/mol) —TAS (kcal/mol)

MDR-HM -9.3 8.4 -17.7
MDR-QM -10.4 6.4 -16.8
V82A/I8A -10.8 3.7 -14.5
M461/154V -12.2 3.5 -15.7
L10I/LOOM -11.8 3.0 -14.8




Table 1.2: Chemical Structure and Properties of Cyclodextrins (CDs) [19-22]
a-CD B-CD y-CD
Molecular Weight 972 1135 1297
No. of Glucose Units 5 7 8
Cavity Diameter(nm) 0.47  0.60 0.75
Height of Torus(nm) 0.79  0.79 0.79

Hydrophobic sites

Hydrophilic sites

was driven by entropy gain. This example is not an exception. Entropy-driven molec-
ular recognition has been reported experimentally; therefore, discussion of molecu-
lar recognition only in terms of direct attraction between host and guest molecules
would be inappropriate. Furthermore, most of the explanations that are based only
on direct attraction are contradicted by thermodynamic experimental results if they
exist. In particular, the entropy factor points to the importance of observing the
translational motion of solvent particles [1, 15-18].

In artificial systems, molecular recognition has also been applied to the construc-
tion of many molecular systems. To elucidate the molecular recognition mechanism,
the present study focused on molecular recognition by cyclic molecules such as cy-
clodextrins (CDs). CDs are a family of macrocyclic oligosaccharides, the most com-
mon of which are composed of 6(«), 7(8), or 8(y) a-1,4-linked D-glucopyranose
units. The properties of typical CDs are listed in Table 1.2 [19-22]. CDs form com-
plexes in aqueous solutions by the recognition of guest molecules with a size that fits
the CD cavity [23]. We can apply the recognition by the CDs to construct various
unique molecular systems, such as self-healing materials and slide-ring gels [24,25].
Therefore, understanding molecular recognition by cyclic molecules provides fun-
damental knowledge of molecular recognition as well as methods for designing new
molecular systems using the function.

The formation of the inclusion complex occurs despite a loss of the conformational



entropy of the guest and host molecules. The current interpretation is as follows:
enthalpy gain from direct attraction between CD and guest molecules, such as van der
Waals interaction and hydrophobic interactions, competes with the conformational
entropy loss [26]. However, this picture has only the CD and guest molecules and
cannot explain the mechanism of entropy-driven molecular recognition shown above.
By contrast, if we adopt the granularity of solvent molecules, we can explain it due
to the increase in translational entropy of the solvent molecules with the formation
of the host—guest complex. It is a natural explanation that this entropy gain leads
to an effective interaction between the host—guest molecules and drives molecular
recognition. The stability of molecular recognition was investigated here based on
the translational motion of the solvent particles. In the next section, the van der
Waals picture of liquid structure is presented with the aim of clarifying the role of

solvents in the association process.

1.2 Roles of repulsive force in liquids

Finding an ideal model system for liquids is more difficult than for gases or solids.
Clearly, an ideal gas is an excellent ideal system for gases [27,28]. The atoms in a
solid retain their individual sites; basically, they do not exchange positions. When
the atoms in a solid are connected by harmonic oscillators, the total partition func-
tion can be expressed as the product of the partition functions for each mode [27,28].
Thus, the system can be expressed as an ideal system because of the factorization.
On the other hand, in a liquid, the particles exchange positions with each other, al-
though the interactions are strong. Thus many particles interact with each other at
any time. In other words, multibody interactions are important in a liquid system,
thus making it difficult to find an adequate ideal system. Difficulties are encoun-
tered in the analysis of liquids. One of the earliest approaches to express the liquid
phase was proposed by van der Waals [7]. Therein, the basic idea was that both the
gaseous state and the liquid state could be described by the same equation of state,
incorporating the effects of intermolecular forces into the equation of state for an
1deal gas. The effect of repulsion reduces the effective volume, given the finite size

of the molecule (Nb), and the effect of intermolecular attraction is simply treated as a
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certain amount of cohesive energy (—Na/V?). Under this assumption, van der Waals
offered his equation of state:
Na

(P+W) (V- Nb) = kT, (1.1)
where P is pressure, V is volume, N is the number of molecules, & is the Boltzmann
constant, and T is absolute temperature. This showed that gas—liquid transition is
caused by intermolecular attraction, which must be below the critical temperature.
The repulsive part, namely the individual particle volume, is essential to express the

liquid phase. The equation of state can then be rewritten as
P=———-ap’, (1.2)

where p(= N/V) is the number density of the particle, and the first term means
the particle pressure. The first term is the exact pressure of the 1D hard-sphere
fluid (or hard-rod fluid) given by statistical mechanics. Surprisingly, van der Waals
reported the first term in 1873 without statistical mechanics. If the first term was
expressed using the polynomial P(p), then the liquid—gas phase transition could not
be expressed in his theory. This description indicates that the hard-sphere system is
important as a reference system to analyze liquid behaviors. Indeed, there are many
perturbation theories with a hard-sphere reference fluid in liquid studies [27].

On the other hand, interparticle repulsion is one of the most important factors in
crystallization. In colloidal dispersion systems [29-31], and in the Wigner crystal of
electrons [32,33], those ordering phenomena are driven by the repulsive interaction.
In these systems, the repulsive interaction steeply varies around the center of particle
mass, and the particle excludes other particles. In other words, the particle has in-
dividual volume. The particle with the individual volume can be idealized as a hard

sphere, for which the pair potential (shown in Fig.1.1(a)) is given by

oo ro

ugs(r) = (1.3)
0 r>oao,

where r is the distance between centers of particles and o is the diameter of parti-

cles. This simple model is adequate for studying phenomena driven by the repulsion
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between particles. Computer simulations provide one of the most exact results for
the hard-sphere model, and are sometimes referred to as “numerical experiments”
because of the sampling. Such calculations have shown that the hard-sphere system
shows the fluid—crystal transition despite the absence of attractive forces between

particles [34—38]. The absence of attraction also means only a single fluid phase,

namely the absence of the gas—liquid transition.

(b) Lennerd-Jones

(a) Hard-sphere

u(r)
u(r)

rlo rloc

(c) WCA ——

u(r)

;
G 7o rlo

Figure 1.1: Pair interactions of (a) hard—sphere, (b) Lennerd—Jones and (c) WCA models [3-5].

Emphasizing the repulsive interaction between particles explains many properties
of a liquid, as shown in Eq. (1.1). This is referred to as the van der Waals picture.
For example, the liquid structure near the triple point can be obtained only using the
repulsive part of the intermolecular interaction, such as the Lennard-Jones interac-

tion, for the same temperature and the number density. It means the repulsive forces
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between molecules primarily determine liquid structure. The effects of the smaller
and more slowly varying attractive interaction part can be treated using a mean field
approximation [3-5].

Comparing the structure of a liquid of simple molecules with that of a fluid of
hard spheres is now addressed. The structure of liquids is commonly described using
a radial distribution function g(r) (see Section 2.1 for details). For convenience of
comparison, the Lennard-Jones fluid is considered. The Lennard-Jones pair potential
(shown in Fig.1.1(b)) is

UL (r) = 46[(3)12 - (3)6], (1.4)

r r
where € 1s the depth of the potential well at the minimum in u(r). The properties

of this fluid are known from the results of computer simulations. Then, together
with suitably chosen values of the energy and length scale parameters € and o, it
provides an accurate model for real atomic liquids such as argon. Fig. 1.2 is a radial
distribution function g(r) for the Lennard-Jones fluid at temperature T = 0.88€/k
and density po® = 0.85, which is a thermodynamic state close to the triple point. It
1s compared with g(r) of a nonattracting system. Comparison of g(r) have already
been done by Chandler et al. [3—5] but here I use the results of my retest. The radial
distribution function was obtained by computer simulation, by a method described
in Section 2.3.1. Here, the WCA potential (shown in Fig.1.1(c)) is

uwca(r) = it e = (1.5)

0 r>ro,

where ry = 2% is the distance at which the potential reaches its minimum value [3-5].
The WCA potential has the same repulsive forces as the Lennard-Jones potential and
no attractive forces. The figure shows that the WCA model is an excellent simpriti-
cation for the Lennard-Jones model. When the density is sufficiently high that neigh-
boring particles are extremely close to one another, the change in energy associated
with any local displacement will clearly be dominated by the interparticle repulsive
forces. The attractive forces are much weaker and tend to cancel one another, leaving
only an average uniform background energy. Notably, the radial distribution func-

tion of the fluid of hard spheres is almost identical to g(r) of the other fluids (except
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for r = o, with impulsive potential variation). Thus, it can be seen that g(r) for the
Lennard-Jones liquid (a common model for argon) is accurately fitted by the radial

distribution function produced by the repulsive forces or the associated hard-sphere
fluid.

4l . ﬂenard—] ones °
¥ WCA

N Hard-sphere ------

3,
=
% 2|
1,
0 I
1 2 3
rlo

Figure 1.2: The radial distribution function, g(r), for the Lennard-Jones liquid at a state near the triple
point with po® = 0.85 and kT /e = 0.88. It is compared with g(r) for WCA and hard-sphere fluid at
the same temperature and density (My data).

Once the radial distribution function g(r) is known, the effective interaction W(r)

can be obtained as
W(r) = —kT In g(r). (1.6)

The effective interaction W(r) calculated using g(r) in Fig.1.2 is shown in Fig.1.3
[28]. The figure shows that the results from the three models are in excellent agree-
ment. Thus, I confirmed the assertion by Chandler et al. that the structure of a liquid
is determined by repulsion. This implies that repulsion even determines affinity in

liquids, which I also proved by comparing effective interactions.
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Figure 1.3: The effective interaction, W(r), for the Lennard-Jones liquid at a state near the triple point
with po® = 0.85 and kT /e = 0.88. It is compared with W(r) for WCA and hard-sphere fluid at the

same temperature and density (My data).

1.3 Entropic interaction between macromolecules in liquids

As noted, the structure of liquids is mostly determined by the strong repulsion be-
tween molecules, namely by the molecular sizes and shapes. The simplest and ear-
liest approach is the Asakura—Oosawa (AO) theory [39—41], which has been applied
to the effective interaction between macromolecules immersed in a dilute polymer
solution. An explanation of the AO theory is now given. Herein, the solvent granu-
larity is ignored, and the effective interaction arising from the translational motions
of polymers is estimated only from the configurational volume of the polymers with
van’t Hoft’s equation. Thus, the polymer—polymer interaction is ignored. Here, the
polymers are the depletants. However, we cannot ignore the solvent granularity in
discussing the molecular recognition phenomena in a solution phase because of the
high packing fraction of depletants, namely solvent molecules. Therefore, we in-
troduce the results calculated using more precise statistical mechanics theories. The

solvent—solvent interaction affects the activation free energy for the association re-
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action. The above results are the effective interaction between spherical solutes. In

Section 1.3.3, the results for nonspherical solutes are introduced.

1.3.1 Asakura Oosawa theory

As shown in Fig.1.4(a), a large spherical particle (diameter o) is immersed in a sea
of small spherical particles (diameter o). The small particles are excluded by the
large particle. The excluded volume is spherical, and the diameter is o + 0, (colored
gray). When two large spheres contact each other, these excluded-volume regions
overlap (the overlapped space is red shaded in Fig. 1.4.(b)) and the total volume
accessible to the small spheres increases by this amount. Thus, the entropy of small
spheres increases, resulting in an attractive interaction being induced between the
large spheres between the large spheres.
In the AO theory, this effective interaction between two large spheres separated by
a distance r is written as
W(r) = —pkTAV,,, (1.7)

where p is the number density of small spheres and AV, is the overlapped volume.
This formula was derived by Asakura and Oosawa using statistical mechanics with
a simple model [39,40]. In the model, the interaction between small particles is
ignored. Therefore, the small particles behave as an ideal gas where the pressure
P;; 1s pkT. This 1s the most distinctive feature in the statistical theories for entropic

interaction, and we can rewrite the above formula as
W(r) = PjyAV,,. (1.8)

This formula suggests that the effective interaction W(r) means that the quasistatic
work increases as the excluded volume for the ideal gas increases, namely PV-work

for the ideal gas.

1.3.2 Effects of liquid structure [42]

This study includes investigation of the ordering phenomena in a solution phase, such
as molecular recognition. The AO theory can be applied to discuss the stabilization

of the large molecules’ association. The AO theory models the small sphere as an
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(@) Excluded volume (b) Overlap volume (AVey)
O O Q== O o 07/L:~=0 O

Figure 1.4: Contact between two large particles (diameter o) in small particles (diameter o).
Spheres in gray (diameter oy + o) are the excluded region for the small particles. Upon contact,

the two excluded regions overlap (the overlapped space is red shaded).

ideal gas. In earlier studies carried out by Asakura and Oosawa, the small particles
meant a dilute polymer solution, and the solvent particles were an inert background
[39,40]. Therefore, the ideal gas model, more precisely the ideal dilute solution
model, was adequate, and the equation of state for an ideal gas, that is, van’t Hoff’s
law for osmotic pressure, provide fruitful discussion. However, this ideal model for
the solvent could be problematic in studies of the ordering phenomena in a solution
phase.

It appears that the repulsive interaction between solvent particles is essential in
the quantitative comparison and in the discussion of the free energy barrier. In the
original study carried out by Asakura and Oosawa, the solvent particles permeate
the polymers and macromolecules. Thus, we do not need to take into account the
exclusion of the solvent particles. However, we need to consider the exclusion the
solvent particles in the molecular recognition phenomena. When the inert solvent is
replaced with a solvent consisted of granular particles, the system packing fraction
becomes high similar to that of the triple point. Taking into account the short-range
repulsive interaction between solvent particles, the effective interaction includes the
effects caused by the liquid structure. Many studies have been examined the effective
interaction between spherical solutes in liquids. According to the literature [3-5], the
interaction has a free energy barrier caused by the liquid structure. The association
stabilities change is caused by the pressure increase due to multibody collision [15,
43-46].

As noted in Section 1.2, in which the van der Waals picture is discussed, an appro-
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priate model for the small sphere is a fluid of hard spheres [3-5]. The effective forces
between the macromolecules immersed in a high-density hard-sphere solvent have
been calculated using statistical mechanics theories, such as the integral equation
theory (IET) [15,44], the density functional theory (DFT) for a classical fluid [45],

and computer simulations [43].

Figure 1.5: The effective forces induced between large particles (diameter o, = 507 ) immersed in
small particles (diameter o, packing fraction 0.38). Surface separation is given by r. The results
calculated by AO theory and IET are compared.

Fig.1.5 shows the effective interaction between two large spheres immersed in
small spheres as observed by the AO theory and IET. The results show the impor-
tance of interparticle correlations, that is, solvent structure, and bring new features to
solvent-mediated interactions. The AO interaction W(r) is always negative between
0 < r < oy, and the absolute value of W(r) increases monotonically with decreasing
rin0<r,and W(r) =0inr > oy.

By contrast, the interaction observed by IET is oscillatory and the period is the
solvent particle diameter. Thus, the oscillation reaches beyond 1o. This means that
we may find some free energy barriers in the association process. The highest bar-

rier is located outside the attractive well near the large particle. This is caused by

16



solvent particles with high density on the surface of large particles. For example,
when a narrow slit — like region is formed between the large particles, as illustrated
in Fig.1.6, the effective attraction between the large particles becomes stronger due
to the vacuum formation. Thermodynamic work for the vacuum formation in the
channel is increased until the slit size = og. If the slit size becomes larger than
os, the small particles enter the slit. It causes the effective repulsion between the
large particles by the solvent particles which enter the slit. Therefore, the free en-
ergy barrier is induced when large particles are located, as shown in Fig.1.6. When
discussing the free energy barrier in the molecular recognition process, the repulsive

interaction between solvent particles is essential.

O o _0O
O
o O ©

Figure 1.6: Picture illustrating the free energy barrier at 0 < r < 0.

O

1.3.3 Application to molecular recognition phenomena

The discussion that now follows addresses a host molecule and a guest molecule in
a sea of small particles with a hard-body model. Under certain concentrations of
small particle, the recognition affinity can be estimated using the AO model [47,48],
with the overlap of the excluded volumes. This idea was applied to the molecular
recognition affinity by cyclic oligomers of glucose, known as cyclodextrins (CDs).
The CD molecules form inclusion complexes with the guest molecules in an aque-
ous solution. According to the literature [23, 26], the experimental results can be
summarized as follows. It is clear that when the outer diameter of the guest molecule
is larger than the inner diameter of the CD molecule, a complex cannot be formed.
On the other hand, when the outer diameter of the guest is too small, the recognition
1s also very weak. This is a kind of “lock-and-key” relationship [2]. The best fitting,
when the size of the guest molecule is equal to the guest cavity, gives stable recog-

nition. As a result, high selectivity exists between the sizes of the outer and inner
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diameters.

Returning to the AO theory, the overlap of the excluded volumes is a key amount
under certain depletant concentrations. In Fig.1.7, the excluded volumes produced by
the cyclic molecule and guest molecule are shown in gray. The above experimental
conclusion can be explained by the key amount. The best fitting gives the maximum
affinity. Therefore, using the AO theory, the recognition stability can be addressed
qualitatively.

By contrast, employing adequate statistical mechanics theory with hard-body mod-
els seems essential in the quantitative comparison and the discussion of the free en-
ergy barriers. The above simple discussion that includes the overlap volume shows
the importance of the idea of entropic attraction. However, the van der Waals picture
and the results for the association between two large hard spheres immersed in small
hard spheres indicate the need for the IET, DFT, and molecular simulations in discus-
sion of the features of effective interaction, such as the free energy barriers [15-18].
Other calculation results reveal that the liquid structure affects the effective interac-

tion between a key molecule and a lock molecule immersed in a high-density solvent.

Excluded volume Overlap volume (AV,,)
0. ~=0 o O
0 —>° o
00 o o° 0
O O O

Figure 1.7: Description of molecular recognition by cyclic molecules in liquids using the AO model.
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1.4 Aim of and motivation for this study

The aim of this study is to clarify the mechanism of molecular recognition in liquids
by cyclic molecules such as CDs. Specifically, the purpose is to clarify the effects
arising from the translational motion of solvent particles. The entropic effects are
the most important factor in the affinity between molecules in a liquid; it is an aspect
of the van der Waals picture [3—5]. Thus, a study of the entropic effects on effective
interactions or molecular recognition affinity is essential.

For this purpose, the solvent granularity is important, and all the solvent parti-
cles must be included in the theoretical model. It is known that CD molecules form
inclusion complexes with specific molecules in aqueous solution [23]. In the main-
stream interpretation of the affinity between the guest and the host, the origin of
attraction is the van der Waals interactions between the inner surface of the CD and
the guest molecules. Moreover, the association of two solute molecules is considered
to be an entropy loss, and hydrophobic effects correct the effective interaction [26].
However, the thermodynamic experiments for molecular recognition in an aqueous
solution contradict the validity of the conventional narrative for molecular recogni-
tion because the association enthalpy is positive in most cases [13, 14]. The stability
in the recognition arises from the entropy gain in the experiments. Interestingly,
the formation of CD complexes is observed experimentally, even in organic solvents
where there are no hydrophobic interactions. Unfortunately, the thermodynamic data
were not found. However, these experimental results provide strong motivation for
the study based on the van der Waals picture.

This thesis comprises two main chapters. The first is an assessment of the approx-
imation of the integral equation theories for a fluid consisting of hard-body particles.
(An assessment for a nonspherical dimer solute has not been carried out.) Here, the
most adequate approximation is discussed. The second part addresses calculations
for the recognition system using the best integral equation theory. Here, the impor-
tance of solvent granularity in the regulation of molecular recognition is discussed.

Understanding the recognition mechanism in a liquid provides not only fundamen-

tal knowledge of molecular recognition but also guidelines for the design and control
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of new molecular systems that utilize the molecular recognition function. Recently,
various interesting related systems have been proposed. For example, the formation
of complexes with linear polymers by CDs has attracted attention. Such complexes
are a molecular necklace with many CDs threaded through the polymer chain. It is
expected that this will be useful to construct unique nanostructures by utilizing the

degrees of freedom.
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Chapter 2

Calculation

2.1 Distribution function [27,28,42]

For a system at equilibrium, integration of a reduced distribution function over the
remaining momenta yields an equilibrium particle density, where p™(ry,...,T,)
specifies the probability that a set of n molecules will be found in a configuration

ri,...,r, Incanonical ensembles, the n-particle density is defined as:

N! f...fe‘ﬂUNdrnH ..dry
(N -n)! Zy

P"(ry, ..., T, (2.1)

, and the configuration integral Zy is:

Zy = f f e PUvdr, ... .dry (2.2)

, where 8 = (kgT)™'. Uy is the total potential energy, written as a sum of a pair

potential u(r;;):

N
Uy = Z u(rij), rij=Iri—rj. (2.3)

i<j
In a homogeneous system, the n-particle distribution function g™(ry,...,r,) is de-

fined in terms of the corresponding particle density by:

Py, . ...t = p"g™(ry,....1p). (2.4)

. This function is dimensionless and measures the extent of deviation of the struc-

ture of the fluid from complete randomness. In a liquid of spherically symmetric
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molecules, g?(r;,r,) depends only on the relative distance r» = |r, — ry|; it is the

usually called radial distribution function and is written simply as g(r). We can write:

p2(r) = p*g(r). (2.5)

The radial distribution function plays a central role in the theory of liquids. The first
reason for this statement is that the radial distribution function is directly measurable
by radiation-scattering experiments. The second reason is that knowledge of radial
distribution functions is often sufficient to calculate the equation of state and other
thermodynamic properties of the system.

N is very large; therefore, Eqs(2.1) and (2.2) give:

sz...fe‘ﬂUNdrg,...drN
g(r) = - :
f...fe BUNdry ...dry

By contrast, when particle 1 is fixed, the force acting on particle 2 is —dUy/dr, and

(2.6)

its average is:
—f...fe‘ﬁUNdrg;...drN

f...fe‘ﬁUNdrl...drN
Thus, the relationship is as follows:
1dlng(r)
K(r)=— 2.8
(r) 5 dr (2.8)
If the potential of mean force (PMF) is written as:
W(r) = - f K(r)dr, (2.9)
we can write:
g(r) = eV, (2.10)

2.2 Integral equation theory [27,42]

We now introduce the total correlation function: h(rj,) = g(r12) — 1. This function is
a measure of the total influence of molecule 1 on molecule 2 at a distance r;,. Orn-

stein and Zernike proposed that h(rj,) be written as the sum of the direct and indirect

22



effects. The direct effect is given by the direct correlation function c(r1,). The defin-
ing equation of the direct correlation function is called the Ornstein—Zernike (OZ)

equation:
h(r12) = c(r12) +pfc(r13)h(r23)dr3. (2.11)

If we repeatedly replace h(r) by [c(r)+integral] within the integral of Eq.(2.11), we
get:

h(ri2) = c(r12) +Pf0(1’13)€(”23)d1'3
2.12)

+,02ffC(F13)C(F34)C(i”4z)dl‘3dl'4 +oeee

The total correlation /(r),) is decomposed into a direct correlation of 1 and 2, through
c(r12), and indirectly through all possible chains of direct correlation within the fluid.

If c(r) were given in terms of h(r), for example, its substitution into the OZ equa-
tion would give a closed integral equation for /(r). This can be done in the following

approximate way.

2.2.1 The hypernetted chain (HNC) and Percuss Yevick (PY) approximations

In Boltzmann form, the radial distribution function g(r;;) may be written in terms of
the PMF, thus:
In g(rlz) = —W(Vlz)/kT. (213)

The PMF may be split up into two components, much as in the OZ equation:
W(ri2) = u(ri2) + ©(r12), (2.14)

where u(r|,) is the direct pair potential, and ®(r;,) is the indirect pair potential, which
represents the mean effect of a third particle averaged over all possible positions.

The expression for the direct correlation in the HNC approximation is given as:

()
CHNC(I’]z) = h(”lz) + ]8;2)
~ N =gz - MZ;)' (2.15)

When inserted in the OZ equation, this expression provides a closed equation for the

total correlation and radial distribution function.
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Similarly, in the PY approximation

) oo )

= g(r12) [1 - exp(ug}ﬁ) ] (2.16)

cpy(riz) = CXP(—

2.2.2 Bridge function
Now, with extension of the Eq.(2.15), we have the exact relation:

u(ri2)
kT

where b(r) is called a bridge function. When b(r) = 0, Eq.(2.17) reduces to the HNC

approximation. Various bridge functions were proposed to improve the theory for the

c(r12) = h(r12) —Ing(riz) — + b(r12), (2.17)

correlation functions. In this study, three bridge functions, namely Verlet [49], Duh-
Henderson [50], and MHNC [44,51,52], were used. Verlet proposed the following

functional form: )
Y- (ri2)
1 +0.8y(rn)’

where y(r) = h(r) — c(r) [49]. The distribution function, g(r), obtained using this

b(r1) = —0.5 (2.18)

form was shown to be quite accurate. However, Duh and Henderson argued that the

form is not suitable for size-asymmetric mixtures, and they proposed the following

form:
~ YL
br2) = =05 0 5y 7V (2.19)
= —0.5y7,(r) (y <0).

Eq.(3.7) and its first and second derivatives with respect to y(r) are also continuous
at y(r) = 0 [50]. However, Eq.(3.8) for vy < 0 gives poor results when the size
asymmetry increases. Kinoshita proposed the following form, named the modified
HNC (MHNC) bridge function [44,51,52]:

_ YA(ri2)
b(ri2) = —0-51 0.8/(ra) (y>0)
— 05 Y (r12)

T 1-0.8y(r12)

(2.20)

(y <0).
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2.3 Computer simulation [53,54]

The adequacy of the approximations involved in the integral equation method can be
checked by comparison with experimental results. In a comparison with experimen-
tal data from X-ray scattering, it may be difficult to distinguish whether a disagree-
ment is caused by the approximation or by the choice of intermolecular potential.
Clearly, it would be great if essentially exact results could be obtained for a given
model system without having to rely on approximate theories. Computer simulation
allows doing just that. We can compare the calculated properties of a model system
with those of an experimental system. If they disagree, our model is inadequate, that
1s, estimation of the intermolecular interactions must be improved. It is also possible
to compare the simulation results of a given model system with the predictions of an
approximate theory applied to the same model. In this case, the computer simulation
plays the role of the “experiment” to test the theory. Computer experiments have

now become standard practice to test the theoretical results.

2.3.1 Monte Carlo method

Monte Carlo (MC) is a computer simulation method. First, we recall that the average

of a function of the coordinates F(ry,...,r,) is given by:

~ f...fF(rl,...,rn)e‘ﬁUNdrl ...dry

F
W f...fe‘ﬁUNdrl...drN

2.21)

In numerical calculations, the integral is always replaced by a sum over a set of suit-
ably chosen points. In the MC method, the points are chosen at random. In the
present context, one would choose some large but manageable number is of config-
urations choosing them with a probability. Let M be the number of points and the

resulting estimate of (F') is:

M M
(F) = Z Fie Ui Z e PUi, (2.22)
i=1 i=1

In the region of liquid densities, however, this method produces unsatisfactory re-

sults because the overwhelming majority of the points would correspond to very low
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statistical weights, which makes erroneous results unavoidable. Then importance
sampling is usually preferred. The basic principle of this method is to allow for the
statistical weight in choosing the points in such a way that the frequency of each

configuration j becomes proportional to Vi, Eq.(2.22) then reads:

1 M
(F)=— ; F,. (2.23)

The Metropolis method is one of the most popular ways of ensuring that the con-
figuration space is sampled with the weight [55]. The transition probabilities must

satisfy the normalization conditions:
Z pij = 1. (2.24)
J

Let us assume that any state j may be reached from any state i in a finite number of

steps m (ergodicity condition). Then Markov’s theorem states that the limits

lim p™ = p; (2.25)

m—-0o0 L

exist for all j and are independent of j:
> opi=1, (2.26)

and
pi= Z PjPij- (2.27)
J

In fact, the limits p; are uniquely determined by Eqs(2.25) and (2.26). However, we
wish to invert the usual process; that is, we inquire what set of transition probabilities

pij will converge to the previously known set of p;:
pi=ePUiy et (2.28)

Substitution of Eq.(2.28) into Eq.(2.27) gives, with use of Eq.(2.24):

pije_ﬁUi = pjie_ﬁUj- (2.29)

26



Eq.(2.29) evidently does not determine a unique set p;;. Metropolis et al. proposed

the transition probabilities as follows:

;j Uj < Ul'
Pij = . (230)
aije_ﬁ(Uf_Ui) Uj > U,'

pi=1=) pi, (2.31)
where o must satisfy the following:
aij = Qji

Za,-j =1.

J

(2.32)
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Chapter 3

Spatial distribution obtained by GCMC and
IET with bridge functions [56]

3.1 Introduction

To predict precise distribution functions around a hard—body solute, such as a contact
solvent dimer immersed in a hard—sphere fluid, we must prepare some statistical me-
chanics theories and assess them. In the context of the study of entropic interaction,
the theories have been examined with hard-body models. Because the repulsive part
of the direct interaction has an essential role in the formation of a microscopic lig-
uid structure [3-5], the progress of the statistical theories is expected to understand
the effective interaction in high-density fluids. This viewpoint has been called the
van der Waals picture. In the picture, a hard-sphere system is the most fundamental
model in the studies of a dense fluid. Although the precise prediction becomes more
difficult as the packing fraction becomes higher, there are some precise approaches,
such as density functional theories (DFT) [45,57-59] and integral equation theo-
ries [42,60, 61].

I carried out the theoretical calculation using some integral equation theories for a
liquid to discuss the accuracy of the solvent density profiles around a contact solvent
dimer. I solved the Ornstein—Zernike (OZ) equation with a closure relation [42] and
examined various closure relations. In the preceding studies, the Percus—Yevick (PY)
closure, the hypernetted—chain (HNC) closure, etc., have been used as the traditional

closures. The accuracy of the results depends on the closure relation, namely the
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approximation. It is known that the spatial distribution functions calculated using
the traditional closure, such as the PY and the HNC closures, are reasonable qual-
itatively. However, we can find differences between them. It is known that the PY
closure is better than the HNC closure for the one—component hard—sphere fluid. By
contrast, the HNC closure has been adopted in the calculations of hard-sphere mix-
tures because it is better than the PY closure when the size ratio is not 1. My test
calculation also supported the above conclusion.

The MHNC closure proposed by Kinoshita was examined in the preceding stud-
ies [44,51,52,62]. In that study, a hard sphere solute was immersed in a hard—sphere
fluid whose packing fraction was 0.38, and various size solutes were examined.
The calculated spatial distribution functions show that the results calculated by the
MHNC-OZ theory are much more quantitative than those calculated by the PY-OZ
and the HNC-OZ theories. Furthermore, the MHNC closure 1s accurate even with
significant size asymmetry. The MHNC closure is the most expected approximation
for the hard-body particle systems.

In my studies, a contact dimer of solvent particles is examined as a nonspherical
solute particle. Molecular simulation studies can be applied to obtain the spatial dis-
tribution functions around the nonspherical solute particle. However, a study on the
accuracy of distribution functions in the vicinity of a nonspherical solute is unusual
because of the computational cost. Moreover, I will obtain the correlation function
for the muticomponent solvent system with a model cyclic host molecule like cy-
clodextrin in the next chapter. The computational cost of molecular simulation for
the systems is very high. The concentration dependence studies must be hopeless.

As mentioned above, the MHNC closure is an adequate closure for a spherical
solute in a solvent hard-sphere fluid. The study on the accuracy of distribution func-
tions in the vicinity of a nonspherical solute in a muticomponent solvent is unusual
because of the expensive computational cost. However, it is possible to assess the
closures using molecular simulations if more simple nonspherical solute and the one-
component solvent are adopted. The assessment must give us the prospect of the
closure choice.

In this study, the simulations are carried out to compare the results obtained using
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the 3D integral equation theory. We adopt the contact dimer of solvent hard—sphere
as a nonspherical solute. The spatial distribution function around a nonspherical so-
lute for the coordinate (x,y, z) in the calculation using the integral equation theory
must be obtained. If we take symmetry into account, we can reduce the computa-
tional cost. Therefore, I adopt the contact dimer of the solvent hard-sphere as the
nonspherical solute. The grand canonical ensemble Monte Carlo (GCMC) simula-
tions were performed to verify the 3D-MHNC-OZ theory in the present study be-
cause the integral equation theories have been formulated under the grand canonical

ensemble

3.2 Model and Methods

3.2.1 Model

A fluid 1s composed of hard spheres. The diameter used was oy (V denotes the
solvent particles). The scaled number density of the fluid poy® was at 0.7315. This
density of the fluid corresponds to the packing fraction n = 0.383. This value is the
packing fraction of pure water at standard temperature and pressure. We immersed
a solute into the hard-sphere fluid. The solute was a contact dimer that consisted of
two hard spheres fixed at coordinates (—0.50y, 0, 0) and (0.50y, 0, 0). Each diameter

of two hard spheres was oy = oy (U denotes solute particles).

3.2.2 Integral Equation Theory [27,42]

In the present study, we solved the OZ equation with a closure equation to obtain the
spatial distribution gy v (x,y, z) of solvent particles around a solute. The OZ equation

for the bulk solvent was
hyy(r) = cyv(r) + pv fcvv(l”)hvv(h" — r|)dr’, (3.1

where p is the number density, 4 is the total correlation function, and c is the direct
correlation function. The system is spherically symmetric and r is the distance be-
tween the centers of solvent particles. At first, we solved this equation with a closure

equation.
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The solute particle has a nonspherical shape. Therefore, the spatial distribution
functions between the solute and the solvent particles are gyv(x,y, z) = hyv(x,y,2)+
1. To solve the equations, we prepared a 3D grid covering enough volume. Then, the

OZ equation is given in the discrete form as follows,

hyv(x,y,2) = cyv(x,y,2) + py fCUV(X,y, Dhyy(Ir’ —r))dx'dy’d7 (3.2)

wherer = (x,y,z) and r’ = (x',y’, 7). Eq.(4.2) is written in the wavenumber Kk space

as follows:

Fuvke, ky, k2) = pveuy (ke ky, k)yy (K], (3.3)
where y = h — ¢, the symbol 7" indicates the Fourier transform. The vector k =
(ky, ky, k).

We examined some closures. The closure equation is written as
c;j(r) = exp[—Bu;;(r)] exp[y;;(r) + b;;(r)] — y;;(r) — 1, (3.4)

where 8 = (kgT)™!, kT is Boltzmann constant times the absolute temperature. The
functions u and b are the potential and the bridge function, respectively. In the calcu-
lation of bulk solvent, i = j = V and r is replaced with r. By contrast,i = U, j =V
and r = (x, y, ) in the calculation of the solute—solvent correlation functions.
Eq.(4.4) includes the bridge function. If we had the perfect bridge function, the
closure would also be perfect. However, the exact form of the bridge function was

yet unknown. In the case of the HNC approximation,
bij(r) =0. (3.5)

In the present study, we examined the MHNC closure proposed by Kinoshita [44,51,
62]. The bridge function is as follows.

i)
bij(r) = _O'STS%-J-(I') (yij > 0) e
¥i,(1) G0
= —05—1 — 08’}/11(1') (’yij < O)

We also examined the following two bridge functions. The bridge function pro-
posed by Verlet is as follows [49].
Y1)

biAr) = —0.5—1
/0) 1+ 0.8y,,(r)

(3.7)
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Another bridge function, proposed by Duh and Henderson, is as follows [50].

) = 05— o)
ii\r)=-9vyoy——— i >
J 1+ 0.8y;r) " (3.8)
= -0.5y7(r) (yij < 0).
We also examined the PY closure:
cij(r) = exp[—Lu;j(r)][y;j(r) + 1] = y;;(r) — 1. (3.9

It is known that the PY closure is excellent for the one-component hard-sphere
fluid. The spatial distribution of solvents gyy(x,y, z) is obtained using the calculated

yuv(x,y,z) and cyy(x,y, z) as follows.

gUV(x’yaZ):)/UV(x’y’Z)+CUV(xayaZ)+1' (310)

The numerical procedures were as follows: (a) hyy(r) was calculated using Eq.(4.1)
and one of the closures, (b) hyy(x,y, z) was prepared using ayy(r) and transformed to
fzvv(kx, ky, k) using the 3D fast Fourier transform (3D-FFT), (¢) uyv(x,y, z) was cal-
culated at each 3D grid point and yyy(x,y, z) was initialized to zero, (d) cyy(x,y, 2)
was calculated using Eq.(4.2) and the same closure adopted in step (a), (€) cyy(x,y, 2)
was transformed to ¢yy(x,y, z) using the 3D-FFT, (f) yyv(x,y, z) was calculated us-
ing Eq.(4.3), (g2) Yuv(x,y,z) was transformed to yyy(x,y, z) using the inversed 3D-
FFT and steps (d)—(g) were repeated until the difference between the input and out-
put functions become smaller than the given value, (h) gyv(x,y, z) were calculated
using Eq.(3.10). The grid spacing (Ax, Ay, Az) was 0.020y and the grid resolution
(Ny, Ny, N;) was 512.

3.2.3 MC simulation [53,54]

We fixed the basic cell size and adopted the periodic boundary condition. In the
present study, three types of MC simulations were carried out. We examined the
canonical MC (CMC) simulations and the GCMC simulation. The CMC has a prob-
lem in comparison with the results calculated by the integral equations. The integral
equation theory is formulated using the grand canonical ensemble, and the solvent

density py is determined at the reservoir. By contrast, the solvent number density in
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Figure 3.1: The spatial distribution (a) along the x-axis gyy(x,0,0) and (b) along the y-axis
guv(0,y,0). The results of CMC and GCMC are compared. (c) and (d) are magnifications near
the contact of (a) and (b), respectively.

the basic cell for the CMC deviates due to the insertion of the solute particle into the
fluid. Then, we must obtain the number of solvent particles and the volume of the
basic cell. However, this, in general, is not easy, but Schmidt and Skinner proposed a
recipe [63]. Therefore, we adopted the recipe and adjusted the cell volume by using

the following rule,

N
V=—+AV,, 3.11)
Pv

where N is total number of particles (solvent and solute) and AV,, is the difference
between the excluded volumes of solute and solvent particle. If the solute particle
is spherical, AV = %[(O‘U + ov)? — (oy + ov)’], where oy and oy are the solute
and the solvent diameters, respectively. This recipe has been adopted in the case of
a spherical solute particle, and gave satisfactory results [62-64], despite the fact that
in the present study the solute shape was not spherical. We call this approach CMCI.

In addition to the methods noted in the main manuscript, another CMC simulation
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was carried out. This simulation does not take into account the adjustment for the
excluded volume. We added two hard-spheres of solute to the total number of parti-
cles and determined the cell volume using the set total number density. This method
was called CMC2.

We also carried out the GCMC [65-68]. Although the calculation cost of the
GCMC is relatively high, this choice is most adequate because the integral equation

theory is formulated using the grand canonical ensemble.

° °
)
°
o wV, T °
° )
. P
) )
v )
°
°
)

Figure 3.2: A system with fixed p, V and T that exchanges energy and particles with a reservoir.

We considered a one-component system with fixed volume(V), temperature(7),
and chemical potential(u) which exchanges energy and particles with the reservoir
(Fig.3.2). x; denotes a given configuration i of the system, and U(X;) 1s the corre-
sponding total potential energy. The probability P; of configuration x; in the grand

canonical ensemble is given by the following:

1
Pi = 2oy expIBNu ~ BU)] (3.12)
= 1s the grand canonical partition function
v |
== Z v | oo | exPIBNK - BUGK)AX .. dxy, (3.13)
N=0 """

where A = h/(2rmkT)'/?. h and m are Plank’s constant and the mass of the particle,

respectively. The chemical potential for an ideal gas is

N
fia = kT[ln A’ +1n V]’ (3.14)
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where N is the average number of particles. Transforming the integrals to dimen-
sionless particle coordinates, dr = V-ldx, and substituting the chemical potential
for an ideal gas produces

P; = é% exp[BNu., — BU(t;) + NIn N]. (3.15)
In Eq.(3.15), u.. 1s the excess chemical potential of fluid relative to a perfect gas with
the same particle mass, density, and temperature. Before the GCMC simulation, we
used Widom’s insertion method in a canonical ensemble for determining the excess
chemical potential as a function of the bulk density.

The grid cell volume was AV = AxAyAz, where Ax, Ay, and Az denote the grid
spacings in Cartesian coordinates and Ax = Ay = Az = 0.0loy. The cell size was
set equal to L = 12.360y and the number of particles N was 1372 in the CMC
simulation. The number of particles varies in the GCMC simulation. The spatial

distribution function g(x, y, z) was calculated as follows:
gus(x,y,2) = AN(x,y,2)/pAV, (3.16)

where AN(x,y,z) is the number of solvent particles in the grid cell. We used the
Metropolis algorithm and performed 107 MC steps for equilibration of hard-sphere
fluids and over 10'° MC steps for the collection of ensemble averages. The contact
value was estimated by extrapolation [62].

We compared the distribution functions around the dimer obtained using CMCl,
CMC2 and GCMC in Fig.3.1. The agreement between three results was good. When
the GCMC sampling is hard, CMC could be used. Because the results of CMCs
and GCMC agreed well, we can conclude that the size of the simulation box was
large enough and the sampling number was sufficient for obtaining the distribution

functions. The GCMC results can thus be recognized as exact results.

3.3 Results and Discussion

3.3.1 Calculation for a spherical solute

First, we calculated the distribution functions around a spherical solute to test the fea-

sibility of the numerical solution of the integral equation theory on a 3D discretized
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grid with a finite number of grid points. For a spherical system, the results of the
3D integral equation theory and the radial-symmetric integral equation theory must
agree. The distribution function of solvents along the x-axis through the center of
the particle is shown in Fig.3.3. The plot agrees with the result calculated using the
radial-symmetric integral equation theory. The deviations between the two distribu-
tion functions are small enough. We confirmed that the 3D integral equation theory

accurately reproduced the correct density distribution.
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Figure 3.3: The distribution function of solvents around a spherical solute obtained from the inte-
gral equation theory on a radial grid with spacing 0.01cy(solid line) and a 3D grid with spacing

0.020y(crocces). The HNC closure was used.

3.3.2 Spatial distribution of solvent around a contact dimer

The spatial distribution gyy(x,y,z) around a nonspherical solute, a contact dimer
was obtained by GCMC simulation. Fig.3.4(a) shows the spatial distribution around
the dimer gyy(x,y,0). We compared this distribution function with the distribution
functions obtained using the 3D integral equation theories. In Fig.3.4(b), we show
the result obtained by PY closure. Similar map has obtained in the previous studies
[69,70]. These color maps for the solvent distribution are similar to each other. This

means that the PY closure is qualitatively reasonable. The same applied to the spatial
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distributions gyy(x,y, 0) calculated using other closures.
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Figure 3.4: The spatial distribution around dimer in the xy plane gyv(x, y, 0) calculated by (a) GCMC
simulation and (b) PY closure.

We also plotted the spatial distribution along the x-axis gyy(x, 0, 0) and that along
the y-axis gyy(0, y, 0) to quantitatively compare the results obtained by MC and clo-
sures. as shown in Fig.3.5. Two specific sections are chosen, namely the most convex
and the most concave sections, and the distribution functions, namely gyy(x, 0, 0)
and gyv(0,y, 0) are plotted.

In Fig.3.5(a), (c), we show the solvent distribution around the most convex surface
of the solute, namely gyy(x, 0,0). The curvature of the solute particle is the same as
that of the solvent particles. We can find the difference near the contact distance. The
result obtained by the MHNC approximation almost agrees with that obtained by the
GCMC simulation. By contrast, the PY approximation underestimates, and the HNC
approximation overestimates the values near the solute surface. This agreement and
these differences were also observed when the solute was a spherical one with a size
of solvent particle [62]. These results were reasonable because the curvature of the
most convex surface of the solute was the equal to that of the solvent particles.

By contrast, the behaviors of g(0, y, 0) (Fig.3.5(b),(d)) differ from that of g(x, 0, 0).
The deviations from the GCMC simulation result become significant. The contact
value of the HNC approximation was about 1.5 the GCMC result, and the contact
value of the PY approximation was about half the GCMC result. The MHNC result

maintained a small deviation from that for GCMC. The ratio of the contact value
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Figure 3.5: The spatial distribution (a) along the x-axis gyy(x,0,0) and (b) along the y-axis
guv(0,y,0). The results of integral equation theory with the PY, HNC, and MHNC closures are

compared with the GCMC simulation. (c) and (d) are magnifications near the contact of (a) and (b),
respectively.

was about 0.85. These results indicates that the MHNC closure provides a good
approximation even near the concave surface.

We also analyzed other bridge functions, namely, the Verlet bridge function (Eq.(3.7))
and the Duh—Henderson bridge function (Eq.(3.8)). The comparisons with the MHNC
bridge function (Eq.4.5) are plotted in Fig.3.6. The plots for the three bridge func-
tions cannot be distinguished. As also investigated in the previous papers [51, 62],
when a spherical solute was immersed in the one-component hard-sphere fluid, these
bridge functions provided adequate spatial distribution functions. Therefore, we dis-

cuss that the superiority of the MHNC closure is slight in the three bridge functions.
The superiority of the MHNC closure becomes significant when the value of y;;(r)
is negative and the absolute value [|y;;(r)| is large enough. In the case of a one-

component solvent system, as mentioned in our previous paper [62], the function
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Figure 3.6: The spatial distribution (a) along the x-axis gyy(x,0,0) and (b) along the y-axis
guv(0,y,0). The results of integral equation theory with the MHNC, Verlet and Duh—Henderson
bridge functions are compared with the GCMC simulation. (c) and (d) are magnifications near the
contact of (a) and (b), respectively.

does not have a large negative value. This is the reason for the small differences
between the results calculated using three bridge functions. In the present study, this
conclusion was maintained even when the surface of the solute was concave, as in
the case of g(0,y,0) (See Fig.3.6(b), (d)). The accuracy of the approximations with
the bridge functions depends on the surface curvature of the solute. Fig.3.5 suggests
that the accuracy near the convex surface of the solute is better than that near the
concave surface. The spatial distribution functions g(0, y, 0) obtained using the ap-

proximation with the bridge functions are slightly smaller than that obtained using
GCMC.
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Figure 3.7: The spatial distribution obtained by using the superposition approximation (SA) around
the dimer in the xy plane g(x, y, 0).

3.3.3 Triplet distribution functions

The validity of the closure can also be evaluated in terms of the three-body corre-
lation. The triplet distribution functions are discussed here. The triplet distribution
functions g¥(ry, ry, r3) mean the reduced probability of finding three particles at po-
sitions ry, ry, and r3 [71]. Then g® can be written as a triple product of the pair

distribution functions g'®, which is called superposition approximation (SA) [72]:

gon(r1, T2, 13) = g(ry, r2)g(rz, 13)g(r3, Ip). (3.17)
When two particles are fixed at ry and r;, a reduced probability of finding a particle

at position rj is as follows using Eq.(3.17):

gsa(ri2;T3) = gon (1, T2,13)/g(r1, 12)

= g(r2,r3)g(rs, 1),

(3.18)

where
ripp = |l'1 - I’2|. (319)

Choosing the third Cartesian coordinate r3 = (x3,y3,z3) in Eq.(3.18) and setting
r; = (—0.50v,0,0) and r, = (0.50v,0,0), we can calculate the spatial distribution
function g(xs, y3, z3) around a contact dimer. The spatial distribution in xy plane cal-

culated from Eq.(3.18) is shown in Fig.3.7. Here, g(r;, r3) and g(rs, ry) are obtained
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Figure 3.8: The spatial distribution (a) along the x-axis gyy(x,0,0) and (b) along the y-axis
guv(0,y,0). (c) and (d) are magnifications near the contact of (a) and (b), respectively. Here, g(r)
obtained by GCMC is adopted in SA calculation.

using the radial distribution functions gyy(r) calculated by GCMC simulation. We
can find the density wave of the hard-sphere fluid around a dimer as shown in Fig.3.7.
The shape of density waves is in good agreement with that in Fig3.4. This means that
for simple solute models, the shape of the distribution of solvents can be estimated
more or less accurately from SA.

Fig.3.8 shows the spatial distributions calculated using the MHNC approximation
and the GCMC simulation with the results obtained using Eq.(3.18), namely SA.
The features of the functions gyy(x, 0, 0) are similar. The position of the peaks and
the minimums are almost the same. The numerical agreement between the GCMC
and MHNC results is excellent (the contact value g(1.50,0,0) = 3.8935(SA) and
3.5062(GCMC), 3.3838(MHNC) in Fig.3.5,3.8). By contrast, the difference between
the SA results and the exact results is the largest but it is smaller than the differences
for PY or HNC (g(1.50,0,0) = 3.0473(PY) and 4.3583(HNC) in Fig.3.5).
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The same behavior is obtained in gy y(0,y,0) as gyy(x,0,0), and the differences
become more significant. The first peaks of functions gyy(0,y,0) are higher than
those of the gyy(x,0,0) because the excluded volume at the contact position in-
creases. The behaviors of three functions gyv(0,y,0) for SA, MHNC, and GCMC
are similar to each other again (the contact value g(O0, V3/20,0) = 12.1041(SA)
and 8.7112(GCMC), 7.1283(MHNC) in Fig.3.5,3.8). The spatial distributions cal-
culated using the SA with g(r) obtained by GCMC (or the MHNC approximation)
are more accurate than those obtained using the HNC or the PY approximations
(g(0, V3/20,0) = 4.8957(PY) and 13.3187(HNC) in Fig.3.5). This suggests that
when discussing the qualitative behavior of the distribution functions, it is not bad
for SA to use the accurate g(r) despite the simplicity. By contrast, the differences
between the SA results and the exact results show the existence of multiple body
correlations.

Here, we discuss the approximations based on the three-body effect. The SA takes
into account only three independent pair correlations and ignores the effect of any
of these pair correlations. Therefore, the SA results differ from the exact results
when the third particle is in the neighborhood of the pair. For an assessment of the
true three-body effect, we consider the ratio g to the value of the SA(Eq.(3.18))
[70,73,74]:

g¥(ry,ra,13)
g(ry,r2)g(r2, r3)g(r3,r1)’

['(ry,r,13) = (3.20)

which can be written as

gV (rio;13)

g(ra, r3)g(rs, r1)
If the SA were exact, the ratio I' should be unity. However, the calculated results

['(riz;r3) = (3.21)

are not unity except the SA because the SA becomes worse as the density of fluid
increases.

Here, a contact dimer (particles 1 and 2) and a solvent particle 3 are considered.
We define the ratio I'(#) = I'(r3) as a function of the angle 6 enclosed by r; — r, and
r3 — r (see Fig.3.9). The results I'(6) at [r3 — rp| = o calculated using the HNC, PY,
and MHNC closures are shown in Fig.3.10(a). The result of GCMC is also shown in
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Figure 3.9: Description of 6

the figure. First, we compare the SA and GCMC results. The exact result (GCMC)
has two minimums around 60° and 180°, and there is a peak around 120°. The first
minimum at 60° is explained by the overestimation of the SA. In other words, the
numerator is smaller than the denominator in Eq.(3.21), which is the definition of I'.
The reference value, namely the denominator, is obtained by the SA in Eq.(3.21). In
fact, particle 3 is stable at 60° due to the reduction of excluded volume for the three
particles. However, the exclusion effect for particle 3 by particle 2 is not included
in the SA. Therefore, the peak of the solvent spatial distribution estimated by the
SA becomes larger than the exact value at 60°. This explained the minimum of the
I'(0) at 60°!. In addition, it seems that the value smoothly approaches unity at 180°

because of the reductions of the three-body effect.
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Figure 3.10: The ratio (a) I'(#) and (b) I'(0,y,0) obtained by the GCMC method and the integral
equation theory with the PY, HNC and MHNC closures.

The GCMC result have the peak around 120° because of the influence of the sol-
vent located at 60°. A high peak for the reduced spatial distribution appears at 60°,

'This minimum can also be explained in terms of the triplet overlap of the excluded volume. In the SA, the overlap of

the excluded volume is double—counted.
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and the peak value is much larger than unity. As the probability of the existence of
the solvent particle at 60° increases, the fourth particle at 120° is stabilized because
of the reduction of the excluded volume caused by the adsorption. In the SA, this
three-body effect is not included. Therefore, the probability of particle existence ob-
tained using the GCMC at 120° becomes larger than that estimated by the SA, and
the peak appears around 120° in Fig.3.10(a).

Fig.3.10(a) also shows I'(0) for the various closures, namely the PY, the HNC,
and the MHNC closures. The functions I'(f) maintain the same characteristics: two
minimums at 60° and 180° and one peak at 120°. In contrast to the qualitative validity
of these approximate three-body correlations, quantitative deviations are obtained.
The differences between the PY result and the exact result (the GCMC simulation)
is the largest. The HNC results have the opposite sign of deviation to the MHNC
results, but both differences are small. The exact result 1s also close to these two
plots. The HNC result is very accurate in the plots I'(d). However, it does not mean
that the HNC closure is very accurate in the calculation of the spatial distribution.
The deviation of the spatial distribution function calculated using the HNC closure
is larger than that calculated using the MHNC closure because of the large deviation
of the two-body correlation from the exact solution.

Fig.3.10(b) has the plots I'(r3) = I'(x,y, z) as a function of the coordinate (x,y, 7).
I'0,y,0)aty = V3/2 is equivalent to I'(6) at & = 60°. The plots I'(0, y, 0) oscillate,
and the qualitative features of the plots in the Fig.3.10(b) are similar. There are
two deep minimums around y = V3/2 and 1.8, with a distinct peak around 1.3.
However, the difference between the PY result and the exact (GCMC) results is the
largest. The accuracies of the MHNC and the HNC approximations depend on the
value y. The HNC approximation is the most accurate around y = V3/2, while the
MHNC becomes the most precise around the first peak at y = 1.8. However, the
difference is not quantitively large.

Here, we discuss the detail of the differences of I'(0, y, 0). The MHNC results eval-
uated well the value of I'(0, y,0) near the first and second peaks. These peak posi-
tions correspond to the bottoms (or minimums) of the distribution function g(0, y, 0),

where SA underestimates. We examined the g(r) between two hard spheres im-
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mersed in a one—component hard—sphere fluid using the MHNC approximation in
the previous study [62]. The MHNC results showed very accurate first minimums
in the g(r). The accuracy was much better than that of the HNC results. It can be
concluded that these are common features in the present study. Therefore, the evalu-
ation of the distribution functions using the MHNC approximation is very accurate,
even when discussing the value around the minimum. By contrast, the difference of
the HNC results for I'(0, y,0) around the first minimum is smaller than that of the
MHNC result, although the differences of the HNC results for g(r) are much larger
than those of the MHNC results. The HNC results overestimate both the numera-
tor and the denominator of Eq.(3.21). By contrast, in the MHNC results, only the

denominator is very accurate in the calculation Eq.(3.21).
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Figure 3.11: The ratio I'(6) and I'(0, y, 0) obtained by the GCMC method and the integral equation
theory with the MHNC, Verlet and Duh—Henderson bridge functions.

We also examined I'(8) and I'(0, y,0) using three bridge functions: the MHNC,
the Verlet, and the Duh—Henderson bridge functions. Fig.3.11 shows the comparison
with GCMC simulation. The three bridge functions have virtually the same results.
We can find differences in I'(0, y, 0) around y = 1.50y. The difference between the
Verlet bridge result and the exact result is the largest, but it can be ignored. Therefore,
it is consistent with the agreement in the spatial distribution functions (see Fig.3.6).

The HNC approximation seems to overestimate the spatial distribution function,
especially the peak of the function, due to the ignorance of the bridge function (see

Eq.(3.5).) However, in the preceding study for the correlation functions of the hard-
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sphere solvent around a hard sphere, the radial distribution function calculated by
the MHNC approximation is very accurate [62]. In the study, the exact radial distri-
bution function was calculated using the canonical MC simulation with a correction.
The conclusion can be believed because we checked the validity of the correction
using the GCMC simulation. Furthermore, it is known that the pair correlation func-
tion also agrees well with MC if the bridge function is constructed to satisfy the
thermodynamic consistency [43,75]. Although the thermodynamic consistency in
the case of the HNC approximation is insufficient, the results given by the MHNC
approximation are automatically almost completely satisfied [76]. Therefore, we ex-
pected that the bridge function of the MHNC approximation would be an adequate
improvement and that the three-body correlation is also better than that calculated
using the HNC approximation.

However, the superiority of three closures with a bridge function, namely MHNC,
Verlet, and Duh—Henderson closures, in the spatial distribution functions is not caused
by the superiority of the three-body correlations. Here, we can also confirm the va-
lidity of the closure in terms of the three-body correlation obtained in the present
study. Although the incorporation of the Verlet, Duh—Henderson, and Kinoshita
bridge functions improved the pair correlation function, it did not necessarily lead to
better results for the triplet distribution function under the present calculation condi-
tions. Therefore, it was interesting to compare the results from the MC simulation
and the OZ equations coupled with PY, HNC, and the three different closures in
terms of the triplet distribution function. I can conclude that the calculated results do
not always imply that the MHNC approximation gives better results than the HNC
approximation for the three-body correlation.

Here, I mention the calculation procedures for I'(f). There are two procedures.
Configuration 1 (see Fig.3.12(a)) was adopted in the above calculation because it is
easy to obtain the function in the molecular simulation. However, the I'(f) can also
be obtained by using configuration 2 (see Fig3.12(b)). In the method, a pair of two
separate particles, 1 and 3, was fixed at r;, and r3; was immersed in the solvent par-
ticles. Thus, the spatial distribution function around them g®(r|3;1>) to obtain I'(9)

can be calculated. In other words, I'(f) was calculated using the spatial distribution
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(a) Configuration 1 (b) Configuration 2
: Particle 1 and 2 are fixed : Particle 1 and 3 are fixed

Figure 3.12: Description of the two configurations for the I'(6) calculation: (a)['(6) = I'(ry;r3) and
(b)I'(8) = I'(r13;r2). The solid spheres are fixed and the broken spheres are obtained for distribution
functions.

function at r, when particles 1 and 3 were located at variable 6. Then, I'(6) could be

written as

g9 (ri3;12)
g(ry, r2)g(rz, 13)
Here, g®(r13; r2) was not the spatial distribution around a contact dimer solute. How-

['(0) =T'(ri3;r2) = (3.22)

ever, we could compare the I'(f) between the two configurations (2 vs. 1). In
Fig.3.13, we show the I'(0) results when configuration 2 is adopted. The discrep-
ancies between the exact GCMC result and the results for the various closures are

much larger than those obtained using configuration 1 (Fig.3.10).

I(6)

Figure 3.13: The ratio I'(0) calculated by the integral equation theory with the PY, HNC, and MHNC
closures at configuration 2 and the GCMC method.

Here, the difference between the calculated results using the integral equation the-
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ories and the exact result using GCMC in Fig.3.13 is discussed. For the exact results,
the plots for configuration 2 and configuration 1 were the same as mentioned above.
The closure dependence (See Fig.3.10(a)) appeared for configuration 1. However,
the dependence was much smaller than that for configuration 2 (See Fig.3.13). For
configuration 2, the value calculated using MHNC was about 0.65 when 6 = 180°.
At 68 = 180°, because the three particles were aligned on a straight line, we expected
the three-body correlation effect to be less apparent. This is because particle 3 is
not strongly affected by particle 1, as particle 3 is located just behind particle 2 (See
Fig.3.12). In fact, in the case of configuration 1, all plots converge to a value of about
0.9 at = 180° (See Fig.3.10(a)). That is, in the case of configuration 1, especially
when 6 = 180°, any approximation is close to the exact result. These results contrast
with those of configuration 2. The poor approximation for the three-body correlation
by closures is emphasized using configuration 2.

I discuss the reason for the difference between configurations 1 and 2 as follows.
The three-body correlation becomes weak in a dilute system, and I' goes to 1 [69].
By contrast, the multi-body correlation becomes significant in a high-packing fluid
because the calculation of the multi-body correlation becomes more significant as
the local concentration increases. Then, the value I' is expected to worsen as the
local density increases. The local density depends on the configuration. As the
overlap of the excluded volume increases, the configuration of the three particles
becomes stable in the present packing fraction, and the local density of the third
particle becomes high at the location. Let us think of this location. Therefore, the
large value of the excluded volume overlap for the third particle, namely particle 2
for configuration 2, should correlate with the accuracy of the multi-body correlation.

For example, in configuration 2, particle 2 contacts particles 1 and 3. Then, par-
ticle 2 has two overlaps of excluded volume with particles 1 and 3 at any angle.
Because of the large amount of overlap, it seems that the local density of the third
particle for configuration 2 is high, and the deviation of the three-body correlation
value from the exact value becomes large in the entire range of 6§ = 60° to 180°
except the cross point near 8 = 130° for the HNC closure.

Here, I will discuss the validity of the above argument regarding the relationship
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between local density and three-body correlations. In configuration 1, the excluded
volume of particle 3 overlaps with both those of particles 1 and 2 near 8 = 60°.
Therefore, at 60° < 0 < 120°, the differences between the results of the exact cal-
culation and those calculated using the integral equation theories appear. However,
when 120° < 6 < 180°, the excluded volume of particle 3 overlaps only that of parti-
cle 2. Since the overlap is less than that for 60° < 8 < 120°, the results of the integral
equation theory roughly agree with the exact results. The above results coincide with
the argument that the three-body correlation tends to be inaccurate in configurations
where the local density of particles is high. We can expect that the deviation between
the exact results and the results for configuration 1 becomes smaller than those for

configuration 2.

3.4 Conclusion

The reduced spatial density profile of hard spheres in the vicinity of a hard-sphere
dimer was calculated using the 3D-OZ equation with closure and GCMC simula-
tions. Not only the PY and HNC closures but also the closures with bridge functions
proposed by Verlet, Duh—Henderson, and Kinoshita were examined to assess the
approximations. An assessment using the spherical solute has been published. How-
ever, a nonspherical solute has not been examined in the assessment of the integral
equation theories. There was one more advantage in this assessment study. I adopted
the GCMC simulation, not the canonical MC simulation because the integral equa-
tions were formulated under the grand canonical ensemble. This advantage was not
clear In the case of the present study because the solute particle was small. However,
the advantage must become clear when the solute is a macromolecule.

I compared the results obtained from the integral equation theories with the exact
result obtained using the GCMC. The results using the three closures taking account
of the bridge function, such as the MHNC closure, were much better than others.
The results given by the SA were not so bad, although the calculation cost is rea-
sonable. Surprisingly, if we used the precise radial distribution function g(r), the
reduced density profile obtained by the SA was better than the results calculated us-
ing the PY and HNC closures. However, the advantage of the SA is not so valuable
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because the 3D—OZ calculation is not so expensive. By contrast, the closures with
bridge functions have an advantage in the calculation of the reduced density profiles
guv(x,y,z). As discussed above, the advantage of the bridge function proposed by
Kinoshita should appear in the other studies, the concentration dependence studies
for the multi-component solvent system.

I also compared the three—body correlations obtained using the integral equation
theory with the exact results. The comparisons with the GCMC results showed that
the inferiorities of SA and PY approximations towards the NHC and other closures
in accuracy were clear. On the other hand, the superiority of the three closures,
taking into account the bridge function over the results using the HNC closure, was
not clear under the present calculation conditions. I can conclude the above results
as follows. The HNC approximation overestimates the pair correlation function due
to the ignorance of the bridge function. By contrast, it seems that the closures with
the bridge functions are slightly worse than the HNC approximation for the three—
body correlation, although the results of the closures with bridge functions are almost
completely accurate. Because the HNC closure was insufficient for thermodynamic
consistency, the slight worsening caused by the bridge function in the closures with
the bridge functions was surprising. I think that there is a cancellation due to the
deviations in the denominator and the numerator of Eq.(3.21) in the case of the HNC

closure.
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Chapter 4

Entropic molecular recognition in a
hard-sphere mixture

4.1 Introduction

In the study of depletion interaction, one of the simplest and most popular systems
has been the model of two large hard spheres immersed in a small hard-sphere fluid.
The effective interaction between two large hard spheres has been calculated: that
1s, when the large spheres are in contact, the excluded volumes for the small spheres
overlap, and the configuration volume for small spheres increases. The configura-
tional entropy for the small spheres increases due to the increase in the configura-
tional volume. Therefore, the free energy of the system decreases due to the associ-
ation of large spheres. The interpretation described above was given by Asakura and
Oosawa in 1954 [39-41] (see section 1.3).

In the case of nonspherical solutes, the shape dependence of the depletion interac-
tion is very interesting, as it gives the guest selectivity by a host molecule. Kinoshita
studied the depletion interaction between a hard body with a hemispherical cavity
and a large hard sphere using the 3D-HNC-OZ theory [15-18]. In that study, the
selectivity of the diameter of the large sphere was shown. This lock-and-key relation
can be explained by the Asakura—Oosawa (AO) theory. In the AO theory, as the over-
lap of the excluded volumes increases, the entropy gain increases. Here, the overlap
reaches maximum when the large sphere fits into the cavity exactly. Therefore, the

entropy gain becomes maximum. This selectivity could play an important role in the
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molecular recognition phenomenon in biological and synthetic systems.

In the discussion for selectivity, Asakura and Oosawa’s idea has an advantage, as
mentioned above, and presents a problem in the calculation of the effective interac-
tion shape. For example, there are problems in the estimations of the barrier in the
recognition process. The remarkable simplification of the theory is in the modeling
of small spheres as an ideal gas. The interaction between small particles is ignored
in the AO theory. Therefore, the small spheres do not construct any liquid struc-
ture near the solute molecules even when the packing fraction is large, such as 0.4.
The effective attraction increases monotonically as the large particles approach each
other in the simplification. However, when the fluid of small particles is dense, we
can expect that the effective interaction is oscillatory due to the inhomogeneity of the
number density of small particles, namely the liquid structure. In particular, the high
density of small particles on the surface of large particles leads to a free-energy bar-
rier to overcome before reaching the contact. Kinoshita et al. used integral equation
theories to clarify the problem in the shape of the effective interaction [15-18].

Some studies show the depletion interaction between spherical solutes immersed
in a hard-sphere mixture [77,78]. The effective interaction depends on the mixing
ratio, the size ratio, and the packing fraction. For example, as the number density of
smaller particles increases, the stabilization free energy at contact increases, and the
free-energy barrier becomes higher. Roth and Kinoshita reported a reduction in the
free-energy barrier between two large spheres in multicomponent systems of smaller
spheres [79]. The oscillatory structure of depletion interaction in a multicomponent
system is less than that in a one-component system, and the free-energy barrier for
the association process is significantly reduced in a multicomponent system. They
adopted two large spheres as solute molecules. It seems that the reduction i1s caused
by the interference of the density waves caused by the various-sized particles. This
idea of barrier reduction can be applied to the molecular recognition phenomenon.

The PMFs were calculated between a cyclic model (cyclodextrin-like) molecule
and a spherical molecule in a multicomponent mixture using the 3D-MHNC-0OZ
theory. Chapter 2 shows that the MHNC theory is also a very accurate approxima-
tion in nonspherical systems with hard-body particles. Thus, the MHNC theory is a
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suitable approximation for the present analysis. The results of the PMF obtained by

3D-HNC-OZ and AO theory are also shown for comparison.

4.2 Model and Method

4.2.1 Model

o |5.2dg

5dg

Figure 4.1: Model solutes considered. Solute 1 is a large hard sphere with diameter 5ds. Solute 2
is a ring cluster of hard spheres having a cavity with the diameter 5.2ds. The diameter of each hard

sphere is 1.0ds. The coordinate system is chosen such that the origin is at the center of the ring.

Two solutes are immersed in a solvent. In the analysis of occurring behavior
purely entropic in origin, a hard-core potential can be adopted for the system. Solute
1 is a large hard-sphere mixture acting as a guest molecule and solute 2 hused hard
spheres forming a cyclic host molecule, (Fig4.1). The solvent is a multicomponent
mixture of hard spheres with the diameter Ads in the range of 1 < 4 < 5. The total
packing fraction of the mixture is kept at 0.380 [77, 80]. Ambient water has this
packing fraction. A total of nine systems were examined, and their specifications
are summarized in Table4.1. The amplitude of effective interaction between large
spheres in a mixture is damped the most when the two components have almost the
same packing fraction [61,79, 80]. According to this result, the packing fractions of

the components were set at the same value.

4.2.2 Integral equation theory [27,43]

The computer simulations can hardly be applied to the analysis of the molecular

recognition in a mixture of small and medium spheres. When the size asymmetry of
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Table 4.1: The nine systems considered. In system 9, for example, the packing fractions of the small
spheres with the diameters ds, 2ds, 3ds, and 4ds are 0.095, 0.095, 0.095, and 0.095, respectively. The
total packing fraction is kept at 0.380 in all the systems.

System  ds 2ds 3ds  4ds

1 0.380

2 0.380

3 0.380

4 0.380
5 0.190 0.190

6 0.190 ---  0.190

7 0.190  --- -+ 0.190
8 0.127 0.127 0.126

9 0.095 0.095 0.095 0.095

the mixture is high, as in the present study, the basic cell required is unacceptably
large. Moreover, when the guest concentration is diluted, obtaining a sufficiently
accurate ensemble average becomes a difficult task. In contrast, the integral equation
theory allows calculations in the infinite bulk system with very little computational
effort.

The OZ equation is solved together with a closure equation [27,43]. In this study,
the correlation functions were obtained in the dilution limit of a solute particle im-
mersed in a solvent. The OZ equation between solute (U) and solvent (V) is ex-

pressed by:
hyy(r) = cyv(r) + pv fCUV(”)hVV(h" — r|)dr’, 4.1)

where p is the number density, 4 is the total correlation function, and c is the direct
correlation function. The system is spherically symmetric and r is the distance be-
tween the centers of solvent particles. For a nonspherical solute, the OZ equation is

given on a 3D grid as follows:

hyv(x,y,2) = cyv(x,y,2) + py fCUV(X,y, Dhyy(r’ —r))dx'dy’d? . 4.2)

The vectors are r = (x,y,z) and r’ = (x',y’, 7). Eq.4.2 in the momentum Kk space is

written as:
Yovke ky, k) = pyéuy(ke, ky, k)hyy(K)), (4.3)
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1 [13ar2]

where y = h — ¢, the symbo indicates the Fourier transform. The vector k =
(ky, ky, k). iLVV(IkI) is calculated using the integral equation theory for solvent.

The closure relation equation is as follows:

cyv(r) = exp[—Buyy(r)] explyyv(r) + byy(r)] — yyv(r) — 1, 4.4)

where 8 = (kgT)~!, kgT is the Boltzmann constant times the absolute temperature.
The functions u and b are the potential and the bridge function, respectively. For a
spherical system, that is, coupled with Eq.(4.1), r is replaced with r. For a non-
spherical system, that is, coupled with Eq.(4.2), r = (x,y,z). In this study, the
HNC closures and modified closures with semiempirical bridge functions were used.
The results from the HNC theory are not very accurate because the bridge function
was neglected. The MHNC closure includes the bridge function proposed by Ki-
noshita [44,51,52,62], as follows:

2
Yov(T)
byy(r) = -0.5 (y >0)
_ Uv
= 0.51 Oy — (y <0).

The reliability of the MHNC closure has been demonstrated for mixtures with high
size asymmetry. Furthermore, it has been verified that the MHNC closure provides
more accurate spatial distribution functions than the PY and HNC closures. Thus,
the MHNC theory is best suited for the analysis in this work.

First, the solute 1-solvent correlation functions are calculated using Eq.(4.1) and
one of the closures (U = 1). Second, the solute 2—solvent correlation functions are
calculated using Eq.(4.2) and the same closure (U = 2). The PMF between solute 1

and 2 is obtained from:

BWia(x,y,2) = Buia(x,y,2) — y12(x,y,2) — bra(x, y, 2), (4.6)

where y12(x, y, z) 18 calculated using inverting ¥12(ky, ky, k;) given by:

F1alkys kyy k2) = pyeoy ke, kyy k)R (K)). (4.7)
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4.3 Results and Discussion

4.3.1 Size selectivity

10

10

xidg xidg

Figure 4.2: The spatial distribution of medium spheres around solute 2 in the xy plane g, (x,y,0)
calculated by MHNC theory. The region enclosed by the red line is the range from the peak position
at x = 0 to the minima along the x-axis, and medium spheres in this region were decided to be

inclusions.

In this study, a large sphere with a diameter of 5ds was adopted as a guest molecule
for the host (Solute 2). According to the lock-and-key relationship, it must be an ad-
equate combination of the host and guest because the guest size is almost the same as
the cavity size of the host molecule. The size dependence of the recognition stability
is discussed here based on the AO theory. The overlap of excluded volumes of the
host and guest becomes maximum at the recognition site when the size fitting is the
best, such as the 5ds guest. Thus, it could be estimated that the 5ds guest was very
stable at the recognition site of the ring-like host molecule, which had a 5.2dy cavity.

Therefore, the 5dg guest was adopted as the guest. The validity was also confirmed
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Table 4.2: The number and volume of the existence region of included medium spheres with diameter
ds,2dy,3ds,4ds, 5ds .

ds 2ds 3ds 4dy Sds
no 209x107% 138x107% 1.11x107%2 1.11x1072 541x1072
v/d} 17.69 10.14 5.04 2.03 0.09

using the OZ-MHNC theory. The spatial distribution of medium spheres (guests)
around a host molecule is presented in Fig.4.2. Five sizes of candidate medium
spheres (i.e., 1ds, 2ds, 3ds,4ds, 5ds) were examined. For all guest candidates, the
high peaks are found at the recognition site. The host is immersed in a binary mix-
ture. The number density of the medium sphere is py; = 0.1 x 1072, and the total
packing fraction is kept at 0.380. The highest peak was found for the 5ds guest in the
spatial distribution function g;,(x, y, z) for medium spheres around the host (where
2 denotes solute 2). The amount of guest molecules around the recognition site was
estimated by integration of the spatial distribution in the surrounded volume v (red
curves in Fig.4.2). v is the area from the peak position at x = 0 to the minima along

the x-axis. The amount of recognized guest molecules can be calculated as:

n=pm ngM(x, Y, Z)dV (48)

The amount for the 5dg guest was much larger than others (see Table 4.2), although
the volume of the recognition site was the smallest. The selectivity of the 5ds guest

was also the highest.

4.3.2 The PMF between host and guest molecules immersed in a one-component

system

Figs4.3—4.6 show the PMFs between host and guest molecules immersed in four one-
component hard-sphere fluids (systems 1-4). Three different theories, AO, HNC, and
MHNC, were adopted in the calculation. The PMF gives interesting information on
the stability caused by the recognition and the free-energy barrier in the recognition
process. All three theories give the most stable state at the recognition site (x,y, z) =
(0,0,0). The PMFs have negative values, and the maximum absolute value of each
PMF plotis at x = 0.
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Figure 4.3: The PMF in system 1 between so- Figure 4.4: The PMF in system 2 between
lutes 1 and 2 along the trajectory of solute 1: solutes 1 and 2 obtained by three theories:

x>0,y =0, and z = 0. The results were ob- namely, AO, HNC, and MHNC.
tained by three theories: namely, AO, HNC,

and MHNC.
15| ‘ ‘ ‘ ‘ ‘ Systém 3] 157 System 4 |
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Figure 4.5: The PMF in system 3 between
solutes 1 and 2 obtained by three theories:
namely, AO, HNC, and MHNC.

Figure 4.6: The PMF in system 4 between
solutes 1 and 2 obtained by three theories:
namely, AO, HNC, and MHNC.

The HNC approximation gave the deepest well in the three theoretical results at
the most stable location. In the case of the spherical particle system, it is known that
the HNC approximation overestimates the peak value in the distribution function [42,
62]. The study in the previous chapter also concluded that the HNC approximation
overestimated peak values near the concave surface [56]. The peak in the distribution
function corresponded to the minimum in PMF because of the relation W;;(x,y,z) =
—kT In g;;(x,y,z). Therefore, the present results for the PMFs at x = 0 agree well

with the literature.
The results shown in the previous chapter suggest the exact value to be located
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between the HNC and the MHNC results near the concave surface, and the MHNC
result was much closer to the exact value than the HNC result. In the present study,
we can expect the MHNC results to be close to the exact value at the recognition site
(x,y,2) = (0,0,0).

Next, we focused on the PMF oscillation behaviors. Two integral equation the-
ories give the PMFs with oscillation. By contrast, the AO theory cannot predict
the free-energy barrier in the recognition process because of the lack of correlation
between the solvent particles. Thus, the oscillation behaviors were caused by the cor-
relation between the solvent particles. The correlation is caused by the short-range
repulsive interaction between solvent particles when the solvent packing fraction is
high. The short-range repulsive interaction is important for the discussion of the
free-energy barrier in a high packing-fraction system, such as a liquid.

The first peaks, namely the first barriers, are the highest (see Figs 4.3—4.6.) When
the location of the first barrier is in the vicinity of a hard wall, we can expect that
the location 1s x = adg, where « is constant [77]. However, the location of the first
barrier was about the solvent size +dg. For example, the highest barrier was located
around 1.8ds for system 1 (the solvent particle size was dg). In the case of system
4 (the solvent particle size was 4dy), the location was about 5dg. In the case of the
location of the first barrier in the vicinity of a hard wall, the first minimum of the
PMF is sharp [77]. By contrast, the present free-energy well around x = 0 is broad
and gradually increases. It seems that the breadth gives the first barrier position
around x = solvent size +ds.

As the solvent diameter increases, the well at (x,y,z) = (0,0,0) becomes shal-
lower, and the peaks become lower. In the case of system 4 (i.e., the largest solvent
particle), the PMFs were the flattest among the four pure solvent systems (i.e., sys-
tems 1-4). These systems had the same packing fraction. Then, the number density
reduced as the solvent particle increased. In the framework of the AO theory, the
recognition stability is proportional to the number density if the excluded volumes
overlap and the temperatures are kept. The dependence of the excluded volume
overlap on the solvent size appeared weaker than the number density change. More-

over, the strong localization of a particle caused strong exclusion around the particle.
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Then, the first well shallowing causes a decrease in barrier height. Therefore, the
PMFs became flatter with the solvent size increasing. A similar discussion was con-

ducted for the PMFs between two hard spheres immersed in a binary hard sphere

mixture [77, 80].

4.3.3 The PMF between host and guest molecules immersed in mixture

15 | | | | | SystémS | 15 ¢ | | | | | Systém6 |
10l (d, 2dy) | ol (dg 3dy) |
A
g: ol / \ R g
=4/ =
St / Q.
10 =7 —— AO
S e HNC
A5 .—..- MHNQ
0 1 2 3 4 5 6 7
x/d
Figure 4.7: The PMF in system 5 between Figure 4.8: The PMF in system 6 between
solutes 1 and 2 obtained by three theories: solutes 1 and 2 obtained by three theories:
namely, AO, HNC, and MHNC. namely, AO, HNC, and MHNC.
157 | | | | | Systém7 |
. (dg, 4ds) |
2
S
N
=
Q

Figure 4.9: The PMF in system 7 between
solutes 1 and 2 obtained by three theories:
namely, AO, HNC, and MHNC.

The PMF between solute 1 (guest) and solute 2 (host) immersed in a hard-sphere

mixture was also investigated. Five mixtures were examined. The AO potential in
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the m-component mixture was obtained as:

W=l Z 0iAV, (4.9)
i=1m

where p; 1s the number density of the solvent i, and AV; is the overlap of the excluded
volume for solvent i. The PMFs for a binary mixture are shown in Figs4.7-4.9. The
binary mixtures were prepared as systems 5—7. From the results of the AO theory,
the stability at x = 0 is lower with increasing diameter of the second component.
This phenomenon can be explained based on the number density of the solvent par-
ticles. The total number density decreases due to the constant total packing-fraction
condition. As discussed in the previous section, this decrease causes the decrease in
stability at x = 0. These behaviors were also observed in the results obtained by the
HNC and MHNC theories.

The results obtained by two integral equation theories are also discussed here.
The depth obtained by the MHNC and AO theories were almost the same, whereas
that obtained by the HNC theory became larger than others. According to Chapter
3 [56], it seems that the wells obtained by the HNC theory were too deep. The re-
sults obtained by the MHNC theory were expected to be almost reasonable. Indeed,
there was surprising agreement on depth between the AO and MHNC theories. How-
ever, this agreement seemed to be an accidental coincidence because the AO theory
does not take into account the correlation between the solvent particles. The lack of
correlation caused the absence of a barrier.

Because the first barrier i1s discussed here, we focus on the results of the MHNC
theory. The heights of the barriers for systems 5—7 were smaller than the barrier for
system 1. However, the height for these binary solvent systems weakly depended on
the diameter of the second component. Moreover, the effect of the second component
on the period of PMF oscillation was also weak. The PMF period in systems 5—7 was
close to ds (i.e., the diameter of the first component). Because the number density of
the first component was much larger than that of the second component, the effect of
the first component on the PMF oscillation period was dominant. As a result of this
effect, the heights of the barriers for systems 5—7 were almost the same.

The PMFs in systems 8 and 9 are shown in Figs4.10 and 4.11, respectively. Sys-
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Figure 4.10: The PMF in system 8 between Figure 4.11: The PMF in system 9 between
solutes 1 and 2 obtained by three theories: solutes 1 and 2 obtained by three theories:
namely, AO, HNC, and MHNC. namely, AO, HNC, and MHNC.

tems 8 and 9 have three- and four-component solvent particles, respectively. The
free-energy barriers in these multicomponent systems were lower than those in the
binary mixtures and are much lower than system 1. As the range of the sphere diam-
eter (i.e., ds—3ds and ds—4ds in systems 8 and 9, respectively) increases, the barrier
becomes lower.

The first well depth and the first barrier height in the two most different systems
were compared. The PMF results for systems 1 and 9 are shown in Figs 4.12 and
4.13. System 1 is the simplest case, and system 9 has the most complex solvent
mixture. First, the wells’ depth (i.e., the recognition stabilizations) are discussed. In
the case of the AO theory, the reduction in total number density caused the reduction
in stability in system 9. The value for system 9 was almost half (48%) that of system
1.

By contrast, the results for the MHNC theory were different. The reduction was
much smaller than that obtained by the AO theory. In the MHNC theory, the stabil-
ity in system 9 is —8.16k7’, which is smaller than that in system 1 (—10.85kT) only
by 25%. This difference is caused by the correlation between solvent particles. In
the case of the AO theory, the correlation is ignored, and the reduction in the total
number density directory affects the recognition stability. The packing around the
host, guest, and surrounding solvents becomes important if correlations between the

solvent particles exist. These results are nontrivial phenomena caused by a multi-
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Figure 4.12: The PMF in system 1 and 9 be- Figure 4.13: The PMF in system 1 and 9 be-
tween solutes 1 and 2 obtained by the AO the- tween solutes 1 and 2 obtained by the MHNC
ory. theory.

body effect.They must be discussed based on the partial molar volume change in the
recognition process. The weak dependence on the first well depth should be useful
in the appreciation. Therefore, in our next study, the partial molar volumes will be
calculated and the effects will be revealed using the integral equation theory.

Second, the barrier difference is discussed based on the MHNC results. The first
free-energy barrier in system 9 was 2.16kT, a value that is about 48% of that for
system 1 (15.02kT'). This dramatic reduction in the highest barrier in the recognition
process is practically useful because solvent mixing is not usually difficult.

The above results for the first barrier on the solvent mixing effect are also non-
trivial. Here, we rationalize the solvent mixing effect on the barrier. The spatial
distributions of the PMF for solute 1 (guest) around solute 2 (host) on the xy plane
are drawn in Figs4.14 and 4.15. The contact surface of solute 2 is surrounded by a
negative value layer of the PMF, but the negative value layer is also surrounded by a
positive value. These layers repeat again and again, and the amplitude is decreasing.
Thus, solute 2 (host) is surrounded by a decreasing oscillation. When we replace
the PMF with the spatial distribution of solute 1 (guest), the layers are the decreasing
density wave of solute 1, which is generated by solute 2. We can find the interference
in both dimensional maps. In these figures, it looks like the interference is caused
by the density wave from the upper part of solute 2 and that from the lower part of

solute 2. However, the interference is caused by the density waves from all spheres
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forming solute 2.
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BW(x,y.0)

Figure 4.15: PMF on the xy plane in system 9
obtained by the MHNC theory.

Figure 4.14: PMF on the xy plane in system 1
obtained by the MHNC theory.

The interference feature in the PMF wave (or the density wave) is a common fea-
ture in Figs4.14 and 4.15. However, the decreasing features differ. The decrease
for system 1 (see Fig.4.14) is slower than for system 9 (see Fig.4.15). The density
distribution in the solvent mixture has multiple components. For example, the den-
sity distribution of solute 1 for system 9 has four components, and the oscillation
periods are ldg, 2dg, 3ds, and 4dg. They also interfere with each other, and the
starting position of each wave 1s different (see Fig.4.16). As a result, the PMF wave
of solute 2 cannot have a high peak at the first barrier position due to the destruc-

tive interference. Therefore, the first barrier for system 9 becomes much lower than

Density
wave

Ilnterference

Figure 4.16: Picture illustrating density wave interference in a mixture.

64



that for system 1. A similar decrease in the oscillation by the interference caused
by the multicomponent system is found in the PMF between two spherical solutes
immersed in a mixture solvent [80]. In the present study, the interference of waves
and the decreasing behavior of the amplitude can be found in these two-dimensional

maps.

4.4 Conclusion

The PMFs between a cyclic model molecule and a large sphere in a multicompo-
nent mixture of smaller spheres were investigated using the AO, OZ-HNC, and
OZ-MHNC theories. The AO theory is the simplest theory to describe the deple-
tion interaction. The interaction between small spheres is ignored in the AO theory;
therefore, the predicted depletion interactions do not oscillate. In contrast, the real
entropic force is oscillatory and possesses the free-energy barrier, which plays an
important role. Nine systems were prepared and the stabilities of the recognition and
the free-energy barrier in the recognition process were obtained.

The PMFs in the mixtures differed significantly from those in a one-component
system. The oscillatory structure of the depletion interaction in a multicomponent
system was lower than in a one-component system, and the free-energy barrier for the
association process in a multicomponent system was reduced. The strongest reduc-
tion of the free-energy barrier was observed in a multicomponent mixture of smaller
spheres with varying diameters, with the same packing-fraction value of each com-
ponent. This feature was similar to the previous study of spherical solutes [80].
When the viscosities of the solvents are similar to each other, this could mean a re-
duction in the time scale in which the guest molecules reach a recognition site of host
molecules. Furthermore, the PMF in the multicomponent mixture has a short-range
attraction in the cavity, which induces sufficient stability for molecular recognition.
In the case of spherical solute particles, the stabilities were reduced when the bar-
rier heights were reduced. By contrast, in the present study, the stabilities were
maintained when the barrier heights were reduced. These results showed that the
free-energy barrier could be controlled while the recognition maintained sufficient

stability by choosing an appropriate multicomponent mixture.
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Chapter 5

Summary

In this thesis, an analysis of molecular recognition was described using 3D inte-
gral equation theories combined with grand canonical MC (GCMC) simulations. In
the analysis, hard-body particle models were adopted to discuss the effect of the
translational motion of solvent molecules on the effective interaction. This study is
summarized as follows.

In Chapter 2, simulation studies were performed to assess the integral equation
theories for molecular recognition because molecular recognition studies need con-
centration dependence, and molecular simulations for concentration dependence are
usually difficult to perform. The spatial distribution function around a contact dimer
was calculated using 3D OZ equations coupled with closures in which PY and HNC
approximations were used or in which the MHNC bridge functions proposed by
Kinoshita were incorporated. The results were compared with those from GCMC
simulations because the grand canonical ensemble was adopted in the formulation of
integral equation theories for liquid. The spatial distribution functions obtained by
the 3D-MHNC-0OZ theory were much more accurate than those obtained by other
theories. The advantage of the 3D-MHNC-OZ theory was maintained even when
the solute particle also had concave surfaces. Here, it should be stressed that al-
though the PY approximation was believed to be more adequate in the case of a
hard-particle fluid, the MHNC approximation was found to be much better than the
former. Therefore, the 3D-MHNC-OZ theory is a powerful tool in systems that
have strong concavity, such as molecular recognition, when the hard-body particle

model was adopted. Analyses on the triplet distribution function were also per-
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formed. It was found that in terms of the triplet distribution function, the use of
the 3D-MHNC-0OZ theory does not necessarily lead to improvement. This means
that the 3D-MHNC-0OZ theory shows high accuracy because of some cancellations.
However, the details have not been clarified.

In Chapter 3, based on the results from the previous chapter, the 3D-MHNC-0OZ
theory was adopted for the molecular recognition study in a multicomponent mix-
ture. The PMFs between a cyclic host molecule and a spherical guest molecule were
calculated. The PMF in the mixture, in particular the first peak, was significantly
different from that in a one-component system of small spheres. The PMF in a one-
component hard-sphere solvent has an oscillatory structure. By contrast, the oscilla-
tion structure almost disappeared in a multicomponent system. This difference is re-
lated to the reduction of the first barrier height in the recognition process. Moreover,
the stability with recognition in a multicomponent system of small spheres whose di-
ameters and the mixing ratios were suitably chosen was large enough. These results
suggested that the cosolvent can regulate the stability and the recognition barriers.
The interference of the density waves can explain the disappearance of the oscillation

structure in the effective interaction.

67



Acknowledgement

I would like to express my sincere gratitude to Prof. Ryo Akiyama for his support and
warm encouragement during the course of my study. His advice and comments were
an enormous help to me. Special thanks to Prof. Ayumi Suematsu of Nishinippon
Institute of Technology for constructive comments and suggestions on my study.

I would also like to thank Prof. Masahiro Kinoshita of Kyoto University for the
software program used in the numerical preparation to obtain the distribution func-
tions. I would like to express my appreciation to Prof. Yuka Nakamura of Nigata
University for their valuable comments and discussion on my study. I would also
like to thank my colleagues of “Biophysics and Chemical Physics and Biophysics
Group” at Kyushu University for their friendships and support. Finally, I am deeply
grateful to my family for their warm support and encouragement.

This work was supported by JST, the establishment of university fellowships to-
wards the creation of science technology innovation, Grant Number JPMJFS2132.
The computation was performed using the Research Center for Computational Sci-
ence, Okazaki, Japan and the Research Institute for Information Technology, Kyushu

University.

68



Bibliography

[1] M. Kinoshita, Biophys. Rev. §, 283 (2013).

[2] B. Alberts et al., Molecular Biology of the Cell, 7th ed. (Garland science, 2017).
[3] D. Chandler and J. D. Weeks, Phys. Rev. Lett. 25, 149 (1970).

[4] D. Chandler, J. D. Weeks, and H. C. Andersen, Science 220, 787 (1983).

[5] J. D. Weeks and D. Chandler, J. Chem. Phys. 54, 5237 (1971).

[6] B. Widom, Science 157, 375 (1967).

[7] J. D. van der Waals, On the Continuity of Gaseous and Liquid States (Dover
Publications, New York, 2004).

[8] H. C. Longuet-Higgins and B. Widom, Mol. Phys. 8, 549 (1964).

[9] M. Nishino, M. Hirota, and Y. Umezawa, The CH/n Interaction
Evidence, Nature, and Consequences(Wiley — VCH, 1998).

[10] M. Watanabe, M. Nishiyama, T. Yamamoto, and Y. Koie, Tetrahidron 56, 741
(2000).

[11] Y. Nakagawa, K. Irie, R. C. Yanagita, H. Ohigashi, and K. Tsuda, J. Am. Chem.
Soc. 127, 5746 (2005).

[12] Y. Umezawa and M. Nishio, Biopolymers 79, 248 (2005).
[13] H. Ohtaka, A. Schon, and E. Freire, Biochemistry 42, 13659 (2003).

[14] J. Kardos, K. Yamamoto, K. Hasegawa, H. Naiki, and Y. Goto, J. Biol. Chem.
279, 55308 (2004).

69



[15] M. Kinoshita, J. Chem. Phys. 116, 3493 (2002).

[16] M. Kinoshita and T. Oguni, Chem. Phys. Lett. 351, 79 (2002).
[17] K. Amano and M. Kinoshita, Chem. Phys. Lett. 488, 1 (2010).
[18] K. Amano and M. Kinoshita, Chem. Phys. Lett. 504, 221 (2011).

[19] M. L. Bender and M. Komiyama, Reactivity and Structure Concepts in Organic
Chemistry (Springer, Berlin, Germany, 1978).

[20] J. Szejtli, Cyclodextrins and Their Inclusion Complexes (Akadémiai Kiado:
Budapest, Hungary, 1982).

[21] J. Szejtli, T. Osa, and Eds, Cyclodextrins (Pergamon: Oxford, U.K., 1996).

[22] C.J. Easton and S. F. Lincoln, Modified Cyclodextrins: Scaffolds and Templates
for Supramolecular Chemistry (Imperial College Press: London, U.K., 1999).

[23] T. Loftsson and M. Brewster, J. Pharm. Sci. 85, 1017 (1996).

[24] T. Kakuta et al., Adv. Mater. 25, 2849 (2013).

[25] J. M. Belitsky, A.Nelson, and J. F. Stoddart, Org. Biomol. Chem. 4, 250 (2006).
[26] J. Szetjli, Chem. Rev. 98, 1743 (1998).

[27] D. A. Mcquarrie, Statistical Mechanics (Harper and Row, New York, 1976).

[28] D. Chandler, Introduction to Modern Statistical (Oxford University Press, Ox-
ford, UK, 1987).

[29] W.Luck, M. Klier, and H. Wesslau, Ber. Bunsenges. Phys. Chem. 67, 75 (1963).
[30] S. Hachisu, Y. Kobayashi, and A. Kose, J. Colloid Interface Sci. 42, 342 (1973).
[31] S. Hachisu and Y. Kobayashi, J. Colloid Interface Sci. 46, 470 (1974).

[32] E. Winger, Phys. Rev. 46, 11 (1934).

[33] E. Winger, Trans. Faraday. Soc. 34, 678 (1938).

70



[34] B. J. Alder, H. G. Hoover, and D. A. Young, J. Chem. Phys. 49, 3988 (1968).
[35] M. Wadati and M. Toda, J. Phys. Soc. Japan. 32, 1147 (1972).

[36] J. G. Kirkwood, J. Chem. Phys. 7, 919 (1939).

[37] B.J. Alder and T. Wainwright, J. Chem. Phys. 127, 459 (1959).

[38] B.J. Alder and T. Wainwright, Phys. Rev. 127, 359 (1962).

[39] S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).

[40] S. Asakura and F. Oosawa, J. Polym. Sci. 33, 183 (1958).

[41] A. Vrij, Pure and applied chemistry 48, 471 (1976).

[42] J.-P. Hansen and 1. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic
Press, Lodon, 1986).

[43] J. P. Hansen and G. Zerah, Phys. Lett. A 108, 277 (1985).

[44] M. Kinoshita, Chem. Phys. Lett. 353, 259 (2002).

[45] R. Roth, B. Gotzelmann, and S. Dietrich, Phys. Rev. Lett. 83, 448 (1999).
[46] O. G. Berg, Biopolymers 30, 1027 (1990).

[47] D. Hall and A. P. Minton, Biochim. Biophys. Acta 1649, 127 (2003).

[48] R. Akiyama, Y. Karino, H. Obama, and A. Yoshifuku, PCCP 12, 3096 (2010).
[49] L. Verlet, Mol. Phys. 41, 183 (1980).

[50] D. M. Duh and D. Henderson, J. Chem. Phys. 104, 6742 (1996).

[51] M. Kinoshita, J. Chem. Phys. 118, 8969 (2003).

[52] M. Kinoshita and T. Hayashi, J. Molec. Liq. 247, 403 (2017).

[53] D. Frenkel and B.Smit, Underatanding Molecular Simulation From Algorithms
to Applications (Academic Press, San Diego, 1996).

71



[54] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Sci-
ence, Oxford, 1987).

[55] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
J. Chem. Phys. 21, 1087 (1953).

[56] M. Matsuo, Y. Nakamura, M. Kinoshita, and R. Akiyama, 2023,
arxXiv:2311.05893.

[57] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).

[58] R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys: Condens. Matter 14, 12063
(2002).

[59] Y. Yang-Xin and W. Jianzhong, J. Chem. Phys. 117, 10156 (2002).
[60] P. Attard and G. N. Patey, J. Chem. Phys. 92, 4970 (1990).

[61] M. Kinoshita, S. Iba, K. Kuwamoto, and M. Harada, J. Chem. Phys. 105, 7177
(1996).

[62] Y. Nakamura, S. Arai, M. Kinoshita, A. Yoshimori, and R. Akiyama, J. Chem.
Phys. 151, 044506 (2019).

[63] J. R. Schmidt and J. L. Skinner, J. Chem. Phys. 119, 8062 (2003).

[64] R. O. Sokolovskii, M. Thachuk, and G. N. Patey, J. Chem. Phys. 125, 204502
(20006).

[65] D. Frenkel and A. A. Louis, Phys. Rev. Lett. 68, 3363 (1992).
[66] D.J. Adams, Mol. Phys. 28, 1241 (1974).

[67] D.J. Adams, Mol. Phys. 29, 307 (1975).

[68] I. Nezbeda and J. Kolafa, Mol. Simulat. 5, 391 (1991).

[69] Y. Kubota and R. Akiyama, J. Phys. Soc. Jpn. 81, SA017 (2012).

[70] Y. Uehara, Y. T. Lee, T. Ree, and T. H. Ree, J. Chem. Phys. 70, 1884 (1979).

72



[71] B. J. Alder, Phys. Rev. Lett. 12, 317 (1964).

[72] J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).

[73] P. Attard and G. Stell, Chem. Phys. Lett. 189, 128 (1992).
[74] B. Bildstein and G. Kahl, J. Chem. Phys. 100, 5882 (1994).
[75] F. J. Rogers and D. A. Young, Phys. Prev. A 30, 999 (1984).

[76] T. Hayashi, H.Oshima, Y.Harano, and M.Kinoshita, J. Phys: Condens. Matter
28, 344003 (2016).

[77] R. Akiyama, Y. Karino, Y. Hagiwara, and M. Kinoshita, J. Phys. Soc. Jpn. 75,
064804 (20006).

[78] Y. Karino and R. Akiyama, Chem. Phys. Lett. 478, 180 (2009).
[79] R. Roth, Y. Harano, and M. Kinoshita, Phys. Rev. Lett. 97, 078101 (2006).

[80] R. Roth and M. Kinoshita, J. Chem. Phys. 125, 084910 (2006).

73



