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Abstract

The unification of gravity theory and quantum mechanics (quantum gravity) is a major

challenge in modern physics. Theoretically, quantum gravity is expected to reveal extreme

phenomena, such as the early universe, and the quantum aspect of a black hole. Quantum

gravity still shows no signs of completion because experimental evidence for the quantum

effects of gravity has never been observed so far.

Recent proposals for low-energy tabletop experiments have the potential to be game-

changers. The rapid development of quantum technology has raised hope that the study of

gravitational phenomena induced by quantum matter may be within its scope. In particular,

pioneered by Bose et al. and Matletto and Vedral, the possibility of detecting gravity-induced

entanglement between two quantum masses is a popular topic

However, the studies of Bose et al. and Matletto and Vedral did not take into account the

dynamical degree of freedom of quantum gravity (graviton) at all. It has been pointed out

that if the graviton is not considered, the properties of the theory of relativity and quantum

mechanics may become incompatible. In addition, there has been no discussion on how the

dynamical degrees of freedom of graviton affect entanglement generation.

In this thesis, we focus on revealing the quantum mechanical aspects of gravity based on a

quantum field theory. In particular, by comparison with the quantized electromagnetic field

case, we clarified the relationship between the existence of graviton and entanglement gener-

ation in a low-energy regime. We found that two quantum phenomena, vacuum fluctuation

and quantum superposition of bremsstrahlung owing to the transverse mode of the electro-

magnetic field (photon field), appear in the formula of a quantum correlation. Furthermore,

we demonstrated that causality, a property of the theory of relativity, and complementarity,

a property of quantum mechanics, are consistent because there are no quantum correlations

between objects that interact via dynamical fields. Finally, we quantitatively clarified that

the superposition of gravitational fields is correlated with the superposition state of the

particles.

Our results suggest that the dynamical degrees of freedom of the gravitational field may

play an essential role in the quantum effects of gravity in tabletop experiments in low-energy

regimes. We anticipate a deeper understanding of the decoherence induced by dynamical

fields to be important in finding a consistent theory of gravity and quantum mechanics.
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Notation

Here is summary for notation. For this thesis, the metric signature is chosen to be (+,−,−,−).

Greek letters take values 0, 1, 2, 3 denoting the indices of the spacetime coordinates. We will

be working in the natural units c = ℏ = 1 excepting in Chapter 2 while we recover c and ℏ
as necessary. The standard mathematical and physical notations are adopted.

A ⇒ B : A is sufficient for B

c : speed of light

ℏ : reduced Planck’s constant

G : Newton’s gravitational constant

e : elementary charge

ηµν : Minkowski spacetime metric

gµν : Curved spacetime metric, which satisfies with gµνgνρ = δρµ

Γλµν : Christoffel connections, Γλµν =
1
2g
λρ
(
∂µgνρ + ∂νgµρ − ∂ρgµν

)
∇µ : Covariant derivative in the µ direction, which generally leads to ∇λgµν = 0

Rµανβ : Rieman tensor, Rµανβ = ∂νΓ
µ
αβ − ∂βΓ

µ
αν + ΓµλνΓ

λ
αβ − ΓµλβΓ

λ
αν

Rαβ = Rµαµβ : Ricci tensor

R = gµνRµν : Ricci curvature

1n×n : n× n identiy operator
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1 Introduction

The construction of a unified theory of gravity theory and quantum mechanics is one of

the most important attempts in modern physics. This theory is called the quantum gravity

theory. Gravity is described by general relativity as the geometry of spacetime, whereas

quantum mechanics is a theory that explains the laws of physics in the microscopic world.

Currently, four fundamental forces (electromagnetism, strong force, weak force, and gravity)

are confirmed to exist in nature. In particular, all three forces, except gravity, have been

successfully described by quantum field theories, consistent with quantum mechanics.

Although the quantum gravity theory is considered essential for understanding extreme

situations, it has not yet been completed. For example, at the beginning of the universe, the

curvature of the spacetime will diverges. Standard cosmology, which assumes the classical

Einstein equation, suggests the existence of a singularity where the spacetime curvature

diverges [11, 12]. Under physical assumptions based on general relativity, a theorem was

proposed that singularity generally exists in an expanding universe [13]. Another example

is the quantum aspects of black holes: particle creation near the horizon of a black hole

leads to the evaporation of black holes with thermal radiation [14]. In particular, when the

initial state of the black hole is considered to be pure state quantum matter, this process is

interpreted as a time evolution from a pure state to a mixed state, where the final state is

thermal. Thus this time evolution is inconsistent with the unitarity of quantum mechanics,

which is known as information loss problem. Many ideas have been proposed to resolve this

problem [15, 16, 17, 18, 19]; however, this has not been solved because not only is the theory

describing the structure of spacetime and matter inside a black hole still unknown, but its

interaction with matter outside the black hole is also unclear. Quantum gravity theory is

expected to potentially provide an answer to information loss problem. Various candidate

theories (e.g., the superstring theory [20]) for quantum gravity theory have been proposed

so far. However, the validity of the proposed theories remains unclear.

One of the reasons for the difficulty in constructing a quantum gravity theory may be

that the phenomena originating from quantum gravitational fields have not yet been experi-

mentally discovered. General relativity predicted the existence of gravitational waves, which

are dynamical degrees of freedom in spacetime. In 2015, the existence of gravitational waves

was confirmed through direct observations using a gravitational wave interferometer [21].

However, the essence of quantum mechanics is that a particle is a wave and a wave is a

particle. Therefore, if the general relativity and quantum mechanics are unified, quantum
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of gravitational field (graviton) should exist. However, the verification of the existence of

graviton requires accelerators with energies much higher than those currently attainable [22,

23] and thus faces technical difficulties. In recent years, methods for the indirect detection

of gravitons using gravitational wave interferometry have been proposed [24, 25, 26, 27, 28,

29]; however, these methods have not yet been realized.

It has been pointed out that gravity may not obey quantum mechanics. Diósi [30, 31] and

Penrose [32, 33] have suggested that quantum state of a macroscopic object may decohere

due to its own gravitational energy. This implies that gravity is intrinsically fluctuating, not

quantum fluctuation. In this model, the Newtonian gravitational potential term is the origin

of the non-unitary dynamics. A more detailed theoretical model is presented in Sec. 2.3.2.

Developments in quantum technology from meso to macroscopic mechanical systems have

led to studies that may confirm the quantum mechanical nature of gravity in laboratory-

scale, low-energy experiments [34, 35]. Feynman predicted that a particle in a superposition

state of position would also make another particle be in a superposition state of position via

gravitational interactions [36]. This is interpreted as the realization of a superposition state

of the gravitational potentials induced by the particles. Bose et al., [37] and Marletto and

Vedral [38] have devised a model to verify the superposition state of gravitational potentials

(see also the review article [39]). They considered the time evolution between two particles

in a superposition state of positions interacting due to the gravitational potential. Then they

found that two particles that are initially not in an entangled state can become entangled

due to the gravitational potential. This quantum entangled state is interpreted as being

induced by the superposition state of the gravitational potential. Inspired by their work,

various studies have been conducted to test the quantum gravity effect on a laboratory scale.

For instance, Refs. [40, 41, 42, 43, 44, 45, 46] considered the quantum effects of gravity in a

table-top experiment. Moreover, the authors in Refs. [5, 6, 7, 47, 48, 49, 50] discussed the

entanglement generation between macroscopic objects using an optomechanical system [51,

52, 53]. However, the proposals of Bose et al., and Marletto and Vedral did not take into

account the degrees of freedom of the graviton, and it was noted that the properties of

relativity and quantum mechanics may be inconsistent without considering the graviton

[54, 55, 56].

This doctoral thesis aims to clarify the quantum-mechanical aspects of gravity from

the viewpoint of quantum field theory. In particular, in order to focus on revealing the

relationship between the property of gravity as a quantum field and the meaning of the
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quantum superposition of gravitational potentials, we attempt to investigate the following

three questions:

(i) How do the degrees of freedom of a dynamical field affect quantum entanglement gen-

eration? (Section 3)

(ii) How are the properties of relativity and quantum mechanics consistent when the field

degrees of freedom are considered? (Section 4)

(iii) How is the superposition state of the gravitational field quantified? (Section 5)

First, to clarify question (i), we construct a model that can discuss quantum entan-

glement generation by considering the dynamical field degrees of freedom. Looking ahead

to the extension to the gravitational field, we consider quantum electrodynamics that can

be analyzed rigorously. In particular, we discuss the entanglement generation between two

charged particles interacting with an electromagnetic field. We assume that the initial states

of the two non-relativistic charged particles each in a superposition of two trajectories and

the electromagnetic field are separable states and analyze their time evolution. The gauge

fixing of the electromagnetic field is chosen to preserve the covariance with a view to ex-

tending to a gravitational field. Under the above assumptions, we derived a formula to

quantify the entanglement and discuss the entanglement generation between charged parti-

cles. Then we investigate the behavior of negativity by assuming specific trajectories of the

charged particles and performing calculations concretely. As a result, we demonstrate that

entanglement generation between two charged particles is suppressed by decoherence due to

vacuum fluctuations of the electromagnetic field. In addition, we found that the quantum

superposition of bremsstrahlung from a superposed trajectory affects the signature of the

quantum coherence between the two particles. However, the entanglement is not generated

because the vacuum fluctuations of the electromagnetic field dominate over the signature of

the entanglement. Similar features are expected in the entanglement generation between two

masses in the framework of a quantized gravitational field. We expect that even in the quan-

tized gravitational field, vacuum fluctuation and quantum superposition of bremsstrahlung,

owing to the gravitational field, will appear.

Next, based on the constructed model above, we consider question (ii). In particular, we

focus on how causality, a property of relativity, and complementarity, a property of quan-

tum mechanics, are consistent. In this study, we discuss the consistency of the above two
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properties in both the electromagnetic and linearized gravitational field cases. We show

that the causality can be understood in terms of the properties of the retarded Green’s

function. In addition, by introducing inequalities to quantitatively express complementarity,

we investigate the condition that causality and complementarity are consistent. We then

prove that the inequality expressing complementarity is guaranteed by the uncertainty re-

lation of the dynamical fields. To further deepen our understanding of this condition, we

focused on the relationship between the quantum correlation (entanglement) between two

particles caused by electromagnetic and gravitational fields. We found that the uncertainty

relation of the electromagnetic and gravitational fields led to vacuum fluctuations and that

the two particles do not become entangled. Furthermore, we numerically demonstrate that

the condition in which the two particles are quantum-uncorrelated guarantees consistency

with complementarity.

Finally, we investigate question (iii). In particular, we consider the trade-off relationship

between quantum entanglement in a composite system of two particles and a quantized

gravitational field. Consequently, it is found that the strength of entanglement between the

particle and the gravitational field changes due to the strength of entanglement between the

two particles. This relationship is known as a monogamy relation. Using the monogamy

relation, we analyze the behavior of the quantum superposition state of the gravitational

field. Then it is quantitatively discussed that the larger the width of the superposition of

the particles, the better the gravitational field is also superposed.

Our analysis will play an important role in the construction of a quantum field theory of

gravity that respects the properties of quantized gravitational fields (decoherence, superpo-

sition of bremsstrahlung, consistency of causality and complementarity).

This thesis is organized as follows. In Chapter. 2, we present the theoretical background

of this thesis. Chapters 3-5 constitute the main part of this thesis. In Chapter 3, we clarify

how the dynamical field affects entanglement generation using a quantum field theoretic

approach. In Chapter 4, we consider the consistency of the properties of the causality and

complementarity and reveal its condition. In Chapter 5, we discuss the quantification of the

quantum superposition of the gravitational field. Chapter 6 presents the conclusions of this

thesis and remarks on the future prospects. In Appendix A, we present a formula for the

1/c expansion of the phase shift in the non-relativistic regime, c is the speed of light. In

Appendix B, we provide detailed computations in Sec. 3.2 and 5.1. In Appendix C, we prove

the statement in (4.43). In Appendix D, we numerically demonstrates the condition (4.48).

12



Finally, in Appendix E, the proofs of inequalities (5.5) and (5.18) are presented.
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2 Theoretical Background

Here, we provide the theoretical background of this thesis. In particular, we briefly introduce

general relativity, quantum mechanics, and theories that combine them. Finally, we consider

the quantum field theory (quantum electrodynamics).

2.1 General relativity

General relativity is the simplest theory that describes the dynamics of gravity as the ge-

ometry of spacetime. This theory has been used in various verification experiments since it

was proposed by Einstein. The general relativity assumes the following two principles: the

equivalence principle, and the general principle of relativity. The equivalence principle guar-

antees that we can vanish the effect of gravity at any one point in spacetime. Specifically,

this means that the we can consider the Minkowski metric in the vicinity of any one point

in spacetime. The coordinate system around this point can be regarded as an inertial frame

(the local inertial frame). The general principle of relativity states that physical laws are

identical in any local inertial frame. This assertion indicates that the equation of motion is

expressed in a covariant tensor form with respect to the general coordinate transformation.

According to this theory, spacetime behaves as a dynamical variable. Mathematically,

the dynamical variable of the spacetime is introduced as

ds2 = gµν(x)dx
µdxν . (2.1)

Here the line element ds in curved spacetime characterizes the length from a spacetime point

xµ to xµ+ dxµ, and gµν(x) is the metric tensor. In the following, we will see the equation of

motion with respect to gµν(x). The metric tensor gµν is a covariant tensor and transforms

by an arbitrary coordinate transformation xµ → xµ′ = fµ(x) as

g′µν =
∂xα

∂xµ′
∂xβ

∂xν′
gαβ. (2.2)

Here we first consider the motion of a free falling particle in curved spacetime. In

Minkowski spacetime, this particle has a straight line trajectory. However, in curved space-

time, “straight line” is generalized: geodesics. The equation of motion of particle along the

geodesic trajectory is given by a geodesic equation. The geodesic equation is derived as
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follows: We consider a particle moving the spacetime point from P1 to P2. The “straight

line” is given as the path that minimizes the distance between two points P1 and P2. In

curved spacetime, the distance between two points P1 and P2 is characterized by

∫ P2

P1

ds =

∫ P2

P1

√
gµνdxµdxν . (2.3)

Note that the line element ds is invariant under the general coordinate transformation. A

“straight line” in curved spacetime is determined by the condition that minimizes −
∫
ds:

−δ
∫ P2

P1

ds = 0. (2.4)

This condition leads to the following geodesic equation

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0. (2.5)

Here dτ = ds/c is the proper time, which characterizes the time measured in the frame

where the particle is at rest (rest frame). This equation describes the straight line in the

curved spacetime and determines the trajectory of a free falling particle. Note that, in the

flat spacetime case (gµν = ηµν), the Christoffel connections becomes Γµαβ = 0, and this leads

to d2xµ/dτ2 = 0. The solution of this equation is xµ = aµτ + bµ with arbitrary coefficients

aµ and bµ, that is, this result shows the straight line in flat spacetime.

Next we derive the equation describing the dynamics of the metric gµν . We start the

following Einstein–Hilbert action

S =
c4

16πG

∫
d4x

√
−gR + Sm, (2.6)

where we define g = det(gµν), and Sm is the action of a matter, which relates to energy-

momentum tensor Tµν as follows:

Tµν = − 2√
−g

δSm

δgµν
. (2.7)

Taking the functional derivative of the Einstein-Hilbert action S with respect to gµν , we
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obtain the following equation

Gµν =
8πG

c4
Tµν , (2.8)

where we defined the Einstein tensor Gµν := Rµν − Rgµν/2. To derive Eq. (2.8), we used

the following formulas

δgµν = −gµαgνβδgαβ, δ
√
−g = 1

2

√
−ggµνδgµν = −1

2

√
−ggµνδgµν (2.9)

for the metric tensor, and

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
µλ

=
1

2

(
∇λ∇νδgνλ +∇λ∇µδgλν −∇ν∇µδ(g

λρgλρ)−∇λλλδgµν
)
, (2.10)

δR = ∇µ∇νδgµν −∇λ∇λ(g
µνδgµν) (2.11)

for the Ricci tensor and Ricci scalar, respectively. The left-hand-side of the above equa-

tion (2.8) characterizes a geometric quantity of the spacetime and determines the dynamics

of the metric tensor gµν , whereas the right-hand-side shows the energy and momentum of

the matter. Thus, the Einstein equation (2.8) represents the equivalence between the space-

time curvature and the energy of matter. Note that Eq (2.8) automatically satisfies the

conservation of the energy-momentum tensor. Using the properties of the Rieman tensor

Rµανβ = −Rαµνβ = −Rµαβν and Bianchi identity

∇λR
µ
ανβ +∇νR

µ
αβλ +∇βR

µ
αλν = 0, (2.12)

the divergence of the Einstein tensor

∇νGµν = 0 (2.13)

is always satisfied. This result leads to the conservation of the energy-momentum tensor.

∇νTµν = 0. (2.14)

Finally, deeply understanding the dynamics of gravity, we consider the linear perturbation
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of the metric from the Minkowski spacetime as follows

gµν = ηµν + hµν , gµν ≈ ηµν − hµν , (2.15)

where, in the equation of the right-hand side equation, we neglected terms of a higher order

than O(h2). This approximation makes the Einstein tensor Gµν to be

Gµν ≈
1

2

[
−2hµν + ∂ν∂

αhµα + ∂µ∂
αhνα − ∂µ∂νh− ηµν

(
∂α∂βhαβ −2h

)]
, (2.16)

where Rµν and R are approximated as

Rµν ≈
1

2

(
∂α∂µh

α
ν − ∂ν∂µh+ ∂ν∂

αhαµ −2hµν

)
, (2.17)

R ≈
(
∂µ∂νhµν −2h

)
(2.18)

with 2 := ηρσ∂ρ∂σ and h := ηρσhρσ. Then the Einstein equation (2.8) becomes

−2hµν + ∂ν∂
αhµα + ∂µ∂

αhνα − ∂µ∂νh− ηµν
(
∂α∂βhαβ −2h

)
=

16πG

c4
T
(1)
µν , (2.19)

where T
(1)
µν is of the first order of the energy-momentum tensor in the perturbations for

consistency with the weak field approximation. Furthermore, we can simplify the above

equation by introducing the new field ψµν defined as

ψµν := hµν −
1

2
ηµνh. (2.20)

This field makes it easier the above linearized Einstein equation as

−2ψµν + ∂ν∂
αψµα + ∂µ∂

αψνα − ηµν∂
α∂βψαβ =

16πG

c4
T
(1)
µν . (2.21)

By choosing the Lorentz gauge condition ∂µψµν = 0, we obtain the following wave equation

2ψµν = −16πG

c4
T
(1)
µν . (2.22)

We can solve the above equation with respect to ψµν by Green’s function method, and then
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the solution is

ψµν =
4G

c4

∫
d3y

T
(1)
µν (t− |x− y|/c,y)

|x− y|
. (2.23)

Note that by rewriting ψµν in terms of hµν , hµν becomes

hµν = ψµν −
1

2
ηµνψ

=
4G

c4

∫
d3y

Tµν(t− |x− y|/c,y)
|x− y|

(2.24)

with Tµν := T
(1)
µν − ηµνT

(1)/2 and T (1) := ηµνT
(1)
µν . This equation shows that the energy and

momentum of the matter is the source of the gravity. The dynamical degrees of freedom

of gravity are gravitational waves, which were first directly observed in 2015 by using the

Michelson type interferometer.

2.2 Quantum mechanics: Perspective on the quantum information

theory

Quantum mechanics is the theory that describes the laws of physics in the microscopic world.

In addition to general relativity, quantum mechanics, which has been experimentally verified

with high accuracy, is one of the two pillars of modern physics. In quantum mechanics, light

and matter, etc. are interpreted as having both particle and wave properties. For instance,

Young’s interference experiment and other experiments showed that light classically behaves

as an electromagnetic wave, i.e., a wave. However, with the discovery of the photoelectric

effect [57] and Compton effect [58], it was also experimentally determined that light has

properties as a particle. Furthermore, electrons are known to have properties as a particle

owing to the oil drop experiment [59]. In contrast, electron diffraction experiments [60,

61, 62, 63, 64, 65] have revealed that electrons behave as waves, as shown schematically in

Fig. 1. These experimental results demonstrate the duality between particles and waves.

In relation to particle-wave duality, the uncertainty principle is another important con-

cept in quantum mechanics. The uncertainty principle implies that there is a common limit

to the product of minimum error between some pairs, such as the position and momentum

of a particle. This implies that these pairs of variables are not perfectly determined simul-

taneously. These particle-wave duality and the uncertainty principle were more generally
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FIG 1: A schematic picture of a double-slit experiment using electrons. The electron beam
gun repeatedly sends a single electron to a screen. The electrons passing through both slits
accumulate on the screen and produce an interference pattern as if they were interfering with
itself obeying a probability P (x).

summarized by the concept of complementarity. In this thesis, we define complementarity

as “the property of a particle that changes particle’s state when its position is measured.” In

Chapter 4, we will present a study on the consistency of complementarity in this sense and

relativistic causality.

The state of a quantum mechanical system is represented by a state vector |ψ⟩ belonging

to the complex Hilbert space H. Hilbert space is a linear space in which the norm of the

state vector is defined and complete (the vector is continuous). Because of the linearity in

Hilbert space, we can consider the superposition state of several state vectors, as for instance

|ψ⟩ = α|0⟩+ β|1⟩, (2.25)

where the coefficients α and β satisfy |α|2 + |β|2 = 1 due to the condition of the norm

⟨ψ|ψ⟩ = 1. This property is the quantum superposition state, and the quantum mechanics

allows for the simultaneous existence of different states.

The time evolution of a quantum mechanical system is described by a unitary transfor-

mation on Hilbert space. The state vector |ψ(t)⟩ evolves in time according to the Schrödinger
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equation as follows:

iℏ d
dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩, (2.26)

where Ĥ is the operator that describes a quantum mechanical system. By solving this

equation, the following result is obtained

|ψ(t)⟩ = Û(t)|ψ(0)⟩, (2.27)

where Û(t) := e−iĤt/ℏ is the unitary operator, which satisfies Û †Û = Û Û † = 1, and it

describes the time evolution of this system. As Eq. (2.27), the quantum state represented

by a single state vector is pure state. In contrast, a mixed state is a superposition of pure

states with a certain probability. It is convenient to use a density matrix to describe the

mixed state, including the pure state. The density matrix ρ is defined as

ρ =
∑
i

pi|ψi⟩⟨ψi|, (2.28)

where pi represents the probability that the system is in pure state |ψi⟩ and satisfies 0 ≤ pi ≤
1 and

∑
i pi = 1. The density matrix ρ is regarded as a collection of pure states |ψi⟩ with

the probability pi. Note that if all pi = 0 except one value, then the density matrix becomes

ρ = |ψi⟩⟨ψi|, that is, the system is in a pure state. Otherwise, it is in a mixed state, that is,

there exists nonzero values of pi. The pure state generally changes to a mixed state because

of interactions with the surrounding environment and other factors. This phenomenon is

known as quantum decoherence.

One of the important key concepts in quantum mechanics is quantum entanglement. For

simplicity, we consider two quantum systems A and B each possessing two quantum states

|0⟩ and |1⟩. This system is often called a 2-qubit system. For instance, if the state of the

system is represented as |Ψ⟩s = |0⟩A|0⟩B, this state is separable. On the other hand, the

entangled state |Ψ⟩e is introduced as follows:

|Ψ⟩e =
1√
2

(
|0⟩A|0⟩B + |1⟩A|1⟩B

)
. (2.29)

This state shows that if a measurement is performed in system A and reveals that the state
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is |0⟩A (|1⟩A), the state in system B can also be determined to be |0⟩B (|1⟩B), independent

of the distance. The feature of the entanglement is that it can exhibit similar correlations

not only on a particular basis but also based on the quantum superposition states of that

basis. We introduce orthogonal basis with |0⟩i and |1⟩i (i = A,B) rotated by θ as follows:{
|θ⟩i = cos θ|0⟩i + sin θ|1⟩i

|θ⊥⟩i = − sin θ|0⟩i + cos θ|1⟩i
(2.30)

with i = A,B. Then the state |Ψ⟩e becomes

|Ψ⟩e =
1√
2

(
|0⟩A|0⟩B + |1⟩A|1⟩B

)
=

1√
2

(
|θ⟩A|θ⟩B + |θ⊥⟩A|θ⊥⟩B

)
. (2.31)

This result shows that the entanglement is independent of the basis of the two subsystems

and that this correlation is a quantum correlation.

The properties of an operation LOCC [66, 67] is important for understanding the en-

tanglement. The LOCC protocol is as follows. We consider two local systems, A and B.

We assume that these two systems can only exchange classical mechanical information (e.g.,

telephone) with each other. Then, A and B can perform physical operations such as quan-

tum measurements and unitary transformations, respectively, only on their local systems.

This operation is called local operations and classical communication (LOCC), and has the

property of not generating entangled states.

In the following, to judge whether it is an entangled state or not quantitatively, we

introduce two tools to quantify the entanglement: von Neumann entropy and negativity.

2.2.1 The von Neumann entropy

Here, we introduce the von Neumann entropy or entanglement entropy. We consider a pure

state |Ψ⟩AB consisting of quantum states A and B, and the definition of the von Neumann

entropy S is defined by

S = −TrA
[
ρA ln ρA

]
= −TrB

[
ρB ln ρB

]
, (2.32)

where ρA := TrB
[
|Ψ⟩AB⟨Ψ|

]
(ρB := TrA

[
|Ψ⟩AB⟨Ψ|

]
) is reduced density matrix of the state

B (A), respectively. The von Neumann entropy S measures the strength of the quantum

correlation between subsystem A and its complement system B.
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Note that the von Neumann entropy is valid only for pure states. This is because it may

take a non-zero value for a separable state: for a mixed state |Ψ⟩AB⟨Ψ| = 14×4/4 = ρA ⊗ ρB

with ρA = ρB = 12×2/2, the von Neumann entropy becomes S = ln 2, whereas, for the

entangled state (2.29), the von Neumann entropy is also the same result. In the following,

we consider the negativity. This is a measure of the entanglement of the two systems and is

also applicable to mixed states.

2.2.2 Negativity

Here, we present the negativity N [68]. We consider a density matrix ρ of a bipartite system

AB. The negativity is defined as follows:

N =
∑
λi<0

|λi|, (2.33)

where λi are the negative eigenvalues of the partial transposition ρTA with the elements

⟨a|⟨b|ρTA|a′⟩|b′⟩ = ⟨a′|⟨b|ρ|a⟩|b′⟩ in a basis {|a⟩|b⟩}a,b of the system AB. If the negativity does

not disappear, then the system is entangled, which follows by the positive partial transpose

criterion [69, 70]. Additionally, nonzero negativity is a necessary and sufficient condition for

the entanglement of a two-qubit or a qubit-qutrit system [69]. Particularly, there is only one

negative eigenvalue λmin of the partial transposed density matrix of a two-qubit system [71,

72]. We can rewrite the negativity as

N = max
[
− λmin, 0

]
. (2.34)

2.3 Effect of the gravity on quantum mechanics

Here we demonstrate how classical or quantized gravity affects quantum mechanics. In

particular, we review the COW experiment, the Schrödinger-Newton equation, and the BMV

experimental proposal.

2.3.1 COW experiment

The COW experiment [73] shows that the classical gravitational field originating from the

Earth induces the phase shift of a quantum particle. We consider a monochromatic neutron

beam with wavelength λ at room temperature injected into a neutron interferometer shown

22



FIG 2: A schematic experimental setup of the COW experiment [73]. The dashed line shows
the transmitted wave at the crystal surface.

in Fig. 2 along a horizontal line with momentum ℏk0. The neutron beam incident on a silicon

crystal is split into two wave packets, a transmitted wave and a diffracted wave, by Bragg

reflection at the crystal surface at point A and follows partial beam paths ABD and ACD.

Then the interferometer is rotated by an angle ϕ around the direction of the incident beam.

Finally, the wave packets of neutron recombine and interfere at point D, where the point

has higher gravitational potential above the Earth than the entry point A, and the potential

is given by mngh sinϕ with the neutron mass mn and the gravitational acceleration g. The

total energy of the neutron passing through paths ABD and ACD is conserved as,

E =
ℏ2k20
2mn

=
ℏ2k2
2mn

+mngh sinϕ. (2.35)

Because part of the kinetic energy of the neutron is converted to potential energy, the

kinetic energy, that is, the wavenumber of the neutron is reduced on the path ACD . Thus

the difference of the path ACD and ABD β becomes [39, 74, 75]

β := kℓ− k0ℓ ≈ −λm
2
ng

2πℏ2 A sinϕ = −qcow sinϕ, (2.36)

where we defined the area of the parallelogram A := ℓh, and we used the approximation

k ≈ k0 = 2π/λ due to the small contribution of the gravity. The setup shown in Fig. 2

corresponds to the usual Mach–Zehnder interferometer, and the intensity difference ∆I is

proportional to cos β (for instance, see [76]). The oscillation frequency of ∆I is related to

the parameters of qcow and rotation angle ϕ. Fig. 3 shows the difference of the intensity (or

counting rate) at counters C1 and C2 as a function of angle ϕ. This result demonstrates
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FIG 3: Demonstration of the result of the difference intensity ∆I = cos β in COW exper-
iment [73] as a function of rotation angle −π/6 ≤ ϕ ≤ π/6. The following parameters
were used: λ ≃ 1.4 × 10−10 m, mn ≃ 1.7 × 10−27 kg, g ≃ 9.8 m/s2, ℏ ≃ 1.1 × 10−34 J · s,
A = ℓh = 2d(d + a cos θ) tan θ ≃ 1.0 × 10−3 m2 with a = 2.0 × 10−3 m, d = 3.5 × 10−2 m,
θ = 22.1π/180 rad.

that the classical gravitational potential changes the phase of the neutron wave function.

2.3.2 Schrödinger-Newton equation

One of the simplest models of classical gravity coupled to quantum matter is known as semi-

classical gravity [77, 78]. We consider a single quantum particle coupled with a classical

gravity. This system is described by the following semi-classical Einstein equation

Gµν =
8πG

c4
⟨ψ|T̂µν |ψ⟩, (2.37)

where the right-hand-side of the above equations is modified by an expectation value of

operator valued energy-momentum tensor T̂µν compared with Eq. (2.8). This equation shows

that the quantum particle, which is taken an expectation value, creates the gravity. In the

non-relativistic limit, the state |ψ⟩ is evolved under the following Schrödinger equation

iℏ ∂
∂t
ψ(t,x) =

(
− ℏ2

2m
∇2 +mϕ(t,x)

)
ψ(t,x), (2.38)
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where ϕ(t,x) is the Newtonian potential, which is determined by the Poison equation

∇2ϕ(t,x) =
4πGm

c2
⟨ψ|T̂00|ψ⟩ = 4πGm|ψ(t,x)|2 (2.39)

with T̂00 = mc2|x⟩⟨x| and ⟨x|ψ⟩ = ψ(t,x). By solving the above equation, the Newtonian

potential ϕ(t,x) becomes

ϕ(t,x) = −Gm
∫
d3y

|ψ(t,y)|2

|x− y|
. (2.40)

Thus, the above Schrödinger equation (2.38) is rewritten as the following Schrödinger-

Newton equation [79]

iℏ ∂
∂t
ψ(t,x) =

[
− ℏ2
2m

∇2 −Gm2

∫
d3y

|ψ(t,y)|2

|x− y|

]
ψ(t,x). (2.41)

In this formalism, the gravitational potential is treated classically and the influence of grav-

ity on quantum particles is explained by assuming that the mass probability density of the

particle appears as a source. The Schrödinger-Newton equation was studied to discuss the

collapse of the wave function due to measurement [30, 31, 32, 33]. Unlike ordinary linear

quantum mechanics, the feature of the Schrödinger-Newton equation is its nonlinearity with

respect to the wave function ψ(t,x), which breaks the unitarity and causes the decoherence

via self gravitational field. This modifications of linear quantum mechanics and classical

gravity invite criticism [80]. However, the validity of this approach has not yet been theoret-

ically or experimentally ruled out. Recently, it has been discussed in relationship with the

suggestion of whether gravity might need quantization or not [81].

Both of the above two examples are discussed in terms of classical (not operator val-

ued) gravitational fields. Thus, if we prepare multiple quantum particles, the entanglement

between them would not be created by the LOCC. We then present an example in which

two quantum particles interact with a gravitational field as a position operator and generate

entanglement.

2.3.3 BMV experimental proposal

Here we briefly review the BMV experimental proposal [37, 38]. This proposal involves the

experimental setting of two matter-wave interferometers that test the quantum aspects of
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FIG 4: Configuration of trajectories of two charged particles. The length scale of each
superposition is L, the coordinate time during which each particle is superposed is T , and
the particles are initially separated by the distance D.

gravity via entanglement generation. We consider two massive particles A and B each in a

superposition of two trajectories (see Fig. 4). These particles are coupled with each other

using the Newtonian potential. The total Hamiltonian is

Ĥ = ĤA + ĤB + V̂AB, V̂AB = − GmAmB

|x̂A − x̂B|
, (2.42)

where ĤA and ĤB are the Hamiltonians of the charged particles A and B, V̂AB is the

interaction Hamiltonian between them with the masses mA and mB, and x̂A and x̂B denote

each position operator of the two massive particles. Note that, in the following, if we replace

the coupling constant GmAmB with eAeB where eA and eB are the electric charges of the

two charged particles A and B, the Coulomb potential version of the BMV proposal can

be discussed. We stress that the Newtonian potential V̂AB is an operator of the position

operators x̂A and x̂B. In the following computation, we do not need the explicit forms of

ĤA and ĤB. As we will mention after Eq. (2.45), they are implicitly given by specifying the

trajectories of each particle. Each of the two charged particles at t = 0 is in the spatially

superposed state

|Ψ(0)⟩ = 1

2
|C⟩A(|↑⟩A + |↓⟩A)|C⟩B(|↑⟩B + |↓⟩B), (2.43)

where |↑⟩j (|↓⟩j) are the spin degrees of freedom of the massive particle j with j = A,B, and

|C⟩A and |C⟩B denote the localized particle wave function of A and B, respectively. For t < 0,

26



the massive particles A and B are localized around each trajectory, whose states are described

by |C⟩A and |C⟩B, respectively. Then the Newtonian potential for t < 0 is not in a quantum

superposition and behaves classically. In this case the states of A and B are uncorrelated

with the Newtonian potential. Now, we assume that each particle is manipulated through

an inhomogeneous magnetic field (|C⟩j |↑⟩j → |ψL⟩j |↑⟩j , |C⟩j |↓⟩j → |ψR⟩j |↓⟩j) to create

spatially superposed states with |ψL⟩j |↑⟩j , and |ψR⟩j |↓⟩j , which is understood as the Stern-

Gerlach effect. In the following, |C⟩j |↑⟩j and |C⟩j |↓⟩j are represented by |L⟩j and |R⟩j with

j = A,B for simplicity. The initial state is rewritten as

|Ψ(0)⟩ = 1

2
(|L⟩A + |R⟩A)(|L⟩B + |R⟩B). (2.44)

We note that |R⟩A (|R⟩B) and |L⟩A (|L⟩B) are the states of wave packets localized around

classical trajectories x = XAR(t = 0) (x = XBR(t = 0)) and x = XAL(t = 0) (x = XBL(t =

0)), respectively. After each particle has passed through an inhomogeneous magnetic field,

the states |L⟩j and |R⟩j are regarded as the localized states of the particle j = A,B around

the left trajectory and the right trajectory shown in Fig.4, respectively. We assume the

following approximation,

x̂I
A(t)|P⟩A ≈ XAP(t)|P⟩A, x̂I

B(t)|Q⟩B ≈ XBQ(t)|Q⟩B, (2.45)

where x̂I
A(t) = eit(ĤA+ĤB)x̂Ae

−it(ĤA+ĤB) and x̂I
B(t) = eit(ĤA+ĤB)x̂Be

−it(ĤA+ĤB) are the po-

sition operators in the interaction picture. These assumptions are valid [82] when the de

Broglie wavelength λdB of the massive particle is much smaller than the width ∆x of its

wave packet (λdB ≪ ∆x). The trajectories of the particles, XAP(t) and XBQ(t), are deter-

mined by the Hamiltonians ĤA and ĤB. In our computation, we specify the trajectories by

hand.

The evolved state |Ψ(T )⟩ is

|Ψ(T )⟩ = e−iĤT |Ψ(0)⟩

= e−iT (ĤA+ĤB)T exp

[
i

∫ T

0

dt
GmAmB

|x̂I
A(t)− x̂I

B(t)|

]
|Ψ(0)⟩

≈ 1

2
e−iT (ĤA+ĤB)

∑
P,Q=R, L

eiΦPQ |P⟩A ⊗ |Q⟩B, (2.46)
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where T is the time-ordered product, and the approximation (2.45) was used in the third

line. The phase shift

ΦPQ =

∫ T

0

dt
GmAmB

|XAP(t)−XBQ(t)|
(2.47)

is induced by the Newtonian potential between particles A and B. The density matrix of

those particles is

ρc = |Ψ(T )⟩⟨Ψ(T )| = 1

4

∑
P,Q=R,L

∑
P′,Q′=R,L

eiΦPQ−iΦP′Q′ |Pf⟩A⟨P′
f| ⊗ |Qf⟩B⟨Q′

f|, (2.48)

where |Pf⟩A = e−iĤAT |P⟩A and |Qf⟩B = e−iĤBT |Q⟩B are the states of the massive particles

A and B moving along trajectories P and Q, respectively.

We then adopt the negativity N [68] to determine whether the state of two massive

particles is entangled or not. The minimum eigenvalue of the partial transpose of the density

matrix (2.48) is

λmin = −1

2

∣∣∣ sin [Φc

2

]∣∣∣, (2.49)

where Φc is given as

Φc = GmAmB

∫ T

0

dt
(

1

|XAR(t)−XBR(t)|
− 1

|XAR(t)−XBL(t)|

− 1

|XAL(t)−XBR(t)|
+

1

|XAL(t)−XBL(t)|

)
. (2.50)

To evaluate Φc and the negativity (2.34), we consider the trajectories

XAP(t) =
[
ϵPX(t), 0, 0

]T
, XBQ =

[
ϵQX(t) +D, 0, 0

]T
, X(t) = 8L

(
1− t

T

)2( t
T

)2
(2.51)

where ϵR = −ϵL = 1, L is the length scale of each superposition, T is the time scale during

which each particle is superposed and D is the initial distance between those particles (see

Fig. 4). The function X(t) is chosen so that each particle has no velocity at t = 0 and

t = T to avoid the UV divergence in our computation in the following sections. This

point is discussed in more detail around Eq.(3.27). There can be other possible choice for
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superposition and trajectories. For example, the authors in Ref. [83] considered two particles

in superposition states of multiple trajectories, and discussed the entanglement generation

due to the Newtonian potential. The result indicated that multiple trajectories cases are more

resilient to decoherence than the two trajectories case. In the present paper, for simplicity,

we consider the entanglement generation between two charged particles.

When the trajectories of the particles are specified by Eq. (2.51), the quantity Φc is given

by

Φc = GmAmB

∫ T

0

dt
[
2

D
−
(

1

D − 2X(t)
+

1

D + 2X(t)

)]
. (2.52)

Now, we recover the light velocity c and the reduced Planck constant ℏ. We focus on the

two regimes cT ≫ D ∼ L and cT ≫ D ≫ L, in which the charged particles move with

non-relativistic velocities (cT ≫ L). In the regime cT ≫ D ∼ L, the above formula of Φc

and the minimum eigenvalue (2.49) are computed numerically. In the regime cT ≫ D ≫ L,

the quantity Φc (2.52) and the minimum eigenvalue (2.49) are approximated as

Φc ≈ −256GmAmB

315πℏc

(
L

cT

)2(cT
D

)3
, λmin ≈ −64GmAmB

315πℏc

(
L

cT

)2(cT
D

)3
, (2.53)

where O(L3/D3) was ignored, and the Taylor expansion sinΦc/2 ≈ Φc/2 was used.

Fig. 5 (a) and (b) show the negativity in the regime cT ≫ D ∼ L and cT ≫ D ≫ L.

These results show that the negativity decreases as the ratio D/cT increases. Because

the negativity is always positive, the two massive particles A and B interacting with the

Newtonian potential are entangled in the regimes cT ≫ D ∼ L and cT ≫ D ≫ L.

FIG 5: Negativity N induced by the Newtonian potential between the massive particles.
We adopted L/cT = 0.1 and GmAmB/ℏc = 0.1.
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The entanglement generation here is understood to be caused by the Newtonian poten-

tial (2.42) treated as an operator of the positions of two massive particles A and B, which

allows the quantum superposition of Newtonian potentials associated with the superposition

of the massive particles. In the context of quantum information theory, LOCC explained

in Sec. 2.2 cannot create the entanglement between two systems. Translating to the BMV

setting, this means that it is impossible to create entanglement through classical interaction.

It immediately follows that if the Newtonian interaction entangles two massive particles,

then the interaction is quantum and is not described by LOCC.

The main theme of this thesis is how the quantum field of gravity relates to its low-

energy regime. In the next subsection, we introduce the quantum field theory and consider

the treatment of field theoretic approaches before proceeding to the main text of this thesis.

2.4 Quantum field theory

Here, we briefly introduce the quantization of quantum electrodynamics as an example of

quantum field theory. In particular, we focus on the quantization of electrodynamics in

Minkowski space-time using the Becchi-Rouet-Stora-Tyutin (BRST) formalism to preserve

the covariance of the theory with a view toward its extension to quantum gravity theory.

2.4.1 BRST formalism

The Lagrangian density of the QED in BRST formalism is written as follows:

L = LQED + LGF+FP, LQED = −1

4
FµνF

µν + ψ̄(iγµDµ −m)ψ, (2.54)

where Fµν = ∂µAν−∂νAµ is the field strength of the U(1) gauge field Aµ, ψ is the Dirac field

with mass m, ψ̄ = ψ†γ0, γµ is the gamma matrix satisfying {γµ, γν} = 2ηµν , Dµ = ∂µ+ieAµ

is the covariant derivative, which includes the electromagnetic interaction term with the

coupling constant e, and LGF+FP is the gauge fixing and Faddeev-Popov ghost term. The

Lagrangian density LQED is invariant under the following transformation

ψ → e−ieθ(x)ψ ≃ (1− ieθ(x))ψ ≡ ψ + δψ, Aµ → Aµ + ∂µθ(x) ≡ Aµ + δAµ, (2.55)

where θ(x) is a real function. To give the gauge fixing and Faddeev-Popov ghost term

LGF+FP , we define θ(x) ≡ λC(x), where λ and C(x) are the global and local Grass-
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mann numbers. Field C(x) is a scalar field, but it satisfies the anti-commutation relations

{C(x), C(y)} = 0, which is the Faddeev-Popov ghost field. We rewrite δψ and δAµ as follows

δψ(x) = λ(−ieC(x)ψ(x)) ≡ λδBψ(x), δAµ = λ(∂µC(x)) ≡ λδBAµ, δBC(x) = 0, (2.56)

where the operator δB is defined so that the nilpotency δ2B = 0 satisfies. We also introduce

the anti-ghost field C̄(x) and the Nakanishi-Lautrup field B(x). They satisfy

δBC̄(x) = iB(x), δBB(x) = 0, (2.57)

where α is an arbitrary parameter. The transformation of Eqs. (2.56) and (2.57) is referred

to as the BRST transformation. We can choose the gauge fixing and Faddeev-Popov ghost

terms as follows:

LGF+FP = −iδB(C̄F ), F = ∂µAµ +
1

2
αB. (2.58)

Consequently, the full Lagrangian density in BRST formalism is

L = −1

4
FµνF

µν + ψ̄(iγµDµψ −m)ψ +
1

2
αB2 − ∂µBAµ − i∂µC̄∂µC. (2.59)

The equations of motion for fields Aµ, B, C, C̄ are given by the Euler-Lagrange equations,

0 = ∂νFνµ − Jµ − ∂µB, (2.60)

0 = ∂µAµ + αB, (2.61)

0 = 2C = 2C̄, (2.62)

where Jµ = eψ̄γµψ. The fields C(x) and C̄(x) follow the free evolution and do not interact

with the other fields. Substituting (2.61) into (2.59), we arrive at the following Lagrangian

density,

L = −1

4
FµνF

µν + ψ̄(iγµDµψ −m)ψ − 1

2α
(∂µA

µ)2 − i∂µC̄∂µC, (2.63)
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and the BRST transformations are summarized as

δBAµ = ∂µC, δBψ = −ieCψ, δBC = 0, δBC̄ =
i

α
(∂µA

µ). (2.64)

Because of the BRST transformation, the Lagrangian density has a global symmetry (BRST

symmetry)

λδBL = 0. (2.65)

Associated with this global symmetry, there is a conserved current referred to as the BRST

current JµB defined by

JµB =
∑

I

∂L

∂(∂µΦI)
δBΦI = −Fµν∂νC − 1

α
∂νA

ν∂µC + JµC, (2.66)

where ΦI = {Aµ, ψ, C, C̄}. The BRST charge QB is given by

QB ≡
∫
d3xJ0

B(x) =

∫
d3x
[
(∂iC)F

i0 + J0C − 1

α
(∂µA

µ)Ċ
]
. (2.67)

We perform the canonical quantization procedure in the Feynman gauge (α = 1). The

canonical conjugate momenta are defined as

πµA ≡ ∂L

∂Ȧµ
= −F 0µ − (∂νA

ν)η0µ , πψ ≡ ∂L

∂ψ̇
= iψ̄γ0 , πc ≡

∂L

∂Ċ
= i ˙̄C , πc̄ ≡

∂L

∂ ˙̄C
= iĊ,

(2.68)

where “ · ” denotes the derivative with respect to time x0 = t. The commutation relations

are assigned as follows

{ψ̂(x), π̂ψ(y)}|x0=y0 = iδ3(x− y),

{Ĉ(x), π̂c(y)}|x0=y0 = iδ3(x− y),

{ ˆ̄C(x), π̂c̄(y)}|x0=y0 = iδ3(x− y),

[Âµ(x), π̂
ν
A(y)]|x0=y0 = iδνµδ

3(x− y).
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The quantized BRST charge is given by

Q̂B =

∫
d3x[(∂iĈ)F̂

i0 + Ĵ0Ĉ − (∂µÂ
µ)

˙̂
C] =

∫
d3x[−(∂iπ̂

i)Ĉ + Ĵ0Ĉ + iπ̂0π̂c̄]. (2.69)

It is well known that when we quantize a gauge theory while maintaining the Lorentz

covariance, a state space V with an indefinite metric is required. For the standard proba-

bilistic interpretation of quantum mechanics , a physical state |Ψphys⟩ has no negative norm.

This state with a non-negative norm is identified by imposing the following condition (the

BRST condition)

Q̂B|Ψphys⟩ = 0, (2.70)

where the physical state |Ψphys⟩ satisfies ⟨Ψphys|Ψphys⟩ ≥ 0.

2.4.2 BRST charge in the interaction picture and in the Schrödinger picture

We derive a useful form of the BRST charge for our computation. Using Eq. (2.69), we

obtain the BRST charge in the interaction picture,

Q̂I
B(t) = eiĤ0tQ̂Be

−iĤ0t =

∫
d3x[−(∂iπ̂

iI)Ĉ + Ĵ0
I Ĉ

I + iπ̂0Iπ̂I
c̄], (2.71)

where ϕ̂I = eiĤ0tϕ̂e−iĤ0t, ϕ̂ = {Âµ, π̂µ, Ĉ, ˆ̄C, π̂c, π̂c̄, Ĵ0}, and they satisfy the Heisenberg

equation

i
˙̂
ϕI = [ϕ̂I, Ĥ0]. (2.72)

The gauge field ÂI
µ(x) and the ghost field ĈI(x) satisfy the Klein-Gordon equation. The

solutions are

ÂI
µ(x) =

∫
d3k√

(2π)32k0
(âµ(k)e

ik·x + h.c.), (2.73)

ĈI(x) =

∫
d3k√

(2π)32k0
(ĉ(k)eik·x + h.c.), (2.74)
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where k0 = |k|, âµ(k) and ĉ(k) are the annihilation operators of the gauge field ÂI
µ(x), and

the ghost field ĈI(x), respectively. The annihilation operators âµ(k), ĉ(k), and the creation

operators satisfy

[
âµ(k), â

†
ν(k

′)
]
= ηµνδ(k − k′),

{
ĉ(k), ĉ†(k′)

}
= δ(k − k′). (2.75)

Substituting (2.73) and (2.74) into Eq. (2.69), we obtain the BRST charge in the interaction

picture

Q̂I
B(t) =

∫
d3k√
(2π)3

[(
kµâµ(k) +

ˆ̃J0
I (t,k)√
2k0

eik
0t

)
c†(k) + h.c.

]
, (2.76)

where ˆ̃J0
I (t,k) is the Fourier transformation of Ĵ0

I (t,x)

Ĵ0
I (t,x) =

∫
d3k√
(2π)3

ˆ̃J0
I (t,k)e

ik·x. (2.77)

Using the BRST charge in the interaction picture and ((2.69), the BRST charge in the

Schrödinger picture is obtained as

Q̂B = e−iĤ0tQ̂I
B(t)e

iĤ0t =

∫
d3k√
(2π)3

[(
kµâµ(k +

ˆ̃J0(k)√
2k0

)
c†(k) + h.c.

]
, (2.78)

where we used

e−iĤ0tâµ(k)e
iĤ0t = âµ(k)e

ik0t, e−iĤ0tĉ†(k)eiĤ0t = ĉ†(k)e−ik
0t, e−iĤ0t ˆ̃J0

I (t,k)e
iĤ0t = ˆ̃J0(k),

(2.79)

Here, ˆ̃J0 is the Fourier transform of the matter current in the Schrödinger picture.

2.4.3 BRST condition for our models with charged particles

We use the explicit form of the BRST charge in the Schrödinger picture (2.78) to derive

the BRST condition for our models. Assuming a physical state |Ψphys⟩ = |Ψ′
phys⟩ ⊗ |0⟩c,

where |0⟩c is the ground state of the ghost field, and using (2.78), we can reduce the BRST
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condition (2.70) as (
kµâµ(k) +

ˆ̃J0(k)√
2k0

)
|Ψ′

phys⟩ = 0. (2.80)

When |Ψ′
phys⟩ is the initial state given in (3.2), (2.80) gives the equation,

0 =
(
kµâµ(k) +

ˆ̃J0(k)√
2k0

)
|Ψ′

phys⟩

=
(
kµâµ(k) +

ˆ̃J0(k)√
2k0

)
1√
2

(
|R⟩+ |L⟩

)
⊗ |α⟩EM

≈ 1√
2

(
|R⟩+ |L⟩

)
⊗
(
kµâµ(k) +

J̃0(k)√
2k0

)
|α⟩EM, (2.81)

where the approximation (3.4) was used in the second line, and note that J̃0
R(k) = J̃0

L(k) =

J̃0(k) at the initial time. Hence the initial coherent state of the electromagnetic field must

satisfy

(
kµâµ(k) +

J̃0(k)√
2k0

)
|α⟩EM = 0. (2.82)

Because the displacement operator D̂(α) given in (3.3) has the following relation

D̂†(α)âµ(k)D̂(α) = âµ(k) + αµ(k), (2.83)

we obtain the constraint for the complex function αµ(k) as

kµαµ(k) = − J̃
0(k)√
2k0

. (2.84)

This is the BRST condition for the model of a single charged particle. The BRST condition

for the model of two charged particles is obtained using the same procedure.
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3 Effect of photon field on entanglement generation

In this section, based on QED, we evaluate the entanglement generation between two charged

particles [4]. We first introduce the model of a single charged particle interacting with

an electromagnetic field, and then extend it to the model of two charged particles, which

corresponds to the BMV proposal setting, explained in Sec. 2.3.3. The results in the next two

subsections are based on the first principle analysis of the QED. Our analysis may be useful

to understand how the entanglement generation based on the operator valued Newtonian

potential Eq. (2.42) is related to the quantum field theory of gravitational field. We will

see that the contribution from the Coulomb potential is reproduced in the behavior of the

entanglement and is consistent with the result of the non-relativistic limit. This implies

that the operator valued Coulomb potential is originated from the quantum field theory of

the electromagnetic field. As we will see below, this entanglement generation is driven by

the fact that an electromagnetic field can be in a superposition state associated with the

superposition states of currents of the charged particles, which shows the quantum nature

of the electromagnetic field.

3.1 Dynamics of charged particles coupled with an electromagnetic

field

We consider the dynamics of charged particles coupled with an electromagnetic field, where

the charged particles are each in a superposition of trajectories. After a brief review of the

model of a single charged particle, we extend it to the model of two charged particles. For

the covariant quantization of the electromagnetic field, we use the BRST formalism [84] in

the Feynman gauge. The details of the BRST formalism are presented in Sec. 2.4.

3.1.1 Model of a single charged particle

We consider a single charged particle and an electromagnetic field coupled to it. The total

Hamiltonian in the Schrödinger picture is

Ĥ = Ĥp + ĤEM + V̂ , V̂ =

∫
d3xĴµ(x)Â

µ(x), (3.1)
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where Ĥp is the Hamiltonian of the charged particle, ĤEM is the free Hamiltonian of the

electromagnetic field, and V̂ is their interaction Hamiltonian. Ĵµ is the current operator of

the charged particle, and Âµ is the electromagnetic field operator (the U(1) gauge field).

We assume that the charged particle is superposed in two different trajectories R and L.

The charged particle is initially in the superposed state of |R⟩ and |L⟩, where |R⟩(|L⟩) is the

state that the particle will go through a trajectory R (L).

FIG 6: Configuration of a single charged particle trajectory.

The electromagnetic field is assumed to be initially in a coherent state. Then the total initial

state at the time t = 0 is

|Ψ(0)⟩ = 1√
2

(
|R⟩+ |L⟩

)
⊗ |α⟩EM, (3.2)

where |α⟩EM = D̂(α)|0⟩EM is the coherent state of the electromagnetic field. Here, |0⟩EM is

the vacuum state satisfying âµ(k)|0⟩EM = 0, and D̂(α) is the unitary operator referred to as

a displacement operator defined as

D̂(α) = exp

[∫
d3k(αµ(k)â†µ(k)− h.c.)

]
, (3.3)

where the complex function αµ(k) characterizes the amplitude and phase of the initial elec-

tromagnetic field. The form of the complex function αµ(k) is restricted by the auxiliary

condition in the BRST formalism. Because we will find that the entanglement between two

charged particles does not depend on αµ(k) in Sec. III A, the details on αµ(k) are omitted

here. The details are presented in Appendix A. The coherent state |α⟩EM is interpreted as a

state in which there is a mode of the electromagnetic field following Gauss’s law due to the

presence of charged particles.
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We assume that the current operator ĴµI (x) = eiĤ0tĴµ(0,x)e−iĤ0t in the interaction

picture defined with Ĥ0 = Ĥp + ĤEM is approximated by a classical current as

ĴµI (x)|P⟩ ≈ JµP(x)|P⟩, JµP(x) = e

∫
dτ
dXµ

P
dτ

δ(4)(x−XP(τ)), (3.4)

where P = R,L, e is an electric charge, and Xµ
P(τ) represents each trajectory of the charged

particle. This approximation is valid when the following two assumptions are satisfied [82]:

1. The de Brogile wavelength is smaller than the width of the particle wavepacket.

2. The Compton wavelength λC of the charged particle is much shorter than

the wavelength of the photon field λEM emitted from the charged particle

(λC ≪ λEM).

The first assumption justifies the localized classical trajectories JµjR(x) and JµjL(x). The

second one neglects the process of a pair creation and annihilation.

The evolution of the initial state |Ψ(0)⟩ is

|Ψ(T )⟩ = e−iĤT |Ψ(0)⟩

= e−iĤ0TT exp
[
− i

∫ T

0

dtV̂I(t)
]
|Ψ(0)⟩

= e−iĤ0TT exp
[
− i

∫ T

0

dt

∫
d3xĴµI (x)Â

I
µ(x)

]
1√
2

∑
P=R,L

|P⟩ ⊗ |α⟩EM

≈ e−iĤ0T

√
2

∑
P=R,L

|P⟩ ⊗ ÛP|α⟩EM, (3.5)

where the approximation in (3.4) was used in the fourth line, V̂I(t) = eiĤ0tV̂ e−iĤ0t and

ÂI
µ(x) = eiĤ0tÂ(0,x)e−iĤ0t. “T ” in the second and third lines denotes the time ordered

product. The operator ÛP is given by

ÛP = T exp
[
− i

∫ T

0

dt

∫
d3xJµP(x)Â

I
µ(x)

]
= exp

[
− i

∫
d4xJµP(x)Â

I
µ(x)−

i

2

∫
d4x

∫
d4yJµP(x)J

ν
P(y)G

r
µν(x, y)

]
, (3.6)
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where in the second line we used the Magnus expansion [85]

T exp
[
− i

∫ T

0

dtV̂I(t)
]
= exp

[ ∞∑
k=1

Ωk(T, 0)
]

(3.7)

with

Ω1(T, 0) = −i
∫ T

0

dtV̂I(t), Ω2(T, 0) =
(−i)2

2

∫ T

0

dt1

∫ t1

0

dt2[V̂I(t1), V̂I(t2)], (3.8)

and Ωk≥3(T, 0) given by higher commutators, for example, [[V̂I(t1), V̂I(t2)], V̂I(t3)]. We note

that the commutator [V̂I(t1), V̂I(t2)] is proportional to the identity operator and commutes

with V̂I(t) for any given time t. Hence, the terms Ωk≥3(T, 0) involving higher commutators

vanish in Eq. (3.6). Gr
µν(x, y) in Eq. (3.6) is the retarded Green’s function given by

Gr
µν(x, y) = −i[ÂI

µ(x), Â
I
ν(y)]θ(x

0 − y0). (3.9)

We obtain the reduced density matrix of the charged particle as

ρp = TrEM[|Ψ(T )⟩⟨Ψ(T )|] = 1

2

∑
P,P′=R,L

EM⟨α|Û †
P′ÛP|α⟩EM |Pf⟩⟨P′

f| =
1

2

∑
P,P′=R,L

e−ΓP′P+iΦP′P |Pf⟩⟨P′
f|,

(3.10)

where |Pf⟩ = e−iĤpT |P⟩ is the state of the charged particle, which moved along the trajectory

P(= R,L). ΓP′P and ΦP′P are

ΓP′P =
1

4

∫
d4x

∫
d4y
(
JµP′(x)− JµP(x)

) (
JνP′(y)− JνP(y)

) 〈{
ÂI
µ(x), Â

I
ν(y)

}〉
, (3.11)

ΦP′P =

∫
d4x
(
JµP′(x)− JµP(x)

)
Aµ(x)

− 1

2

∫
d4x

∫
d4y
(
JµP′(x)− JµP(x)

) (
JνP′(y) + JνP(y)

)
Gr
µν(x, y), (3.12)

where ⟨{ÂI
µ(x), Â

I
ν(y)}⟩ is the two-point function of the vacuum given by

〈{
ÂI
µ(x), Â

I
ν(y)

}〉
=
ηµν
4π2

(
1

− (x0 − y0 − iϵ)
2
+ |x− y|2

+
1

− (x0 − y0 + iϵ)
2
+ |x− y|2

)
(3.13)
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with the UV cutoff parameter ϵ, and the field Aµ(x) is

Aµ(x) =

∫
d3k

(2π)3/2
√
2k0

(αµ(k)e
ikνx

ν

+ c.c.). (3.14)

The computation of the inner product EM⟨α|Û †
P′ÛP|α⟩EM in (3.10) and the derivation of Eqs.

(3.11) and (3.12) are presented as follows: The inner product is rewritten as

EM⟨α|Û †
P′ÛP|α⟩EM = EM⟨0|D̂†(α)Û †

P′D̂(α)D̂†(α)ÛPD̂(α)|0⟩EM

= EM⟨0|(D̂†(α)ÛP′D̂(α))†(D̂†(α)ÛPD̂(α))|0⟩EM, (3.15)

where we used |α⟩ = D̂(α)|0⟩EM, and the identity operator Î = D̂(α)D̂†(α) was inserted

between the unitary operators Û †
P ′ and ÛP in the first equality. Because the displacement

operator D̂(α) satisfies Eq. (2.83), we obtain

D̂†(α)ÂI
µ(x)D̂(α) = ÂI

µ(x) + Aµ(x), (3.16)

where Aµ(x) is defined in Eq. (3.14). Subsequently, we obtain

D̂†(α)ÛP(x)D̂(α)

= exp

[
− i

2

∫
d4x

∫
d4yJµP(x)J

ν
P(y)G

r
µν(x, y)

]
D̂†(α) exp

[
−i
∫
d4xJµP(x)Â

I
µ(x)

]
D̂(α)

= exp

[
− i

2

∫
d4x

∫
d4yJµP(x)J

ν
P(y)G

r
µν(x, y)

]
exp

[
−i
∫
d4xJµP(x)D̂

†(α)ÂI
µ(x)D̂(α)

]
= exp

[
− i

2

∫
d4x

∫
d4yJµP(x)J

ν
P(y)G

r
µν(x, y)− i

∫
d4xJµP(x)Aµ(x)

]
× exp

[
−i
∫
d4xJµP(x)Â

I
µ(x)

]
, (3.17)

where the formula of the unitary operator ÛP (3.6) was substituted and Gr
µν(x, y) denotes

the retarded Green’s function given in Eq. (3.9). In the third equality we used Eq. (3.16).
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We further obtain

(D̂†(α)ÛP′D̂(α))†(D̂†(α)ÛPD̂(α))

= exp

[
i

2

∫
d4x

∫
d4y
(
JµP′(x)J

ν
P′(y)− JµP(x)J

ν
P(y)

)
Gr
µν(x, y) + i

∫
d4x
(
JµP′(x)− JµP(x)

)
Aµ(x)

]
× exp

[
i

∫
d4xJµP′(x)Â

I
µ(x)

]
exp

[
−i
∫
d4xJµP(x)Â

I
µ(x)

]
= exp

[
i

2

∫
d4x

∫
d4y
(
JµP′(x)J

ν
P′(y)− JµP(x)J

ν
P(y)

)
Gr
µν(x, y) + i

∫
d4x
(
JµP′(x)− JµP(x)

)
Aµ(x)

]
× exp

[
i

∫
d4x
(
JµP′(x)− JµP(x)

)
ÂI
µ(x) +

1

2

∫
d4xd4yJµP′(x)J

ν
P(y)[Â

I
µ(x), Â

I
ν(y)]

]
= exp

[
i

2

∫
d4x

∫
d4y
(
JµP′(x)J

ν
P′(y)− JµP(x)J

ν
P(y)

)
Gr
µν(x, y) + i

∫
d4x
(
JµP′(x)− JµP(x)

)
Aµ(x)

]
× exp

[
i

∫
d4x
(
JµP′(x)− JµP(x)

)
ÂI
µ(x) +

i

2

∫
d4xd4y

(
JµP′(x)J

ν
P(y)− JνP′(y)J

µ
P(x)

)
Gr
µν(x, y)

]
= exp

[
i

∫
d4x
(
JµP′(x)− JµP(x)

)
Aµ(x) +

i

2

∫
d4x

∫
d4y
(
JµP′(x)− JµP(x)

)(
JνP′(y) + JνP(y)

)
Gr
µν(x, y)

]
× exp

[
i

∫
d4x
(
JµP′(x)− JµP(x)

)
ÂI
µ(x)

]
= exp

[
iΦP′P + iΘ̂PP′

]
, (3.18)

where the Baker–Campbell–Hausdorff formula eÂeB̂ = eÂ+B̂+[Â,B̂]/2+··· was used in the

second equality, and the relation [ÂI
µ(x), Â

I
ν(y)] = iGr

µν(x, y) − iGr
νµ(y, x) was substituted

in the third equality. “ · · · ” in the Baker–Campbell–Hausdorff formula indicates the terms

involving the higher commutators of Â and B̂. In our case, the commutator [ÂI
µ(x), Â

I
ν(y)] is

proportional to the identity operator, so the higher commutators vanish. In the last equality,

we defined Θ̂PP′ and ΦP′P as

Θ̂PP′ =

∫
d4x
(
JµP′(x)− JµP(x)

)
ÂI
µ(x), (3.19)

ΦP′P =

∫
d4x
(
JµP′(x)− JµP(x)

)
Aµ(x)

+
1

2

∫
d4x

∫
d4y
(
JµP′(x)− JµP(x)

)(
JνP′(y) + JνP(y)

)
Gr
µν(x, y). (3.20)
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Using the cumulant expansion for a given density matrix ρ,

⟨eiλÂ⟩ρ = Tr[ρeiλÂ] = exp
[
iλ⟨Â⟩ρ −

1

2
λ2⟨
(
Â− ⟨Â⟩ρ

)2⟩ρ + · · ·
]
, (3.21)

where λ is a c-number parameter, Â is an operator, and “ · · · ” is the term with the third or

higher cumulant, we can compute the inner product (3.15) as

EM⟨0|D̂†(α)Û †
P′ÛPD̂(α)|0⟩EM

= eiΦP′P EM⟨0|eiΘ̂PP′ |0⟩EM

= eiΦP′P exp
[
i⟨Θ̂PP′⟩ − 1

2
⟨(Θ̂PP′ − ⟨Θ̂PP′⟩)2⟩+ · · ·

]
= eiΦP′P exp

[
−1

2

∫
d4xd4y

(
JµP′(x)− JµP(x)

)(
JνP′(y)− JνP(y)

)
EM⟨0|ÂI

µ(x)Â
I
ν(y)|0⟩EM

]
= e−ΓP′P+iΦP′P . (3.22)

We used Eq. (3.18) and the cumulant expansion with ρ = |0⟩EM⟨0|, λ = 1 and Â = Θ̂PP′

in the first and second lines, respectively. ⟨·⟩ denotes the vacuum expectation value. In the

third equality, we substituted Eq. (3.19), and the term “ · · · ” with the n-th cumulant for

n ≥ 3 vanishes because the free vacuum state |0⟩EM is Gaussian. In the last equality, we

defined ΓP′P as

ΓP′P =
1

2

∫
d4xd4y

(
JµP′(x)− JµP(x)

)(
JνP′(y)− JνP(y)

)
EM⟨0|ÂI

µ(x)Â
I
ν(y)|0⟩EM

=
1

4

∫
d4xd4y

(
JµP′(x)− JµP(x)

)(
JνP′(y)− JνP(y)

)
⟨
{
ÂI
µ(x), Â

I
ν(y)

}
⟩.

Replacing the currents JµP and JµP′ with JµPQ and JµP′Q′ in the above procedure, we can also

derive (3.38) . It is obvious that ΓRR = ΓLL = ΦRR = ΦLL = 0. However, ΓRL and ΦRL are

given as

ΓRL =
1

4

∫
d4x

∫
d4y(JµR(x)− JµL (x))(J

ν
R(y)− JνL(y))⟨

{
ÂI
µ(x), Â

I
ν(y)

}
⟩

=
e2

4

∮
C
dxµ

∮
C
dyµ⟨

{
ÂI
µ(x), Â

I
ν(y)

}
⟩ (3.23)
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and

ΦRL =

∫
d4x
(
JµR(x)− JµL (x)

)
Aµ(x)−

1

2

∫
d4x

∫
d4y(JµR(x)− JµL (x))(J

ν
R(y) + JνL(y))G

r
µν(x, y)

= e

∮
C
dxµA

µ(x)− e

2

∮
C
dxµ(A

µ
R(x) + AµL(x)), (3.24)

where
∮
C dxµ =

∫
R dxµ −

∫
L dxµ is the integral along the closed trajectory composed of

trajectories R and L. Here, AµP(x) is the retarded potential given by

AµP(x) =

∫
d4yGrµν(x, y)J

ν
P(y). (3.25)

According to (3.23), ΓRL is always positive, and the interference terms of ρP (off-diagonal

components) decay for a large ΓRL. The quantity ΓRL is referred to as the decoherence

functional. The quantity ΦRL = −ΦLR gives the phase shift in the interference pattern of

the charged particle.

Assuming the following trajectories of the charged particle

Xµ
P(t) = [t, ϵPX(t), 0, 0

]T
, ϵR = −ϵL = 1, X(t) = 8L

(
1− t

T

)2( t
T

)2
, (3.26)

where L and T are the length and time scales of the trajectories (also see Fig. 6), we obtain

the decoherence functional as

ΓRL ≈ 32e2

3π2

(
L

T

)2
, (3.27)

when the charged particle has a non-relativistic velocity L/T ≪ 1. We mention here the

reason to choose X(t) in Eq. (3.26). According to the function X(t), the particle at t = 0

and t = T has zero velocity and is smoothly superposed and recombined. The smoothness of

the trajectory avoids a divergence in the calculations of decoherence, which guarantees our

results in a form independent of an UV cutoff. The authors in [86] discussed the relation

between the smoothness of particle trajectories and the UV divergence in decoherence effect.

They reported that the decoherence functional computed assuming smooth trajectories is

free from the UV cutoff and of the order of O(e2v2), where v is the characteristic velocity of

particle. This is consistent with our result written by the characteristic velocity L/T . The

physical meaning of ΓRL is interpreted in the following two ways. First, we consider that

decoherence occurs through photon emission. The number of emitted photons is estimated
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as

WT

ν
= WT 2 ∼ e2

(
L

T 2

)2
T 2 = e2

(
L

T

)2
, (3.28)

where ν = 1/T is the energy of a single photon in the unit ℏ = 1, and W ∼ e2(L/T 2)2

is the Larmor formula of the power of radiation emitted from a non-relativistic charged

particle. This formula shows the number of emitted photons during the time T . When this

number exceeds one, i.e., WT/ν ≥ 1, the decoherence becomes significant. The decoherence

due to bremsstrahlung was also discussed in [82]. This result is qualitatively interpreted

as follows: if the superposed time T is sufficiently long, the acceleration of the charged

particles becomes small, and therefore the number of photons emitted by the accelerated

charged particle decreases. This result in the small decoherence. On the other hand, when

the superposition scale L is large, i.e., if the acceleration of the charged particle is significant,

the number of emitted photons increases. Thus, the decoherence works well. Second, we can

deduce that the decoherence is due to the vacuum fluctuations of the transverse mode of the

electromagnetic field (photon field) [87, 88]. The fluctuating photon field leads to dephasing

effects,

⟨eiϕi⟩ = e−⟨ϕ2
i ⟩/2 ∼ e−(e∆ELT )2/2, (3.29)

where ϕi with i = R,L is the phase shift due to the fluctuating photon field,

ϕ̂i =

∫
d4x∆Jµi (x)Â

I
µ(x), (3.30)

and ⟨ϕ2A⟩ = ⟨ϕ2B⟩ ∼ (e∆ELT )2 is its variance. ∆E is the vacuum fluctuation of the electric

component of the photon field, which is estimated as ∆E ∼ 1/T 2 in [89]. The variance of

the phase shift is

(e∆ELT )2 ∼
(
e
1

T 2
LT
)2

= e2
(
L

T

)2
. (3.31)

This result is equivalent to Eq. (3.28), and the decoherence becomes significant when

(e∆ELT )2 ≥ 1 is satisfied.
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3.1.2 Model of two charged particles

Here, we extend the previous model to the model of two charged particles (for example, see

Fig. 4). The total Hamiltonian in the Schrödinger picture is composed of the local Hamilto-

nians of each charged particle ĤA and ĤB, the free Hamiltonian of the electromagnetic field

ĤEM and the interaction term V̂ as

Ĥ = ĤA + ĤB + ĤEM + V̂ , V̂ =

∫
d3x
(
ĴµA(x) + ĴµB(x)

)
Âµ(x), (3.32)

where ĴµA and ĴµB are the current operators of each particle, which are coupled with the

electromagnetic field operator Âµ. We consider the following initial condition at t = 0,

|Ψ(0)⟩ = 1

2

∑
P, Q=R, L

|P⟩A|Q⟩B|α⟩EM, (3.33)

where each particle is in superposition |R⟩A + |L⟩A and |R⟩B + |L⟩B, and the electromag-

netic field is in a coherent state |α⟩EM. We assume that the current operators ĴµiI(x) =

eiĤ0tĴµi (0,x)e
−iĤ0t in the interaction picture with respect to Ĥ0 = ĤA + ĤB + ĤEM are

approximated by the following classical currents as

ĴµAI(x) |P⟩A ≈ JµAP(x) |P⟩A , ĴµBI(x) |Q⟩B ≈ JµBQ(x) |Q⟩B , (3.34)

JµAP(x) = e

∫
dτ
dXµ

AP
dτ

δ(4) (x−XAP(τ)) , JµBQ(x) = e

∫
dτ
dXµ

BQ

dτ
δ(4)
(
x−XBQ(τ)

)
,

(3.35)

where Xµ
AP(τ) and Xµ

BQ(τ) with P,Q = R,L represent the trajectories of each particle. The

initial state evolves as follows:

|Ψ(T )⟩ = exp
[
− iĤT

]
|Ψ(0)⟩

= e−iĤ0TT exp
[
− i

∫ T

0

dtV̂I(t)
]
|Ψ(0)⟩

≈ e−iĤ0T 1

2

∑
P,Q=R,L

|P⟩A|Q⟩BÛPQ|α⟩EM, (3.36)
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where we used the approximations (3.34) in the third line. The unitary operator ÛPQ is

given by

ÛPQ = T exp

[
−i
∫ T

0

dt

∫
d3x
(
Jµ1P + Jµ2Q

)
ÂI
µ(x)

]

= exp

[
−i
∫
d4xJµPQ(x)Â

I
µ(x)−

i

2

∫
d4x

∫
d4yJµPQ(x)J

ν
PQ(y)G

r
µν(x, y)

]
, (3.37)

where the Magnus expansion was used, and JµPQ = JµAP + JµBQ. Tracing out the degrees of

freedom of the electromagnetic field to focus on the quantum state of the charged particles,

we obtain the reduced density matrix of particles A and B,

ρAB = TrEM[|Ψ(T )⟩⟨Ψ(T )|]

=
1

4

∑
P,Q=R,L

∑
P′,Q′=R,L

EM⟨α|Û †
P′Q′ÛPQ|α⟩EM |Pf⟩A⟨P′

f| ⊗ |Qf⟩B⟨Q′
f|

=
1

4

∑
P,Q=R,L

∑
P′,Q′=R,L

e−ΓP′Q′PQ+iΦP′Q′PQ |Pf⟩A⟨P′
f| ⊗ |Qf⟩B ⟨Q′

f|, (3.38)

where |Pf⟩A = e−iĤAT |P⟩A and |Qf⟩B = e−iĤBT |Q⟩B are the states of the charged particles

A and B, which moved along the trajectories P and Q, respectively. The quantities ΓP′Q′PQ

and ΦP′Q′PQ are

ΓP′Q′PQ =
1

4

∫
d4x

∫
d4y(JµP′Q′(x)− JµPQ(x))(J

ν
P′Q′(y)− JνPQ(y))⟨

{
ÂI
µ(x), Â

I
ν(y)

}
⟩,

(3.39)

ΦP′Q′PQ =

∫
d4x(JµP′Q′(x)− JµPQ(x))Aµ(x)

− 1

2

∫
d4x

∫
d4y(JµP′Q′(x)− JµPQ(x))(J

ν
P′Q′(y) + JνPQ(y))G

r
µν(x, y), (3.40)

where ⟨
{
ÂI
µ(x), Â

I
ν(y)

}
⟩ and Gr

µν(x, y) are the two-point function (3.13) and the retarded

Green’s function (3.9). Aµ(x) is the coherent electromagnetic field (3.14). The above formu-

las (3.39) and (3.40) are given by replacing the currents JµP and JµP′ in Eqs. (3.11) and (3.12)

with JµPQ and JµP′Q′ , respectively. In the next section, we derive the entanglement negativity

of the two charged particles. We also demonstrate the entanglement behavior for a couple
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of typical configurations of the particle’s trajectories.

3.2 Entanglement behavior of two charged particles

3.2.1 Formula of the negativity of two charged particles

We evaluate the entanglement negativity with the formula (2.34). As explained in Sec. 2.2.2,

the negativity is obtained by composing the partial transposition of the density matrix.

To see the difference of the eigenvalue by the partial transposition, we first compute the

eigenvalues of the density matrix ρAB, respectively. They are obtained directly as follows:

Λ±
1 =

1

4

[
1− e−ΓA−ΓB cosh[Γc]±

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB sin2

[
Θ

2

]
+ e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
,

(3.41)

Λ±
2 =

1

4

[
1 + e−ΓA−ΓB cosh[Γc]±

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB cos2

[
Θ

2

]
+ e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
.

(3.42)

In particular, the quantity Θ is

Θ = − i

2

∫
d4x

∫
d4y∆JµA(x)∆J

ν
B(y)[Â

I
µ(x), Â

I
ν(y)] = − i

2
[ϕ̂A, ϕ̂B] (3.43)

with the commutation relation of the operators ϕ̂A and ϕ̂B,

[ϕ̂A, ϕ̂B] =

∫
d4xd4y(JµAR(x)− JµAL(x))(J

ν
BR − JνBL(y))[Â

I
µ(x), Â

I
ν(y)]

=

∫
d4xd4y(JµAR(x)− JµAL(x))(J

ν
BR − JνBL(y))[Â

I
µ(x), Â

I
ν(y)]θ(x

0 − y0)

+

∫
d4xd4y(JµAR(x)− JµAL(x))(J

ν
BR − JνBL(y))[Â

I
µ(x), Â

I
ν(y)]θ(y

0 − x0)

= i

∫
d4x∆JµA∆ABµ − i

∫
d4x∆JµB∆AAµ,

= ie

∮
CA

dxµ∆A
µ
B(x)− ie

∮
CB

dxµ∆A
µ
A(x), (3.44)

where we inserted the step functions θ(x0 − y0) + θ(y0 − x0) in the second line, and we

changed variables as xµ ↔ yµ and indices as µ ↔ ν of the second term in the third line.
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∆Jµi = JµiR−J
µ
iL and JµiP is the current of the particle i (= A,B) on the trajectory P (= R,L).

The quantity ∆Aµi = AµiR −AµiL is the difference between the retarded potentials defined by

AµiP(x) =

∫
d4yGrµν(x, y)J

ν
iP(y). (3.45)

The line integral along the closed trajectory
∮
Ci
dxµ is defined by

∮
Ci
dxµ =

∫
iR dxµ−

∫
iL dxµ,

where iP denotes the trajectory P of the particle i. Next, the eigenvalues of the partial

transposition ρTA
AB with the components ⟨P′|⟨Q′|ρTA

AB|P⟩|Q⟩ = ⟨P|⟨Q′|ρAB|P′⟩|Q⟩ are

λ± =
1

4

[
1− e−ΓA−ΓB cosh[Γc]±

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB sin2(Φ/2) + e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
,

(3.46)

λ′± =
1

4

[
1 + e−ΓA−ΓB cosh[Γc]±

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB cos2(Φ/2) + e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
.

(3.47)

Thus, by doing the partial transposition, Θ is changed to Φ defined in Eq. (3.51) below. We

note that λ− is the minimum eigenvalue λmin, and hence the negativity of the two charged

particles is

N = max[−λmin, 0],

λmin =
1

4

[
1− e−ΓA−ΓB cosh[Γc]−

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB sin2(Φ/2) + e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
.

(3.48)

Because the density matrix ρAB of the charged particles is regarded as that of a two-qubit

system, the negativity completely determines whether the particles are entangled or not.
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The quantities Γi (i = A,B), Γc and Φ are given as

Γi =
1

4

∫
d4x

∫
d4y∆Jµi (x)∆J

ν
i (y)⟨{ÂI

µ(x), Â
I
ν(y)}⟩

=
e2

4

∮
Ci

dxµ
∮

Ci

dyν⟨{ÂI
µ(x), Â

I
ν(y)}⟩, (3.49)

Γc =
1

2

∫
d4x

∫
d4y∆JµA(x)∆J

ν
B(y)⟨{Â

I
µ(x), Â

I
ν(y)}⟩

=
e2

2

∮
CA

dxµ
∮

CB

dyν ⟨{ÂI
µ(x), Â

I
ν(y)}⟩, (3.50)

Φ =
1

2

∫
d4x

∫
d4y
{
∆JµA(x)∆J

ν
B(y) + ∆JµB(x)∆J

ν
A(y)

}
Grµν(x, y)

=
e

2

(∮
CA

dxµ∆A
µ
B(x) +

∮
CB

dxµ∆A
µ
A(x)

)
. (3.51)

The quantities ΓA and ΓB depend on the trajectories of each particle and have the similar

form to ΓRL (3.23). These are the decoherence functionals appearing in the interference

terms of each charged particle. In Appendix B.1, ΓA and ΓB are computed explicitly. Γc is

characterized by the correlation function between the photon field coupled to particle A and

the photon field coupled to particle B. Φ is computed from the phase shifts by the retarded

potentials of the electromagnetic field AµiP, which is analogous to the Aharanov-Bohm effect.

Γc and Φ depend on the relative configuration of the trajectories of particles A and B. In

Appendices B.2 and B.3, we explicitly evaluate Γc and Φ assuming two specific configurations

of particles, which we refer to as the linear configuration (Figs. 7 and 9) and the parallel

configuration (Figs. 11 and 13) in this paper. The quantities Γi, Γc and Φ are independent

of the complex function αµ(k) of the initial coherent state of the electromagnetic field, and

hence the negativity N also does not depend on αµ(k). Hence, as mentioned around Eq.

(3.3), the entanglement between the particles does not depend on αµ(k). Using the Stokes’s

theorem to rewrite the line integrals in Eqs. (3.49), (3.50), and (3.51) by the surface integrals,
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we can express the quantities Γi, Γc and Φ in terms of the field strengths as

Γi =
e2

16

∫
Si

dσµν
∫

Si

dσ′
αβ⟨{F̂ I

µν(x), F̂
I
αβ(x

′)}⟩, (3.52)

Γc =
e2

16

∫
S1

dσµν
∫

S2

dσ′
αβ ⟨{F̂ I

µν(x), F̂
I
αβ(x

′)}⟩, (3.53)

Φ =
e

4

(∫
SA

dσµν∆F
µν
B (x) +

∫
SB

dσµν∆F
µν
A (x)

)
, (3.54)

where Si is the surface surrounded by the closed trajectory Ci, F̂ I
µν = ∂µÂ

I
ν − ∂νÂ

I
µ, and

∆Fµνi = FµνiR − FµνiL with the retarded field strengths FµνiP = ∂µAνiP − ∂νAµiP.

In the following subsections, computing the quantities Γi, Γc and Φ, we present the

minimum eigenvalue (3.48) and entanglement negativity N of the charged particles. Here-

after, we restore the reduced Planck constant ℏ and the light velocity c to determine the

non-relativistic limit of our analysis.

3.2.2 Linear configuration

We consider the linear configurations shown in Fig. 7 and Fig. 9. The parameters T , L,

and D represent the time of maintaining a superposition state of each particle, the length

of separation between the superposed trajectories of each particle, and the initial distance

between the charged particles A and B, respectively.

3.2.2.1 cT ≫ D ∼ L or cT ≫ D ≫ L regimes

To evaluate the minimum eigenvalue λmin, which gives the negativity of the two charged

particles, we compute the quantities Γi, Γc and Φ by specifying the trajectories of the

particles. We consider the following trajectories

Xµ
AP = [t, ϵPX(t), 0, 0]T, Xµ

BQ(t) = [t, ϵQX(t) +D, 0, 0
]T
, ϵR = −ϵL = 1, (3.55)

X(t) = 8L
(
1− t

T

)2( t
T

)2
, (3.56)

where Xµ
AP and Xµ

BQ with P,Q = R,L describe the trajectories of particles A and B, re-

spectively. Fig. 7 schematically shows the configuration of the particles. In the regimes

cT ≫ D ∼ L and cT ≫ D ≫ L, the quantities Γi, Γc, and Φ are evaluated. As we show in
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Appendix B.1, assuming the above trajectories, we can compute Γi for cT ≫ L as

ΓA = ΓB ≈ 32e2

3π2ℏc

(
L

cT

)2
. (3.57)

FIG 7: Linear configuration in the regimes cT ≫ D ∼ L and cT ≫ D ≫ L. The left panel
shows the entire view of the linear configuration.

In the regime cT ≫ D ∼ L, the quantity Γc is analytically obtained as

Γc ≈
64e2

3π2ℏc

(
L

cT

)2
, (3.58)

and the quantity Φ is numerically computed from the formula

Φ ≈ − e2

4πℏ

∫ T

0

dt
[
2

D

(
1− v2

c2

)
−
(
1 +

v2

c2

)(
1

D − 2X(t)
+

1

D + 2X(t)

)]
, (3.59)

where v = dX/dt. Substituting Eqs. (3.57), (3.58), and (3.59) into Eq. (3.48), we evaluate

the minimum eigenvalue λmin and the negativity N . The behavior is shown by the red curve

in Fig. 8 (a). The derivation of Eqs. (3.58) and (3.59) is presented in Appendix B.2.1. In

the regime cT ≫ D ≫ L, the quantities Γc and Φ are estimated as

Γc ≈
64e2

3π2ℏc

(
L

cT

)2(
1 + 4

(
D

cT

)2
ln
[
D

cT

])
, Φ ≈ 64e2

315πℏc

(
L

cT

)2{(cT
D

)3
+ 6

cT

D

}
,

(3.60)
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and we obtain the following eigenvalue (3.48)

λmin ≈ 1

4

[
ΓA + ΓB −

√
(ΓA − ΓB)2 + Φ2 + Γ2

c

]
≈ 16e2

3π2ℏc

(
L

cT

)2
− 1

4

√[
64e2

315πℏc

(
L

cT

)2{(cT
D

)3
+ 6

cT

D

}]2
+

[
64e2

3π2ℏc

(
L

cT

)2(
1 + 4

(
D

cT

)2
ln
[
D

cT

])]2
,

(3.61)

where in the first line we assumed that Γi, Γc, and Φ are small, and Eqs. (3.57) and (3.60)

were substituted in the second line. Eq. (3.60) is derived in Appendix B.2.1. The term

ΓA + ΓB in the first line of Eq. (3.61) (or the first positive term in the second line) makes

λmin positive and reduces the negativity. In contrast, the second term given by Φ and Γc (or

the second term in the second line) decreases λmin, where Φ is much larger than Γc because

of Γc/Φ ≈ (D/cT )3 ≪ 1. The quantity Φ reflects the contribution of the Coulomb potential

(proportional to D−3 term) and its relativistic correction (proportional to D−1 term).

The panels (a) and (b) in Fig. 8 show the negativity in the regimes cT ≫ D ∼ L and

cT ≫ D ≫ L, respectively. The blue curve in each panel presents the behavior of the

negativity in Fig. 5, which is given in the non-relativistic limit and has no contributions

from the dynamical degrees of freedom of the electromagnetic field. The red curve shows the

behavior of the negativity computed from our analysis. In the panel (a) under the regime

cT ≫ D ∼ L, the red curve is similar to the blue curve. This means that the Coulomb

potential is dominant to determine the negativity in this regime, and the relativistic cor-

rections are small. However, in the panel (b) under the regime cT ≫ D ≫ L, there is the

parameter region without the negativity. This is because the decoherence effects ΓA and ΓB

are more dominant than the term Φ mainly determined by the Coulomb potential. In this

regime, the computation of the negativity in the non-relativistic limit is not valid.

3.2.2.2 D ≫ cT ≫ L regime

Subsequently, we present the formula of the minimum eigenvalue λmin in the regime D ≫
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FIG 8: Negativity N for the linear configuration. (a) is the case cT ≫ D ∼ L while (b) is
the case cT ≫ D ≫ L. We adopted L/cT = 0.1.

cT ≫ L. We assume the trajectories of the charged particles A and B given by

Xµ
AP(t) =

[
t, ϵPX(t), 0, 0

]T
, Xµ

BQ(t) =
[
t, ϵQX(t−D) +D, 0, 0

]T
, ϵR = −ϵL = 1,

(3.62)

X(t) = 8L
(
1− t

T

)2( t
T

)2
, (3.63)

where Xµ
BQ is defined in D/c ≤ t ≤ T + D/c. The whole configuration of the trajectories

is shown in Fig. 9, in which the superposition of particle B is formed after particle A is

superposed. The trajectories of the particles are arranged to be causally connected.

FIG 9: Linear configuration in the D ≫ cT ≫ L regime.
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We obtain the following formulas for the regime D ≫ cT ≫ L,

ΓA = ΓB ≈ 32e2

3π2ℏc

(
L

cT

)2
, Γc ≈ − 32e2

225π2ℏc

(
L

cT

)2(cT
D

)4
, Φ ≈ 16e2

315πℏc

(
L

cT

)2(cT
D

)3
,

(3.64)

where ΓA and ΓB are the same as those given in (3.57) because they depend only on each

particle motion, and the explicit derivation of Γc and Φ is presented in Appendix B.2.2. We

can then compute the eigenvalue (3.48) as

λmin ≈ 1

4

[
ΓA + ΓB −

√
(ΓA − ΓB)2 + Φ2 + Γ2

c

]
≈ 16e2

3π2ℏc

(
L

cT

)2
− 16e2

315πℏc

(
L

cT

)2(cT
D

)3
, (3.65)

where in the first equality, the minimum eigenvalue was approximated by assuming that

Γi(i = A,B), Γc, and Φ are small. In the second equality, we substituted (3.64) and neglected

Γc because of Γc/Φ ≈ cT/D ≪ 1 for the regime D ≫ cT ≫ L. The positive term in the

right hand side of Eq. (3.65), which is given by the decoherence functional Γi, comes from

the vacuum fluctuations of the photon field. The negative term in Eq. (3.65) is given by

the quantity Φ depending on the phase shifts due to the retarded field (see the formula of Φ

(3.51) and the discussion around (3.45)).

Fig. 10 shows the minimum eigenvalue (3.65) for a fixed L/cT = 0.1 as a function of

D/cT in the regime D ≫ cT ≫ L. The minimum eigenvalue is always positive, and hence

the charged particles A and B are not entangled. This result shows that the decoherence

due to the vacuum fluctuation of the photon field suppresses the entanglement generation

due to the retarded field. In Sec. 3.3, we will discuss that the retarded field corresponds to

the longitudinal mode, that is, the non-dynamical part of the electromagnetic field.
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FIG 10: Minimum eigenvalue λmin[ρ
TA
AB] for the linear configuration in the regime D ≫ cT ≫

L. We adopted L/cT = 0.1.

3.2.3 Parallel configuration

Here, we consider the parallel configurations shown in Fig. 11 and Fig. 13. The parameters

T , L, and D play the same role as those in the linear configuration, which are the typical

scales appearing in the trajectories of the particles.

3.2.2.1 cT ≫ D ≫ L or cT ≫ D ≫ L regimes

We first consider the trajectories of the two particles A and B as

Xµ
AP(t) =

[
t, ϵPX(t), 0, 0

]T
, Xµ

BQ(t) =
[
t, ϵQX(t), D, 0

]T
, ϵR = −ϵL = 1, (3.66)

X(t) = 8L
(
1− t

T

)2( t
T

)2
. (3.67)

The schematic configuration is shown in Fig. 11. We examine the quantities Γi(i = A,B), Γc,

and Φ for the regimes cT ≫ L≫ D and cT ≫ D ≫ L to estimate the minimum eigenvalue

λmin. Even in this configuration, the decoherence functionals ΓA and ΓB for cT ≫ L are

identical to those in Eq. (3.57), that is,

ΓA = ΓB ≈ 32e2

3π2ℏc

(
L

cT

)2
. (3.68)

This is because the decoherence functionals are given by the local motions of each charged

particle. In the following, we evaluate Γc and Φ for each of the regimes cT ≫ L ≫ D and
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cT ≫ D ≫ L.

FIG 11: Parallel configuration in cT ≫ D ≫ L regime.

In the regime cT ≫ L≫ D, the quantities Γc and Φ are

Γc ≈
64e2

3π2ℏc

(
L

cT

)2
, Φ ≈ e2

4πℏc
cT

D

{
1− 64

105

(
L

cT

)2}
, (3.69)

which are derived in Appendix B.3.1. The minimum eigenvalue (3.48) for the regime cT ≫
L≫ D is given as

λmin[ρ
TA
AB] ≈

1

4

[
ΓA + ΓB −

√
(ΓA − ΓB)2 + 4 sin2

[
Φ

2

]
+ Γ2

c

]
≈ 16e2

3π2ℏc

(
L

cT

)2
− 1

4

√{
2 sin

[
e2

4πℏc
cT

D

(
1− 64

105

(
L

cT

)2)]}2

+
{

64e2

3π2ℏc

(
L

cT

)2}2

.

(3.70)

In the above equation, the first term coming from ΓA+ΓB increases the minimum eigenvalue,

whereas the second term given by Φ and Γc decreases it. It should be noted that the quantity

Φ can be Φ ≫ 1 because of cT/D(1− L2/(cT )2) ≈ cT/D ≫ 1 for the regime cT ≫ L≫ D.
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In the regime cT ≫ D ≫ L, the quantities Γc and Φ are

Γc ≈
64e2

3π2ℏc

(
L

cT

)2{
1 + 4

(
D

cT

)2
ln
[
D

cT

]}
, Φ ≈ 32e2

315πℏc

(
L

cT

)2{(cT
D

)3
− 6

cT

D

}
.

(3.71)

These formulas are derived in Appendix B.3. The minimum eigenvalue (3.48) for the regime

cT ≫ D ≫ L is approximated as

λmin[ρ
TA
AB] ≈

1

4

[
ΓA + ΓB −

√
(ΓA − ΓB)2 + Φ2 + Γ2

c

]
≈ 16e2

3π2ℏc

(
L

cT

)2
− 1

4

√[
32e2

315πℏc

(
L

cT

)2{(cT
D

)3
− 6cT

D

}]2
+

[
64e2

3π2ℏc

(
L

cT

)2{
1 + 4

(
D

cT

)2
ln
[
D

cT

]}]2
,

(3.72)

This minimum eigenvalue has the very similar feature to that obtained in the case of the

linear configuration. The first positive contribution in (3.72) comes from the decoherence

functional Γi quantifying the decoherence due to the vacuum fluctuations of the photon field.

The second negative contribution in (3.72) is computed from Γc and Φ, which is mostly from

Φ because of Γc/Φ ≈ (D/cT )3 ≪ 1. The quantities Γc and Φ stem from the vacuum

correlation of the photon field and the phase shifts due to the retarded field, respectively.

The panels in Fig. 12 (a) and (b) present the behavior of the negativity in the regimes

cT ≫ L ≫ D and cT ≫ D ≫ L, respectively. The blue curve shows the negativity in the

non-relativistic limit, which corresponds to the electromagnetic version of the BMV experi-

ment. The red curve is given by our analysis. The behavior of the negativity in Fig. 12 (a)

means that our analysis is consistent with the non-relativistic result. However, in Fig. 12

(b), due to the decoherence, the parameter region without the negativity appears, and hence

the computation in the non-relativistic limit becomes invalid in cT ≫ D ≫ L.

3.2.2.1 D ≫ cT ≫ L regime
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FIG 12: Negativity N for the parallel configuration. (a) is the case cT ≫ L≫ D, whereas
(b) is the case cT ≫ D ≫ L. We adopted L/cT = 0.1.

We consider the trajectories of two charged particles A and B as

Xµ
AP(t) =

[
t, ϵPX(t), 0, 0

]T
, Xµ

BP(t) =
[
t, ϵPX(t−D/c), D, 0

]T
, ϵR = −ϵL = 1, (3.73)

X(t) = 8L
(
1− t

T

)2( t
T

)2
, (3.74)

where Xµ
AP and Xµ

BQ with P,Q = R,L describe the trajectory of each particle. Here, Xµ
BQ

is defined in D/c ≤ t ≤ T +D/c. The spacetime configuration of the particles is presented

in Fig. 13. We examine the minimum eigenvalue in the regime D ≫ cT ≫ L.

FIG 13: Parallel configuration in D ≫ cT ≫ L regime.
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We have the following formulas of ΓA, ΓB, Γc and Φ for the regime D ≫ cT ≫ L,

ΓA = ΓB ≈ 32e2

3π2ℏc

(
L

cT

)2
, Φ ≈ − 64e2

105πℏc

(
L

cT

)2 cT
D
, Γc ≈ − 32e2

225π2ℏc

(
L

cT

)2(cT
D

)4
,

(3.75)

where ΓA and ΓB are not at all different from those given in (3.57) or (3.68), and the

quantities Γc and Φ are derived in Appendix B.3.2. Then, we can compute the minimum

eigenvalue (3.48) as

λmin[ρ
TA
AB] ≈

1

4

[
ΓA + ΓB −

√
(ΓA − ΓB)2 + Φ2 + Γ2

c

]
≈ 16e2

3π2ℏc

(
L

cT

)2
− 16e2

105πℏc

(
L

cT

)2 cT
D
, (3.76)

where the first term coming from the decoherence functional Γi increases the minimum

eigenvalue, and the second term given by Φ decreases it. In the second equality, we neglected

Γc because of Γc/Φ ≈ (cT/D)3 ≪ 1. Fig. 14 shows the minimum eigenvalue (3.48) as a

function of D/cT in the regime D ≫ cT ≫ L, which is always positive. Similar to the

result in the case of the linear configuration (see Fig. 14), the negativity remains zero, and

the entanglement between the charged particles A and B does not appear in the regime

D ≫ cT ≫ L. We come to the same conclusion that the decoherence due to the vacuum

fluctuations of the photon field prevents the entanglement generation due to the retarded

field.

FIG 14: Minimum eigenvalue λmin[ρ
TA
AB] for the parallel configuration in the regime D ≫

cT ≫ L. We adopted L/cT = 0.1.

It is important to note that the parameter dependence appearing in the formulas of the

59



minimum eigenvalue (3.65) and (3.76) is different. The second terms of (3.65) and (3.76)

are proportional to −cTL2/D3 and −L2/D(cT ), respectively. The latter is regarded as a

consequence of the quantum superposition of bremsstrahlung, as we will discuss in the next

section.

3.3 Discussion

Before the main discussion in this section, we first mention a basic property of the field

strength of a charged particle. Generally, the field strength of a charged particle is decom-

posed into two terms Fµν = Fµνv + Fµνa , which are given as

Fµνv (x) = − e

4π

(xµ −Xµ(tr))v
ν(tr)− (µ↔ ν)

γ2[(x−X(tr)) · v(tr)]3
, (3.77)

Fµνa (x) =
e

4π[(x−X(tr)) · v(tr)]2
[
(xµ −Xµ(tr))

(
aν(tr)−

(x−X(tr)) · a(tr)
(x−X(tr)) · v(tr)

vν(tr)
)
− (µ↔ ν)

]
,

(3.78)

where Xµ is the spacetime position of the particle, vµ = dXµ/dt is the velocity , aµ = dvµ/dt

is the acceleration, and γ = 1/
√

−vµvµ is the Lorentz factor. The retarded time tr is given

by −(t− tr) + |x−X(tr)| = 0. The above equations are obtained as follows: The current of

a charged particle is given as a four-vector current in a covariant form with

Jµ(x) = e

∫
dτ
dXµ

dτ
δ(4)(x−X(τ)), (3.79)

where Xµ(τ) is the trajectory of the charged particle parameterized by a proper time τ .

Using this current and the retarded Green’s function,

Grµν(x, y) = −
ηµν

4π|x− y|
δ
(
|x− y| − (x0 − y0)

)
, (3.80)

we obtain the retarded potential as

Aµ(x) =

∫
d4yGrµ

ν (x, y)J
ν(y) =

e

4π

uµ(τr)

(x−X(τr)) · u(τr)
, (3.81)
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where uµ = dXµ/dτ is the four-velocity of the charge, and τr is determined by the light-cone

condition

−(t−X0(τr)) + |x−X(τr)| = 0. (3.82)

From the definition of the field strength Fµν = ∂µAν − ∂νAµ, we obtain

Fµν = Fµνv + Fµνa , (3.83)

Fµνv = − e

4π

(xµ −Xµ(τr))u
ν(τr)− (xν −Xν(τr))u

µ(τr)

[(x−X(τr)) · u(τr)]3
, (3.84)

Fµνa =
e

4π[(x−X(τr)) · u(τr)]2
(
(xµ −Xµ(τr))

(
u̇ν(τr)−

(x−X(τr)) · u̇(τr)
(x−X(τr)) · u(τr)

uν(τr)
)

− (xν −Xν(τr))
(
u̇µ(τr)−

(x−X(τr)) · u̇(τr)
(x−X(τr)) · u(τr)

uµ(τr)
)
, (3.85)

where u̇µ = duµ/dτ is the four-acceleration. We use the coordinate time t instead of the

proper time τ to rewrite the above field strengths. The four-vector and four-acceleration as

a function of t are

uµ =
dXµ

dτ
= γ

dXµ

dt
= γvµ, u̇µ =

duµ

dτ
= γ

dγ

dt
vµ + γ2aµ, (3.86)

where vµ and aµ are the velocity and acceleration measured in the coordinate time t, and γ

is the Lorentz factor. These are defined by

vµ =
dXµ

dt
=
[
1,
dX

dt

]T
, aµ =

dvµ

dt
=
[
0,
d2X

dt2

]T
, γ =

1√
−v2

=
1√

1− v2
. (3.87)

We then determine the following retarded potential and its field strength as

Aµ(x) =
e

4π

vµ(tr)

(x−X(tr)) · v(tr)
, (3.88)

Fµνv = − e

4π

(xµ −Xµ(tr))v
ν(tr)− (xν −Xν(tr))v

µ(tr)

γ2[(x−X(tr)) · v(tr)]3
, (3.89)

Fµνa =
e

4π[(x−X(tr)) · v(tr)]2
[
(xµ −Xµ(tr))

(
aν(tr)−

(x−X(tr)) · a(tr)
(x−X(tr)) · v(tr)

vν(tr)
)

− (xν −Xν(tr))
(
aµ(tr)−

(x−X(tr)) · a(tr)
(x−X(tr)) · v(tr)

vµ(tr)
)]
, (3.90)
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where the retarded time tr is given by

−(t− tr) + |x−X(tr)| = 0. (3.91)

The field strength Fµνv independent of acceleration has the longitudinal mode of the retarded

field. In fact, the inner product of the unit vector n = (x − X(tr))/|x − X(tr)| in the

propagation direction and the electric field Ev with Eiv = F 0i
v does not vanish, n ·Ev ̸= 0.

The field strength Fµνa proportional to the acceleration only has the transverse modes of

the retarded field. This is because the propagation direction vector n, the electric field

Ea with Eia = F 0i
a and the magnetic field Ba with Bi

a = ε0ijkF
jk
a /2 (εµνρσ is the totally

anti-symmetric tensor) satisfy

n ·Ea = F 0i
a ni =

F 0µ
a (xµ −Xµ(tr))

|x−X(tr)|
= 0, (3.92)

n ·Ba =
1

2
ε0ijkF

jk
a ni =

ε0µνρF
νρ
a (xµ −Xµ(tr))

2|x−X(tr)|
= 0, (3.93)

where the last equality of the first equation holds by the light cone condition −(t − tr) +

|x−X(tr)| = 0.

With the above knowledge, we next discuss the origin of the second terms in (3.65) and

(3.76) computed from the quantity Φ. We derived those terms by assuming the regime

D ≫ cT ≫ L for each case of the linear and parallel configurations. The regime D ≫ cT is

regarded as the wave zone in which the distance between two charged particles D is much

larger than the wavelength of the photon field λp = cT emitted from each charged particle.

Hence it is important to understand how the radiative field affects the quantity Φ. Let us

revisit the formula (3.54) of Φ expressed in terms of the field strengths,

Φ =
e

4

(∫
SA

dσµν∆F
µν
B (x) +

∫
SB

dσµν∆F
µν
A (x)

)
, (3.94)

where Si is the surface surrounded by the spacetime trajectories of the particle i(= A,B),

and ∆Fµνi = FµνiR − FµνiL . Here, FµνiP = ∂µAνiP − ∂νAµiP are the retarded field strengths of

the charged particle i moving along the trajectory P(= R,L). As mentioned in the above

paragraph, the field strengths of the particle i moving the trajectory P, FµνiP , are separated

into two parts FµνiP = FµνiP,v + FµνiP,a, and then the quantity Φ is also given as Φ = Φv + Φa
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with

Φv =
e

4

(∫
SA

dσµν∆F
µν
B,v(x) +

∫
SB

dσµν∆F
µν
A,v(x)

)
, (3.95)

Φa =
e

4

(∫
SA

dσµν∆F
µν
B,a(x) +

∫
SB

dσµν∆F
µν
A,a(x)

)
, (3.96)

where ∆Fµνi,v = FµνiR,v − FµνiL,v and ∆Fµνi,a = FµνiR,a − FµνiL,a. The term Φv depends on the

longitudinal mode (non-dynamical part) of the retarded electromagnetic field, and Φa comes

from the transverse modes (dynamical parts) of the retarded electromagnetic field of the

accelerated charged particles. In the linear and parallel configurations, Φv for the regime

D ≫ cT ≫ L has the same formula (see (B.19) and (B.35)), whereas Φa for the regime

D ≫ cT ≫ L depends on each configuration: Φa vanishes in the linear configuration, but it

does not in the parallel configuration. To observe this, we focus on the fact that Φa in the

configurations shown in Fig. 15 is given as

Φa =
e

4

∫
SB

dtdx∆F 01
A,a =

e

4

∫
SB

dtdx(ExAR,a − ExAL,a), (3.97)

where ExAP,a = F 01
AP,a is the x-component of the electric field induced by the accelerated

motion of the charged particle A on the trajectory P (= R,L). Here, the first term in the

formula of Φa in (3.96) vanished by assuming that the retarded field sourced by particle

B is causally disconnected with particle A. Following the Larmor radiation formula, the

electromagnetic wave emitted from the charged particle A cannot propagate in the direction

of the particle acceleration [90]. The shaded region in Fig. 15 shows the angular distribution

of the photon field of the charged particle A on each trajectory. In the linear configuration,

because each particle moves along the x -axis, the electromagnetic wave from particle A does

not propagate to particle B. This leads to Ex
AR,a = Ex

AL,a = 0 and hence Φa = 0. In the

parallel configuration, because the electromagnetic wave from particle A can reach particle B,

the electric fields Ex
AR,a and Ex

AL,a generated by the superposed particle A give a nontrivial

Φa. Hence, the origin of Φa is regarded as the quantum superposition of bremsstrahlung

from the charged particle B in a superposition state. As observed in the previous section, the

quantity Φ(= Φv+Φa) decreases the minimum eigenvalue λmin. This suggests that the effect

of the quantum superposition of bremsstrahlung appears in the formula of the entanglement.

As observed in the previous section, the decoherence due to the vacuum fluctuation of the
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(a) Linear configuration (b) Parallel configuration

FIG 15: Angular distribution of the photon field induced by each trajectory of the accel-
erating charged particle A for linear configuration (a) and parallel configuration (b) on the
x− y plane at a constant time.

photon field suppresses the entanglement generation in the charged particles.

64



4 Quantum uncertainty of field in superposed particles

In this section, we reveal how the properties of relativity and quantum mechanics are consis-

tent based on the discussion of a gedanken experiment based on Refs. [2, 3]. In particular,

we focus on the consistency between causality and complementarity.

The gedanken experiment involving the quantum superposition of a massive object, as dis-

cussed in Refs. [54, 55, 56, 89, 91, 92], has garnered considerable attention. In the gedanken

experiment, the quantum superposition of the gravitational potential induced by the object

leads to inconsistency between causality and complementarity. This inconsistency is resolved

by considering the quantized dynamical degrees of freedom of electromagnetic/gravitational

field [54, 55, 56, 92]. A deep understanding of the gedanken experiment may allow one to

clarify the manner by which the quantum nature of the gravitational potential correlates

with the quantization of the gravitational field.

4.1 Brief Review of the gedanken experiment

We consider two quantum systems (Alice’s particle and Bob’s particle) separated by a dis-

tance D interacting through the electromagnetic/gravitational potential (Fig. 16). In Alice’s

system, her particle is prepared in a quantum superposition of two locations and starts to

recombine during time TA. At t = TA, Alice performs an interference experiment and as-

sesses whether it will be successful (whether the interference pattern of her particle will be

observed). If the superposition state of Alice’s particle is preserved, then the interference

experiment will be successful; however, if the superposition state is not preserved, then the

experiment will not be successful. In Bob’s system, Bob chooses whether he releases his

particle or not at t = 0. When he releases his particle, it is affected by the electromag-

netic/gravitational potential due to Alice’s particle and is thus displaced. Because Alice’s

particle is in the superposition of the two paths, the magnitude of the potential perceived

by Bob’s particle changes depending on the path traversed by her particle. Thus, Bob can

use his particle to measure which-path Alice’s particle took.

Let us assume that Alice’s interference experiment during the time TA and Bob’s choice

and measurement during the time TB are performed in a spacelike separated region satisfying

D > TA and D > TB (Fig. 16). If Bob releases his particle and can measure the position

of Alice’s particle, then, by complementarity, the superposition state of Alice’s particle col-

lapses and the particle decoheres. Thus, the interference experiment is not successful. By
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FIG 16: Setup for the gedanken experiment. D represents the distance between Alice’s
system and Bob’s system. TA is a time scale for recombining particle A, and TB is a time
scale that particle B in Bob’s system will be superposed when he released it. Here, we assume
D > TA and D > TB, in which Alice and Bob perform their actions in spacelike separated
regions.

contrast, when Bob decides not to release his particle and does not measure the path un-

dertaken by Alice’s particle, then her particle will preserve the superposition state and her

interference experiment will be successful. This indicates that causality is violated because

Bob’s choice is known by Alice when her particle is in a region where his actions have no

influence causally. However, if the causality holds, then Alice’s interference experiment is

successful (she observes the interference pattern of her particle). In this case, without deco-

hering Alice’s particle, Bob can use his released particle to obtain the which-path information

of her particle. This results in a violation in complementarity. The inconsistency between

causality and complementarity can be resolved by considering the vacuum fluctuations of

the electromagnetic/gravitational field and the emissions of photons/gravitons, which was

demonstrated as an order estimation in Refs. [54, 55, 92]. Bob’s measurement to acquire the

which-path information of Alice’s particle is limited by the vacuum fluctuations of a quan-

tized electromagnetic/gravitational field, and Alice’s interference experiment fails because

of the decoherence induced by the entangling radiation of photons/gravitons. Here, the en-

tangling radiation refers to the radiation emitted from and entangled with Alice’s particle.

This suggests that a quantized electromagnetic/gravitational field is sufficient to avoid the

inconsistency between causality and complementarity.

Here we reanalyze the consistency between causality and complementarity by assuming

a situation similar to that in Fig. 16. This is an extension of the study explained in Sec. 3,
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which investigated the effect of vacuum fluctuations of a photon field on the electromagnetic

version of the BMV proposal. We consider the electromagnetic and gravitational versions of

a similar gedanken experiment based on QED and the quantum theory of linearized gravity,

respectively. Finally, we also discuss the relationship among the causality, complementarity,

and the entanglement between two particles via negativity (3.48).

4.2 Extension to quantum theory of linearized gravity version

Here we consider two charged/massive particles, A and B, which are non-relativistic and

obey the framework of quantum mechanics; the electromagnetic/gravitational field coupled

to the particles is assumed to be a quantum field.

FIG 17: Configuration of our model. We specify regimes D > TA and D > TB, in which the
retarded Green’s function propagating from particle B to A vanishes. Particle A traverse via
the right or left path |R⟩A(|L⟩A) and induces an electromagnetic/gravitational field along
each path (as shown by the dashed red or blue line). The retarded field caused by particle
A affects particle B traversing via the left (|L⟩B) or right (|R⟩B) path.

We first review the result of the system of two charged particle coupled with an elec-

tromagnetic field discussed in Sec. 3. The initial state of the particles defined as (3.33) is

assumed to be each in spatially localized superposition (Fig. 17), which might be realized via

the Stern-Gerlach effect, as explained in Sec. 2.3.3. Additionally, we assume that no initial
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entanglement occurs between the particles and the electromagnetic/gravitational field. 1

Furthermore, the wave packets of these particles are sufficiently far apart to form local paths

within each device.

Then, we can define the current of particle A (B) as JµAP(x) (JµBQ(x)) localized around

their paths of P (Q)(= R,L). Under the assumptions above, as shown in Sec. 3.1.2, the

decoherence and the entanglement between the two particles for the electromagnetic version

can be described by the following quantities (4.1)−(4.3)

ΓEM
i =

1

4

∫
d4x

∫
d4y∆Jµi (x)∆J

ν
i (y)⟨{ÂI

µ(x), Â
I
ν(y)}⟩

=
1

4
⟨{ϕ̂EM

i , ϕ̂EM
i }⟩ = 1

2
⟨0|(ϕ̂EM

i )2|0⟩, (4.1)

ΓEM
c =

1

2

∫
d4x

∫
d4y∆JµA(x)∆J

ν
B(y)⟨{Â

I
µ(x), Â

I
ν(y)}⟩ =

1

2
⟨{ϕ̂EM

A , ϕ̂EM
B }⟩, (4.2)

ΦEM =
1

2

∫
d4xd4y

{
∆JµA(x)∆J

ν
B(y) + ∆JµB(x)∆J

ν
A(y)

}
Gr
µν(x, y)

=
1

2
(ΦEM

AB + ΦEM
BA ), (4.3)

where we defined ∆Jµi = JµiR−J
µ
iL with i = A,B. The operators ϕ̂EM

i introduced in Eq. (3.30)

describes the phase shifts due to the quantum fluctuations of the electromagnetic field,

respectively. Here, ⟨
{
ÂI
µ(x), Â

I
µ(y)

}
⟩ and Gr

µν(x, y) are the two-point function of the vacuum

state |0⟩ and the retarded Green’s function with respect to the quantized electromagnetic

field in the interaction picture. The quantities ΦEM
AB and ΦEM

BA are defined as

ΦEM
AB =

∫
d4xd4y∆JµA(x)∆J

ν
B(y)G

r
µν(x, y),

ΦEM
BA =

∫
d4xd4y∆JµB(x)∆J

ν
A(y)G

r
µν(x, y). (4.4)

These results are equivalent to Eqs (3.49), (3.50), and (3.51), and we subscript “EM” to
1In the case of gravity, Alice’s particle may be entangled with her apparatus because of the conservation

of energy-momentum. For a rigorous description, we must consider the effects induced in a laboratory, as
discussed in [93]. However, the authors of [54] argued that laboratory effects need not be considered because
the state of the laboratory does not produce a significant decoherence. The authors of [94] discussed the
effect of the gravitational potential arising from the apparatus in a laboratory on the relative phases that
cause entanglement between two particles. If the laboratory apparatus is sufficiently heavy, then it does not
shift significantly. Thus the apparatus will not be superposed state and not contribute to the relative phases.
Moreover, if the gravitational field created by the apparatus is homogeneous, then the phase shift due to its
field will also not affect the relative phase.
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emphasize that this is the case for electromagnetic fields. Using these quantities, the formula

of the minimum eigenvalue λEM
min

λEM
min =

1

4

[
1− e−ΓEM

A −ΓEM
B cosh[ΓEM

c ]−
{(
e−ΓEM

A − e−ΓEM
B
)2

+ 4e−ΓEM
A −ΓEM

B sin2
[
ΦEM

2

]
+ e−2ΓEM

A −2ΓEM
B sinh2[ΓEM

c ]
} 1

2
]
. (4.5)

Later, we extend the above formula to the gravitational version to judge whether two massive

particles are entangled or not by computing the negativity.

Then we consider the system of two massive particles, which interacts with a quantized

gravitational field. To achieve this, we focus on the similarity between the electromagnetic

and gravitational fields, and naively extend the results presented the above Eqs. (4.1), (4.2),

and (4.3) to a gravitational field. In this extension, we introduce several important assump-

tions. We consider a linearized regime of gravity by expanding the metric of spacetime around

the Minkowski spacetime metric ηµν . The full spacetime metric is given by gµν = ηµν +hµν ,

where hµν is the metric perturbation satisfying |hµν | ≪ 1.

This metric perturbation is justified as follows: Let us now consider the gravitational

interaction of two particles with the same masses m. Based on the linearized gravity the-

ory [95], the energy-momentum tensor of a particle Tµν induces the fluctuation part of the

metric

hµν ∼ G

∫
d3y

Tµν(tr,y)
|x− y|

. (4.6)

Here tr = t − |x − y| is the retarded time, which represents the delay with respect to

propagation from the source point y to a spacetime point x. The components of hµν are

evaluated as

h00 ∼ G
m

R
, h0i ∼ h00

(
L

T

)
ei, hij ∼ h00

(
L

T

)2
eiej , (4.7)

where R characterizes the typical length scale of particle A and B satisfying R ≲ L. (L/T )ei
denote the characteristic velocity of the system with the i direction of the unit vector ei. We

regard the length scale R as the typical size of the particle. Considering the non-relativistic
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condition L/T ≪ 1, the condition |hµν | ≪ 1 is valid when

1 ≫ G
m

L
=

g

mL
= g

λC

L
(4.8)

is satisfied. Here we introduced g = Gm2 of the coupling constant between the two particles

with the gravitational constant G. λC = 1/m is the Compton wave length of the two parti-

cles. In the following analysis, we choose the parameter with which the above condition (4.8)

is satisfied. Similar to the electromagnetic case, we can define the energy-momentum tensors

of particle A (B) as T µν
AP(x) (T µν

BQ(x)) localized around their paths of P (Q)(= R,L), and the

gravitational field version of the quantities ΓEM
i , ΓEM

c , and ΦEM are presented as follows:

ΓGR
i =

1

4

∫
d4x

∫
d4y∆T µν

i (x)∆T ρσ
i (y)⟨{ĥI

µν(x), ĥ
I
ρσ(y)}⟩

=
1

4
⟨{ϕ̂GR

i , ϕ̂GR
i }⟩ = 1

2
⟨0|(ϕ̂GR

i )2|0⟩, (4.9)

ΓGR
c =

1

2

∫
d4x

∫
d4y∆T µν

A (x)∆T ρσ
B (y)⟨{ĥI

µν(x), ĥ
I
ρσ(y)}⟩ =

1

2
⟨{ϕ̂GR

A , ϕ̂GR
B }⟩, (4.10)

ΦGR =
1

2

∫
d4xd4y

{
∆T µν

A (x)∆T ρσ
B (y) + ∆T µν

B (x)∆T ρσ
A (y)

}
Gr
µνρσ(x, y)

=
1

2
(ΦGR

AB + ΦGR
BA), (4.11)

where we defined ∆T µν
i = T µν

iR − T µν
iL with i = A,B. The operators ϕ̂GR

i also describes

the phase shifts due to the quantum fluctuations of gravitational field. This is explicitly

expressed as

ϕ̂GR
i =

∫
d4x∆T µν

i (x)ĥI
µν(x). (4.12)

Here, ⟨
{
ĥI
µν(x), ĥ

I
µν(y)

}
⟩ and Gr

µνρσ(x, y) are the gravitational version of the two point

function and retarded Green’s function, respectively [96]. The gravitational version of the

quantities ΦGR
AB and ΦGR

BA can be similarly expressed as

ΦGR
AB =

∫
d4xd4y∆T µν

A (x)∆T ρσ
B (y)Gr

µνρσ(x, y),

ΦGR
BA =

∫
d4xd4y∆T µν

B (x)∆T ρσ
A (y)Gr

µνρσ(x, y). (4.13)
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The gravitational version of the minimum eigenvalue λGR
min can be obtained by replacing ΓEM

i ,

ΓEM
c , and ΦEM in the result above (4.5) with ΓGR

i , ΓGR
c , and ΦGR, respectively, as shown:

λGR
min =

1

4

[
1− e−ΓGR

A −ΓGR
B cosh[ΓGR

c ]−
{(
e−ΓGR

A − e−ΓGR
B
)2

+ 4e−ΓGR
A −ΓGR

B sin2
[
ΦGR

2

]
+ e−2ΓGR

A −2ΓGR
B sinh2[ΓGR

c ]
} 1

2
]
, (4.14)

where ΓGR
i , ΓGR

c , and ΦGR are defined as shown in Eqs. (4.9), (4.10), and (4.11). The results

of Eqs. (4.5) and (4.14) are extended as λmin presented as Eq. (3.48) herein.

In the following, we present the inequality representing complementarity, the uncertainty

relation, and one of the entanglement measure: negativity. The inequality, the uncertainty

relation, and the negativity for the electromagnetic case are evaluated from the quantum

state of the charged particles determined using ΓEM
i (i = A,B), ΓEM

c , ΦEM
AB and ΦEM

BA . By

replacing these quantities with ΓGR
i (i = A,B), ΓGR

c , ΦGR
AB and ΦGR

BA , we obtain the formulas

for gravitational case. Subsequently, we adopt simple notations Γi (i = A,B), Γc, ΦAB and

ΦBA to describe the quantities above for the electromagnetic and gravitational cases in a

unified manner.

4.3 Complementarity inequality in QED

4.3.1 A brief proof of the complementarity inequality

Here, we present the QED results for the complementarity inequality. We first introduce

the visibility VEM
A of charged particle A and the distinguishability DEM

B which quantifies the

which-path information of particle A acquired through charged particle B. These two quanti-

ties are useful for expressing complementarity. Additionally, we discuss the relationship with

the Robertson inequality in the last subsection. According to Refs. [97, 98], the visibility

VEM
A and the distinguishability DEM

B satisfy the inequality,

(VEM
A )2 + (DEM

B )2 ≤ 1. (4.15)

This inequality expresses the complementarity: if the distinguishability is unity, DEM
B = 1,

the visibility VEM
A vanishes, and if the visibility is unity, VEM

A = 1, the distinguishability

DEM
B vanishes. In the following, we give a simple proof of the above inequality by using the

definitions of visibility and distinguishability:
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Proof. We prove the inequality (4.15) between visibility and distinguishability. First, we

derive the visibility for the state given in

|Ψ(T )⟩ = 1

2

∑
P,Q=R,L

|Pf⟩A|Qf⟩B e−iĤ0T ÛPQ|α⟩EM

=
1√
2
|Rf⟩A|ΩR⟩B,EM +

1√
2
|Lf⟩A|ΩL⟩B,EM, (4.16)

where we rewrite the state (3.36) for later convenience and defined

|ΩP⟩B,EM =
1√
2

∑
Q=R,L

|Qf⟩Be−iĤ0T ÛPQ|α⟩EM. (4.17)

The visibility of charged particle A is calculated with respect to the reduced density matrix

ρEM
A as

VEM
A = 2|A⟨Lf|ρEM

A |Rf⟩A|

= 2|TrB,EM[A⟨Lf|Ψ(T )⟩⟨Ψ(T )|Rf⟩A]|

= |B,ph⟨ΩR|ΩL⟩B,ph| ≡ |α|. (4.18)

We next evaluate the distinguishability of charged particle B. For a trace distance D(ρ, σ)

with arbitrary density operators ρ and σ, we use the fact that the trace-preserving quantum

operations are contractive [99]:

D(E(ρ), E(σ)) ≤ D(ρ, σ), (4.19)

where E is a trace-preserving quantum operation. This inequality means that the operation

E makes it difficult to distinguish between the two quantum states ρ and σ, i.e., the trace

distance does not increase. Then, the distinguishability is bounded as

DEM
B =

1

2
TrB|ρEM

BR − ρEM
BL |

=
1

2
TrB|TrEM[|ΩR⟩B,ph⟨ΩR|]− TrEM[|ΩL⟩B,ph⟨ΩL|]|

≤ 1

2
TrB||ΩR⟩B,ph⟨ΩR| − |ΩL⟩B,ph⟨ΩL||, (4.20)
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where the inequality (4.19) was used in the third line because the partial trace is a trace-

preserving quantum operation. Here we defined ρEM
BP = TrEM[|ΩP⟩B,EM⟨ΩP|] with P = R,L

and, the trace distance Tr|Ô| =
∑

i |λi| is given by the eigenvalues λi of a Hermitian operator

Ô. The general property of the trace distance is presented in [99]. The density operator

ρEM
BP characterizes the state of particle B when particle A moves along the path P. The

vector |ΩP⟩B,EM describes the composite state of particle B and the electromagnetic field

when particle A moves along the path P and is introduced by rewriting the state (4.17).

If the distinguishability vanishes, DEM
B = 0, and the two density operators ρEM

BR and ρEM
BL

are identical. This means that Bob cannot know which trajectory particle A has taken

from the state of particle B. However, if DEM
B = 1, the density operators ρEM

BR and ρEM
BL are

orthogonal to each other (ρEM
BR ρ

EM
BL = 0). Then, by measuring the state of particle B, Bob can

guess which trajectory particle A has passed through. In this sense, the distinguishability

DEM
B quantifies the amount of which-path information of particle A. The meaning of the

distinguishability mentioned above was discussed in [97]. To obtain the eigenvalues of the

operator |ΩR⟩B,ph⟨ΩR| − |ΩL⟩B,ph⟨ΩL|, we define the orthonormal basis {|uA⟩, |uB⟩} using

the Gram-Schmidt orthonormalization as:

|uA⟩ = |ΩR⟩B,ph, |uB⟩ =
|ΩL⟩B,ph − α|ΩR⟩B,ph√

1− |α|2
, (4.21)

where the overlap α is defined in (4.18). In this basis, the operator |ΩR⟩B,ph⟨ΩR|−|ΩL⟩B,ph⟨ΩL|
can be rewritten as

|ΩR⟩B,ph⟨ΩR| − |ΩL⟩B,ph⟨ΩL| = |uA⟩⟨uA| − (α|uA⟩+
√

1− |α|2|uB⟩)(α∗⟨uA|+
√

1− |α|2⟨uB|)

=

(
1− |α|2 α

√
1− |α|2

α∗
√

1− |α|2 −(1− |α|2)

)
, (4.22)

in the orthonormal basis {|uA⟩, |uB⟩}. Thus, the eigenvalues of this matrix λA,B are

λA =
√

1− |α|2, λB = −
√

1− |α|2, (4.23)

and the distinguishability DB is suppressed by the sum of these eigenvalues as follows:

DEM
B ≤ 1

2
TrB||ΩR⟩B,ph⟨ΩR| − |ΩL⟩B,ph⟨ΩL|| =

1

2
(|λA|+ |λB|) =

√
1− |α|2. (4.24)
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Substituting (4.18) into (4.24), we find the relationship

(VEM
A )2 + (DEM

B )2 ≤ 1. (4.25)

Therefore, the visibility of charged particle A and the distinguishability of charged particle

B follow the inequality (4.15).

4.3.2 Concrete computation of the visibility and distinguishability

Here we computed the visibility (VEM
A ) and the distinguishability (DEM

B ). The visibility

VEM
A describes the extent to which the coherence of charged particle A remains when Alice

performs an interference experiment. The distinguishability DEM
B characterizes how particle

B can distinguish the path of particle A from the state of particle B. The visibility VEM
A of

charged particle A is expressed as

VEM
A = 2|A⟨Lf|ρEM

A |Rf⟩A|. (4.26)

The quantum state of particle A ρEM
A is obtained by tracing out the degrees of freedom of

particle B and the electromagnetic field:

ρEM
A = TrB,EM[|Ψ(T )⟩⟨Ψ(T )|]

=
1

2

(
1 1

2e
−ΓEM

A +iΦEM
A

(
e−i

∫
d4x∆Jµ

A(x)ABRµ(x) + e−i
∫
d4x∆Jµ

A(x)ABLµ(x)
)

∗ 1

)
, (4.27)

where we used the basis {|Rf⟩A, |Lf⟩A} to represent the density matrix, and ∗ is the complex

conjugate of the (R,L) component. AµiP(x) =
∫
d4yGrµν(x, y)J

ν
iP(y) is the retarded potential

with i = A,B and P = R,L introduced in (3.45). The quantity ΦEM
A is expressed as

ΦEM
A =

∫
d4x∆JµA(x)Aµ(x)−

1

2

∫
d4xd4y∆JµA(x)(J

ν
AR(y) + JνAL(y))G

r
µν(x, y). (4.28)

The density operator ρEM
A is directly obtained by tracing out the degree of freedom of the par-

ticle B in the density matrix ρEM
AB (3.38). The quantity ΓEM

A defined in Eq. (4.1) characterizes

the decoherence effect due to the radiation of the on-shell photon emitted by particle A [4, 56].

The result (4.27) with the retarded electromagnetic field AµBQ of particle B implies that the
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effect of particle B can propagate to Alice’s system. However, in the spacelike case D > TA

and D > TB (see Fig. 17), the photon field induced by particle B does not reach particle A,

i.e., AµBQ(x) = 0, i.e., [Âµ(x), Âν(y)] = 0 due to micro causality (x0 − y0)2 − (x − y)2 < 0.

Thus, the density operator (4.27) becomes

ρEM
A =

1

2

(
1 e−ΓEM

A +iΦEM
A

e−ΓEM
A −iΦEM

A 1

)
. (4.29)

This result indicates that the process of charged particle B during the time TB does not

affect the interference experiment on charged particle A by causality. Note that, given the

law of charge conservation, we also have to consider the contribution from charged particle B

before the time TB. Even by considering this, we can see that the density operator ρA does

not depend on influences from spacelike separated regions. In the derivation of the above

equations, for simplicity, we only discussed the contribution from particle B during the time

TB. From the definition of the visibility (4.26) and (4.27), we obtain the visibility as follows:

VEM
A = e−ΓEM

A

∣∣∣∣cos(ΦEM
AB
2

)∣∣∣∣ , (4.30)

which leads to VEM
A = e−ΓEM

A in the region where D > TA and D > TB.

Next, we compute the distinguishability DEM
B . The definition of the distinguishability

DEM
B is expressed as

DEM
B =

1

2
TrB|ρEM

BR − ρEM
BL |. (4.31)

The eigenvalues of the density matrix ρEM
BR − ρEM

BL are

λ± = ±1

2

∣∣∣e−ΓEM
B +iΦEM

B −i
∫
d4x∆Jµ

BARµ − e−ΓEM
B +iΦEM

B −i
∫
d4x∆Jµ

BALµ

∣∣∣
= ±e−ΓEM

B

∣∣∣∣sin(12
∫
d4x∆JµB(x)∆AAµ(x)

)∣∣∣∣ . (4.32)

Thus, the distinguishability is expressed as

DEM
B =

1

2
(|λ+|+ |λ−|) = e−ΓEM

B

∣∣∣∣sin(ΦEM
BA
2

)∣∣∣∣ . (4.33)
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As proven in (4.15), there is a trade-off relationship between the visibility VEM
A and the

distinguishability DEM
B , as indicated by the following inequality:

(VEM
A )2 + (DEM

B )2 ≤ 1. (4.34)

Therefore, the electromagnetic version of the complementarity inequality is written as

(VEM
A )2 + (DEM

B )2 = e−2ΓEM
A cos2

(
ΦEM

AB
2

)
+ e−2ΓEM

B sin2
(
ΦEM

BA
2

)
≤ 1. (4.35)

Note that by replacing the quantities ΓEM
i , ΓEM

c , and ΦEM in the above result with ΓGR
i ,

ΓGR
c , and ΦGR, respectively; the inequality (4.35) in the gravitational version is written as

(VGR
A )2 + (DGR

B )2 = e−2ΓGR
A cos2

(
ΦGR

AB
2

)
+ e−2ΓGR

B sin2
(
ΦGR

BA
2

)
≤ 1. (4.36)

By adopting the simple notations Γi (i = A,B), Γc, ΦAB and ΦBA, we also describe the

inequalities Eqs. (4.35) and (4.36) for the electromagnetic and gravitational cases in a unified

manner as follows

V2
A +D2

B = e−2ΓA cos2
(
ΦAB

2

)
+ e−2ΓB sin2

(
ΦBA

2

)
≤ 1. (4.37)

In particular, for the case D > TA and D > TB, the retarded photon field of particle B

vanishes (AµBP = 0), which leads to ΦAB = 0, and the above inequality becomes

V2
A +D2

B = e−2ΓA + e−2ΓB sin2
(
ΦBA

2

)
≤ 1. (4.38)

This inequality is consistent with the existence of the quantum radiation emitted from par-

ticle A (ΓA > 0) and the vacuum fluctuations of the photon field around particle B (ΓB > 0)

when the causality holds. If we can remove the two effects (ΓA = ΓB = 0), this inequality

would be violated as long as the retarded electromagnetic field of particle A does not vanish

(AµAP ̸= 0 and then ΦBA ̸= 0). Hence, if the two effects vanish, then complementarity is

violated, and the paradox would appear. In the following subsection, we will discuss that

the inequality (4.38) is never violated by the (Schrödinger-)Robertson uncertainty relation

associated with the electromagnetic field.
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4.4 Relationship with uncertainty relation

Here we discuss the relationship with the complementarity inequality (4.38) and the following

Schrödinger-Robertson uncertainty relation

(∆ϕA)
2(∆ϕB)

2 ≥ 1

4

(
⟨{ϕ̂A, ϕ̂B}⟩

)2
+

1

4

∣∣∣⟨[ϕ̂A, ϕ̂B]⟩
∣∣∣2, (4.39)

where ∆ϕ̂A and ∆ϕ̂B are the variances of the operators ϕ̂A [(3.30)] and ϕ̂B [(4.12)], respec-

tively. The commutation relation is equivalent to [ϕ̂A, ϕ̂B] = i(ΦAB − ΦBA), which is also

extended to the gravitational version of Eq. (3.44) by the same manner. Subsequently, the

following Schrödinger-Robertson uncertainty relation can be obtained:

ΓAΓB ≥ Γ2
c
4

+
1

16
(ΦAB − ΦBA)

2, (4.40)

where we used (∆ϕi)
2 = ⟨0|ϕ̂2i |0⟩ − (⟨0|ϕ̂i|0⟩)2 = 2Γi and ⟨{ϕ̂A, ϕ̂B}⟩ = 2Γc, followed by

Eqs. (4.1), (4.9) and (4.2), (4.10). The expectation value of the commutator, ⟨[ϕ̂A, ϕ̂B]⟩ =
i(ΦAB − ΦBA), is the result of Eq. (3.44). The inequality above shows that the product of

ΓA and ΓB has a lower bound expressed by Γc, ΦAB, and ΦBA.

In particular, in the region D > TA and D > TB where there is no retarded propagation

of photon field from Bob’s system to Alice’s system, we obtain the following Robertson

inequality as

ΓAΓB ≥ Γ2
c
4

+
1

16
Φ2

BA (4.41)

≥ 1

16
Φ2

BA. (4.42)

This means that the quantities ΓA and ΓB do not vanish simultaneously if ΦBA ̸= 0. Addi-

tionally, we can show that the Robertson inequality (4.42) is a sufficient condition for the

inequality (4.38):

ΓAΓB ≥ 1

16
Φ2

BA =⇒ e−2ΓA + e−2ΓB sin2
(
ΦBA

2

)
≤ 1. (4.43)

The analytical and numerical proof of this statement is presented in Appendix C. This

result implies that the Robertson inequality among ΓA, ΓB and ΦBA, which reflects the non-
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commutative property of the photon/gravitational fields, guarantees the complementarity

described by the inequality between the visibility VA and the distinguishability DB.

In the above analysis, we discovered that the uncertainty relation represented by Robert-

son’s inequality for a quantized field guarantees the consistency between causality and com-

plementarity. In the following subsection, we provide a detailed discussion regarding consis-

tency by focusing on the entanglement between two charged/massive particles.

4.5 Role of entanglement on uncertainty relation of field and com-

plementarity

In this subsection, we reveal how the uncertainty relation relates to complementarity, using

the entanglement between two particles A and B introduced in (3.48). In our gedanken

experiment, we consider the region where Bob’s effect does not propagate to Alice’s system.

Using the retarded Green’s function, which describes the causal influence of a source, this is

quantified as ΦAB = 0 [2, 3, 4, 100, 101]. This result reflects a general property of the retarded

Green’s function, which holds for both electromagnetic and gravitational fields. Therefore,

the complementarity inequality (4.38), Schrödinger-Robertson uncertainty relation (4.41),

and λmin (3.48) are expressed as follows, respectively:

e−2ΓA + e−2ΓB sin2
(
ΦBA

2

)
≤ 1, (4.44)

ΓAΓB ≥ Γ2
c
4

+
Φ2

BA
16

, (4.45)

λmin =
1

4

[
1− e−ΓA−ΓB cosh[Γc]−

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB sin2

[
ΦBA

4

]
+ e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
. (4.46)

In Sec. 4.4, we discovered that the inequality presented in (4.45) is the sufficient condition

for the complementarity inequality (Eq. (4.44)) in the electromagnetic case (strictly, we used

the Robertson uncertainty relation ΓAΓB ≥ Φ2
BA/16, which follows by (4.45)). To reveal the

relationship between the inequality (4.45) and complementarity inequality (4.44), we consider

the role of entanglement. We first focus on the relationship between the uncertainty relation

of the electromagnetic/gravitational field (Eq. (4.45)) and λmin. Let us consider the limit of

small coupling constants for the electromagnetic/gravitational cases. The quantities Γi, Γc,
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and ΦBA depending on the coupling constants are small, and the approximate form of λmin

can be expressed as

λmin ≈ 1

4

[
ΓA + ΓB −

√(
ΓA + ΓB

)2 − 4
(
ΓAΓB − Γ2

c
4

−
Φ2

BA
16

) ]
, (4.47)

which is valid for Γi ≪ 1 (i = A,B), |Γc| ≤ ΓA + ΓB ≪ 1, and |ΦBA| ≪ 1. The inside of

the square root is always positive because of (ΓA + ΓB)
2 − 4(ΓAΓB − Γ2

c/4 − Φ2
BA/16) =

(ΓA −ΓB)
2+Γ2

c +Φ2
BA/4 ≥ 0. On the other hand, the sign of ΓAΓB −Γ2

c/4−Φ2
BA/16 inside

of the square root in Eq. (4.47) determines the sign of λmin, i.e., appearance of entangle-

ment between two particles. From the Schrödinger-Robertson uncertainty relation (4.45),

ΓAΓB −Γ2
c/4−Φ2

BA/16 must be non-negative. Therefore, the Schrödinger-Robertson uncer-

tainty relation and the entanglement between the particles A and B appear to be correlated.

This observation, which is obtained on the basis of the approximation, is extended to more

general relationship among the complementarity inequality, Schrödinger-Robertson uncer-

tainty relation, and the non-entanglement property between the two particles. Namely, we

can demonstrate the following relationship of the sufficient conditions numerically (for a

more detailed explanation, see Appendix D):

ΓAΓB ≥ Γ2
c
4

+
Φ2

BA
16

=⇒ λmin ≥ 0 =⇒ e−2ΓA + e−2ΓB sin2
(
ΦBA

2

)
≤ 1. (4.48)

The relationship of the above sufficient conditions (4.48) are depicted in Fig. 18, which are

obtained under the causality condition that the Bob’s action is spacelike separated from

Alice, i.e., ΦAB = 0. The relationship presented in (4.48) mean as follows: The Schrödinger-

Robertson uncertainty relation implies the existence of the vacuum fluctuations of electro-

magnetic/gravitational field because ΓA and ΓB must be non-zero since ΦBA is non-zero.

The origin of the non-zero values of ΓA and ΓB is the decoherence of the superposition of

each particle, which is supposed to come from the entanglement between the particles and

the electromagnetic/gravitational field. This decoherence causes no generation of the en-

tanglement between particles A and B, i.e., λmin ≥ 0. Because particles A and B are not

entangled, Bob is not able to sufficiently get the which-path information of Alice’s particle.

Therefore, the complementarity inequality holds.
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FIG 18: Inclusion relationship of the uncertainty relation (blue region), the condition of the
non generation of entanglement (orange region), and the complementarity inequality (green
region) are inclusive.

5 Quantification of quantumness of the gravitational field

In this section, we consider how the superposition state of the gravitational field is quantified.

This study is based on the paper [1]. First, we introduce the setup of our system: two massive

particles each in a superposed state coupled to a quantized gravitational field. Then we

consider a trade-off relation (monogamy relation) between the negativity and the conditional

von Neumann entropy in specific two configurations as shown in Figs. 9 and 7. Based on

the above relation, we derive the condition to be entangled state between the particle and

gravitational field. Finally, we use quantum discord to analyze quantum correlations between

particles in superposition states and gravitational field and discuss its behavior.

5.1 Setup of two particles system coupled with gravitational field

We first consider the system of two massive quantum particles to be each in a superposed

state, where they are interacting through quanitzed gravitational field. Note that the two

particles are non-relativistic, and the gravitational field is treated as linearized gravity. This

system can be regarded as the system explained in Chapter 4. Thus the quantum state of

this system is described by the ΓGR
i , ΓGR

c , ΦGR
AB , and ΦGR

BA as introduced in Eqs. (4.9), (4.10),

and (4.11). In our analysis, we apply unified notation of electromagnetic and gravitational

case: ΓGR
i , ΓGR

c , ΦGR
AB , and ΦGR

BA are equivalent to Γi, Γc, ΦAB, and ΦBA.

For later convenience, it is useful to evaluate the quantities Γi, Γc, ΦAB, and ΦBA by

order estimation where we ignore the numerical factors because we analyze quantitatively.

In the configurations shown in Figs. 9 and 7, the characteristic parameters of the system are

given by the superposed time T , the width of the superposition L, and the distance of two

80



particles D. Thus the quantities Γi, Γc, ΦAB, and ΦBA are described by these parameters.

For instance, the quantities ΓA and ΓB are estimated as the number of graviton emitted by

the quadrupole radiation during time T per the energy of a single graviton

ΓA = ΓB ≈ g2
(
L

T

)4

, (5.1)

whereas the electromagnetic case of the quantities ΓEM
A and ΓEM

B , which corresponds to the

dipole radiation, are

ΓEM
A = ΓEM

B ≈ e2
(
L

T

)2

(5.2)

with the electric charge e. The quantities ΓA and ΓB are determined by the parameters

of their system A and B. In contrast, the quantities ΦAB, ΦBA, and Γc characterize the

correlation between two particles. Thus the distance of the systems A and B is important.

In the regime D ≫ T ≫ L, the quantities ΦAB, ΦBA, and Γc will be given by

ΦAB = 0, ΦBA ≈ g2
(
L

T

)2(
T

D

)3

, |Γc| ≈ g2
(
L

T

)4(
T

D

)4

, (5.3)

where ΦAB = 0 is understood as the vanishing of the retarded Green’s function propagating

from the particle B to A. The quantity ΦBA can regarded as the Newtonian potential induced

by the massive particle. Γc is referred to the result of the order estimation (B.14) presented

in Appendix B.2. In the regime T ≫ D ≫ L, the quantities ΦAB, ΦBA, and Γc will be of

order

ΦAB = ΦBA ≈ g2
(
L

T

)2(
T

D

)3

, |Γc| ≈ g2
(
L

T

)4

. (5.4)

Note that, in the regime T ≫ D ≫ L, ΦAB can be equivalent to ΦBA because of the

symmetric configuration of the systems A and B (see Fig. 7). The quantity Γc is estimated

by using Eq. (B.8) in Appendix B.2, where we ignored the term proportional to D/T because

of D/T ≪ 1.
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5.2 Quantumness of gravitational due to monogamy relation

Here we discuss the entanglement between the particle A and the gravitational field from the

viewpoint of entanglement monogamy. To judge whether the particle A and the gravitational

field are entangled or not, we consider the entanglement of formation Ef(ρA,g). The entan-

glement of formation is one of the quantity judging two quantum states are in an entangled

state or not. For example, if Ef(ρA,g) > 0, then the particle A and the gravitational field is

entangled. However, if the entanglement of formation vanishes: Ef(ρA,g) = 0, the particle

A and the gravitational field are not entangled. The entanglement of formation has lower

bound due to the conditional von Neumann entropy S(A|B) [102] as

Ef(ρA,g) ≥ S(A|B), (5.5)

where the proof of this inequality is presented in Appendix E. Thus the inequality (5.5)

indicates that the particle A and the gravitational field are entangled when S(A|B) > 0 is

satisfied. The conditional von Neumann entropy S(A|B) is given by the analogy with the

classical conditional entropy as

S(A|B) := S(ρAB)− S(ρB). (5.6)

The von Neumann entropy S(ρX) measures how strong the correlation is between subsystem

X and its complement system X̄. In classical theory, the conditional entropy is always

positive, but, in quantum theory, it can be negative [103]. The negativity of the conditional

von Neumann entropy is roughly interpreted as entanglement. The von Neumann entropy

S(ρB) is computed as follows:

S(ρB) = −
∑
s=±

Λs[ρB] log[Λs[ρB]], Λ±[ρB] =
1

2

[
1± e−ΓB cos

(
ΦBA

2

)]
, (5.7)

where the eigenvalues Λ±[ρB] are obtained by calculating the eigenvalues of the density

matrix ρEM
B = TrA[ρEM

AB ] in the electromagnetic field case and extending it to the gravitational

field. The von Neumann entropy S(ρAB) is also derived as

S(ρAB) = −
∑
s=±

(
Λs
1[ρAB] log[Λ

s
1[ρAB]] + Λs

2[ρAB] log[Λ
s
2[ρAB]]

)
(5.8)
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FIG 19: Left panel: Contour plots of the conditional von Neumann entropy S(A|B) as
functions of L/T and D/T , where we adopted the coupling constant g = 1. The black circle
is a point when D/T = 5 with L/T = 3/10. Right panel: conditional von Neumann entropy
S(A|B) as a function of coupling constant g. This graph corresponds to the black circle in
the left panel.

with the eigenvalues of the density matrix ρAB obtained from Eqs. (3.41) and (3.42), which

are extended to the gravitational version

Λ±
1 [ρAB] =

1

4

[
1− e−ΓA−ΓB cosh[Γc]±

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB sin2

[
ΦAB − ΦBA

4

]
+ e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
, (5.9)

Λ±
2 [ρAB] =

1

4

[
1 + e−ΓA−ΓB cosh[Γc]±

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB cos2

[
ΦAB − ΦBA

4

]
+ e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
. (5.10)

In the following analysis, we evaluate the conditional von Neumann entropy S(A|B) in two

regimes D ≫ T ≫ L (Fig. 9) and T ≫ D ≫ L (Fig. 7).

5.2.1 D ≫ T ≫ L regime

The left panel of the figure 19 denotes the parameters dependence of the conditional von

Neumann entropy S(A|B). To obtain a qualitative understanding of the behavior of the left

panel in Fig. 19, we approximate the conditional von Neumann entropy as

S(A|B) ≈ ΓB

2

(
1− log

[
ΓB

2

])
, (5.11)
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where we used ΓA = ΓB ≪ 1 and ΦBA ≪ 1, and we assumed the condition ΦBA/4ΓB ≪ 1.

The above equation (5.11) is independent of the quantity of ΦBA, i.e., D/T and its amount

depends only on ΓB = g2(L/T )4. This figure represents that S(A|B) is always positive and

does not depend on the distance between two particles. The independence of the distance D

can be understood by introducing an entanglement measure: negativity. The negativity NAB

characterizes the entanglement between two particles [68, 71]. In particular, two particles A

and B are regarded as the two-qubit in our system and then defined as follows:

NAB = max[−λmin, 0] (5.12)

with the minimum eigenvalue λmin

λmin =
1

4

[
1− e−ΓA−ΓB cosh[Γc]−

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB sin2

[
ΦAB + ΦBA

4

]
+ e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]
. (5.13)

If NAB = 0 or λmin ≥ 0 holds, two particles are not entangled. In Refs. [2, 4], we pointed

out that negativity NAB vanishes in the regime D ≫ T ≫ L because of the existence of

the vacuum fluctuations ΓA and ΓB. Thus, no correlation between A and B is interpreted

as disentanglement of them. Note that the white region in Fig. 19 may show that the

approximation to derive the quantities ΓA, ΓB, Γc, and ΦBA is bad.

The right panel of the figure 19 shows the behavior of S(A|B) versus the coupling constant

g, respectively. In the limit of g → 0 there is no interaction among the particle A, B, and the

graviational field, so that the quantum state ρAB and its reduced density matrix ρB become

pure state, i.e., S(ρAB) = S(ρB) = 0 . In contrast, in the limit of g → ∞, the decoherences

ΓA and ΓB are dominant, and then the quantum states ρAB and ρB approaches the classical

mixed state

ρAB → 1

4
14×4, ρB → 1

2
12×2 (5.14)

with n × n identity matrix 1n×n. These limits lead to S(A|B) → log 2 for g → ∞. Thus,

in the region D ≫ T ≫ L, the conditional von Neumann entropy S(A|B) is always positive.

Therefore, Ef(ρA,g) > 0 is constantly fulfilled because of the inequality (5.5).

The condition Ef(ρA,g) > 0 can also be understood from the view point of the monogamy
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relation. λmin ≥ 0 gives the concrete reason of the positivity of the conditional von Neumann

entropy as

0 = NAB = λmin ≥ 0 ⇒ 0 = Ef(ρAB) ≥ −S(A|B), (5.15)

where the inequality (E.7) was used in the right-hand-side. Note that, in general, NAB > 0

is equivalent to Ef(ρAB) > 0 if the composite system AB is two-qubit system, which leads to

NAB = 0 ⇔ Ef(ρAB) = 0 due to the contraposition. Combine with the inequality (5.5) and

the above relation (5.15), we obtain the following result

0 = NAB = λmin ≥ 0 ⇒ Ef(ρAB) = 0 ⇒ S(A|B) > 0 ⇒ Ef(ρA,g) > 0, (5.16)

where we used S(A|B) > 0 is satisfied in the regime D ≫ T ≫ L. This condition means

that the particle A and gravitational field is always entangled when two particles A and B

are not entangled. Thus, we consider that the entanglement between particle A, which is in

the superposition state, and the gravitational field can be regarded as a quantum nature of

the gravitational field since it accompanies particle A and causes the superposition of the

gravitational field.

5.2.2 T ≫ D ≫ L regime

The parameter dependence of the conditional von Neumann entropy is depicted in Fig. 20.

The upper panels of Fig. 20 represent the contour plots of the conditional von Neumann

entropy versus L/T and D/T with the coupling constant g = 1 (left panel) and g = 3 (right

panel). We also show the borderline representing by bold black line in the upper right panel

of Fig. 20, where the negativity NAB vanishes. In the left panel, S(A|B) > 0 is satisfied

in this parameter region. However, in the right panel, there are three regions: S(A|B) < 0

and NAB > 0, S(A|B) > 0 and NAB > 0, and S(A|B) > 0 and NAB = 0. In the region

S(A|B) < 0 and NAB > 0, the conditional von Neumann entropy S(A|B) is negative so we

cannot judge the entanglement of formation Ef(ρA,g) is positive or not. In other words, we do

not know whether the particle A and graviton are entangled pr not. However, the negativity

NAB is positive, and then two particles A and B are entangled. The region S(A|B) > 0 and

NAB > 0 means that the particle A and graviton and two particles A and B are entangled

state. In the region S(A|B) > 0 and NAB = 0, we can understand two particles A and B are
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FIG 20: Upper panel: Contour plot of the conditional von Neumann entropy S(A|B) as
functions of L/T (horizontal axis) and D/T (vertical axis), where we adopted the coupling
constant g = 1 (left panel) and g = 3 (right panel). The orange, black, and green circle are
points when L/T = 3/10, L/T = 5/10, and L/T = 6/10 with D/T = 8/10. The bold black
line is the boundary where the negativity NAB vanishes. Lower panel: Left, center, and right
panels show the conditional von Neumann entropy S(A|B) as a function of coupling constant
g. The black dashed line depicts the negativity NAB. This graph corresponds to the orange,
black, and green circles in the upper panel.

not entangled, but the particle A and graviton are entangled state.

Three typical points, orange, black, and green dotted in the upper panels of Fig. 20

behave as the lower panels of Fig. 20 including the negativity NAB depicted by black dashed

line. Each of them saturate, whereas the negativity vanish due to the decoherence when the

coupling constant g becomes large. This behavior is also interpreted as one of the monogamy

of the conditional von Neumann entropy and the negativity, respectively.

5.3 Behavior of Quantum discord

Here, we investigate the behavior of the quantum superposition of gravitational field using

quantum discord [104, 105, 106]. The quantum discord is known to be a measure of all

quantum correlations, including entanglement. The quantum discord of composite system

AB is defined by the difference between the quantum mutual information I(A,B) and the
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classical correlation J (A,B)

D(A,B) = I(A,B)− J (A,B). (5.17)

The non vanishing of the quantum discord is related to the quantum superposition princi-

ple [104]. In particular, we focus on the quantum discord between the particle A and the

gravitational field D(A, g), which may be the evidence of the quantum superposition of the

gravitational field, i.e., the quantumness of gravitational field. To simplify calculations, we

represent D(A, g) by using the entanglement of formation Ef(ρAB) and the conditional von

Neumann entropy S(A|B) as

D(A, g) = Ef(ρAB) + S(A|B), (5.18)

where the detail derivation is presented in Appendix E. The above equation (5.18) shows

that the quantum correlation between the particle and the gravitational field is determined

by the parameters of the systems A and B, which is one of the feature of the monogamy.

Note that, in two-qubit system, there is a formula related to the entanglement of formation

with respect to two-qubit state ρAB as

Ef(ρAB) = h

(
1 +
√

1− C2(ρAB)

2

)
, (5.19)

where we defined h(x) := −x log2 x − (1 − x) log2(1 − x). C(ρAB) is concurrence, which

measures the degree of entanglement in the mixed state [66, 107, 108]. The concurrence for

a mixed state of qubit system is introduced as

C(ρAB) := max{0, α1 − α2 − α3 − α4} (5.20)

with α1 ≥ α2 ≥ α3 ≥ α4. Here αi (i = 1, . . . , 4) are the square root of eigenvalues of the

non-Hermitian matrix ρAB(σ
A
y ⊗ σB

y )ρ
∗
AB(σ

A
y ⊗ σB

y ). ρ∗AB is the complex conjugate of ρAB,

and σA
y (σB

y ) is the Pauli matrix, which works for the local system A (B). In the following,

we study the behavior of the quantum discord D(A, g) in two regions: D ≫ T ≫ L and

T ≫ D ≫ L.
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5.3.1 D ≫ T ≫ L regime

In this regime, two particles A and B are not entangled, i.e., Ef(ρAB) = 0. Thus, the

quantum discord is exactly equivalent to conditional von Neumann entropy S(A|B) due to

Eq. (5.18).

FIG 21: Quantum discord D(A, g) as a function of L/T (left panel) with g = 1 and the
coupling g (right panel). We adopted D/T = 5.

Fig. 21 depicts the behavior of the quantum discord D(A, g) as a function of L/T (left

panel) and coupling constant g, respectively. The result of the left panel shows that when

the length scale of the superposition of the particle A L increases, the gravitational field also

becomes well quantum superposition state. The right panel of Fig. 21 can be understood as

follows: if the coupling constant g is increasing, the decoherence is dominant, so that the

entanglement between two particles vanishes. However, the interaction between the particle

A and the gravitational field becomes stronger, i.e., they are well correlated. This result is

consistent with the (5.16).

5.3.2 T ≫ D ≫ L regime

FIG 22: Quantum discord D(A, g) as a function of L/T (left panel) with g = 1 and the
coupling g (right panel). We adopted D/T = 7/10.
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Fig. 22 also shows the behavior of the quantum discord D(A, g) as a function of L/T (left

panel) and g (right panel). We come to the same conclusion in the region D ≫ T ≫ L that

increasing the superposition width of the particle A leads to the well superposition state of

the gravitational field. Moreover, when the coupling constant g increases, the decoherence

works dominant and destroy the entanglement between two particles. Note that, in this

regime, the two particles A and B are slightly entangled, which reduces the correlation

between the particle A and the gravitational field. From the view point of the monogamy,

this disentanglement makes the entanglement between the particle A and the gravitational

field strong.
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6 Conclusion

The unification of quantum mechanics and gravity theory is an important problem in mod-

ern physics for explaining extreme situations, such as the quantum aspects of black holes

and the early universe. Several theories have been proposed on the low- and high-energy

scales. However, there is no experimental evidence of quantum gravity; thus, we cannot test

these theories. In this thesis, we clarified the quantum mechanical aspects of gravity based

on quantum field theory. In particular, we considered the role of the dynamical field for

entanglement generation between two particles, the consistency of quantum mechanics and

relativistic theory, and the quantitative understanding of the quantumness of the gravita-

tional field.

In Chapter 3, we evaluated the effect of the dynamical electromagnetic field (photon

field) on the entanglement generation between two charged particles each in a superposition

state. The BMV experiment, explained in Chapter 2, is a proposal to detect entanglement

generation due to Newtonian gravity, which originates from the nondynamical component

of gravity. To understand entanglement generation in the context of quantum field theory,

we evaluated the entanglement generation between two charged particles coupled to an elec-

tromagnetic field based on QED, motivated by the theoretical similarity between gravity

and electromagnetism. We obtained a formula for the entanglement negativity between two

charged particles, each in a superposition of two trajectories. This explicitly demonstrated

the effect of a quantized electromagnetic field on the entanglement generation between two

charged particles. Our analysis automatically includes contributions not only from the lon-

gitudinal mode (non-dynamical part) but also from the transverse mode (dynamical part)

of the electromagnetic field. As expected, we demonstrated that the entanglement genera-

tion induced by the Coulomb potential was reproduced in the non-relativistic limit of our

formula. We also demonstrate how relativistic corrections to Coulomb entanglement arise.

In particular, vacuum fluctuations in the photon field cause quantum decoherence, which

becomes significant when decoherence due to photon emission simultaneously becomes sig-

nificant. When the two charged particles are separated by a long distance, the decoherence

effect dominates, and entanglement generation is suppressed. However, when two particles

are separated by the distance of a wave zone, the superposition of the electromagnetic wave

from the other charged particle influences the quantum coherence signature. We also found

that the quantum superposition of bremsstrahlung from a superposed trajectory affects the

signature of the quantum coherence between the two particles; however, entanglement is not
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generated because the vacuum fluctuations of the photon field dominate over the signature

of the entanglement.

Similar features are expected to appear in the entanglement generation between the two

masses in the framework of the quantized gravitational field. The vacuum fluctuations of

the gravitational field and quantum superposition of gravitational radiation are expected

to be involved in the entanglement generation between the two masses. In Chapter 4, the

framework discussed in this chapter was extended to the theory of gravity to clarify the

dynamical effects of a quantized gravitational field.

Chapter 4 considered the gedanken experiment to reveal the relationship between com-

plementarity and causality. Here, we revisited the resolution of the paradox proposed by

Refs. [54, 55, 56, 89, 91] indicated that the quantum superposition of the gravitational po-

tential may result in inconsistency between causality and complementarity. The authors

of [54, 55, 56] argued that this inconsistency is resolved by vacuum fluctuations and the

entangling radiation of the electromagnetic/gravitational field. We conclude that the in-

consistency of causality and complementarity does not appear from the viewpoint of the

Schrödinger-Robertson uncertainty relation and complementarity inequality. The analysis

based on quantum field theory explicitly demonstrated the intuitively legitimate result that

causality holds and that operations on Bob’s system at a spacelike distance do not affect

Alice’s interference experiment at all by deriving Alice’s reduced density operator. On the

other hand, to find the validity of complementarity, we first derived visibility and distin-

guishability, which represent the degree of success of Alice’s interference experiment and

the degree of distinction of Alice’s quantum state, respectively. We then argued that there

is an inequality between these quantities, which is guaranteed by the Robertson inequality

associated with the non-commutative property of the quantized electromagnetic field. This

inequality describes the limit of complementarity in resolving this paradox.

Based on the QED/quantum theory of linearized gravity, we also analyzed the gedanken

experiment in connection with the Schrödinger-Robertson uncertainty relation and com-

plementarity inequality, focusing on the entanglement between two particles. We discovered

that the Schrödinger-Robertson uncertainty relation in an electromagnetic/gravitational field

prohibited the generation of entanglement between two particles when causality was fulfilled.

Additionally, we numerically demonstrated that the condition in which the two particles are

not entangled guarantees complementarity. The essence of the inconsistency between causal-

ity and complementarity is the assumption that the entanglement between Alice and Bob
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occurs in a region where Bob’s information cannot causally propagate to Alice. Our results

showed that the two particles cannot be entangled because of the existence of the quantized

electromagnetic/gravitational field, which resolves the paradox and preserves the consistency

between causality and complementarity.

Thus, the essence of the resolution for the paradox in this Gedanken experiment is the

existence of vacuum fluctuation and entangling radiation, which cause decoherence. This

decoherence is assumed to be induced by entanglement between the particle and the field.

However, determining whether a particle and a field are entangled is a nontrivial task. It

is important to discuss the condition that the particle and field are generally entangled.

Furthermore, the structure of the entanglement between the particle and the field can be

further investigated using various quantities of quantum information.

In Chapter 5, we considered the structure of the entanglement between the particle and

the field. In this study, we analyzed the dynamics of a two-particle system interacting with

a gravitational field and revealed the entanglement structure between the particle and grav-

itational field based on the quantum theory of linearized gravity. We derived the inequality

in which the conditional von Neumann entropy between two particles gives a lower bound

on the entanglement between the particle and the gravitational field. Furthermore, we found

that the conditional von Neumann entropy has a tradeoff relationship with the negativity

between the two particles. Thus, we showed that the particle and field are always entan-

gled if the two particles are not entangled. In addition, we computed the quantum discord

to quantitatively evaluate the quantum correlations between the particle and the gravita-

tional field. Quantum discord characterizes the quantum superposition of the gravitational

field. Consequently, as the width of the superposition state of the particle increases, the

superposition of the gravitational field becomes significant.

In this doctoral thesis, we considered the roles of the nondynamical and dynamical degrees

of freedom of fields in entanglement generation and decoherence. Thanks to the treatment

of the quantum field theory, we revealed that the decoherence is induced by a dynamical

quantum field. Therefore, the decoherence effect may be essential to the quantum theory of

gravity. In the future, we intend to gain a deeper understanding of the decoherence induced

by quantum fields, which will help elucidate the theory of quantum gravity. We consider it

important to understand the vacuum fluctuation of the field coupled with the spin degrees

of freedom of a particle and decoherence using a measuring instrument, which we neglected

in this thesis.
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We expect that our results will contribute to the construction of quantum gravity theory

in which quantum mechanics and general relativity are consistent.
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A 1/c expansion of Φ

We present the 1/c expansion of the quantity

Φ =
e

2ℏc

(∮
CA

dxµ∆A
µB(x) +

∮
CB

dxµ∆A
µ
A(x)

)
, (A.1)

where

∆Aµi (x) =
∑

P=R,L

ϵP
e

4π

[ vµiP(tiP)

(x−XiP(tiP)) · viP(tiP)

]
, (A.2)

and vµ = [c,v]T, ϵR = 1, ϵL = −1 and tiP satisfies the light cone condition −c(t − tiP) +

|x − XiP(tiP)| = 0. We restored the reduced Planck constant ℏ and the light velocity c.

Substituting (A.2) into (A.1), we obtain

Φ =
e2

8πℏc

(∮
CA

dxµ
∑

Q=R,L

ϵQ

[ vµBQ(tBQ)

(x−XBQ(t2Q)) · vBQ(t2Q)

]
+ (A ↔ B)

)
=

e2

8πℏ

∫
dt

∑
P,Q=R,L

ϵPϵQ

[ vAP(t) · vBQ(tBQ)

c(XAP(t)−X(tBQ)) · vBQ(tBQ)

]
+ (A ↔ B), (A.3)

where we changed the integral as
∮
Ci
dxµ =

∑
P=R,L ϵP

∫
(dXµ

iP/dt)dt =
∑

P=R,L ϵP
∫
vµiP(t)dt(i =

A,B) in the second line. The integrands have the form

vA(t) · vB(tr)
c(XA(t)−XB(tr)) · vB(tr)

=
c2 − vA(t) · vB(tr)

c(−c(t− tr) + (XA(t)−XB(tr)) · vB(tr))

=
−1

|XA(t)−XB(tr)| − (XA(t)−XB(tr)) · vB(tr)/c

(
1− vA(t) · vB(tr)

c2

)
,

(A.4)
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where the light cone condition −c(t − tr) + |XA(t) − XB(tr)| = 0 was used in the second

line. The 1/c expansion of the retarded time tr is

tr = t− 1

c
|XA(t)−XB(tr)|

= t− 1

c

√
(XA(t)−XB(tr))2

= t− 1

c

√(
XA(t)−XB(t) +

vB(t)

c
|XA −XB(t)|

)2
+O

(
1

c3

)
= t− 1

c

√
(XA(t)−XB(t))2 + (XA(t)−XB(t)) ·

2vB(t)

c
|XA(t)−XB(t)|+O

(
1

c3

)
= t− |XA(t)−XB(t)|

c

(
1 +

XA(t)−XB(t)

|XA(t)−XB(t)|
· vB(t)

c

)
+O

(
1

c3

)
= t− r(t)

c
− r(t) · v(t)

c2
+O

(
1

c3

)
, (A.5)

where r(t) = XA(t)−XB(t) and r(t) = |r(t)|. The denominator of the integrand (A.4) is

|XA(t)−XB(tr)| − (XA(t)−XB(tr)) ·
vB(tr)

c

=
√

(XA(t)−XB(tr))2 − (XA(t)−XB(tr)) ·
vB(tr)

c

=

√(
r + vB

(
r

c
+

r · vB

c2

)
− r2aB

2c2

)2
−
(
r + vB

r

c

)
· 1
c

(
vB − r

c
aB

)
+O

(
1

c3

)
=

√
r2 + 2r · vB

(
r

c
+

r · vB

c2

)
− 2r · r

2aB

2c2
+
r2v2B
c2

−
(
r · vB

c
+
rv2B
c2

− r

c2
r · aB

)
+O

(
1

c3

)
= r
(
1 +

r · vB

r2

(
r

c
+

r · vB

c2

)
− r · aB

2c2
+
v2B
2c2

− (r · vB)
2

2r2c2

)
−
(
r · vB

c
+
rv2B
c2

− r

c2
r · aB

)
+O

(
1

c3

)
= r
[
1 +

r · vB

r2

(
r

c
+

r · vB

c2

)
− r · aB

2c2
+
v2B
2c2

− (r · vB)
2

2r2c2
− r · vB

rc
−
v2B
c2

+
r · aB

c2

]
= r
[
1 +

(r · vB)
2

2r2c2
−
v2B
2c2

+
r · aB

2c2

]
+O

(
1

c3

)
, (A.6)

and the numerator of (A.4) is

1− vA(t) · vB(tr)

c2
= 1− vA · vB

c2
+O

(
1

c3

)
, (A.7)

95



where the light cone condition and the Taylor expansion were used and the argument t was

omitted. Then, (A.4) reduces to

vµ1 (t)vBµ(tr)

c(XA(t)−XB(tr)) · vB(tr)

=
−1

|XA(t)−XB(tr)| − (XA(t)−XB(tr)) · vB(tr)/c

(
1− vA(t) · vB(tr)

c2

)
=

−1

r
[
1 +

(r·vB)2

2r2c2 − v2B
2c2 +

r·aB
2c2

](1− vA · vB

c2

)
+O

(
1

c3

)
= −1

r

[
1− (r · vB)

2

2r2c2
+
v2B
2c2

− r · aB

2c2
− vA · vB

c2

]
+O

(
1

c3

)
≈ − 1

|XA −XB|

[
1− vA · vB

c2
+

1

2c2

{
v2B −

(
XA −XB

|XA −XB|
· vB

)2}
− (XA −XB) · aB

2c2

]
.

(A.8)

We find that the 1/c expansion of Φ is

Φ =
e2

8πℏ

∫
dt

∑
P,Q=R,L

ϵPϵQ

[ vAP(t) · vBQ(tBQ)

c(XAP(t)−X(tBQ)) · vBQ(tBQ)

]
+ (A ↔ B)

≈ − e2

8πℏ

∫
dt

∑
P,Q=R,L

ϵPϵQ
|XAP −XBQ|

[
1−

vAP · vBQ

c2

+
1

2c2

{
v2BQ −

( XAP −XBQ

|XAP −XBQ|
· vBQ

)2}
−

(XAP −XBQ) · aBQ

2c2

]
+ (A ↔ B). (A.9)

For the non-relativistic limit c→ ∞, the quantity Φ is

Φ → − e2

8πℏ

∫
dt

∑
P,Q=R,L

ϵPϵQ
|XAP −XBQ|

+ (A ↔ B)

= − e2

4πℏ

∫
dt
(

1

|XAR −XBR|
− 1

|XAR −XBL|
− 1

|XAL −XBR|
+

1

|XAL −XBL|

)
.

(A.10)

This result is equivalent to the quantity (2.50) (in the unit ℏ = 1) computed in the non-

relativistic regime.
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B Detail derivation of ΓRL, ΓA, ΓB, Γc and Φ

We present the detailed calculation of ΓRL,ΓA,ΓB,Γc, and Φ. In this calculation, we assume

that the charged particle has the non-relativistic velocity. We recover the constants c and

ℏ when we show the result of the calculation or use the formula of the 1/c expansion of Φ

derived as (A.9).

B.1 Computations of ΓRL, ΓA and ΓB

We first calculate the quantity ΓRL. We assume the following trajectories

Xµ
P(t) = [t, ϵPX(t), 0, 0

]T
, ϵR = −ϵL = 1, X(t) = 8L

(
1− t

T

)2( t
T

)2
. (B.1)

Using Eq. (3.23), we obtain

ΓRL =
e2

4

∮
C
dxµ

∮
C
dyµ⟨

{
ÂI
µ(x), Â

I
ν(y)

}
⟩

≈ e2

4

∮
C
dxµ

∮
C
dyµ⟨

{
ÂI
µ(x

0,0), ÂI
ν(y

0,0)
}
⟩

=
e2

4

∮
C
dxµ

∮
C
dyµ

ηµν
4π2

(
1

−(t− t′ − iϵ)2
+

1

−(t− t′ + iϵ)2

)
=

e2

16π2

∫ T

0

dt
(dXµ

R
dt

−
dXµ

L
dt

)∫ T

0

dt′
(dXRµ

dt′
−
dXLµ

dt′

)(
1

−(t− t′ − iϵ)2
+

1

−(t− t′ + iϵ)2

)
=

e2

16π2

∫ T

0

dt

∫ T

0

dt′
(
dXR

dt
− dXL

dt

)
·
(
dXR

dt′
− dXL

dt′

)(
1

−(t− t′ − iϵ)2
+

1

−(t− t′ + iϵ)2

)
=

32e2

3π2
L2

T 2
, (B.2)

where we took the limit ϵ→ 0 after the integration, and in the second line we used the dipole

approximation [86, 109] which ignores the spatial dependence of the photon field. The dipole

approximation is valid when the wave length of the photon field λp = T is considerably larger

than the typical size (∼ L) of the region where the charge exists. This condition is always

satisfied if we assume the non-relativistic velocity L/T ≪ 1.

We next consider the quantity Γi (3.49) given in the model of two charged particles.

Because of the time and spatial translation invariance of the vacuum state, Γi is independent

of the choice of the origin. Assuming that each of the charged particles A and B follows the
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trajectories defined by (B.1) up to the choice of the origin of the time or spatial axis, we can

evaluate ΓA and ΓB as

ΓA = ΓB = ΓRL ≈ 32e2

3π2ℏc
L2

(cT )2
, (B.3)

where we recovered the constants c and ℏ.

B.2 Computations of Γc and Φ for the linear configuration

B.2.1 T ≫ D ∼ L or T ≫ D ≫ L regimes

Here, we focus on the regime T ≫ D ∼ L or T ≫ D ≫ L for the linear configuration. We

assume the trajectories of two charged particles A and B as follows

Xµ
AP = [t, ϵPX(t), 0, 0]T, Xµ

BQ(t) = [t, ϵQX(t) +D, 0, 0
]T
, ϵR = −ϵL = 1, (B.4)

X(t) = 8L
(
1− t

T

)2( t
T

)2
. (B.5)

The parameters L and D should be D > L ≥ 2X(t) to avoid overlapping each trajectory of

particles A and B. First, we focus on the regime T ≫ D ∼ L. The quantity Γc is computed

by Eq. (3.50) as

Γc =
e2

2

∮
CA

dxµ
∮

CB

dyν ⟨{ÂI
µ(x), Â

I
ν(y)}⟩

≈ e2

2

∮
CA

dxµ
∮

CB

dyν ⟨{ÂI
µ(x

0,0), ÂI
ν(y

0,0)}⟩

=
e2

2

∮
CA

dxµ
∮

CB

dyν
ηµν
4π2

(
1

−(x0 − y0 − iϵ)2
+

1

−(x0 − y0 + iϵ)2

)
=

e2

8π2

∫ T

0

dt
(dXµ

1R
dt

−
dXµ

1L
dt

)∫ T

0

dt′
(dX2Rµ

dt′
−
dX2Lµ

dt′

)(
1

−(t− t′ − iϵ)2
+

1

−(t− t′ + iϵ)2

)
=

e2

8π2

∫ T

0

dt

∫ T

0

dt′
(
dX1R

dt
− dX1L

dt

)
·
(
dX2R

dt′
− dX2L

dt′

)(
1

−(t− t′ − iϵ)2
+

1

−(t− t′ + iϵ)2

)
=

64e2

3π2
L2

T 2
, (B.6)
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where the dipole approximation was used in the second line because of the condition T ≫ L.

The quantity Φ is evaluated using the result of (A.9) as

Φ = − e2

8πℏ

∫
dt

∑
P,Q=R,L

ϵPϵQ
|XAP −XBQ|

[
1−

vAP · vBQ

c2

+
1

2c2

{
v2BQ −

( XAP −XBQ

|XAP −XBQ|
· vBQ

)2}
−

(XAP −XBQ) · aBQ

2c2

]
+ (A ↔ B)

= − e2

8πℏ

∫
dt

∑
P,Q=R,L

ϵPϵQ
|D − (ϵP − ϵQ)X(t)|

[
1− ϵPϵQ

v2(t)

c2
− ϵQ

{−D + (ϵP − ϵQ)X(t)}a(t)
2c2

]
+ (A ↔ B)

= − e2

4πℏ

∫
dt
[
2

D

(
1− v2

c2

)
−
(
1 +

v2

c2

)(
1

|D − 2X(t)|
+

1

|D + 2X(t)|

)
+
a(t)

2c2

(
D − 2X(t)

|D − 2X(t)|
− D + 2X(t)

|D + 2X(t)|

)]
= − e2

4πℏ

∫
dt
[
2

D

(
1− v2

c2

)
−
(
1 +

v2

c2

)(
1

D − 2X(t)
+

1

D + 2X(t)

)]
, (B.7)

where we have recovered the natural units c and ℏ to show the result of the 1/c expansion.

Next, we consider the regime T ≫ D ≫ L. In this regime, we obtain the Γc and Φ using

(3.50) and (B.7) as follows,

Γc =
e2

2

∮
CA

dxµ
∮

CB

dyν ⟨{ÂI
µ(x), Â

I
ν(y)}⟩

=
e2

2

∮
CA

dxµ
∮

CB

dyν
ηµν
4π2

(
1

−(x0 − y0 − iϵ)2 + |x− y|2
+

1

−(x0 − y0 + iϵ)2 + |x− y|2
)

≈ e2

2

∮
CA

dxµ
∮

CB

dyν
ηµν
4π2

(
1

−(x0 − y0 − iϵ)2 +D2
+ c.c.

)
=

e2

8π2

∫ T

0

dt
(dXµ

1R
dt

−
dXµ

1L
dt

)∫ T

0

dt′
(dX2Rµ

dt′
−
dX2Lµ

dt′

)(
1

−(t− t′ − iϵ)2 +D2
+ c.c.

)
=

e2

8π2

∫ T

0

dt

∫ T

0

dt′
(
dX1R

dt
− dX1L

dt

)
·
(
dX2R

dt′
− dX2L

dt′

)(
1

−(t− t′ − iϵ)2 +D2
+ c.c.

)
≈ 64e2

3π2
L2

T 2

(
1 +

4D2

T 2
ln
[
D

T

])
, (B.8)

where the distance between the particles |x− y| was approximated as D because of D ≫ L

in the third line, and in the final line we took the limit ϵ → 0 and the leading order of
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T/D ≪ 1 after the integration, and

Φ = − e2

4πℏ

∫
dt
[
2

D

(
1− v2

c2

)
−
(
1 +

v2

c2

)(
1

D − 2X(t)
+

1

D + 2X(t)

)]
≈ − e2

4πℏ

∫
dt
[
2

D

(
1− v2

c2

)
− 2

D

(
1 +

v2

c2

)(
1 +

4X2(t)

D2

)]
≈ − e2

4πℏ

∫
dt
[
− 4

D

v2

c2
− 8X3(t)

D3

]
=

64e2

315πℏc

(
L

cT

)2(6cT
D

+
(
cT

D

)3)
, (B.9)

where we took the leading order of 4X2(t)/D2 ∼ O(L2/D2) ≪ 1 in the second line, and ne-

glected O(L4/D4) in the last line. Therefore, we obtain the result in the linear configuration

in cT ≫ D ≫ L regime as

ΓA = ΓB ≈ 32e2

3π2ℏc
L2

(cT )2
, Γc ≈

64e2

3π2ℏc
L2

(cT )2

(
1 +

4D2

(cT )2
ln
[
D

cT

])
, (B.10)

Φ ≈ 64e2

315πℏc

(
L

cT

)2(6cT
D

+
(
cT

D

)3)
. (B.11)

B.2.2 D ≫ T ≫ L regime

Here, we focus on the regime D ≫ T ≫ L and calculate the quantities Γc and Φ. We assume

the following trajectories of the two charged particles A and B as

Xµ
AP(t) =

[
t, ϵPX(t), 0, 0

]T
, Xµ

BQ(t) =
[
t, ϵQX(t−D) +D, 0, 0

]T
, ϵR = −ϵL = 1,

(B.12)

X(t) = 8L
(
1− t

T

)2( t
T

)2
, (B.13)
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where Xµ
BQ is defined in D ≤ t ≤ T +D. First, we calculate the quantity Γc in this regime

by using (3.50) as

Γc =
e2

2

∮
CA

dxµ
∮

CB

dyν ⟨{ÂI
µ(x), Â

I
ν(y)}⟩

=
e2

2

∮
CA

dxµ
∮

CB

dyν
ηµν
4π2

(
1

−(x0 − y0 − iϵ)2 + |x− y|2
+

1

−(x0 − y0 + iϵ)2 + |x− y|2
)

≈ e2

2

∮
CA

dxµ
∮

CB

dyν
ηµν
4π2

(
1

−(x0 − y0 − iϵ)2 +D2
+ c.c.

)
=

e2

8π2

∫ T

0

dt
(dXµ

1R
dt

−
dXµ

1L
dt

)∫ T+D

D

dt′
(dX2Rµ

dt′
−
dX2Lµ

dt′

)(
1

−(t− t′ − iϵ)2 +D2
+ c.c.

)
=

e2

8π2

∫ T

0

dt

∫ T+D

D

dt′
(
dX1R

dt
− dX1L

dt

)
·
(
dX2R

dt′
− dX2L

dt′

)(
1

−(t− t′ − iϵ)2 +D2
+ c.c.

)
≈ e2

8π2
4

D2

∫ T

0

dt

∫ T+D

D

dt′
dX(t)

dt
· dX(t′ −D)

dt′

{
1 +

(t− t′ − iϵ)2

D2
+ 1 +

(t− t′ + iϵ)2

D2

}
=

e2

2π2D4

∫ T

0

dt

∫ T+D

D

dt′
dX(t)

dt
· dX(t′ −D)

dt′

{
(t− t′ − iϵ)2 + (t− t′ + iϵ)2

}
= − 32e2

225π2
L2T 2

D4
. (B.14)

where the distance between the particles |x− y| was approximated as D because of D ≫ L

in the third line. We used the geometric series expansion because of |(t− t
′ ± iϵ)| < T ≪ D

in the third to last line, and in the final line, we took the limit ϵ → 0 after the integration.

We next calculate the quantity Φ using Eq. (3.54) in this regime. The quantity Φ is

Φ =
e

4

(∫
SA

dσµν∆F
µν
B (x) +

∫
SB

dσµν∆F
µν
A (x)

)
=
e

4

∫
SB

dσµν∆F
µν
A (x)

=
e

2

∫ T+D

D

dt

∫ XBR(t)+D

XBL(t)+D

dx∆F 01
1 (t, x, 0, 0)

=
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx∆F 01
1 (t, x+D, 0, 0), (B.15)

where the region SB = {D ≤ t ≤ T +D, XBL(t) +D ≤ x ≤ XBR(t) +D, y = 0, z = 0},
and the first term in the first line vanishes because, in this configuration, particle A does not
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experience the retarded field of particle B. We changed the variable x → x+D in the final

line. The quantity Φ is decomposed into two terms Φ = Φv +Φa, which are given as follows

(see Eqs. (3.89) and (3.90))

Φv =
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx∆F 01
A,v(t, x+D, 0, 0)

=
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP

[
e

4π

(t− tAP)vAP(tAP)− (x+D −XAP(tAP))

γ2AP[t− tAP − (x+D −XAP(tAP))vAP(tAP)]3

]
,

(B.16)

Φa =
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx∆F 01
A,a(t, x+D, 0, 0)

=
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP
e

4π[t− tAP − (x+D −XAP(t1P))vAP(tAP)]2

×
[
(t− tAP)

(
aAP(tAP) +

(x+D −XAP(tAP))aAP(tAP)

t− tAP − (x+D −XAP(tAP))vAP(tAP)
vAP(tAP)

)
− (x+D −XAP(tAP))

2aAP(tAP)

(t− tAP)− (x+D −XAP(tAP))vAP(tAP)

)]
,

=
e2

8π

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP

[
(t− tAP)

2 − (x+D −XAP(tAP))
2

[t− tAP − (x+D −XAP(tAP))vAP(tAP)]3

]
aAP(tAP),

(B.17)

where the retarded time tAP is approximated by neglecting O(L2/D2) as

tAP = t− |x−XAP(tAP)| = t−
√

(x+D −XAP(tAP))2 ≈ t−D, (B.18)
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where (x−XAP(tAP)) ∼ O(L). For D ≫ cT ≫ L, we can approximate Φv as

Φv =
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP

[
e

4π

(t− tAP)vAP(tAP)− (x+D −XAP(tAP))

γ2AP[t− tAP − (x+D −XAP(tAP))vAP(tAP)]3

≈ e2

8π

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP

[
vAP(t−D)

D2
+
XAP(t−D)

D3
− x+D

D3

]
=
e2

8π

∫ T+D

D

dt(XBR(t)−XBL(t))
[
vAR(t−D)− vAL(t−D)

D2
+
XAR(t−D)−XAL(t−D)

D3

]
=

16e2

315π

L2T

D3
. (B.19)

Moreover, in the second line of the above equation, we substituted the retarded condition

(B.18) into Eq. (B.19) and approximated the denominator as

γ2AP[t− tAP − (x+D −XAP(tAP))vAP(tAP)]

≈
(
1− v2AP(t−D)

)−1
[D − (x+D −XAP(t−D))vAP(t−D)]

= D
(
1− v2AP(t−D)

)−1
[1− (1 + (x−XAP(t−D))/D)vAP(t−D)]

≈ D, (B.20)

where vAP ∼ O(L/T ), v2AP ∼ O(L2/T 2), and (x − XAP)/D ∼ O(L/D) were neglected in

the last line. However, the quantity Φa is exactly equal to zero because of the retarded time

condition (B.18). This result indicates that in the context of equation (3.97), the electric

field EAR,a
x (EAL,a

x ) is equal to zero because the electromagnetic wave cannot propagate the

direction of the acceleration of the charged particle A. Therefore, we summarize the result

in the linear configuration in D ≫ cT ≫ L regime as follows

ΓA = ΓB ≈ 32e2

3π2ℏc
L2

(cT )2
, Γc ≈ − 32e2

225π2ℏc
L2(cT )2

D4
, Φ ≈ 16e2

315πℏc
L2(cT )

D3
. (B.21)
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B.3 Computation of Γc and Φ for parallel configuration

B.3.1 T ≫ L≫ D or T ≫ D ≫ L regimes

Here, we focus on the regimes T ≫ L ≫ D or T ≫ D ≫ L and calculate the quantities Γc

and Φ. We assume the following trajectories of the two charged particles A and B as

Xµ
AP(t) =

[
t, ϵPX(t), 0, 0

]T
, Xµ

BQ(t) =
[
t, ϵQX(t), D, 0

]T
, ϵR = −ϵL = 1, (B.22)

X(t) = 8L
(
1− t

T

)2( t
T

)2
, (B.23)

In these regimes, the approximate form of Γc is equal to (B.8). Neglecting O(D2/T 2) in

T ≫ L≫ D, we obtain the quantity Γc as

Γc ≈
64e2

3π2
L2

T 2
, (B.24)

The quantity Φ up to O(1/c2) obtained from (A.9) is

Φ = − e2

8πℏ

∫
dt

∑
P,Q=R,L

ϵPϵQ
|XAP −XBQ|

[
1−

vAP · vBQ

c2

+
1

2c2

{
v2BQ −

( XAP −XBQ

|XAP −XBQ|
· vBQ

)2}
−

(XAP −XBQ) · aBQ

2c2

]
+ (A ↔ B)

= − e2

8πℏ

∫
dt

∑
P,Q=R,L

ϵPϵQ√
(XAP −XBQ)2 +D2

[
1−

vAPvBQ

c2

+
1

2c2

{
v2BQ −

( XAP −XBQ√
(XAP −XBQ)2 +D2

vBQ

)2}
−

(XAP −XBQ)aBQ

2c2

]
+ (A ↔ B)

= − e2

4πℏ

∫
dt
(
2

D

[
1− v2

2c2

]
− 2√

4X2 +D2

[
1 +
(
1 +

D2

2(4X2 +D2)

)
v2

c2
+
Xa

c2

])
.

(B.25)
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For cT ≫ L≫ D, the quantity Φ is approximated as

Φ = − e2

4πℏ

∫
dt
(
2

D

[
1− v2

2c2

]
− 2√

4X2 +D2

[
1 +
(
1 +

D2

2(4X2 +D2)

)
v2

c2
+
Xa

c2

])
≈ − e2

4πℏ

∫
dt

2

D

[
1− v2

2c2

]
= − e2

2πℏc
cT

D

(
1− 64L2

105(cT )2

)
, (B.26)

where we neglected O(D/L) in the second line. In the regime cT ≫ D ≫ L, we obtain

Φ = − e2

4πℏ

∫
dt
(
2

D

[
1− v2

2c2

]
− 2√

4X2 +D2

[
1 +
(
1 +

D2

2(4X2 +D2)

)
v2

c2
+
Xa

c2

])
≈ − e2

4πℏ

∫
dt
[
4X2

D3
− 4v2 + 2Xa

c2D

]
= − 32e2

315πℏc
cTL2

D3

(
1− 6D2

(cT )2

)
, (B.27)

where we used the Taylor expansion (4X2 + D2)α ≈ D2α(1 + 4αX2/D2) in the first line

and neglected O(L3/T 3) in the second line. Consequently, ΓA,ΓB,Γc, and Φ in the parallel

configuration are obtained as

ΓA = ΓB ≈ 32e2

3π2ℏc
L2

(cT )2
, Γc ≈

64e2

3π2ℏc
L2

(cT )2
, Φ ≈ − e2

2πℏc
cT

D

(
1− 64L2

105(cT )2

)
, (B.28)

for cT ≫ L≫ D, and

ΓA = ΓB ≈ 32e2

3π2ℏc
L2

(cT )2
, Γc ≈

64e2

3π2ℏc
L2

(cT )2

(
1 +

4D2

(cT )2
ln

[
D

cT

])
, (B.29)

Φ ≈ − 32e2

315πℏc
cTL2

D3

(
1− 6D2

(cT )2

)
, (B.30)

for cT ≫ D ≫ L, respectively.
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B.3.2 D ≫ T ≫ L regime

Here, we consider the D ≫ T ≫ L regime and calculate the quantities Γc and Φ. In this

regime, the trajectories of the two charged particles A and B are assumed as follows

Xµ
AP(t) =

[
t, ϵPX(t), 0, 0

]T
, Xµ

BP(t) =
[
t, ϵPX(t−D), D, 0

]T
, ϵR = −ϵL = 1, (B.31)

X(t) = 8L
(
1− t

T

)2( t
T

)2
, (B.32)

where Xµ
BQ is defined in D ≤ t ≤ T +D. The quantity Γc is equal to the Eq. (B.14) because

we can approximate the difference of the distance of the two charged particles |x− y| ≈ D

and use the geometric series expansion because of |(t− t′± iϵ)|/D < T/D ≪ 1 in this regime

(detailed derivation, see the Eq. (B.14)). The quantity Φ is obtained as

Φ =
e

4

(∫
SA

dσµν∆F
µν
B (x) +

∫
SB

dσµν∆F
µν
A (x)

)
=
e

4

∫
SB

dσµν∆F
µν
A (x)

=
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx∆F 01
A (t, x,D, 0), (B.33)

where we note that the region SB = {D ≤ t ≤ T + D,XBL(t) ≤ x ≤ XBR, y = D, z = 0};
in this configuration of interest, the first term in the first line vanishes because the retarded

field from particle B is causally disconnected with particle A. The retarded time tAP is

approximated as

tAP = t− |x−XAP(tAP)| = t−
√

(x−XAP(tAP))2 +D2 ≈ t−D − (x−XAP(t−D))2

2D
,

(B.34)
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where (x − XAP(tAP)) ∼ O(L) and O(L2/D2) was neglected. We therefore obtain the

quantity Φv and Φa as

Φv =
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP

[
e

4π

(t− tAP)vAP(tAP)− (x−X1P(tAP))

γ2AP[t− tAP − (x−X1P(tAP))vAP(tAP)]3

]
≈ e2

8π

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP

[
vAP(t−D)

D2
− x−XAP(t−D)

D3

]
=
e2

8π

∫ T+D

D

dt(XBR(t)−XBL(t))
[
vAR(t−D)− vAL(t−D)

D2
+
XAR(t−D)−XAL(t−D)

D3

]
=

16e2

315π

L2T

D3
, (B.35)

where in the second line of the above equation, the denominator was approximated in the

same manner performed in (B.20), and

Φa =
e

2

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP
e

4π[t− tAP − (x−XAP(tAP))vAP(tAP)]2

×
[
(t− tAP)

(
aAP(tAP) +

(x−XAP(tAP))aAP(tAP)

t− tAP − (x−XAP(tAP))vAP(tAP)
vAP(tAP)

)
− (x−XAP(tAP))

2aAP(tAP)

(t− tAP)− (x−XAP(tAP))vAP(tAP)

)]
=
e2

8π

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP

[
(t− tAP)

2 − (x−XAP(tAP))
2

[t− tAP − (x−XAP(tAP))vAP(tAP)]3

]
aAP(tAP)

=
e2

8π

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP

[
D2

[t− tAP − (x−XAP(tAP))vAP(tAP)]3

]
aAP(tAP)

≈ e2

8π

∫ T+D

D

dt

∫ XBR(t)

XBL(t)

dx
∑

P=R,L

ϵP
aAP(t−D)

D

=
e2

8π

∫ T+D

D

dt(XBR(t)−XBL(t))
[
aAR(t−D)− aAL(t−D)

D

]
= − 64e2

105π

L2

DT
, (B.36)

where we substituted the retarded time condition (B.34) into the second line of the above

equation and neglected the O(L2/D2) and v ∼ O(L/T ) in the third line of the denominator.
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Consequently, the quantity Φ is

Φ ≈ − 64e2

105π

L2

DT

(
1− T 2

12D2

)
≈ − 64e2

105π

L2

DT
, (B.37)

where we neglected the second term because of D ≫ T in the last equality. Thus, ΓA,ΓB,Γc,

and Φ in the parallel configuration in the regime D ≫ cT ≫ L are

ΓA = ΓB ≈ 32e2

3π2ℏc
L2

(cT )2
, Γc ≈ − 32e2

225π2ℏc
L2(cT )2

D4
, Φ ≈ − 64e2

105πℏc
L2

D(cT )
. (B.38)
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C Proof of the statement in (4.43)

We numerically prove the statement in (4.43). Using the Robertson inequality(4.42), ΓAΓB ≥
Φ2

AB/16, we have

1− e−2ΓA − e−2ΓB sin2
(
ΦBA

2

)
≥ 1− e−2ΓA − e−Φ2

BA/8ΓA sin2
(
ΦBA

2

)
= f(X, Y ), (C.1)

where we defined the function f(X, Y ) with X = e−2ΓA and Y = e−Φ2
BA/8ΓA as follows:

f(X, Y ) = 1−X − Y sin2
(√

logX log Y
)
. (C.2)

As it is sufficient to consider that ΓA > 0 and ΦBA > 0, we can assume that 0 < X < 1 and

0 < Y < 1.

FIG 23: Behavior of the function f(X, Y ) where the region 0 < X < 1 and 0 < Y < 1.

Fig. 23 shows the behavior of the function f(X, Y ), which is positive in the regions 0 <

X < 1 and 0 < Y < 1. Since the function f(X, Y ) is positive, the inequality e−2ΓA +

e−2ΓB sin2 (ΦBA/2) ≤ 1 in (4.38) is satisfied. Hence, the Robertson inequality (4.42) is

the sufficient condition for the inequality (4.38), and the statement in (4.43) holds. In the

following, we show that the function f(X, Y ) is always positive in an analytic manner.

Proof. Now let derive the partial derivatives to find the gradient for f(X, Y ), and the results
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are

∂f(X, Y )

∂X
= −1−

Y log Y sin
(√

logX log Y
)
cos
(√

logX log Y
)

X
√
logX log Y

, (C.3)

∂f(X, Y )

∂Y
= −

(
logX cos

(√
logX log Y

)
√
logX log Y

+ sin
(√

logX log Y
))

sin
(√

logX log Y
)
.

(C.4)

We are looking for the gradient is zero:

0 = logX cos
(√

logX log Y
)
+
√

logX log Y sin
(√

logX log Y
)
, (C.5)

and

0 = −X
√

logX log Y − Y log Y sin
(√

logX log Y
)
cos
(√

logX log Y
)

= −X (logX log Y )− Y log Y
((√

logX log Y
)
sin
(√

logX log Y
))

cos
(√

logX log Y
)
,

(C.6)

where we multiplied by the factor
√
logX log Y in the second line. Substituting (C.5) into

(C.6), we obtain the following condition

0 = (logX log Y )
(
−X − Y sin2

(√
logX log Y

)
+ Y

)
. (C.7)

Case 1: logX log Y = 0, i.e., X = 1 or Y = 1. When X = 1, by definition of the function

f(X, Y ), we have

f(1, Y ) = 0, (C.8)

where we used log 1 = 0 and sin 0 = 0 for arbitrary value Y . Note that when Y → 0, then
√
logX log Y is non-trivial. However, due to Y → 0, f(1, Y ) becomes 0. When Y = 1,

f(X, 1) = 1− Y > 0, (C.9)
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where we used log 1 = 0 and sin 0 = 0 for arbitrary values X. Note that when X → 0, then
√
logX log Y is also non-trivial. However, in this case, f(X, Y ) is

lim
X→0

f(X, Y )|Y=1 = 1− sin2
(√

logX log Y
)
> 0. (C.10)

Thus, in case 1, f(X, Y ) is always positive.

Case 2: −X − Y sin2
(√

logX log Y
)
+ Y = 0. Then f(X, Y ) becomes

f(X, Y ) = 1−X − Y sin2
(√

logX log Y
)

= 1− Y > 0. (C.11)

Thus, in case 2, f(X, Y ) is also always positive. In either case, f(X, Y ) ≥ 0, so the result is

proven.
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D Demonstration of the relationship expressed in the re-

lationship (4.48)

In this Appendix, the relationship expressed in the relationship (4.48) is demonstrated in a

numerical manner. For convenience, we rewrite λmin as

λmin =
1

4

[
1− e−ΓA−ΓB cosh[Γc]−

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB sin2

[
(ΦAB + ΦBA)

4

]
+ e−2ΓA−2ΓB sinh2[Γc]

} 1
2
]

= C
(
sinh[ΓA] sinh[ΓB]− sinh2

[
Γc

2

]
− sin2

[
ΦBA

4

])
, (D.1)

where the coefficient C is expressed as

C = e−ΓA−ΓB

[
1− e−ΓA−ΓB cosh[Γc] +

{(
e−ΓA − e−ΓB

)2
+ 4e−ΓA−ΓB sin2

[
(ΦAB + ΦBA)

4

]
+ e−2ΓA−2ΓB sinh2[Γc]

}1/2]−1

. (D.2)

The coefficient C is always positive because 1− e−ΓA−ΓB cosh[Γc] > 0 since ΓA + ΓB ≥ |Γc|.
Therefore, the condition λmin ≥ 0 is equivalent to

sinh[ΓA] sinh[ΓB]− sinh2
[
Γc

2

]
− sin2

[
ΦBA

4

]
≥ 0. (D.3)

Hereinafter, we regard the inequality (D.3) as λmin ≥ 0 and demonstrate the relationship

shown in the relationship (4.48). The relationship (4.48) can be divided into two components

((D.4) and (D.5)) as follows:

ΓAΓB ≥ Γ2
c
4

+
Φ2

BA
16

=⇒ sinh[ΓA] sinh[ΓB]− sinh2
[
Γc

2

]
− sin2

[
ΦBA

4

]
≥ 0, (D.4)

sinh[ΓA] sinh[ΓB]− sinh2
[
Γc

2

]
− sin2

[
ΦBA

4

]
≥ 0 =⇒ e−2ΓA + e−2ΓB sin2

[
ΦBA

2

]
≤ 1.

(D.5)

In the following two subsections, we examine whether the relationships above (D.4) and (D.5)

are satisfied.

112



FIG 24: Behavior of the functions of log[F (X1, Y1, 1/2)] (left), log[F (X1, 1/2, Z1)] (center),
and log[F (1/2, Y1, Z1)] (right).

D.1 Demonstration of the relationship expressed in (D.4)

First, we demonstrate the relationship expressed in (D.4). Substituting the left-hand side of

the inequality expressed in (D.4) into the right-hand side, we obtain the following inequality:

sinh
[
ΓA
]
sinh

[
ΓB
]
− sinh2

[
Γc

2

]
− sin2

(
ΦBA

4

)
≥ sinh

[
ΓA
]
sinh

[
Γ2

c
4ΓA

+
Φ2

BA
16ΓA

]
− sinh2

[
Γc

2

]
− sin2

[
ΦBA

4

]
. (D.6)

The goal of this subsection is to demonstrate that the right-hand side of the above in-

equality is always positive. Next, we define variables X1 := e−ΓA , Y1 := e−Γ2
c/4ΓA , and

Z1 := e−Φ2
BA/16ΓA . Note that the ranges of X1, Y1, Z1 are limited to 0 < X1 < 1, 0 < Y1 < 1,

and 0 < Z1 < 1, respectively. Therefore, we compute the minimum of the following function:

F (X1, Y1, Z1) :=
1

4

(
1

X1
−X1

)(
1

Y1Z1
− Y1Z1

)
− sinh2

[√
logX1 log Y1

]
− sin2

[√
logX1 logZ1

]
.

(D.7)

The function log[F (X1, Y1, Z1)] is depicted in Figure 24. The minimum value of the function

F (X1, Y1, Z1) is zero at X1 = 1 based on a numerical program written using Mathematica.

These result shows that the minimum of the function F (X1, Y1, Z1) is larger than zero, i.e.,

F (X1, Y1, Z1) ≥ 0. Thus, the relationship shown in (D.4) is proven.

D.2 Demonstration of the relationship expressed in (D.5)

Next, we also demonstrate the relationship expressed in (D.5). The strategy used is the

same as that used for (D.4), i.e., we demonstrated that the minimum of the right-most side
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of the inequality is greater than zero. The left-hand-side of (D.5) can be rewritten as

sinh[ΓB] ≥
sinh2[Γc/2]

sinh[ΓA]
+

sin2[ΦBA/4]

sinh[ΓA]
, (D.8)

where sinh[ΓA] > 0 because of ΓA > 0. Solving the inequality above with respect to eΓB

yields

eΓB ≥ C +
√

1 + C2, (D.9)

where C := (sinh2[Γc/2]sinh[ΓA]+sin2[ΦBA/4])/sinh[ΓA]. Substituting the inequality in (D.9)

into the right-hand side of (D.5) leads to the following inequality

1− e−2ΓA − e−2ΓB sin2
[ΦBA

2

]
≥ 1− e−2ΓA −

sin2
[
ΦBA/2

](
C +

√
1 + C2

)2 =: G(X2, Y2, Z2), (D.10)

where we defined the function G(X2, Y2, Z2) as

G(X2, Y2, Z2) := 1−X2
2 −

sin2
[
2 sin−1[Z2]

](
C̃ +

√
1 + C̃2

)2 . (D.11)

Here, X2 := e−ΓA , Y2 := e−Γc/2, Z2 := sin[ΦBA/4] (0 < X2 < 1, 0 < Y2 < 1, 0 < Z2 < 1),

and

C̃ :=

(
1/Y2 − Y2

)2
2
(
1/X2 −X2

) + 2Z2
2(

1/X2 −X2

) . (D.12)

Therefore, we focus on the minimum of the function G(X2, Y2, Z2) and show that the min-

imum value is greater than zero. Fig. 25 shows the behavior of the function G(X2, Y2, Z2).

The minimum value of the function G(X2, Y2, Z2) is zero in the limit X2 → 1 based on a

numerical program written using Mathematica. Because the function G(X2, Y2, Z2) is al-

ways positive, the inequality G(X2, Y2, Z2) ≥ 0 is satisfied. Thus, the relationship expressed

in (D.5) is proven. Furthermore, based on the relationship shown in (D.4) and (D.5), the

relationship (4.48) is proven.
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FIG 25: Behavior of the function of G(X2, Y2, 1/2) (left), G(X2, 1/2, Z2) (center), and
G(1/2, Y2, Z2) (right).

E Proofs of inequality (5.5) and Eq. (5.18)

The goal of this Appendix is to prove inequality (5.5) and Eq. (5.18). In order to achieve

the goal, it is convenient to introduce the Koashi-Winter relation [110] of a pure tripartite

system |ΨABE⟩ as follows:

S(ρA) = Ef(ρAE) + J (A,B), (E.1)

where the entanglement of formation Ef(ρAE) is defined by

Ef(ρAE) := min
{pi,|ψAE⟩i}

∑
i

piS(TrE[|ψAE⟩i⟨ψAE|]) (E.2)

with states |ψAE⟩i due to Schmidt decomposition |ΨABE⟩ =
∑

i

√
pi|ψAE⟩i ⊗ |ψB⟩i satisfy-

ing
∑

i pi = 1 and pi ≥ 0. The minimization is taken over all ensembles {pi, |ψAE⟩i} such

that
∑

i pi|ψAE⟩i⟨ψAE| = ρAE. Roughly speaking, this entanglement of formation charac-

terizes at least how many maximally entangled states |ψAE⟩ required to generate the state

TrE[|ψAE⟩⟨ψAE|]. J (A,B) in the second term of Eq. (E.1) is the classical correlation, which

is seen as the amount of information about the subsystem A that can be obtained via per-

forming a measurement on the other subsystem B, and is defined by

J (A,B) := S(ρA)−min
{Πi}

∑
i

piS(ρA|i), (E.3)
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where S(ρA|i) is the von Neumann entropy of the post-measurement state ρA|i with the

probability pi defined below

ρA|i :=
1

pi
TrB

[
(1A ⊗ ΠB

i )ρAB(1A ⊗ ΠB
i )
]
, pi := TrAB

[
(1A ⊗ ΠB

i )ρAB(1A ⊗ ΠB
i )
]
. (E.4)

Πi is the positive operator valued measure (POVM) acting on the subsystem B. The con-

dition min{Πi} is introduced not to disturb the all state, i.e., we must choose the projective

operator {Πi} so as to reduce the dependence on the projection measure. Note that, as a

difference of classical theory, the measurement in subsystem B disturbs subsystem A. When

we measure the state of subsystem B, the wave function collapses, and the state of subsystem

B determines, that is, the projective measure makes a condition to the state of subsystem

A.

The classical correlation J (A,B) is related to the quantum discord D(A,B)[104]. The

definition of the quantum discord is the difference between the quantum mutual information

I(A,B) = S(ρA) + S(ρB)− S(ρAB) and the classical correlation J (A,B):

D(A,B) = I(A,B)− J (A,B). (E.5)

The quantum mutual information I(A,B) quantifies the total amount of correlations between

the two subsystems A and B. We note that the quantum mutual information is always non-

negative due to the subadditivity of von Neumann entropy. In classical theory, D(A,B) = 0

is always correct, but, in quantum theory, it can become D(A,B) > 0.

By using Eq. (E.1) and (E.5), we can prove the inequality Ef(ρAE) ≥ S(A|B) as follows:

Ef(ρAE) = S(ρA)− J (A,B)

= S(ρA)− I(A,B) + I(A,B)− J (A,B)

= S(ρA)− I(A,B) +D(A,B)

≥ S(ρA)− I(A,B)

= S(ρAB)− S(ρB) = S(A|B), (E.6)

where we inserted the quantum mutual information I(A,B) in the second line and D(A,B) ≥
0 was used in the fourth line. An other reorder version of the inequality (E.6) is also computed
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as

Ef(ρAB) ≥ S(ρAE)− S(ρE)

= S(ρB)− S(ρAB)

= −S(A|B), (E.7)

where, in the second line, we used the properties S(ρE) = S(ρAB) and S(ρAE) = S(ρB) ,

which holds because the state |ψABE⟩ is pure state. Note that these properties are always

satisfied because of the invariance of the von Neumann entropy under the Unitary evolu-

tion when the initial state is pure state. In the last line, we inserted the definition of the

conditional von Neumann entropy S(A|B) := S(ρAB)− S(ρB).

Furthermore, we can show the equation D(A,E) = Ef(ρAB) + S(A|B) as follows:

D(A,E) = Ef(ρAB) + S(ρE)− S(ρAE) = Ef(ρAB) + S(ρAB)− S(ρB) = Ef(ρAB) + S(A|B),
(E.8)

where, in the first equality, we used an other reorder version of the Koashi-Winter rela-

tion (E.1) with respect to B and E

S(ρA) = Ef(ρAB) + J (A,E)

= Ef(ρAB) + I(A,E)− I(A,E) + J (A,E)

= Ef(ρAB) + I(A,E)−D(A,E). (E.9)

In inequality. (5.5) and Eq. (5.18), we regard the state E as the state of the gravitational

field. Therefore, inequality (5.5) and Eq. (5.18) is proven.
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