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Abstract 19 

Bacterial symbionts can promote insecticide resistance in their hosts by isolating and degrading 20 

insecticidal compounds or altering the expression of host genes. Although Wolbachia, a common 21 

endosymbiont in arthropods, typically does not influence insecticide resistance, there are cases of 22 

increased or decreased susceptibility. Due to the restrictions of applying conventional insecticides in a 23 

stored product setting, studies on alternative control methods are needed, including those on entomotoxic 24 

nanoparticles (NPs) and the potential for resistance. For pests of stored beans, selenium nanoparticles 25 

(SeNPs) are relatively innocuous to the azuki bean beetle, Callosobruchus chinensis (L.) (Coleoptera: 26 

Chrysomelidae: Bruchinae). Here, we hypothesized that this response is mediated by Wolbachia, and we 27 

tested this using an isofemale line of C. chinensis (infected or uninfected with Wolbachia). Our results 28 

showed that the lifespan of Wolbachia-infected females was not affected by SeNPs, but increasing 29 

concentrations of SeNPs still had a negative effect on fecundity; in uninfected females, increasing 30 

concentrations of SeNPs significantly decreased both lifespan and fecundity. However, in males, SeNPs 31 

enhanced lifespan and decreased the incidence of sexual harassment behavior regardless of infection 32 

status (for uninfected males, the duration of harassment behavior also decreased). In the presence of 33 

males, 72-h female reproduction increased independent of infection status or SeNP treatment, but egg 34 

hatchability was reduced by male presence and SeNPs. This study documents a valuable example of 35 

symbiont-mediated resistance to entomotoxic nanoparticles. 36 

 37 

Keywords: Stored product pests, IPM, nanotechnology, toxicology, microbiome, male harassment 38 

 39 

Key Message 40 

• Insecticide resistance can be mediated by bacterial symbionts 41 

• Wolbachia may reduce susceptibility to selenium nanoparticles (SeNPs) in seed beetles 42 

• SeNPs decreased female reproduction, but only uninfected females had a reduced lifespan 43 

• SeNPs increased male lifespan and reduced harassment behavior 44 

• The use of SeNPs can complement other IPM strategies, e.g. the incompatible insect technique 45 

(IIT)  46 
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Introduction 47 

Insecticide resistance is a widespread concern in both conventional and integrated pest management as it 48 

leads to challenges in pest control and massive economic losses (Pimentel et al. 1992, Sparks and Nauen 49 

2015). Pesticides act as powerful selective pressures, and resistance is typically accomplished by 50 

molecular changes at the target site or via altered metabolic processes, usually up-regulation of 51 

detoxification enzymes or improved excretion (Sparks and Nauen 2015, IRAC n.d.). Penetration 52 

resistance (cuticular thickening or modification; Balabanidou et al. 2018) and behavioral resistance 53 

(Sparks et al. 1989; but see Zalucki and Furlong 2017) are also important mechanisms in the evolution of 54 

insecticide resistance. However, since the insects themselves are host to a broad diversity of microbiota, it 55 

is vital to consider the mechanisms of insecticide resistance (or toxicology) from the broader perspective 56 

of the metaorganism (a host and its associated microbiota; see Jaspers et al. 2019). 57 

The insect microbiome is quickly becoming relevant in the context of pest management as more 58 

and more cases of symbiont-mediated insecticide resistance are documented (reviewed by Gressel 2017, 59 

Pietri and Liang 2018, Blanton and Peterson 2020). For example, Burkholderia bacteria in the midgut 60 

crypts of some pentatomomorph bugs (Hemiptera: Coreoidea, Lygaeoidea) can degrade fenitrothion 61 

(Kikuchi et al. 2012, Ishigami et al. 2021). Similarly, gut bacteria significantly decrease susceptibility to 62 

indoxacarb and chlorpyrifos in the tobacco cutworm (Spodoptera litura (Fabricius); Lepidoptera: 63 

Noctuidae) (Gadad and Vastrad 2016), break down malathion, pirimiphos-methyl, and deltamethrin in 64 

grain beetles (Coleoptera: Curculionidae, Laemophloeidae, Bostrichidae) (Wang et al. 2022), mediate 65 

resistance to dichlorvos in the cowpea beetle (Callosobruchus maculatus (Fabricius); Coleoptera: 66 

Chrysomelidae: Bruchinae) (Akami et al. 2019), enhance resistance to chlorpyrifos in the diamondback 67 

moth (Plutella xylostella (L.); Lepidoptera: Plutellidae) (Xia et al. 2018), and help degrade trichlorfon in 68 

the oriental fruit fly (Bactrocera dorsalis (Hendel); Diptera: Tephritidae) (Cheng et al. 2017). Interactions 69 

with biological products (i.e. Bacillus thuringiensis) have also been investigated (Caccia et al. 2016, S. Li 70 

et al. 2020). 71 

Bacterial symbionts promote insecticide resistance in their hosts by directly isolating and 72 

degrading insecticidal compounds or by indirectly altering the expression of host genes. This latter 73 

mechanism was demonstrated for the brown planthopper (Nilaparvata lugens (Stål); Hemiptera: 74 

Delphacidae), wherein endosymbionts (Wolbachia and Arsenophonus) and extracellular symbionts 75 

(Acinetobacter, Staphylococcus) confer resistance to chlorpyrifos, imidacloprid, clothianidin, and 76 

buprofezin by modulating the expression of cytochrome P450 genes (among other pathways) (Pang et al. 77 

2018, Tang et al. 2021). Of the endosymbiotic bacteria, Wolbachia are the most prevalent across 78 

arthropod taxa, infecting roughly 60% of species (Hilgenboecker et al. 2008, Weinert et al. 2015). 79 

Infections with Wolbachia represent a complex system of eco-evolutionary trade-offs between facultative 80 
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mutualism and reproductive parasitism (cytoplasmic incompatibility, induced parthenogenesis, 81 

feminization, and male-killing) (reviewed by Vavre and Charlat 2012, Zug and Hammerstein 2015, 82 

Correa and Ballard 2016). The presence of a Wolbachia symbiont typically does not influence insecticide 83 

susceptibility; there are some cases of increased susceptibility but very few cases in which Wolbachia 84 

promotes or mediates resistance (reviewed by Liu and Guo 2019). For example, Wolbachia increases 85 

resistance to buprofezin in the small brown planthopper (Laodelphax striatellus (Fallén); Hemiptera: 86 

Delphacidae) (Li et al. 2018, Y. Li et al. 2020) and reduces susceptibility to fipronil and avermectin in the 87 

striped rice stemborer (Chilo suppressalis (Walker); Lepidoptera: Crambidae) (Lei et al. 2020). Also, 88 

Wolbachia potentially mediates resistance to fenitrothion and imidacloprid in the tropical bed bug (Cimex 89 

hemipterus (Fabricius); Hemiptera: Cimicidae) (Soh and Veera Singham 2022) and to organophosphates 90 

in the common house mosquito (Culex pipiens L.; Diptera: Culicidae) (Berticat et al. 2002). 91 

In addition to insecticide resistance management (see Sparks and Nauen 2015), the choice of 92 

insecticide and application strategy is also critical in terms of human health and the environment 93 

(Desneux et al. 2007, Damalas and Eleftherohorinos 2011). With these goals in mind, there have been 94 

increases in the number of “new generation” insecticides, biorational products, and other biocompatible 95 

formulations being tested or incorporated into pest management programs (e.g. Ishaaya et al. 2005; 96 

reviewed [in part] by Rosell et al. 2008; but see Goulson 2013, Haddi et al. 2020). Emerging technologies 97 

in crop protection and precision agriculture also include the use of nanoparticles (NPs), which either 98 

encapsulate (“nanoencapsulate”) a bioactive chemical compound or are toxic to plant-feeding pests on 99 

their own (reviewed by Kah and Hofmann 2014, Nuruzzaman et al. 2016, Duhan et al. 2017, Athanassiou 100 

et al. 2018). Insecticidal NPs have been based on elemental silicon (and its oxides), silver, gold, and zinc; 101 

for example, silica NPs (SiNPs or SiO2NPs) can kill pests largely based on their physical mode of action 102 

(e.g. damage to cells along digestive tract, abrasion of the outer cuticle, and absorption of cuticular lipids) 103 

(reviewed by Benelli 2018). In contrast, the effects of selenium NPs (SeNPs) are less understood, but 104 

their mode of action is physiological (although the effects may change if exposure is topical rather than 105 

oral): SeNPs slowly release elemental selenium, which reduces growth, developmental rate, and overall 106 

survivorship as it accumulates in the Malpighian tubules, midgut, and, potentially, the reproductive 107 

tissues (e.g. Hogan and Razniak 1991; reviewed by El-Ramady et al. 2014, Mechora 2019, Garza-García 108 

et al. 2022; also see Skalickova et al. 2017). Nevertheless, to the best of our knowledge, there are no 109 

published cases of symbiont-mediated resistance to insecticidal nanoparticles. 110 

Ongoing research on the toxicity of SeNPs to bruchine seed beetles (Coleoptera: Chrysomelidae) 111 

has identified inconsistent effects across species, with SeNPs significantly decreasing the lifespan of the 112 

cowpea beetle (C. maculatus) but having little effect on the azuki bean beetle (C. chinensis) (Helmy and 113 

Tuda et al., in prep). Because C. chinensis is naturally infected with the facultative endosymbiont 114 
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Wolbachia worldwide (whereas C. maculatus is not) (Kondo et al. 1999, 2011), we propose that 115 

Wolbachia may be mediating resistance to SeNPs; the present study will address this hypothesis using an 116 

isofemale line of C. chinensis either infected with Wolbachia or uninfected (treated with tetracycline), and 117 

we predict that the reproduction and lifespan of the uninfected line will be negatively affected by SeNPs. 118 

However, we do not expect females and males to respond to SeNPs in the same manner due to 119 

fundamental differences in physiology (e.g. Yanagi and Miyatake 2003; also see Wagner and Bakare 120 

2016) and both the activity and the tissue/organ-level spatiotemporal dynamics of their Wolbachia 121 

endosymbionts (Ijichi et al. 2002, Okayama et al. 2016). Because males are more likely to respond 122 

positively to low (sublethal) doses of insecticides (see Haddi et al. 2016), we predict a positive sex-123 

specific response in male azuki bean beetles treated with SeNPs. The beneficial or stimulatory effects of 124 

low concentrations of insecticides (dose-dependent effects or “hormesis”) can be measured as an increase 125 

in adult lifespan or behavioral activity—for male C. chinensis, we will assess both lifespan and sexual 126 

harassment behavior (Yanagi and Miyatake 2003, Sakurai and Kasuya 2008). Because of the agricultural 127 

significance of bruchine seed beetles as stored product pests (and pests of pulse crops) (see Tuda et al. 128 

2006, Tuda 2007, Tuda 2011), and due to the restrictions of applying conventional insecticides in a stored 129 

product setting, studies on alternative control methods—including insecticidal NPs (and the potential for 130 

resistance)—are essential from an applied perspective of integrated pest management. 131 

 132 

Materials and methods 133 

Insect colonies 134 

Colonies of the azuki bean beetle, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae; 135 

strain jC from Japan), were maintained in large Petri dishes (9.5 cm in diameter, 4 cm in height) on a 136 

single layer of dried azuki beans (Vigna angularis (Willdenow) Ohwi & Ohashi cv. Akadaiya (Fabaceae); 137 

Daiwa Grain Co., Obihiro, Japan) under standard laboratory conditions (30°C and 60% R.H. with a 16:8 138 

L:D photoperiod). This laboratory colony is naturally infected with two strains of Wolbachia: wBruCon 139 

and wBruOri (Kondo et al. 1999). An isofemale line was isolated from the laboratory colony, in which a 140 

subset was treated with tetracycline (800 µl of 0.25% tetracycline hydrochloride for six generations) to 141 

remove both strains of Wolbachia, resulting in two sublines of a single isofemale line: one infected with 142 

Wolbachia (both strains) and one that is uninfected (confirmed by PCR). Laboratory colonies of both 143 

isofemale sublines were established and maintained for use in all of the following experiments. While the 144 

use of insect isolines in experimental studies reduces background variation (thus allowing for smaller 145 

sample sizes in order to detect an effect), this practice may limit the generalizability of results. Significant 146 

effects may be restricted to the isoline under investigation, so future studies of additional isolines might 147 

be required to increase confidence in species-level inferences. Also, while tetracycline will negatively 148 
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affect other microbial symbionts, significant differences between the untreated and tetracycline-treated 149 

isofemale sublines may reasonably be attributed to the absence of Wolbachia due to its relative 150 

dominance in the azuki bean beetle microbial community (for a similar example with the coffee berry 151 

borer (Hypothenemus hampei (Ferrari); Coleoptera: Curculionidae: Scolytinae), see Mariño et al 2017). 152 

 153 

Chemical synthesis of SeNPs 154 

Selenium nanoparticles (SeNPs) were synthesized at room temperature by reducing sodium selenite 155 

(Na2SeO3) with ascorbic acid (C6H8O6) in the presence of polysorbate 20 as a stabilizing agent (modified 156 

from Bartůněk et al. 2015, Vahdati and Tohidi Moghadam 2020; also see Lin et al. 2004, Lin and Wang 157 

2005, Gangadoo et al. 2017). Briefly, a 20-mL stock solution of SeNPs (1000 mg L−1) was prepared by 158 

dissolving 43.8 mg (0.253 mmol) Na2SeO3 in 17.9 mL ultrapure water (Milli-Q, 18.2 MΩ·cm) before 159 

adding 100 μL polysorbate 20 and pipette mixing. Next, 2 mL of 0.633 M ascorbic acid (1.27 mmol, for a 160 

5:1 ratio of C6H8O6:Na2SeO3) was added dropwise, and the final solution was vortexed for < 5 s and 161 

allowed to sit for 3 min. Finally, the preparation was centrifuged at 12000 rpm for 20 minutes before 162 

removing the supernatant and resuspending the SeNPs in ultrapure water. Two concentrations (100 and 163 

500 mg L−1) were made by diluting the stock solution in ultrapure water; a solution consisting solely of 164 

ultrapure water (0 mg L−1) was also included as a control. To characterize the morphology of the SeNPs, a 165 

single droplet of SeNPs in solution was air-dried on a lacey carbon film microgrid (NP-C15 [Cu150P], 166 

Okenshoji Co., Tokyo, Japan) and examined with TEM (JEM-2100HC, JEOL, Tokyo, Japan) at an 167 

accelerating voltage of 200 kV. SeNPs were stored at 4°C and used within 2 months of synthesis. 168 

 169 

SeNP treatment, infection status, and life history 170 

The effects of infection status and SeNP treatment on the lifespan and reproduction of male and female 171 

beetles were assessed with a laboratory bioassay. Newly emerged (< 24 h) adult beetles (uninfected or 172 

infected with Wolbachia) were placed individually in mini-sized Petri dishes (35 mm in diameter, 10 mm 173 

in height). A 20-μL droplet of SeNPs (0, 100, or 500 mg L−1) was added to each dish with a micropipette, 174 

and each dish was gently shaken to evenly coat all surfaces as well as the beetle. Each beetle was then 175 

provided with ten dried azuki beans that were treated in the same manner (but in a separate dish and with 176 

a 30-μL droplet; the beans were allowed a short period of time to air-dry before being provided to the 177 

beetles). A total of 240 beetles were set up in 12 treatments (sex × infection status × SeNP concentration), 178 

with 20 replicates for each treatment. For the first 24 h of the bioassay, females were paired with males of 179 

identical infection status and SeNP treatment (before the males were returned to their respective Petri 180 

dishes). To evaluate survivorship, all beetles were monitored daily until death. To record changes in 181 

reproduction over time, a subset of 10 females per treatment (infection status × SeNP concentration) were 182 
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provided with a new set of treated azuki beans every day; the old beans were collected to rear the 183 

offspring. The number of hatched eggs and total number of eggs were recorded after 7 days. The entire 184 

bioassay was conducted in a growth chamber held at 30°C and 60% R.H. with a 16:8 L:D photoperiod. 185 

 186 

Male harassment and reproductive interference 187 

An etho-assay was performed to test the effects of infection status and SeNP treatment on male sexual 188 

harassment. First, newly emerged adults were transferred from laboratory culture into mini-sized Petri 189 

dishes, with no more than 5 beetles per dish and sorted by sex and infection status. Since the beetles 190 

originated from a mixed-sex laboratory colony, most females had the chance to mate (JRM, personal 191 

observation). Next, beetles were treated with 20 μL of SeNPs (0 or 500 mg L−1). After 24 h, pairs of male 192 

and female beetles (of the same infection status and SeNP treatment) were introduced into mini-sized 193 

Petri dishes under ambient conditions (25°C, 60% R.H.) and videorecorded from above for 1 h with a 194 

digital camera (iPhone 13 Pro, Apple, Cupertino, United States). The video was manually reviewed to 195 

quantify the incidence and duration of male harassment behavior as perceived by the female (defined as 196 

time spent walking away from a pursuing male). A total of 80 male–female pairs were set up in four 197 

treatments (infection status × SeNP concentration), with 20 replicates for each treatment. 198 

To complement the etho-assay, a bioassay was also carried out to measure peak female 199 

reproduction in the presence and absence of males to determine if any changes in male harassment 200 

behavior had a direct effect on female fitness. For this experiment, newly emerged adult females (either 201 

Wolbachia-infected or uninfected) were transferred from laboratory culture to individual mini-sized Petri 202 

dishes and treated with a 20-μL droplet of SeNPs (0 or 500 mg L−1) and provided with 10 treated azuki 203 

beans (as before). For females in the “male present” treatment group, a single newly emerged male of the 204 

same infection status and SeNP treatment was added to the female’s Petri dish. The beetles were allowed 205 

to reproduce for 72 h (with or without males present), during which time their reproductive output is at its 206 

greatest. A total of 96 females were set up in eight treatments (infection status × SeNP application × male 207 

presence), with 12 replicates for each treatment. 208 

 209 

Statistics 210 

The effects of infection status, SeNP concentration, and their interaction on the adult lifespan of male and 211 

female azuki bean beetles were tested with separate semiparametric Cox proportional hazards regression 212 

models. Because non-ovipositing females (virgin or not) have a longer life expectancy than ovipositing 213 

females (Yanagi and Miyatake 2003), females that did not produce viable eggs within the first 24 h were 214 

excluded from the analysis (infected, 0 mg L−1: −2; 100 mg L−1: −2; 500 mg L−1: −1) (uninfected, 0 mg 215 

L−1: −1; 100 mg L−1: −1; 500 mg L−1: −4). 216 
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The lifetime reproduction of females (total number of eggs) was evaluated with a generalized 217 

linear model (GLM) using a Poisson distribution and log link function, with infection status, SeNP 218 

concentration, and their interaction included as main effects. The daily reproduction of females (eggs per 219 

day) was assessed using a generalized linear mixed model (GLMM) with a Poisson distribution and log 220 

link function; infection status, SeNP concentration, and the number of days since emergence, as well as 221 

all interactions, were included as fixed effects, and the identity of individual females was included as a 222 

random effect. Because no viable eggs were produced more than 7 days after adult emergence, the 223 

analyses were limited to reproduction on days 0–7. As before, replicates that did not produce viable eggs 224 

within the first 24 h were excluded from the analyses (infected, 0 mg L−1: −2; 500 mg L−1: −1) 225 

(uninfected, 0 mg L−1: −1; 500 mg L−1: −1). 226 

The effects of infection status, SeNP treatment, and their interaction on male harassment behavior 227 

were divided into two components: (i) the incidence of harassment (the presence or absence of any 228 

harassment behavior within the 1-h observation period) and (ii) the duration of harassment behaviors (the 229 

time, in seconds, of each occurrence of harassment behavior between a male–female pair during the 1-h 230 

observation period). The incidence of harassment was analyzed using a logistic regression model. The 231 

duration of male harassment was analyzed with a semiparametric Cox proportional hazards regression 232 

with male–female pair ID incorporated as a random effect (frailty). 233 

A multiple regression model was used to test the effects of infection status, SeNP treatment (0 mg 234 

L−1 or 500 mg L−1), and the presence or absence of males (and all two-way interactions) on the total 235 

number of eggs laid per female over the 72-h period. Pairwise comparisons were made with FDR-236 

corrected p-values. The same procedure was used to assess the effects of infection status, SeNP treatment, 237 

and the presence or absence of males (and all two-way interactions) on the logit-transformed proportion 238 

of hatched eggs produced per female over the 72-h period (see Warton and Hui 2011). Replicates that did 239 

not produce eggs (likely because the female did not mate prior to the study period) or in which the female 240 

(or male, if present) died within the 72-h period were excluded from the analysis (infected, 0 mg L−1, 241 

male absent: −2; male present: −1) (infected, 500 mg L−1, male absent: −4) (uninfected, 500 mg L−1, male 242 

absent: −2; male present: −1). 243 

All statistical analyses were performed in R version 4.2.0 (The R Foundation for Statistical 244 

Computing 2022). The survivorship analysis also used the survival, emmeans, and multcomp packages; 245 

the fertility analysis used lme4, optimx, afex, multcomp, and emmeans; the behavioral analysis used 246 

survival, car, and coxed; and the reproductive interference analysis used car and agricolae. Figures were 247 

prepared in base R with the addition of the yarrr package (for transparent colors). 248 

 249 

Results 250 
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SeNP characterization 251 

Reducing sodium selenite with ascorbic acid and stabilizing with polysorbate 20 yielded amorphous 252 

selenium nanoparticles (SeNPs) in two size classes (approximately 5–10 and 60–100 nm in diameter), the 253 

smaller of which were similar to the nanoparticulate debris produced by laser ablation and, likely during 254 

the desiccation processes for imaging, often self-polymerized into filamentous structures (Fig. 1). 255 

 256 

 257 

Fig. 1 Chemically synthesized selenium nanoparticles on a lacey carbon film microgrid. a Large and 258 

small amorphous SeNPs and b small, self-polymerizing SeNPs 259 

 260 

SeNP treatment, infection status, and life history 261 

The adult lifespan of uninfected female azuki bean beetles was negatively affected by increasing SeNP 262 

concentration, whereas that of Wolbachia-infected females was unaffected by SeNP concentration 263 

(infection status × SeNP concentration; Fig. 2a and Table 1). Also, while uninfected females tended to 264 

live longer than Wolbachia-infected females, this difference was not statistically significant (p = 0.084; 265 

Fig. 2a and Table 1). The adult lifespan of male azuki bean beetles was greater for uninfected individuals 266 

than Wolbachia-infected individuals and was enhanced with increasing SeNP concentration (Fig. 2b and 267 

Table 1). 268 

 269 
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 270 

Fig. 2 Effects of SeNPs and Wolbachia infection on the lifespan and reproduction of adult azuki bean 271 

beetles. a Female survivorship. b Male survivorship. c Female lifetime reproduction (total number of eggs 272 

per female). d Daily reproduction (number of eggs laid per day). In all panels: points: means ± SE; lines: 273 

model predictions 274 

 275 

Table 1 Lifespan of female and male azuki bean beetles: analysis of deviance tables for the Cox 276 

proportional hazards models 277 

 Predictor χ2 df p-value 

Female 

infection status 2.98 1 0.084 

SeNP concentration 1.28 1 0.258 

infection status × SeNP conc. 4.80 1 0.028 

Male 

infection status 4.64 1 0.031 

SeNP concentration 21.53 1 < 0.001 

infection status × SeNP conc. 1.60 1 0.206 

 278 
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The lifetime reproduction of female azuki bean beetles was lower for Wolbachia-infected beetles 279 

than for uninfected beetles and decreased with increasing SeNP concentration (Fig. 2c and Table 2). 280 

Additionally, while SeNP concentration led to a sharper decline in the reproduction of Wolbachia-281 

infected females than for uninfected females, the rate of decline decreased as SeNP concentration 282 

continued to increase (infection status × SeNP concentration; Fig. 2c and Table 2). The daily reproduction 283 

of females decreased with increasing SeNP concentration and over time (after peaking on day 1), and 284 

while that of uninfected females tended to be greater than that of infected females, this trend was not 285 

statistically significant (Fig. 2d and Table 2). Increasing SeNP concentration reduced the daily 286 

reproduction of infected females more dramatically than uninfected females (infection status × SeNP 287 

concentration; Fig. 2d and Table 2). Although marginally significant (p = 0.052), increasing SeNP 288 

concentration tended to decrease daily reproduction from day 0, with the magnitude of this effect 289 

changing over time; in general, the effects initially increased before decreasing with time (SeNP 290 

concentration × day; Fig. 2d and Table 2). On day 0, the effect of increasing SeNP concentration on the 291 

daily reproduction of infected females was less pronounced than for uninfected females, and the 292 

magnitude of the effect of increasing SeNP concentration increased for infected individuals on days 1 and 293 

2, whereas the magnitude of the effect of increasing SeNP concentration remained relatively constant for 294 

uninfected females, with a relatively small peak on day 3 (infection status × SeNP concentration × day; 295 

Fig. 2d and Table 2). 296 

 297 

Table 2 Reproduction of female azuki bean beetles: analysis of deviance tables for the GLM of total 298 

reproduction and the GLMM of daily reproduction 299 

 300 

 Total reproduction Daily reproduction 

Predictor χ2 df p-value χ2 df p-value 

infection status 9.58 1 0.002 0.19 1 0.664 

SeNP concentration 124.84 1 < 0.001 30.94 1 < 0.001 

day – – – 316.81 7 < 0.001 

infection status × SeNP conc. 19.86 1 < 0.001 4.74 1 0.029 

infection status × day – – – 13.93 7 0.052 

SeNP conc. × day – – – 36.87 7 < 0.001 

infection status × SeNP conc. × day – – – 15.06 7 0.035 

 301 

Male harassment and reproductive interference 302 

The incidence of male harassment behavior was lower in uninfected male–female pairs than in 303 

Wolbachia-infected pairs, and was also lower when pairs were treated with 500 mg L−1 SeNPs (Fig. 3a 304 

and Table 3). The incidence of male harassment was not affected by an interaction between infection 305 

status and SeNP treatment (Table 3). For male–female pairs in which harassment occurred, the duration 306 
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of male harassment behavior was unaffected by infection status, marginally decreased with SeNP 307 

treatment, and significantly affected by an interaction between infection status and SeNP treatment—308 

SeNPs significantly decreased harassment behavior, but only in uninfected male–female pairs (Fig. 3b 309 

and Table 4). The random effect (frailty) of male–female pair ID was also significant, indicating that the 310 

typical duration of harassment behaviors varied from one pair to the next (Table 4). 311 

 312 

 313 

Fig. 3 Effects of infection status and SeNPs (0 or 500 mg L−1) on male harassment behavior in azuki bean 314 

beetles. a Incidence of male harassment behavior during the 1-h observation period; points with solid bars 315 

indicate the predicted values ± SE from the logistic regression model; asterisks indicate significant 316 

differences between SeNP treatments and infection status. b Duration of male harassment over the 1-h 317 

observation period; dark circles plot the mean predicted values ± SE from the Cox proportional hazards 318 

model (SE are not visible because they are smaller than the circles); asterisks indicate significant 319 

differences between SeNP treatments and between infection statuses 320 

 321 

Table 3 Incidence of male harassment behavior in azuki bean beetles: analysis of deviance table for the 322 

logistic model 323 

Predictor 
Likelihood-

ratio χ2 

df p-value 

infection status 4.44 1 0.035 

SeNP treatment 6.48 1 0.011 

infection status × SeNP trt. 0.58 1 0.447 

  324 
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Table 4 Duration of male harassment behavior in azuki bean beetles: analysis of deviance table for the 325 

Cox proportional hazards model 326 

Predictor χ2 df p-value 

infection status 0.00 1 0.950 

SeNP treatment 3.35 1 0.067 

male–female pair ID 14.61 1 < 0.001 

infection status × SeNP trt. 94.16 19.67 < 0.001 

 327 

Female reproduction over a 72-h period was lower when individuals were infected with 328 

Wolbachia or treated with SeNPs (Fig. 4a and Table 5); SeNPs also decreased egg hatchability (Fig. 4b 329 

and Table 6). When males were present, female reproduction increased (Fig. 4a) while egg hatchability 330 

decreased (Fig. 4b) (Table 6). There were also significant interactions between male presence and both 331 

infection status and SeNP treatment on female reproduction, with male presence having a stronger 332 

positive effect on the reproduction of uninfected females and SeNPs enhancing the positive effects of 333 

male presence (Fig. 4a, Table 5); there were no other significant interactions for female reproduction or 334 

hatchability. However, the post hoc analysis of 72-h reproduction was unable to resolve many differences 335 

among the eight groups; water-treated uninfected females in the presence of males laid more eggs than 336 

SeNP-treated infected females in the absence of males, and both water- and SeNP-treated uninfected 337 

females in the presence of males laid more eggs than SeNP-treated infected or uninfected females in the 338 

absence of males (Fig. 4a). 339 

 340 

 341 

Fig 4 Effects of male presence, SeNPs (0 or 500 mg L−1), and infection status on the reproduction of 342 

female azuki bean beetles. a Mean (± SE) number of eggs laid per female over 72 h in the absence and 343 

presence of males; shared letters indicate no significant differences. b Proportion of hatched eggs; 344 

asterisks indicate significant differences between SeNP concentrations and for male presence 345 

 346 
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Table 5 The 72-h reproduction of female azuki bean beetles: analysis of deviance table for the multiple 347 

regression model 348 

Predictor Likelihood-

ratio χ2 

df p-value 

infection status 7.32 1 0.007 

SeNP treatment 4.79 1 0.029 

male presence 5.82 1 0.016 

infection status × SeNP trt. 0.03 1 0.864 

infection status × male presence 5.58 1 0.018 

SeNP trt. × male presence 3.85 1 0.0497 

 349 

Table 6 Proportion of hatched azuki bean beetle eggs: analysis of deviance table for the multiple 350 

regression model of the logit-transformed proportion of hatched eggs 351 

Predictor Likelihood-

ratio χ2 

df p-value 

infection status 0.14 1 0.709 

SeNP treatment 4.79 1 0.029 

male presence 11.20 1 < 0.001 

infection status × SeNP trt. 1.03 1 0.309 

infection status × male presence 0.31 1 0.577 

SeNP trt. × male presence 0.03 1 0.856 

 352 

Discussion 353 

Symbiont-mediated insecticide resistance is a significant issue that highlights the need to study pest 354 

biology from a metaorganismal perspective, especially within the context of next-generation insecticides, 355 

biorational products, and nanotechnology. The endosymbiont Wolbachia has been found to confer 356 

insecticide resistance in just a few cases (reviewed by Liu and Guo 2019), and our results offer a novel 357 

example of sex-specific Wolbachia-mediated resistance to entomotoxic nanoparticles in the azuki bean 358 

beetle, Callosobruchus chinensis. However, since Wolbachia only mediated resistance to selenium 359 

nanoparticles (SeNPs) in female beetles (in terms of lifespan, but not fertility), whereas males exhibited 360 

SeNP-induced hormesis (but a reduction in sexual harassment behavior) regardless of infection status, 361 

these results have unique implications for incorporating SeNPs into pest management programs. 362 

Little is known about the insecticidal mode of action of SeNPs when absorbed through the 363 

cuticle. Unlike SiNPs, the mode of action is primarily physiological rather than mechanical (reviewed by 364 

Mechora 2019). SeNPs slowly release elemental selenium, and selenium reduces the growth, 365 

developmental rate, and overall survivorship of pest insects; for example, the beet armyworm 366 

(Spodoptera exigua (Hübner); Lepidoptera: Noctuidae) is differentially affected by sodium selenate, 367 

sodium selenite, selenocysteine, and selenomethionine (Trumble et al. 1998), and larvae of the mealworm 368 

beetle (Tenebrio molitor L.; Coleoptera: Tenebrionidae), reared in a medium containing sodium selenite, 369 
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have reduced survivorship as selenium primarily accumulates in the Malpighian tubules (Hogan and 370 

Razniak 1991). In the house fly (Musca domestica L.; Diptera: Muscidae), the toxicity of selenium is 371 

reduced due to accumulation in the midgut, where cells sequester selenium in lysosomes (Simmons et al. 372 

1988). A related study of the rice meal moth (Corcyra cephalonica (Stainton); Lepidoptera: Pyralidae) 373 

found that selenium accumulates in the mitochondria (also noted by Simmons et al. 1988, and mostly in 374 

the mitochondrial membrane), which may actually have positive effects on mitochondrial energetics due 375 

to the presence of an unknown selenocysteine-containing protein or selenoenzyme (Lalitha et al. 1994). 376 

Based on our hypothesis of Wolbachia-mediated resistance to SeNPs in the azuki bean beetle, our 377 

results partially supported the prediction that uninfected female beetles would be negatively affected by 378 

SeNPs via a reduction in adult lifespan and fecundity. Increasing concentrations of SeNPs decreased the 379 

lifespan of uninfected female beetles, whereas the lifespan of Wolbachia-infected females was not 380 

affected. The reproduction of infected and uninfected beetles generally decreased with increasing SeNP 381 

concentration, and these effects were less pronounced for Wolbachia-infected females than for uninfected 382 

females for the first 24 h post-exposure; however, over time, SeNPs reduced the total reproduction of 383 

infected females more than that of uninfected females. Because of the close association of Wolbachia 384 

with host reproductive tissues (Ijichi et al. 2002), this suggests the existence of a set of life history trade-385 

offs with respect to endosymbiont-mediated resistance to SeNPs. On the contrary, in males, increasing 386 

concentrations of SeNPs enhanced lifespan regardless of infection status, although this does not 387 

necessarily contradict our prediction—we did not expect SeNPs to have the same effects for beetles of 388 

both sexes due to fundamental differences in physiology and the dynamics of infection (Yanagi and 389 

Miyatake 2003, Wagner and Bakare 2016, Ijichi et al. 2002). In the small brown planthopper (Laodelphax 390 

striatellus), Wolbachia may not only enhance the immune system by altering host gene expression, but, in 391 

males, also increases the expression of genes related to the metabolism of selenocompounds (Liu et al. 392 

2019). Interestingly, in the Gulf Coast tick (Amblyomma maculatum Koch; Arachnida: Ixodida: 393 

Ixodidae), the selenoprotein thioredoxin reductase (TrxR) plays an important role in structuring the 394 

bacterial community in the microbiome (Budachetri and Karim 2015). Future studies should explore the 395 

physiological mechanisms by which Wolbachia mediates the response to SeNPs in seed beetles. 396 

Compared to females, males are more likely to respond positively to sublethal doses of 397 

insecticides when exposed to these environmental stressors early in life (see Haddi et al. 2016), thus we 398 

predicted an increase in the lifespan and behavioral activity of males in response to SeNPs (hormesis: the 399 

beneficial or stimulatory effects of sublethal concentrations of insecticides). Supporting our hypothesis, 400 

increasing concentrations of SeNPs enhanced male lifespan, but the lack of a Wolbachia-mediated effect 401 

on male lifespan may be due to the relative non-effect of selective pressures (for detoxifying substances 402 

that are harmful to their host) since males are typically an evolutionary “dead end.” However, we did not 403 
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expect to find that the incidence of sexual harassment behavior decreased when males were treated with 404 

SeNPs. While the measured response variable was the amount of time that females spent avoiding male 405 

advances, the lack of interactions appeared to be due to a lack of male harassment (there was no need for 406 

females to avoid males, as opposed to an SeNP-triggered change in how females responded to 407 

harassment). Also of note, uninfected beetles exhibited lower incidences of harassment, but this could be 408 

anticipated since Wolbachia increases the locomotory activity of C. chinensis (Okayama et al. 2016). 409 

SeNPs also led to a marginally significant decrease in the duration of male harassment behaviors as well 410 

as a significant decrease in duration for uninfected male–female pairs, which suggests that Wolbachia 411 

may also be modulating the response to SeNPs in males, possibly via altered cellular energetics or 412 

metabolic function. 413 

In a related species, the lifetime reproductive effort in males is equal to that of females (Wagner 414 

and Bakare 2016), so a reduction in male sexual behaviors may redirect significantly more resources 415 

towards male survival. Yet this overall decrease in behavioral activity raises the question of whether 416 

SeNPs truly have a stimulatory effect on male C. chinensis, so it may not be entirely accurate to describe 417 

this response as “hormesis” (it is also currently unknown at what dose SeNPs would be lethal to males, 418 

although, in general, the toxicity of NPs is not comparable to that of conventional insecticides—SeNPs 419 

might be better described as “entomotoxic” as opposed to “insecticidal” sensu stricto; e.g. Debnath et al. 420 

2011). It may also be that SeNPs help reduce sexual conflict by calming males after being rejected by a 421 

partner (thus reducing the incidence or recurrence of harassment behavior). Regardless, the presence of 422 

males tended to increase female reproduction (especially when treated with SeNPs), which may indicate a 423 

shift in the risk-benefit dynamics associated with a lower frequency of remating in nutrient-poor 424 

conditions (such as a stored product setting): male harassment and injuries sustained during copulation are 425 

minimized while nuptial gifts (water or nutrients) are still available (Miyatake and Matsumura 2004, 426 

Harano et al. 2006, Rönn et al. 2006, Sakurai and Kasuya 2008, Harano 2015; for an example with singly 427 

mated C. chinensis, see Yanagi and Miyatake 2003; for examples involving C. maculatus, see Fox 1993, 428 

Arnqvist et al. 2005, Gay et al. 2009, den Hollander and Gwynne 2009). 429 

However, it may be equally likely that the presence of males promotes female reproduction in 430 

some other way because, for the “average” female, remating is expected to decrease fecundity in C. 431 

chinensis (Harano et al. 2006). The stress of male presence, independent of the magnitude of harassment 432 

behavior, could increase the oviposition rate of the female in order to compensate (if females respond to 433 

SeNPs as a source of environmental stress as well, this might explain the additive effects of both 434 

treatments). Regardless, in our study, even though female reproduction increased in the presence of 435 

males, female fitness was still lower due to reduced egg hatchability; since there was no statistical 436 

interaction between male presence and SeNP treatment on egg hatchability, this suggests that other 437 
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aspects of male activity may be unaffected if not stimulated by SeNPs (i.e. walking, trampling eggs—see 438 

Shimada and Tuda 1996, Fujii 2009). 439 

 440 

SeNPs and the integrated pest management of seed beetles 441 

Entomotoxic nanoparticles are interesting examples of an emerging technology in precision agriculture 442 

with applications in insecticide resistance management (reviewed by Kah and Hofmann 2014, Duhan et 443 

al. 2017, Athanassiou et al. 2018; also see Sparks and Nauen 2015). A novel way of incorporating SeNPs 444 

into integrated pest management (IPM) programs might combine targeted SeNP applications with the 445 

release of Wolbachia-infected males, using the incompatible insect technique (IIT) to induce cytoplasmic 446 

incompatibility (CI) in an uninfected pest population (Lees et al. 2015). Because of the high prevalence of 447 

Wolbachia in C. chinensis, the pest population would first need to be treated with antibiotics (but see 448 

Khachatourians 1998, Witte 1998, Smith et al. 2002). At this point, because uninfected females have a 449 

higher fitness than Wolbachia-infected females, SeNPs could be applied to counteract this effect. Next, 450 

Wolbachia-infected males can be released to induce CI (Brelsfoard and Dobson 2009; for an example 451 

with Aedes mosquitoes (Diptera: Culicidae), see O’Connor et al. 2012, Crawford et al. 2020 [but see 452 

Bouyer et al. 2022]). A lower concentration of SeNPs can be applied at this stage to enhance male 453 

lifespan, increasing the likelihood that the released males mate with as many different females as possible 454 

while minimizing behavioral changes (to keep levels of harassment high). Another behavioral advantage 455 

is that infected males have higher levels of locomotory activity than uninfected males, resulting in more 456 

mating opportunities (Nakayama and Miyatake 2010, Okayama et al. 2016); again, while SeNPs appear to 457 

reduce overall activity in males, this reduction does not fall below the activity of uninfected males. 458 

However, the effects of SeNPs on copulatory behavior, ejaculate volume/composition, and sperm quality 459 

are currently unknown, but would be relevant to the success of released males (Okayama et al. 2016). 460 

 461 

Conclusion 462 

Our study offers a unique example of Wolbachia-mediated resistance to SeNPs in female seed beetles, 463 

with differential effects on male survivorship and behavior. Compared to other forms of selenium, SeNPs 464 

are less hazardous towards humans and other non-target organisms (Wang et al. 2007, Zhang et al. 2008; 465 

for biomedical applications, see Ramya et al. 2015, Vinković Vrček 2018). But as an emerging 466 

technology, there are a number of unknowns regarding both the biological and ecotoxicity of SeNPs. In 467 

fact, the growing use of nanomaterials does raise a number of concerns, from dose-dependent 468 

phytotoxicity (e.g. SiO2NPs; Thabet et al. 2019) to effects on human health and the environment (Hansen 469 

et al. 2008, Wang et al. 2010; SeNPs: Kumar et al. 2018; reviewed by El-Ramady et al. 2014; for a 470 

discussion on regulations, see Chau et al. 2007). Regardless, the incorporation of nanoparticles into 471 
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management programs (and with a deeper understanding of the role of the insect microbiome) may prove 472 

to be a valuable complementary technique in the fight against pests. 473 
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