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MODULATED LANGMUIR WAVES AND NONLINEAR 

LANDAU DAMPING 

By Nobuo YAJIMA*, Masayuki OrKAWA**, 

Junkichi SATSUMA*** and Chusei NAMBA**** 

The nonlinear Schrodinger equation with an integral term, 

P f~ iu(x' t) 1 2 
iu +--u +Q\ui'u+RP --~-'--·-dx'u=O t 2 xx -oo X - x' ' 

which describes modulated Langmuir waves with the nonlinear Landau 
damping effect, is solved by numerical calculations. Especially, the effects 
of nonlinear Landau damping on solitary wave solutions are studied. For 
both cases, PQ>O and PQ<O, the results show that the solitary waves 
deform in an asymmetric way changing its velocity. 

1. Introduction 

It has been shown· by Taniuti and one of the authors (N. Y.) that one
dimensional nonlinear modulation of plane waves in dispersive systems can 
be described by the nonlinear Schrodinger equation 1J : 

.au+ P a2u +QI I' _ 0 tat 2f}x' U U-' 

where u is the complex amplitude of a plane wave varying slowly due to 
modulation and P and Q are parameters which represent the strength of 
dispersion and nonlinearity. This equation describes a wide class of physical 
phenomena which involve modulational instability of water waves 2l, propaga
tion of heat pulses in anharmonic crystals 3l, helical motion of a very thin 
vortex filament 'l, nonlinear modulation of collisionless plasma waves 5 J,sJ and 
self-trapping of a light beam in colour-dispersive systems 7). In the modula
tionally unstable case (PQ>O), the initial value problem of the nonlinear 
Schrodinger equation was investigated numerically by Karpman and Krush
kal' 8 l, Yajima and Outi 9 l, and Satsuma and Yajima 10 l. According to them 
a given initial disturbance breaks up to a train of solitons due to the balance 
between nonlinearity and dispersion. These solitons preserve their identities 
through the collision between them. 
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The initial value problem of eq. (1) was solved analytically by Zakharov 
and Shabat 11 J. They applied to this problem the analytical method of solv
ing nonlinear evolution equations formulated by Lax 12J. Through the time 
evolution of solution, the solitons work as stable entities. 

It is in general possible that there coexist waves more than one. By 
applying the reductive perturbation method to such a system, Oikawa and 
Yajima 13J showed that the system is described by the superposition of the 
nonlinear modulated waves each of which evolves according to eq. (1). The 
velocities of these modulated waves are different from their group velocities 
owing to the presence of the other waves. 

It is well known that in real plasma systems a wave interacts strongly 
with the resonant particles, for example, a nonlinear modulated wave is 
scattered by the particles moving with the velocity equal to its group velo
city. If the velocity distribution of the particle is Maxwellian, this scattering 
leads to the nonlinear Landau damping. Ichikawa and Taniuti 14> studied this 
phenomenon and modified eq. (1) to the form involving a nonlocal-nonlinear 
integral term: 

. .§!!:_+L a'u +QI 12 +RPJ= iu(x',t)l'd, =O 
t at 2 ax' U U -= X-X' XU ' 

(2) 

where P denotes the Cauchy principal value. The effect of nonlinear Landau 
damping is contained in the integral term with coefficient R. The coefficient 
Q of the nonlinear term of eq. (1) is also modified owing to the wave-par
ticle interactions. It is noted that for the modulation of ion waves Q changes 
the sign depending on the ratio of the ion temperature to the electron tem
perature. 

We now consider the effect of nonlinear Landau damping on nonlinear 
wave modulations. We substitute 

(3) 

into eq. (2) and linearize with respect to the perturbed amplitude, r/11 and 
,f>2 , where asterisk denotes the complex conjugation. It can be readily shown 
that the dispersion equation is 

,_ 1 P' •{1 4Q I''' 12 . 4R I''' l'l 
(I) -T q -Pq2 -r 0 +z PqJql- 't'O r· 

We put (J)=fJ+iI', where fJ and I' are real, to obtain 

Q2-I''= ~ p2q•(1- }~, 1s1,012), 

flI'=-~-PRq\ql l<Po\ 2• 

(4) 

(5) 

(6.a) 

(6. b) 



MODULATED LANGMUIR WAVES 

Without the nonlinear Landau damping, R = 0, eqs. (6) give the regular 
stability condition; the system is unstable (SJ= 0, I'2>0) if 4Q 14,0 I 2 / (Pq2)>l 
and otherwise stable. Whilst, with R ~ 0, the growth rate I' never vanishes 
and plane waves become unstable. If PR>O, we find that I'>O for the 
disturbance with SJq>O and I'<O for SJq<O. In this case the amplitude of 
modulated wave, thereby, grows if it propagates in the positive x-direction 
and damps in the opposite direction. 

In this paper, eq. (2) is solved by numerical computations in order to 
explore how the nonlinear modulated waves, particularly the solitary waves 
evolve under the influence of the nonlocal-nonlinear integral terrp. In § 2, 
the modulationally unstable case (PQ>0) is studied. On the other hand, 
the modulationally stable case (PQ<0) is dealt with in § 3. In both cases 
R is taken to be positive. 

The reductive perturbation method applies to investigate the behaviour 
of a slightly modulated plane wave with small nonlinear Landau damping for 
the case PQ<O. The result essentially agrees with the equation introduced 
by Ott and Sudan 15

), who studied the nonlinear ion acoustic wave with long 
wave length taking account of linear Landau damping. 

The difference scheme used to solve integro-differential equation (2) is 
presented in Appendix. 

2. Numerical Solutions to Equation (2) with PQ>O 

-Effect of Nonlinear Landau Damping on Envelope Solitons-

In the present case (PQ>0), eq. (1) has a envelope-soliton solution, 
which satisfies the boundary condition that u(x, t) and its derivatives vanish 
atx=±oo, 

S(x, t) =exp[i {(V/ P)x- (V2 /2P)t+ (QA2 /2) t} ]Asech[ (Q/ P)V2A(x- Vt)], 

(7) 

and keeps its shape unchanged. Putting V = 0 we have soliton at rest, 

S0 (x, t) =exp[i(QA2 /2)t]Asech[ (Q/P)V2Ax]. (7') 

In phrase of the Schrodinger equation, the nonlinear term of eq. (1) works 
as an attractive potential if Q>O and prevent a diffusion of wave packet due 
to the dispersion term, so that the stationary soliton solution (7) can exist. 

2. 1 Effect of the Nonlinear Landau Damping on Envelope Solitons. 

The soliton solution (7) does not satisfy eq. (2) and deforms under the 
effect of nonlocal-nonlinear integral term. We now deal with the following 
initial value problem for eq. (2) ; 

u(x, t=O) =Asech[(Q/P)V2Ax]. (8) 

If R = 0, the solution with this initial condition is just the solition at rest, 
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(7'). For this u, the integral term in eq. (2) is positive for x>O and nega
tive for x<O. This implies that the nonlinear attractive force is enhanced 
for x>O and weakened for x<O and, therefore, the wave form rises more 
steeply from the right than from· the left. The nonlinear Landau eamping 
thus leads to an asymmetric deformation of wave form. The integral term 
produces another effect: the amplitude A slowly increases with x and then 
the phase (QA2 /2) t of soliton solution (see eq. (7')) advances more rapidly 
in larger x. As can be seen from eq. (7), this makes an effect of V~O. 

IUI 
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Fig. 1. Decay of Envelope Sol'.to;i 
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Time development of solution for the initial condition (8) 
is calculated for both cases, a) R=0.2 and b) R=0.5. 
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Therefore, the soliton which is initially at rest comes to move. 
The numerical solutions to eq. (2) with initial value (8) are illustrated 

in Fig. (1). There we take A=Q=P=l. It is observed that the soliton 
deforms in an asymmetric way and comes to travel. This agrees with the 
feature shown in ~ 1 that the waves propagating in the positive x-direction 
grow and that in the negative x-direction damp. 

2. 2 Effect of Nonlinear Landau damping on Bound State of Envelope 
Solitons. 

Equation (1) has a solution 

iQA't/2 ch(3Bx) +3ch(Bx)e4iQA2t 
u(x, t) = 4Ae ch(4Bx) +4ch(2Bx) + 3cos(4QA2t)' 

which satisfies the initial condition 

3 

IUI 

2 

u(x, t=O) =2Asech(Bx), 

R=O R= 0.5 R= 0.2 

-4 0 4 X: -4 0 4 :x:. -4 0 

Fig. 2 Time development of solution for the initial condition 
(10). For comparison, the solution with R=O, i.e., 
(9), is also illustrated. 
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0 
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(11) 

This solution does not decay into a train of solitons and pulsates with a 
period 11:/ (2QA2). It has been already shown that if a disturbance with an 
asymmetric imaginary part is inflicted on the bound state, it decays into 
constituent solitons 10i. 

We now solve eq. (2) with initial condition (10). The symmetry of u 
breaks due to the nonlinear Landau damping. Owing to such an asymmetry 
in u, solitons which are bound in its initial state are made to be free. Each 
of solitons travels with changing shape and velocity. Examples are illust
rated in Fig. 2, for A=2, P=Q=l. 

3. Numerical Solutions to Equation (2) with PQ<O. 

We introduce the amplitude and the phase of u as 

u=✓n(x, t)exp[iO(x, t) /PJ, 

and substitute into eq. (2), to get 

8v + v 8v _ PQ~ _ P 2 _.:1._[n-v2~(n-v2~)] 
8t 8x ax 4 8x 8x 8x 

-PRPJOO _1_ 8n(x', t) dx'=O 
-ooX-X' f)x' 

(12) 

(13.a) 

(13.b) 

where v = 80/8x. If. the higher derivative term and the nonlocal integral 
term are neglected, eqs. (13. a) and (13. b) reduce to the hyperbolic system 
of equations (note that PQ<O), in which the nonlinear steepening occurs. 

The presence of the higher derivative term, which represents the dispersive 
effect, prevents the nonlinear steepening and leads to an emission of solitons. 

Equations (13) without the integral term have a following soliton-solu
tion; 

n(x, t)=no[l-Asech2 { ~ AV2(x-A,1,t)}], 

v(x, t) =A,1,=fC(l-A)V2 ![ l-Asech2 { ~ AV2 (X-A,1,t) n 
(14.a) 

(14.b) 

(14.c) 

where n0 and v0 are the boundary values of n and v, respectively, at X= ±=. 
It is noted that the above soliton with A+(or ..L) represents the defect in the 
amplitude, which propagates in the positive (or negative) x-direction. 

The effect of nonlinear Landau damping on such soliton solutions is stu-
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died by numerical integration of eq. (2) with the initial value 

(15) 

which corresponds to the soliton with A,. = 0. In this case, we study the 
behaviour of soliton in the frame moving with it. The results are shown in 
Fig. 3 and 4. It is observed that the soliton damps or grows due to the 

t = 2.56 

t = 1.28 

t = 0.64 

t=O 
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Fig. 3. Time development of solution for the initial condition 

(15) with A+. A=0.l, P=-1, Q=l and R=O.5. 
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Fig. 4 Time development of solution for the initial condition 

(15) with ,L A=O.l, P=-1, Q=l and R=0.5. 

nonlinear Landau damping according as that it moves in the positive or 
negative x-directions. 

It is interested to study the case that the nonlinear Landau damping is 
sufficiently small and is of the same order of magnitude as that of modula
tion. In this case, we can apply the reductive perturbation method 16>. 
Assuming the modulation to be small, we now expand n and v in powers of 
a small parameter e, 

n=n0+sn1 +s2n2+ ······, 

V= eV1 +e2v2+ '"'"'"• 

(16.a) 

(16. b) 
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In order to take into account appropriately the competition between two effects, 
nonlinear steepening and dispersion, we introduce the stretched coordinates: 

(17.a) 

(17. b) 

(17.c) 

where c is given in eq. (14. c). The stretched variable ~1 (or ~2) represents 
the phase of soliton which travels in the positive (or negative) x-direction. 
The phase shifts ¢ 1 and ¢ 2 are due to the mutual interaction between waves 
moving right and left and considered as functions of ~i, ~ 2 and 7:". Suppose 
that 

R=sr, (18) 

where r is at most of the order of unity. 
Substituting eqs. (16)'"'-'(18) into eqs. (13), we obtain a set of equations 

to be solved for the successive powers of e. In the lowest order, we get 

Vi+ (c/no)n1 = /(~1, 7:"), 

v1 -(c/n0)n1 =g(~2, r-). 

(19.a) 

(19. b) 

The functions f and g can be obtained from the non-secularity condition of 
the next order equations. 

In the order 1:,
5

/
2

, we have 

~[2cF+ {fg _ _l_g2+~ 
82

~ -~PJ00 

g(n, d~'}] 
8~2 4 8 8c 8~2 2Q - 00 ~ 2 -~ 

[ 8/ 3 8/ P2 83
/ 1 re f00 d~' 8/] 

+ ar+---:r1 8~1 -Tc 8~/ + 2Q P - 00 ~1 -~' 8~' 

+ {+ g-2c ~t } gf =o, 

___E__[2cG+ {- fg +_l_f2+_E_ 82~ _ _!£_pfoo ten, d~'}] 
8~1 4 8 8c 8~1 2Q - 00 ~1 -~ 

[ 
8g 3 8g P 2 83g re J00 d~' 8g] 

+ a:r+Tg 8~2 +Tc -8~/ - 2Q P -00 ~2-~' 8~' 

-{+t+2c ~tt} :i-=0, 
where 

F=u2+ (c/n0)n2, 

G=u2- (c/n0)n2. 

The functions ¢ 1 and ¢ 2 are chosen such that 

(20.a) 

(20. b) 

(21. a) 

(21. b) 
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8</-11 - g 8</-12 f 
81;2 - Sc' 8/;1 = -Sc. (22) 

Substituting eq. (22) into eqs. (20. a) and (20. b) and imposing the condi
tion that F and G are bounded (non-secularity condition) yields 

Bf 3 Bf P 2 f}3f re f00 di;' 8f 
a, + 4 fat;l - Sc 8/;13 + 2Qp - 00 1;1-1;' 81;' =O, (23.a) 

8g 3 8g P' 8 3g re f00 di;' 8g 
8,+ 4 g8!;2 + Sc 81;,3- 2Qp -oo /;2 -I;' 81;' =O. (23. b) 

These equations agTee with that obtained by Ott and Sudan 15 ) in studying 
ion acoustic waves of finite amplitude with the linear Landau damping by 
electrons. 

We note here that eq. (23. b) reduces to eq. (23. a) by the transforma
tion g--f, .. --... If r = 0, eqs. (23. a) and (23. b) have soliton solutions 
with negative and positive amplitudes, respectively. For the case r "'f 0, 
the negative-amplitude soliton, f, damps as time increases and the positive
amplitude soliton, g, grows. This tendency agrees with the numerical 
solutions with the initial condition (15) (see Fig. 3 and 4). 

4. Conclusion 

For PQ>0, the soliton damps deforming asymmetrically and changing 
the velocity, due to the nonlinear Landau damping. The bound state of 
solitons decays into a series of solitons, which behave themselves in a way 
similar to the above. On the other hand, the solitons for PQ<0 display a 
different character from the case PQ>0; the soliton propagating in the posi
tive x-direction damps and that in the negative x-direction grows. 

Further details, together with the periodic solutions to eq. (2), will be 
presented in the forthcoming paper. 

The authors are much indebted to Miss M. Nakanishi for her assistance 
in the numerical calculations. 
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Appendix 

Method for Numerical Solution 

To solve the nonlinear Schrodinger equation (1), we replace the partial 
derivatives by the central difference quotients, 

8u/8t-(u(x, f+,:;Jt)-u(x, t-,:;Jt))/(2,:;Jt), (A-1) 

8 2u/8x 2-(u(x+,:;Jx, t)-2u(x, t)+u(x-,:;Jx, t))/,:;Jx2, (A-2) 

where ,:;Jt and ,:;Jx are mesh size in the x-t space. The function u(x, t) is 
divided into the real and imaginary parts, 

u=X+iY, (A-3) 

and substituted into eq. (1). We then obtain the set of difference equations: 

X(x, f+,:;Jt) =X(x, t-,:;Jt)-P(,:;Jt/ ,:;Jx2){Y(x+,:;Jx, t)-2Y(x, t) 

+ Y(x-,:;Jx, t)}-2Q,:;Jt{X(x, t) 2 + Y(x, t) 2} Y(x, t), 

Y(x, t+.:Jt) = Y(x, t-.:Jt) +P(.:Jt/ Jx 2) {X(x+.:Jx, t)-2X(x, t) 

+X(x-.dx, t)} +2Q.:Jt{X(x, t) 2 + Y(x, t) 2}X(x, t). 

(A-4) 

(A-5) 

The suitable mesh size must be chosen so that eqs. (A-4) and (A-5) 
may be stable. This can be estimated as follows: Linearizing eqs. (A-4) 
and (A-5) and taking the Fourier transforms of them yields 
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U(k, t+ ,:;Jt) =A(k) U(k, t), (A-6) 

U(k t) =[~~:: :~,:;It) ] d A(k)=[ ~ ~ -: ~] 
' Y(k, t) an B 0 0 1 ' 

Y(k, t-,:;Jt) o o 1 o 
(A-7) 

[ X(k, t) ] f.. . [ X(x, t) ] _ = dx exp(-tkx) , 
Y(k, t) _.. Y(x, t) 

B=4P(,:;Jt/ ,:;Jx2)sin2(k,:;Jx/2) +2QN,:;Jt, 

where N is introduced as a measure of the nonlinearity. 
1, of the amplification matrix A is given by 

(A-8) 

(A-9) 

The eigenvalue, 

(A-10) 

The difference scheme (A-4) and (A-5) is stable if and only if 11-B2/21< 
1, i.e., 

or 

,:;1t<,:;Jx2 I I 4P+ 2QN,:;Jx2 I. (A-11) 

The integral term in eq. (2) is approximated as 

Pf .. d , /(x') _ _ 64 ( d/ +_l_,:;1 2 d3/ +~,:;1 4 d5/ ) 
-oo x x - x' - x dx 2 x dx3 200 x dx5 

+(Jx-3,:;Jx+f.. )dx'/(x'),. 
_.. x+3,:;Jx x-x 

In deriving the above expression f(x') is expanded in powers of (x' -x) for 
the region x-3,:;Jx<x'<x+3,:;lx. The differential coefficients are approxima
ted by the seven-points difference quotients and the integrals with respect 
to x' over the residual intervals are calculated by using Weddle's formula, 

PJ: .. {~;, dx'=-[0.13{f(x+3,:;1x)-f(x-3,:;Jx)} 

-0. 48{/(x+24x)-/(x-2Jx)} +1. 65{/(x+,:;Jx)-f(x-,:;Jx)} J 
_ 0 3.,_,.. [i f(x+ (6j+3),:;Jx) + f(x+ (6j-3),:;Jx) } 

· t;,=-00 l 6j+3 6j-3 . 

+5i f(x+ (6j+2),:;lx) + f(x+ (~j-2),:;Jx) l + J(x+?j,:;Jx) 
l ~+2 ~-2 J 1 

+ i f(x+ (6j+ 1),:;Jx) + f(x+ (6j-1),:;Jx) l] (A-l2) 
l ~+1 ~-1 J · 

The difference scheme (A-4) and (A-5) with (A-11) and (A-12) applies 
to the numerical computation for initial value problems of eq. (2). 




