
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Vectorized Lambda Iteration Method for Swift
Economic Dispatch Analysis

Rifki Rahman Nur Ikhsan
School of Electrical Engineering, Telkom University

Raharjo, Jangkung
School of Electrical Engineering, Telkom University

Rahmat, Basuki
School of Electrical Engineering, Telkom University

https://doi.org/10.5109/7172306

出版情報：Evergreen. 11 (1), pp.435-447, 2024-03. 九州大学グリーンテクノロジー研究教育センター
バージョン：
権利関係：Creative Commons Attribution 4.0 International



EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 01, pp435-447, March 2024 

 
Vectorized Lambda Iteration Method for Swift Economic 

Dispatch Analysis 
 

Rifki Rahman Nur Ikhsan1, Jangkung Raharjo1, Basuki Rahmat1 

1School of Electrical Engineering, Telkom University, Indonesia 
 

*Author to whom correspondence should be addressed: 
 E-mail: rifkirah@gmail.com 

 
(Received October 19, 2023; Revised January 27, 2024; Accepted January 31, 2024). 

 
Abstract: The economic dispatch process in power markets aims to find the optimal generation 

schedule based on cost-based bids from generators. The lambda iteration method is commonly used 
but faces computational challenges for large-scale systems. To address this, a novel approach called 
the vectorized lambda iteration method is proposed. This method utilizes vectorization techniques to 
reduce computation time while maintaining accuracy. By parallelizing the computation of schedules 
and Lagrange multipliers, it achieves faster convergence and enables real-time decision-making. The 
method improves efficiency, competitiveness, and adaptability in power markets, ensuring reliable 
operation. Software and hardware optimizations further enhance performance. The results 
demonstrate a significant reduction in computation time and the lowest cost across three test systems. 
The vectorized lambda iteration method offers an efficient solution for power system operation and 
decision-making, with the potential for optimization in practical applications. The proposed 
vectorized variant that we introduced is capable of reducing computation time by 99% compared to 
conventional methods, while also achieving a 2% cost reduction. 

 
Keywords: economic dispatch; lambda iteration method; python; vectorization technique 

1.  Introduction  
In the electrical system, we often encounter economic 

dispatch (ED), optimal power flow (OPF), and security-
constrained optimal power flow (SCOPF) issues. A 
comparison between these three is presented by Obio and 
colleagues1). 

In power markets, the economic dispatch process 
typically involves power generators submitting their cost-
based bids for each hour2). These bids are used by the 
system operator to determine the optimal generation 
schedule that meets the demand at the lowest possible cost. 
However, the time required for the economic dispatch 
(ED) computation can be a bottleneck, especially when 
dealing with large-scale power systems and complex 
market structures. 

The term ED refers to the optimal and economical 
distribution of loads among the existing generating units 
in the system at a specific load price3). Several methods 
for ED have been published. The Lagrange multiplier 
method is applied to Economic Dispatch (ED) in the 
thermal power generation system of Jeneponto, 
Indonesia4). The Large to Small Area Technique (LSAT) 
and the Technique of Narrowing Down Area (TONDA) 
are applied in Economic Dispatch (ED) with the principle 
of reducing the feasible area. In LSAT5), the feasible area 
is formed from the overall constraints of the generators. A 
population of candidate solutions is scattered within this 

feasible area. After finding the best candidate, the 
dimension of the feasible area is reduced, and the same 
number of candidates is scattered within it as before. This 
process continues until a final solution is obtained. 
Meanwhile, in TONDA6), the methodology involves 
narrowing down the Power Dispatch Generation Limits 
(PDGL) of each generator. In each iteration, PDGL is 
divided into segments, and each segment boundary is 
represented as a solution point. Once the best candidate is 
obtained, PDGL is further narrowed to improve that 
candidate. The iteration process continues to update 
PDGL (after being narrowed down from the previous 
iteration) until the smallest segment is reached. The 
smallest area is formed within the narrowest PDGL, where 
this smallest area can be expressed as a solution point 
(convergence point). 

A new method applied in ED is the Komodo Mlipir 
Algorithm (KMA). This algorithm adopts the hunting and 
breeding behavior of Komodo dragons. KMA divides the 
candidate solutions into three groups based on Komodo 
individuals: big males, females, and small males. The 
KMA algorithm begins with the movement of the big male, 
referred to as high-exploitation low exploration (HILE), 
followed by females attempting to find solutions by 
mating with the best big male (highest quality) or through 
parthenogenesis (exploration)7). 

Abttan and colleagues published the Ant Lion 
Optimization Algorithm (ALOA) and Bat Algorithm (BA) 
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methods for Economic Dispatch (ED) and compared them 
with various methods8). Meanwhile, Xiong and colleagues 
implemented Across Neighborhood Search (ANS) for ED. 
In ANS, a group of individuals collaboratively navigates 
the search space to obtain an optimal solution while 
simultaneously exploring the neighborhoods of several 
superior solutions9). The application of Particle Swarm 
Optimization (PSO), Termite Colony Optimization (TCO), 
and Cat Swarm Optimization (CSO) to solve ED problems 
was published by 10,11). Several other algorithms for 
solving ED problems have also been published, such as 
the Adaptive Backtracking Search Optimization 
Algorithm12), Modified Whales Optimization Algorithm13), 
A Novel Hybrid Moth Flame Optimization with 
Sequential 14), the CSAJAYA algorithm15), Genetic 
Algorithm Fuzzy Approach16,17), and Manta Ray Foraging 
Optimization technique18).  

The lambda iteration method is a well-established 
technique for solving the economic dispatch problem. It 
involves iteratively adjusting the Lagrange multipliers, 
known as lambdas until the equilibrium conditions are met. 
This iterative process allows for the optimization of 
generation schedules while considering various 
operational constraints. However, the lambda iteration 
method can be computationally intensive, especially when 
applied to large-scale systems with numerous generating 
units19). 

To address the computational challenges associated 
with the lambda iteration method, this paper proposes a 
novel approach called the vectorized lambda iteration 
method. The main idea behind this method is to leverage 
vectorization techniques in programming to perform 
computations on multiple elements simultaneously. By 
exploiting the inherent parallelism in the economic 
dispatch problem20), the proposed method aims to 
significantly reduce the computation time while 
maintaining a high level of accuracy. 

Vectorized programming techniques enable the 
simultaneous execution of mathematical operations on 
arrays or vectors of data21). By utilizing optimized 
algorithms and utilizing parallel processing capabilities of 
modern computer architectures, the vectorized lambda 
iteration method can perform the necessary calculations 
more efficiently. This approach allows for faster 
convergence and reduces the overall computational 
burden22), making it well-suited for real-time bidding 
scenarios. 

The proposed method builds upon the foundation of the 
lambda iteration method but introduces significant 
computational enhancements through vectorization. By 
parallelizing the computation of generation schedules and 
the corresponding Lagrange multipliers, the vectorized 
lambda iteration method can achieve a substantial 
reduction in the time required to obtain the optimal 
dispatch solution22). The reduction in computation time 
provided by the vectorized lambda iteration method has 
several advantages. Firstly, it enables faster bidding 

decisions by generators, allowing them to adapt to 
changing market conditions more promptly. This can 
enhance the overall efficiency and competitiveness of the 
power market. Secondly, the reduced computation time 
facilitates real-time decision-making, which is crucial for 
managing fluctuations in electricity demand and 
optimizing the utilization of generation resources. 

The vectorized lambda iteration method not only offers 
improved computational efficiency but also preserves the 
accuracy of the economic dispatch solution. By 
incorporating advanced vectorized programming 
techniques, the proposed method can handle complex 
system constraints and accurately determine the optimal 
dispatch schedule, ensuring reliable and stable power 
system operation. The implementation of the vectorized 
lambda iteration method requires careful consideration of 
software and hardware optimization. Utilizing specialized 
libraries, such as NumPy or TensorFlow, can provide 
efficient and scalable vectorization capabilities20). 
Furthermore, hardware acceleration techniques, such as 
utilizing graphics processing units (GPUs) or field-
programmable gate arrays (FPGAs), can further enhance 
the performance of the method. 

In conclusion, this paper presents the vectorized lambda 
iteration method as a novel approach to address the 
computational challenges associated with economic 
dispatch bidding. By leveraging vectorization techniques, 
the proposed method offers a significant reduction in 
computation time while maintaining high accuracy 20). 
The time efficiency and accuracy provided by the 
vectorized lambda iteration method can lead to improved 
decision-making and enhance the overall operation of 
power systems in dynamic market environments. Future 
research can explore further optimization and refinement 
of the method and evaluate its performance in practical 
power system applications.  

 
2.  Basic Concepts 
2.1.  Economic Dispatch 

When it comes to managing the electric power system, 
economic dispatch poses a challenging optimization issue. 
The objective is to distribute the power generated by 
various sources in a way that minimizes the cost of 
producing electricity. While the economic dispatch 
problem can be viewed as a linear programming challenge, 
finding the optimal solution is not a straightforward task 
due to the intricate nature of the variables involved. To 
address this problem, specific algorithms like Lambda 
Iteration Methods, Gradient Methods, or artificial 
methods such as Multi Dimension of Coarse to Fine 
Search23), Large to Small Area Technique5), Komodo 
Mlipir Algorithm7), Cuckoo Algorithm, Whale 
Optimization Algorithm24), Particle Swarm 
Optimization25), Cat Swarm Optimization25), Ant Colony 
Optimization25), and Artificial Bee Colony Algorithm25). 

The main goal of an economic dispatch problem is to 
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minimize the overall expenses associated with fuel 
consumption, while also considering the limitations and 
restrictions of a power generation system. This objective 
is typically expressed mathematically in the form of an 
equation (1). 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝐹𝐹𝑇𝑇 = �𝐹𝐹𝑖𝑖(𝑃𝑃𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (1) 

Where 
𝐹𝐹𝑇𝑇 : Total generation cost 
𝐹𝐹𝑖𝑖 : Generation cost function 
𝑃𝑃𝑖𝑖 : Power production 
i : Generator 
 
In the context of power system operation, the total 

generation cost 𝐹𝐹𝑇𝑇  is a crucial factor that depends on 
several variables. One of these variables is n, which 
represents the number of generators committed to the 
operating system. Each generator's contribution to the 
total cost is determined by its generation cost function 𝐹𝐹𝑖𝑖. 
The generation cost function for the i th generator can be 
mathematically expressed as a quadratic polynomial, as 
depicted in equation (2). This quadratic representation 
allows for modeling the relationship between the 
generator's output and its corresponding cost in a more 
accurately and practically manner. By considering these 
factors and employing quadratic cost functions, power 
system operators can make informed decisions regarding 
the optimal commitment of generators to minimize the 
total generation cost while meeting the electricity demand 
efficiently26). This mathematical framework forms the 
basis for various optimization techniques used in power 
system economics and planning. 

 
𝐹𝐹𝑖𝑖(𝑃𝑃𝑖𝑖) = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑃𝑃𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖2 (2) 

Where 
𝐹𝐹𝑖𝑖 : Generation cost function 
𝑃𝑃𝑖𝑖 : Power production 
𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖 : Cost coefficients 
 
In the context of power generation, the variables 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 

and 𝑐𝑐𝑖𝑖 represent the cost coefficients of the i th generator, 
while 𝑃𝑃𝑖𝑖   represents the power production of the i th 
generator. These cost coefficients play a crucial role in 
determining the operational cost of each generator, and 
they are typically used in economic dispatch and 
optimization models for power systems. 

 
2.1.1.  Power Balance Constraint (PB) 

The total power generated by all units in a power 
system is balanced with the total power consumed by 
loads and losses, as represented by equation (3). This 
balance ensures the equilibrium of the power system. 

�𝑃𝑃𝑖𝑖 =
𝑛𝑛

𝑖𝑖=1

 𝑃𝑃𝐷𝐷 + 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (3) 

Where 
𝑃𝑃𝑖𝑖 : Power production 
𝑃𝑃𝐷𝐷 : Load demand 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 : Total transmission loss 
In the given context, 𝑃𝑃𝐷𝐷 represents the load demand, 

which signifies the amount of power required, while 
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  indicates the total transmission loss that is 
intentionally omitted or neglected in the analysis. 
Neglecting the transmission loss simplifies the 
calculations and allows a focus on the primary load 
demand without considering the energy losses incurred 
during power transmission. 

 
2.1.2.  Generation Limits Constraint (GL) 

Equation (4) shows the upper and lower limits of the 
power output for each generator. These limits define the 
range within which the generator can operate. 

𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑃𝑃𝑖𝑖 ≤ 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 (4) 

Where 
𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛 : Lower limits of the power output 
𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 : Upper limits of the power output 
In the context of power generation units, the variables 

𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛  and 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚  denote the minimum and maximum 
limits of the i th generating unit's power outputs, 
respectively. These limits play a crucial role in regulating 
and controlling the power generation process. By setting 
appropriate lower and upper bounds for each unit, 
operators can ensure the stability and efficiency of the 
overall power system. It allows them to prevent excessive 
power generation that might lead to equipment damage, as 
well as ensure that the units are operating optimally within 
their specified capacity. 

 
2.1.3.  Ramp Rate Constraint (RR) 

The limits on how quickly the power output of a 
generator can be changed over time as shown in equations 
(5) and (6). 

𝑃𝑃𝑖𝑖,𝑡𝑡 − 𝑃𝑃𝑖𝑖,𝑡𝑡−1 ≤ 𝑈𝑈𝑖𝑖 (5) 

𝑃𝑃𝑖𝑖,𝑡𝑡−1 − 𝑃𝑃𝑖𝑖,𝑡𝑡 ≤ 𝐷𝐷𝑖𝑖 (6) 

Where 
𝑃𝑃𝑖𝑖,𝑡𝑡 : Current power demands 
𝑃𝑃𝑖𝑖,𝑡𝑡−1  : Previous power demands 
𝑈𝑈𝑖𝑖 : Ramp Up Rate 
𝐷𝐷𝑖𝑖 : Ramp Down Rate 

 
In the given context, the variables 𝑃𝑃𝑖𝑖,𝑡𝑡  and 𝑃𝑃𝑖𝑖,𝑡𝑡−1 

represent the power output from the current and previous 
power demands of the i th generating unit, respectively. 
𝐷𝐷𝑖𝑖 and 𝑈𝑈𝑖𝑖 correspond to the lower and higher ramp rates 
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for the power outputs of the i th generating unit. These 
ramp rates determine the limits within which the power 
output can change over time, ensuring the stability and 
smooth operation of the power generation system. By 
considering the differences between the current and 
previous power demands and setting bounds with the 
ramp rates, the power generation process can be 
efficiently managed and controlled. 

 
2.2.  Lambda Iteration Method 

The Lambda iteration method is an efficient and 
accurate iterative optimization algorithm used for solving 
constrained optimization problems like economic 
dispatch. It transforms the problem's constraints into 
Lagrange multipliers, which act as penalty terms in the 
objective function. The algorithm iteratively updates the 
Lagrange multiplier and power generation values to find 
an optimal solution that minimizes fuel consumption costs 
while satisfying the power demand and plant constraints. 

By incorporating the Lagrange multiplier and 
constraints, the Lambda iteration method ensures that the 
power generation plan optimally minimizes fuel costs 
while meeting the power demand. This iterative approach 
gradually refines the Lagrange multiplier and power 
generation values as shown in equations (7) and (8)27), 
narrowing the gap between generation and demand while 
respecting the power plant constraints. This results in an 
efficient and accurate solution to the economic dispatch 
problem. 

The Lambda iteration method's effectiveness lies in its 
ability to consider factors such as fuel costs, plant 
capacities, and operational constraints. By iteratively 
updating the Lagrange multiplier and power generation 
values, it provides power system operators with informed 
decisions for allocating power generation. This robust 
approach enables efficient optimization of economic 
dispatch problems, balancing the trade-off between fuel 
consumption costs and power demand satisfaction while 
accounting for the constraints of each power plant. 

 

𝐿𝐿 = ��𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑃𝑃𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑃𝑃𝑖𝑖2�
𝑛𝑛

𝑖𝑖=1

− 𝜆𝜆 ��𝑃𝑃𝑖𝑖 − 𝑃𝑃𝐷𝐷

𝑛𝑛

𝑖𝑖=1

� (7) 

𝑃𝑃𝑖𝑖 =  
(𝜆𝜆 − 𝑏𝑏𝑖𝑖)

2𝑐𝑐𝑖𝑖
 (8) 

The economic dispatch problem, employing the lambda 
iteration method, can be resolved by utilizing the equation 
formulated using the first-order Taylor series expansion. 
This equation incorporates the variable 'k', which 
represents an integer denoting the iteration sequence 
within a numerical method. 𝜆𝜆(𝑘𝑘+1)  represents the 
updated value of lambda in each iteration as shown in 
equation (9)27). 

𝜆𝜆(𝑘𝑘+1) = 𝜆𝜆𝑘𝑘 + ��𝑃𝑃𝐷𝐷 −��
(𝜆𝜆𝑘𝑘 − 𝑏𝑏𝑖𝑖)

2𝑐𝑐𝑖𝑖
�

𝑛𝑛

𝑖𝑖=1

� �
1

2𝑐𝑐𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� � (9) 

Where 
𝜆𝜆(𝑘𝑘+1) : Updated value 
𝜆𝜆 : Lagrange multiplier factor 
k : Iteration sequence 

 
2.3.  Vectorization Technique 

Vectorization is a powerful technique in computer 
science that boosts processor performance by processing 
multiple data elements concurrently. It leverages 
specialized instructions designed for vector operations to 
execute mathematical computations on arrays of data, 
known as vectors, rather than individual scalar values. 
This approach significantly improves efficiency when 
dealing with large arrays, as it reduces the number of 
instructions required and optimizes memory utilization. 
The Arithmetic Logic Unit (ALU) is a critical component 
in vectorization. It performs arithmetic and logical 
operations on data stored in registers, which are high-
speed memory locations within the processor. By utilizing 
vectorization, the ALU can process multiple data elements 
simultaneously, leading to enhanced performance and 
reduced instruction count. This technique maximizes 
memory bandwidth and cache resources, resulting in 
improved efficiency when working with large datasets. 

These are the mathematical representations of how 
vectorization is applied in lambda iteration for generator 
scheduling. 

 

𝑃𝑃𝑋𝑋 =

��
𝜆𝜆𝑖𝑖
⋮
𝜆𝜆𝑛𝑛
� − �

𝑏𝑏𝑖𝑖
⋮
𝑏𝑏𝑛𝑛
��

2 �
𝑐𝑐𝑖𝑖
⋮
𝑐𝑐𝑛𝑛
�

 (10) 

𝜆𝜆(𝑘𝑘+1) = 𝜆𝜆𝑘𝑘 +

⎝

⎜
⎜
⎛

⎝

⎜
⎜
⎛
𝑃𝑃𝐷𝐷 −�

⎝

⎜
⎜
⎛�𝜆𝜆

𝑘𝑘 − �
𝑏𝑏𝑖𝑖
⋮
𝑏𝑏𝑛𝑛
��

2 �
𝑐𝑐𝑖𝑖
⋮
𝑐𝑐𝑛𝑛
�

⎠

⎟
⎟
⎞𝑛𝑛

𝑖𝑖=1

⎠

⎟
⎟
⎞

�
1

2 �
𝑐𝑐𝑖𝑖
⋮
𝑐𝑐𝑛𝑛
�

𝑛𝑛

𝑖𝑖=1

�

⎠

⎟
⎟
⎞

 (11) 

𝐹𝐹𝑋𝑋(𝑃𝑃𝑋𝑋) = �
𝑎𝑎𝑖𝑖
⋮
𝑎𝑎𝑛𝑛
� + �

𝑏𝑏𝑖𝑖
⋮
𝑏𝑏𝑛𝑛
� .

⎝

⎜
⎜
⎛��

𝜆𝜆𝑖𝑖
⋮
𝜆𝜆𝑛𝑛
� − �

𝑏𝑏𝑖𝑖
⋮
𝑏𝑏𝑛𝑛
��

2 �
𝑐𝑐𝑖𝑖
⋮
𝑐𝑐𝑛𝑛
�

⎠

⎟
⎟
⎞

+ �
𝑐𝑐𝑖𝑖
⋮
𝑐𝑐𝑛𝑛
� .

⎝

⎜
⎜
⎛��

𝜆𝜆𝑖𝑖
⋮
𝜆𝜆𝑛𝑛
� − �

𝑏𝑏𝑖𝑖
⋮
𝑏𝑏𝑛𝑛
��

2 �
𝑐𝑐𝑖𝑖
⋮
𝑐𝑐𝑛𝑛
�

⎠

⎟
⎟
⎞

2

 

(12) 
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Where 
𝑃𝑃𝑋𝑋 : power production (vectorization) 
𝐹𝐹𝑋𝑋 : Generation cost function (vectorization) 
In the context of power generation, 𝐹𝐹𝑋𝑋 represents the 

total cost amount incurred from all generators, while 𝑃𝑃𝑋𝑋 
represents the total power produced by all generators. 
Equations (10), (11), and (12) are mathematical 
expressions that implement vector operations, building 
upon the concepts introduced in equations (2), (8) and (9).  

In the field of programming, vectorization is a 
commonly employed method with the goal of optimizing 
the execution of operations on complete arrays or vectors, 
as opposed to handling individual elements separately. 
This approach leads to substantial enhancements in both 
computational speed and the overall performance of the 
code20). This approach is particularly valuable when 
dealing with large datasets and complex calculations, 
making it a fundamental concept in data science, machine 
learning, and scientific computing. By leveraging 
vectorization, programmers can take advantage of 
specialized hardware and libraries that support parallel 
processing, leading to faster execution of tasks and overall 
program efficiency.  

Consequently, vectorization plays a crucial role in 
optimizing algorithms and developing high-performance 
software solutions. Processors execute vectorized 
operations with a single instruction, enabling parallel 
processing of multiple data elements and reducing the 
instruction count, thus enhancing efficiency and 
performance. Modern processors further enhance 
vectorization through features like Single Instruction 
Multiple Data (SIMD) instructions, which process 
multiple data elements simultaneously and maximize 
hardware resource utilization21).  

One of the popular tools for vectorization in Python is 
the NumPy library. NumPy provides a wide range of 
functions and tools optimized for handling arrays and 
matrices, enabling users to perform vectorized operations 
with ease. It utilizes highly efficient, low-level routines 
written in C or Fortran, making it an excellent choice for 
handling large datasets and performing complex 
mathematical calculations. In contrast to traditional 
iterative methods that involve explicit loops, vectorization 
using NumPy offers a more concise and elegant way to 
express mathematical operations. The code becomes more 
readable and easier to maintain, promoting better 
development practices and reducing the chances of 
introducing errors. 

 
2.4.  VLIM’s Algorithm and Flowchart 

The following is the VLIM algorithm for calculating 
power production along with its cost in the case of 24 
hours power demand scenario. 
Step 1 → Import the required libraries (Pandas, NumPy, 
DataFrame, time). 
Step 2 → Read input data from the 'input4.xlsx' and 
'power_demand.xlsx' files using Pandas. 

- Create a variable 'data' to store the data from 
'input4.xlsx'. 

- Create variables 'a', 'b', 'c', 'Minimum_Capacity', 
'Maximum_Capacity', 'ramp_up', 'ramp_down', and 
'Unit' to store the respective columns from 'data'. 

- Create a variable 'power_demand_data' to store the 
data from 'power_demand.xlsx'. 

- Create a variable 'power_demand' to store the data 
from the 'load' column of 'power_demand_data'. 

Step 3 → Define the 'calculate_power' function with 
parameters: 
- demand (power demand) 
- a (parameter 'a') 
- b (parameter 'b') 
- c (parameter 'c') 
- pmin (minimum capacity) 
- pmax (maximum capacity) 
- rampup (ramp-up rate) 
- rampdown (ramp-down rate) 

Step 4 → Define the 'calculate_fuel_cost' function with 
parameters: 
- P (an array of power produced by each unit) 
- a (parameter 'a') 
- b (parameter 'b') 
- c (parameter 'c') 
The 'calculate_fuel_cost' function has local variables: 
- squaredP (an array containing the squared power 

values produced) 
- Fuel_Cost (an array containing the fuel cost for each 

unit) 
- total_Fuel_Cost (a variable to store the total fuel cost) 
In the 'calculate_fuel_cost' function: 
- Calculate 'squaredP' as the result of squaring the 'P' 

array. 
- Calculate 'Fuel_Cost' as an array containing the fuel 

cost for each unit based on the given formula. This 
part implemented vectorization as shown in equation 
(12). 

- Calculate 'total_Fuel_Cost' as the sum of all fuel costs. 
- Return the 'Fuel_Cost' array and the 'total_Fuel_Cost'. 

Step 5 → Loop through each power demand value from 
the 'power_demand' data: 
- For each demand value: 
- Record the start time of the execution. 
- Calculate the power produced ('P') and the number of 

iterations required using the 'calculate_power' 
function. 

- Calculate the fuel cost ('Fuel_Cost') and the total fuel 
cost ('total_Fuel_Cost') using the 
'calculate_fuel_cost' function. 

- Record the end time of the execution. 
- Create a DataFrame 'output' to store the calculation 

results (Unit, Power Produced (MW), Fuel Cost (Rp)). 
- Print the calculation results for the current power 

demand. 
- Display a separator line for the next calculation result. 

Step 6 → End the process. 

-439-



EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 11, Issue 01, pp435-447, March 2024 

 
As depicted in Fig. 1, the flowchart illustrates the 

iterative process of VLIM based on the algorithm 
explained earlier. 

 

 
Fig. 1: VLIM's Flowchart 

3.  Datasets 
To evaluate the appropriateness and effectiveness of the 

vectorized lambda iteration method, a series of three 
comprehensive tests were conducted. The datasets utilized 
in these tests form a crucial component of the assessment 
process. These datasets were specifically chosen to 
rigorously examine the performance and reliability of the 
vectorized lambda iteration method under various 
conditions and scenarios. 

 
3.1.  Datasets of Test System 1 

During the first test, a configuration employing a 15-
unit generator was implemented to meet a substantial load 
demand of 2,650 MW, as explicitly outlined in both Table 
1 and Table 2. 

a. Fuel Cost Coefficient 
Table 1. Fuel Cost Coefficient of Test System 1 

Unit a b c 
(IDR) (IDR/MW) (IDR/MW2) 

1 671.03 10.1 0.000299 
2 574.54 10.22 0.000183 
3 374.59 8.8 0.001126 
4 461.37 8.8 0.001126 
5 630.14 10.4 0.000205 
6 1.661 10.1 0.000301 
7 548.2 9.87 0.000364 
8 227.09 11.5 0.000338 
9 173.72 11.21 0.000807 

10 175.95 10.72 0.001203 
11 186.86 11.21 0.003586 

12 230.27 9.9 0.005513 
13 225.28 13.12 0.000371 
14 309.03 12.12 0.001929 
15 323.79 12.41 0.004447 

b. Constraint (Generation Limits) 
Table 2. The Generation Limits of Test System 1 

Unit Pmin Pmax 
(MW) 

1 150 455 
2 150 455 
3 20 130 
4 20 130 
5 150 470 
6 135 460 
7 135 465 
8 60 300 
9 25 162 

10 20 160 
11 20 80 
12 20 80 
13 25 85 
14 15 55 
15 15 55 

 
3.2.  Datasets of Test System 2 

In the second testing phase, we utilized an extended 
configuration with a 16-unit generator to meet the 
dynamic load demands spanning a 24-hour period, as 
detailed in Table 3. This comprehensive setup facilitated a 
meticulous assessment of the system's adaptability and 
responsiveness to fluctuating load conditions throughout 
the day. Due to the nature of the research, ethical 
considerations prohibit the disclosure of specific data 
pertaining to the characteristics of each generator. The 
presented data incorporates confidential information 
sourced from an undisclosed third-party associated with 
the research. 

 
Table 3. Power Demand of Test System 2 

Hour Power Demand Hour Power Demand 
(MW) (MW) 

1 4,280.712 13 4,277.938 
2 4,256.056 14 4,331.556 
3 4,206.554 15 4,517.064 
4 4,186.648 16 4,635.494 
5 4,154.374 17 4,824.438 
6 4,131.04 18 4,911.755 
7 4,189.486 19 4,971.81 
8 4,163.306 20 5,032.035 
9 4,208.538 21 5,097.745 

10 4,279.786 22 5,105.55 
11 4,338.03 23 5,070.18 
12 4,276.804 24 4,915.15 
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3.3.  Datasets of Test System 3 

In the third experiment, a 42-unit generator was 
employed under dynamic load demand conditions (as per 
the 24-hour demand outlined in Table 4). Given the 
research's nature, ethical considerations prevent the 
disclosure of specific data regarding each generator's 
characteristics. The provided data includes confidential 
information obtained from an undisclosed source 
associated with a third party. 

 
Table 4. Power Demand of Test System 3 

Hour Power Demand Hour Power Demand 
(MW) (MW) 

1 8,761.424 13 8,876.06 
2 8,712.112 14 8,753.608 
3 8,613.108 15 8,755.876 
4 8,573.296 16 8,863.112 
5 8,508.748 17 9,234.128 
6 8,462.08 18 9,470.988 
7 8,378.972 19 9,848.876 
8 8,526.612 20 10,023.51 
9 8,617.076 21 10,143.62 

10 8,759.572 22 10,264.07 
11 8,712.112 23 10,395.49 
12 8,613.108 24 10,411.1 
 

4.  Experimental Results 
In test system 1, only power balance was considered as 

an accuracy benchmark. The results will be compared 
with Enhanced Lambda Iteration Method (ELIM) and 
conventional Lambda Iteration Method (LIM). Test 
system 2 considered power limits constraint, power 
balance constraint, and ramp rate. The results will be 
compared with conventional Lambda Iteration Method 
(LIM), hybrid Lambda Iteration with Whale Optimization 
Algorithm (LIM-WOA), hybrid Lambda Iteration with 
Gravitational Search Algorithm (LIM-GSA), and 
Artificial Bee Colony (ABC). Test system 3 considered 
power limits constraint, power balance constraint, and 
ramp rate. The results will be compared with conventional 
Lambda Iteration Method (LIM), hybrid Lambda Iteration 
Method with Whale Optimization Algorithm (LIM-
WOA), hybrid Lambda Iteration with Gravitational 
Search Algorithm (LIM-GSA), Artificial Bee Colony 
(ABC), and Genetic Algorithm (GA). 

 
4.1.  Test System 1 

Table 5 provides evidence that the vectorized lambda 
iteration method exhibits notable advantages over 
enhanced lambda iteration and conventional lambda 
iteration in terms of computation time. 

 
 
 
 
 

Table 5. Test System 1 Results 

Method VLIM ELIM 28) LIM 28) 

Cost ($/h) 32,183.1587 32,542.4376 32,549.8 

Time (sec) 0.00494 0.1233 2.556 

 
It demonstrates a significantly faster computational 

performance, surpassing enhanced lambda iteration by 
reducing the computation time by up to 96%. This 
highlights the efficiency and effectiveness of the 
vectorized lambda iteration approach in solving 
optimization problems. Furthermore, the benefits of 
employing the vectorized lambda iteration method extend 
beyond computational speed. When considering the total 
cost aspect, the results indicate that the vectorized lambda 
iteration approach yields the most cost-effective outcome 
compared to the other lambda iteration variants. This 
implies that not only does it offer computational efficiency, 
but it also generates the most economically favorable 
solution. 

The combination of faster computation time and lower 
total cost positions the vectorized lambda iteration method 
as a superior choice for optimization problems, 
outperforming both enhanced lambda iteration and 
conventional lambda iteration methods. These findings 
highlight the practical advantages of utilizing the 
vectorized lambda iteration approach in real-world 
scenarios, contributing to improved efficiency and cost 
savings. 

 
4.2.  Test System 2 

In Fig. 2, the graph illustrates the relationship between 
power production (in Giga-watts) and the corresponding 
demand at different hours. The x-axis represents the scale 
of power production values, while the y-axis indicates the 
specific hour of the demand. Upon analyzing the results 
depicted in the graph, it becomes evident that all 
algorithms, except LIM-GSA, did not achieve a perfect 
100% accuracy in meeting the power balance constraint. 
This implies that there were instances where the power 
produced did not precisely match the demand 
requirements for certain hours. As depicted in Table 6, 
which delineates the scheduling of power generators 
during the initial hour load, the recorded amount stands at 
4,280.712 MW. 

 
Fig. 2: Test System 2 Result in Term Power Production 
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Table 6. Power Allocation at 4,280.712 MW 

Unit VLIM LIM-WOA LIM-GSA ABC 
1 371.5 371.5 250 300.5939 
2 555.7512 510.4489 431.6861 509.5317 
3 174.6 174.6 112.6197 184.9037 
4 80 114.6 40 75.68308 
5 170 170 75 97.57115 
6 451.356 414.5635 220 326.9291 
7 16 294.5635 5 15.24281 
8 118.5 118.5 60 129.7948 
9 458.6713 298.5 400 475.8588 
10 140 140 120 153.1352 
11 326.127 299.5426 200 353.4714 
12 367.5788 345 345 598.6724 
13 266.6277 244.8934 203.435 257.7388 
14 200 200 200 291.4143 
15 214 214 180 212.843 
16 370 370 250 297.3278 

Total 4280.712 4280.712 3092.741 4280.712 
 
However, it is important to note that despite not 

reaching complete accuracy, several algorithms still 
managed to satisfy the power balance constraint to a 
significant extent. Notably, the VLIM, conventional LIM, 
LIM-WOA, and ABC algorithms demonstrated their 
capability to fulfill the power balance requirement within 
an acceptable range. Although these algorithms did not 
achieve absolute accuracy, they effectively ensured that 
the power produced was closely aligned with the demand, 
minimizing significant deviations or imbalances. This 
indicates their effectiveness in maintaining a relatively 
stable power generation system, where the production 
closely corresponds to the prevailing demand. 

 
Fig. 3: Test System 2 Result in Term Cost 

 
Table 7. Cost at 4,280.712 MW 
Method Cost  

VLIM 1,026,864,483.34 

LIM 1,026,864,483.34 

LIM-WOA 933,084,801.10 

LIM-GSA 603,026,008.08 

ABC 1,159,737,275.95 

Fig. 3 shows the relationship between total cost (in 
Billions IDR-Indonesian Rupiah) and demand at different 
hours. LIM-GSA achieves the lowest total cost but fails to 
meet the power balance constraint. LIM-WOA follows 
with a relatively low total cost but violates the power 
limits constraint. In contrast, VLIM and LIM algorithms 
offer competitive total costs while satisfying all the 
specified constraints. Despite achieving lower total costs, 
the failure of LIM-GSA and LIM-WOA to meet certain 
constraints raises concerns about system stability. Overall, 
VLIM and LIM algorithms provide cost-effective 
solutions while ensuring compliance with all constraints, 
promoting economic efficiency and operational reliability 
in the power generation system. As indicated in Table 7, 
which presents a cost comparison at a load of 4,280.712 
MW. 

 
Fig. 4: Test System 2 Result in Term Computational Time 

 

In Fig. 4, the graph represents the computational time 
in seconds, with the y-axis indicating the duration. It is 
worth noting that the result obtained shows that the VLIM 
algorithm demonstrates remarkable efficiency, as it 
completes the computation process within a mere 1 
second. This finding highlights the computational 
advantage of VLIM, indicating its ability to quickly 
perform the necessary calculations and deliver results 
promptly. Such efficiency in computational time can 
contribute to enhanced productivity and time-saving in 
practical applications. The ability of VLIM to achieve 
such a swift computational time suggests its suitability for 
time-sensitive tasks or scenarios where real-time decision-
making is crucial. By significantly reducing the 
computational duration, VLIM offers a practical solution 
that enables efficient and expedited processes within the 
power generation system. 

 
Table 8. Test System 2 Result in Term Violated Constraints 

Method VLIM LIM LIM-WOA LIM-GSA ABC 

PB ✓ ✓ ✓ X ✓ 

GL ✓ ✓ X ✓ X 

RR ✓ ✓ ✓ ✓ ✓ 

 
Table 8 provides valuable insights into the constraints 

violated by the evaluated lambda iteration variants. 
However, the results reveal an intriguing finding: both 
lambda iteration variants successfully fulfill all the 
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predetermined constraints. This highlights the 
effectiveness and reliability of the lambda iteration 
approach in maintaining a stable and efficient power 
generation system. The ability of these variants to satisfy 
the constraints showcases their robustness and suitability 
for practical implementation. These findings underscore 
the lambda iteration variants as reliable and viable 
solutions for optimizing power system operations while 
ensuring compliance with the necessary constraints. 

In summary, the fact that both lambda iteration variants 
satisfy all the predetermined constraints strengthens their 
position as powerful tools for addressing the complexities 
of power system optimization. Their ability to maintain 
compliance with the constraints showcases their 
practicality and reliability in real-world applications. By 
effectively balancing the system requirements, these 
lambda iteration variants contribute to the stability, 
efficiency, and overall performance of power generation 
systems. 

 
4.3.  Test System 3 

Figure5 displays the correlation between power 
production (in Giga-watts) and the corresponding demand 
at various hours. The x-axis indicates the range of power 
production values, while the y-axis represents the specific 
hour of the demand. Upon analyzing the findings 
portrayed in the graph, it becomes apparent that, apart 
from LIM-GSA, the algorithms did not achieve a perfect 
100% accuracy in meeting the power balance constraint. 
Consequently, there were instances where the power 
generated did not precisely match the demand 
requirements for certain hours. As depicted in Table 9, 
which delineates the scheduling of power generators 
during the initial hour load, the recorded amount stands at 
8,761.424 MW. 

 
Fig. 5: Test System 3 Result in Term Power Production 

 
Table 9. Power Allocation at 8,761.424 MW 

Unit VLIM LIM-WOA LIM-GSA GA ABC 

1 250 250 285.8519 270.6148 258.4958 

2 250 250 262.2004 250.3665 236.8897 

3 250 250 250 260.3772 267.6668 

4 250 250 250 252.1092 243.1704 

5 408 408 423.1559 413.3309 448.8197 

6 408 408 513.4002 453.3078 479.1705 

7 408 408 485.5297 444.8807 446.8723 

8 174.6 174.6 87.5 107.4275 100.5492 

9 174.6 174.6 87.5 126.7554 118.6464 

10 174.6 174.6 133.9282 94.89961 139.9744 

11 174.6 174.6 87.5 157.6882 94.2436 

12 80 114.6 64.81972 68.49597 37.96943 

13 80 80 40 55.96461 38.39588 

14 157.012 128.462 75 81.66251 103.5743 

15 157.012 128.462 75 82.74894 122.7099 

16 220 220 231.3152 286.4929 331.8211 

17 220 220 220 233.6768 286.9352 

18 220 220 254.3156 255.2989 347.7212 

19 16 100 5 6.184078 10.16436 

20 16 16 5 11.39076 10.11077 

21 118.5 118.5 60 91.08253 60.98361 

22 118.5 118.5 60 66.32505 66.45651 

23 118.5 118.5 60 63.65653 68.03774 

24 118.5 118.5 60 67.14255 91.06848 

25 118.5 118.5 60 62.93813 89.42571 

26 118.5 118.5 60 69.37002 63.48134 

27 118.5 118.5 60 108.7538 53.67243 

28 118.5 118.5 60 62.42682 89.06186 

29 400 298.5 529.0811 400.6116 430.3674 

30 400 400 400 489.8889 388.2568 

31 400 400 400 436.143 365.4834 

32 400 400 515.6651 411.5295 342.3962 

33 120 160 120 135.3162 109.129 

34 200 200 281.3627 242.8245 244.4801 

35 200 200 263.838 305.8262 322.9066 

36 345 345 345 373.4229 537.4477 

37 180 180 180 207.6928 169.3011 

38 200 200 331.5388 274.2359 215.1671 

39 200 200 200 204.877 232.7719 

40 180 180 180 180.601 166.2487 

41 250 250 257.2399 286.6258 283.2957 

42 250 250 250 306.4751 248.0836 

Total 8761.424 8761.424 8570.742 8761.439 8761.424 

 
Nonetheless, it is important to note that despite the lack 

of complete accuracy, several algorithms exhibited a 
significant degree of success in satisfying the power 
balance constraint. Notably, the VLIM, LIM, LIM-WOA, 
ABC, and GA algorithms demonstrated their ability to 
fulfill the power balance requirement within an acceptable 
range. Although these algorithms did not attain absolute 
precision, they effectively ensured that the power 
production was closely aligned with the demand, thereby 
minimizing notable deviations or imbalances. 
Consequently, they proved to be effective in maintaining 
a relatively stable power generation system where the 
production closely corresponds to the prevailing demand. 

In Fig. 6, the graph illustrates the correlation between 
the total cost (in IDR-Indonesian Rupiah) and the demand 
at different hours. Notably, the LIM-WOA algorithm 
stands out by achieving the lowest total cost among the 
evaluated algorithms. However, it is important to note that 
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LIM-WOA violates one of the specified constraints, 
suggesting a deviation from the optimal solution. As 
indicated in Table 10, which presents a cost comparison at 
a load of 8,761.424 MW. 

 
Fig. 6: Test System 3 Result in Term Cost 

 
Table 10. Cost at 8,761.424 MW 
Method Cost (Rp) 
VLIM 1,408,695,239.64 
LIM 1,408,695,239.64 

LIM-WOA 1,373,466,150.47 
LIM-GSA 1,843,073,779.59 

ABC 1,744,835,366.00 
GA 1,794,132,085.85 

 
In contrast, the two lambda iteration variants emerge as 

the second lowest in terms of the total cost while 
maintaining compliance with all the given constraints. 
This showcases their capability to ensure a reliable and 
balanced power generation system. The lambda iteration 
variants effectively strike a balance between cost 
optimization and constraint fulfillment. While LIM-WOA 
excels in cost reduction, its failure to adhere to a constraint 
raises concerns about the overall stability of the system. 
On the other hand, the lambda iteration variants offer 
competitive total costs while satisfying all the specified 
constraints. This highlights their suitability for real-world 
implementation, as they provide an optimized and 
dependable solution for managing power generation 
operations. 

 
Fig. 7: Test System 3 Result in Computational Time 

 
In Fig. 7, the graph showcases the computational time 

in seconds, with the y-axis representing the duration. The 
obtained result reveals that the VLIM algorithm exhibits 

impressive efficiency, completing the computation 
process within a mere 3 seconds. This outcome highlights 
the computational advantage of VLIM, underscoring its 
ability to swiftly perform the necessary calculations and 
deliver prompt results. The efficient computational time 
offered by VLIM can contribute to enhanced productivity 
and time-saving in practical applications. 

The capability of VLIM to achieve such a rapid 
computational time indicates its suitability for time-
sensitive tasks or scenarios where real-time decision-
making is crucial. By significantly reducing the duration 
of computations, VLIM provides a practical solution that 
enables efficient and expedited processes within the 
power generation system. Overall, the findings from Fig. 
7 emphasize the computational efficiency of VLIM, 
highlighting its potential to streamline operations and 
improve the overall performance of power system 
optimization tasks. 

The time required for different computational tasks 
varies based on the number of units involved. For example, 
when we measure the time, it takes for 80 units, it amounts 
to 135.26 seconds. Extrapolating this to a 42-unit VLIM, 
we estimate that a 42-unit Dual-Population Adaptive 
Differential Evolution would take 67.63 seconds29). 
Similarly, if we assume a compulsion time of 9.875 
seconds for 40 units, a 42-unit Squirrel Search Algorithm 
would take longer than 9.875 seconds 30). Likewise, if 30 
units require 130.5 seconds, then a 42-unit Adaptive 
Differential Evolution-Simulated Annealing would 
exceed 130.5 seconds 31). When we estimate that 40 units 
need 233 seconds, we can infer that a 42-unit Ameliorated 
Grey Wolf Optimization would require more than 233 
seconds32). Assuming a computation time of 8.6 seconds 
for a 40-unit system, solving a 42-unit problem with the 
Robust Learning Grey Wolf Optimization would take 
more than 8.6 seconds33). If we consider 40 units taking 
32.5984 seconds, then a 42-unit Surrogate-Assisted 
Adaptive Bat Algorithm would exceed 32.5984 seconds34). 
Finally, if 40 units necessitate 5.0169 seconds, a 42-unit 
Improved Bat Algorithm would require more than 5.0169 
seconds35). If we determine that a 40-unit VLIM 
necessitates 20 seconds for computation under the 
compulsion time, it can be inferred that a 42-unit Hybrid 
Artificial Algae Algorithm would require more than 20 
seconds for the same task36). Similarly, if we establish that 
84 units demand 76.65 seconds for computation, 
extrapolating to a 42-unit VLIM suggests that a 42-unit 
Multi-Player Harmony Search would take approximately 
38.325 seconds37). Furthermore, when we take into 
account that 40 units can be computed in 7.0656 seconds, 
it can be surmised that a 42-unit utilizing the Differential 
Evolution and Gain-Sharing Knowledge-based algorithm 
would also require more than 7.0656 seconds for 
computation38). This shows us how fast VLIM is among 
all those algorithms for the same number of generators. 

In the fast-paced energy market, where prices fluctuate 
rapidly, the ability to quickly calculate optimal solutions 
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for the economic dispatch problem is invaluable. VLIM's 
faster computation times allow market participants to 
respond swiftly to changing conditions, enabling them to 
make more informed and profitable bidding decisions. 
Moreover, the efficient and accurate energy bidding 
facilitated by VLIM leads to better resource allocation. By 
minimizing production costs and maximizing output, 
power generation systems can operate more efficiently, 
reducing wastage and promoting sustainability. 

 
Table 11. Test System 3 Result in Term Violated Constraints 

Constraint VLIM LIM LIM-WOA LIM-GSA ABC 

PB ✓ ✓ ✓ X ✓ 

GL ✓ ✓ X ✓ X 

RR ✓ ✓ ✓ ✓ ✓ 

 
Table 11 provides insightful information about the 

constraints violated by the lambda iteration variants that 
were evaluated. However, the results unveil an intriguing 
discovery: both lambda iteration variants successfully 
meet all the predetermined constraints. This emphasizes 
the effectiveness and reliability of the lambda iteration 
approach in maintaining a stable and efficient power 
generation system. The ability of these variants to satisfy 
the constraints highlights their robustness and suitability 
for practical implementation. These findings underscore 
the lambda iteration variants as reliable and practical 
solutions for optimizing power system operations while 
ensuring adherence to necessary constraints. 

Fulfilling all the predetermined constraints reinforces 
their significance as powerful tools for tackling the 
intricacies of power system optimization. Their capacity 
to uphold compliance with the constraints demonstrates 
their practicality and dependability in real-world 
applications. By effectively balancing system 
requirements, these lambda iteration variants contribute to 
the stability, efficiency, and overall performance of power 
generation systems. 

 
5.  Conclusion 

The paper introduces a proposed idea to improve the 
convergence speed of the lambda iteration method. This 
technique is applied to solve the economic dispatch 
problem in a power generating system that consists of 15 
units, 16 units, and 42 units, without considering 
transmission losses. The study shows that the proposed 
VLIM (Vectorized Lambda Iteration Method) not only 
yields the lowest cost but also exhibits significantly faster 
computation time while adhering to relevant constraints. 
In test system 1, when compared to the fastest benchmark 
algorithm, VLIM reduced the computation time from 0.1 
seconds to 0.004 seconds, resulting in a time reduction of 
up to 96%. In test system 2, VLIM reduced the 
computation time from 79 seconds to 1 second, achieving 

a time reduction of up to 96%. Similarly, in test system 3, 
VLIM reduced the computation time from 149 seconds to 
3 seconds, attaining a time reduction of up to 98%. 

The promising implications of the research's outcomes 
are particularly significant in the context of energy 
bidding, especially during hourly energy bidding 
processes where time plays a crucial role. In the energy 
industry, efficient and timely decision-making is vital to 
optimizing resource allocation and cost-effectiveness in 
power generation systems. With the adoption of the 
Vectorized Lambda Iteration Method (VLIM), the study 
demonstrates remarkable reductions in computation time 
compared to existing benchmark algorithms. The 
substantial time reductions of up to 96% and even 98% in 
some cases empower energy market participants to 
perform real-time bidding and scheduling with greater 
speed and precision. 

Furthermore, the research's findings hold promise for 
addressing larger and more complex power systems with 
even greater benefits in terms of computation time and 
cost optimization. As advancements in computing 
technologies continue, the application of efficient 
algorithms like VLIM will play a vital role in shaping the 
future of the energy sector, leading to a more sustainable 
and cost-efficient energy landscape. 
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