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Abstract: This work presents experimental findings on the stability of a 2D foam confined in a 

hard cell. The foam's lifetime before breakage increases with bubble size, and introducing a defect 
stabilizes the foam for a few days. Bubble deformations induced by the defects contribute to this 
stabilization. The study also investigates disorder evolution around defects in a hexagonal lattice. 
Topological class distributions show an increase in their second moment with some cases showing 
late-stage decrease. The findings support simulations and offer insights into coarsening and transient 
phenomena in foams. The research investigates the topological correlations and variations from 
expected patterns, emphasizing the impact of the particular foam model employed. In addition, the 
results provide qualitative support for scaling states and suggest generality in defect behavior, and 
indicate a significant deviation from the expected stability patterns predicted by existing models. 
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1.  Introduction  

The existence of cellular patterns in nature can be 
observed in a variety of different places1), for example in 
magnetic domains, crystallized domains in ceramics, 
biological tissues, and soap froth. Over the past few years, 
two-dimensional soap froth has been widely investigated 
for its versatility2). In soap films, gas diffusion is 
controlled by pressure differences between neighboring 
cells, which leads to its evolution. A six-sided cell is stable 
if the internal pressure is the same on all six sides. Foam 
structure can be described in terms of its degree of 
'wetness'. When a liquid containing a large amount of 
bubbling gas is shaken, foam can be generated if there is 
a high liquid-to-gas ratio in the liquid. If there is enough 
liquid content in the mixture, foam appears as spherical 
bubbles that separate and rise rapidly upward, replacing 
the heavier liquid. In place of calling the system a foam, it 
is often referred to as froth or bubbly liquid. Based on the 
quantity and nature of surface-active components, bubbles 
in the froth either burst or accumulate into foam once they 
reach the liquid's surface. 

Foam structure can be described with reference to its 
degree of ''wetness''. By shaking a liquid containing a large 
amount of bubbling gas, foam can be generated if the 
liquid has a high liquid-to-gas ratio. Upon sufficient liquid 
content, foam appears as spherical bubbles that are 
separated and rise rapidly upward, replacing the heavier 
liquid. The system is often referred to as a froth, or a 
bubbly liquid, rather than a foam. It depends on the 
quantity and nature of the surface-active components 
present in the liquid and whether the bubbles in the froth 

will immediately burst or accumulate to form a foam once 
they reach the surface of the liquid. 

The lack of liquid causes bubbles to depart from their 
spherical shape, depending on their size distribution. 
Rather than having spherical bubbles, monodisperse 
foams containing less than 26% liquid squash the bubbles 
together3-5). Foams, however, are not mono-disperse, and 
those containing a liquid content greater than about 5% 
have bubbles that are roughly cylindrical in shape.bubbles. 
This system is referred to as a wet foam. 

Dry foams have very little liquid, which causes the 
bubbles to be distorted into approximately polyhedral 
shapes. Foams containing less than 1% liquid by volume 
are considered to be this type of foam. As the interfacial 
area between two adjacent gas bubbles is generally 
provided by polygonal liquid films of uniform thickness, 
polyhedral foams are generally made of polygonal liquid 
films6,7,8). Mechanical constraints determine the regularity 
of the structure that is produced by these films, even 
though it is obviously random. An angle of 120⁰ degrees 
must be maintained whenever three films intersect or meet. 
Plateau borders are formed by the intersection of these 
films' borders 9). A vertices is formed by the intersecting 
lines of the Plateau borders; due to mechanical constraints, 
the only stable vertex is the one that is composed of four 
borders. A foam structure in a polyhedral form can be 
distinguished by four junctions connecting groups of four 
bubbles: first, sets of four bubbles can be perpendicular to 
each other. Each of these four bubbles shares a vertex, 
each combination of two bubbles shares a plateau border, 
and each combination of two bubbles shares a film. 
According to Durian and Weitz 3), films are offset by 1200 
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degrees from each other, while borders are offset by 
tetrahedral degrees. Furthermore, understanding foam 
properties is one of the promising methods to overcome 
gas mobility challenges and use in nanotechnology where 
a more stable foam can be produced, and has the potential 
to be used for in the field of solar radiations applications.  

The main goal of this research endeavor is to conduct 
experimental investigations into the progression of 
disorder within an ideally six-fold coordinated wet foam 
that encompasses a singular point defect. In addition, the 
study examines specific topological correlations and 
patterns that have been previously explored and identified 
in some simulation models. By looking at experimental 
and simulation results, we aim to provide a comprehensive 
understanding of the underlying mechanisms and 
interactions influencing the foam's structural behavior and 
disorder development. We briefly discuss spatially 
separated point defects as well as their interactions. 
Following are the sections of the paper: Section 2 
describes the experimental setup. A discussion and results 
of the data are presented in section 3. Conclusions and a 
summary follow in section 4. 

  
2. Experimental Setup 

A foam sample can be trapped between two parallel 
plates to create 2D foam. As a result, perfectly ordered 
froth appears extremely difficult to achieve. Since bubble 
rafts are relatively short-lived at the free surface of a soap 
solution, they are not suitable for studying the evolution 
of a 2D system. Bubble rafts could be trapped between a 
glass cover plate and the surface of the solution to avoid 
this issue. These two-dimensional foam models are 
generated through the careful structural arrangement and 
interplay of bubble rafts, contributing distinctive 
properties that characterize the configuration of the 
obtained foam. A perfect crystal will, however, exhibit 
grain boundaries over a wide area even though bubbles 
naturally form a triangular lattice. 

The two-dimensional foam was restricted to a 
hexagonal shape by our methodology, resulting in a large 
perfect crystal symmetrical in shape; 

 

 
Fig. 1: Schematic illustrating the steps involved in creating a 
defect. First, a crystalline lattice is fabricated in region A, 

followed by bubbles being filled in regions B and C, leaving a 
gap behind. Dislocations are created as bubbles fill in the 

remaining space. 
 
 

The two-dimensional array of bubbles on the surface of 
soap solution has received considerable attention as a 
model system for condensed matter physics and as an 
example of two-dimensional foam in recent years. 
According to previous investigations, a triangular 2D 
foam of ideally six-fold coordination remained metastable 
for a short period of time before collapsing. One defect 
allowed the foam to maintain its stability in this respect 
despite the introduction of another11,12). 

In view of the meniscus, the ideal 2D foam is 
metastable as opposed to stable. It is evidenced by the fact 
that the ideal foam remained stable without capillarity (i.e. 
without air gaps and meniscus). A bubble exerts force on 
another based on capillarity and buoyancy. In a study by 
Nicolson and others, a potential exists between two 
bubbles. This analysis is not completely appropriate 
because our bubbles are pushing up against a glass cover 
and not in direct contact with air. Despite this, we use 
Nicolson's formulas because they are simple and because 
an even more precise method would require accurate 
knowledge of r/r0 in the initial foam, which we do not 
possess.  

 
3.  Results and Discussion 

As perfect as our ideal foam is in its 6-fold coordination, 
we cannot ignore the fact that the size and separation of 
these bubbles must also vary. The system seeks to reach 
equilibrium at r = r0 by small adjustments to the positions 
of the bubbles resulting in a small readjustment of their 
positions. This results in some bubbles becoming closer to 
one another while others become more separated. In order 
for the system to be more energy efficient, its global 
energy must be reduced. Over a long period of time, if the 
accumulation of local stresses within the region is 
continuous and consistent, it will lead to a progressive 
weakening in that region, making it more susceptible to 
various vulnerabilities. When local strain reaches a critical 
level in this area, cracks appear shortly before the foam 
breaks. 

Stress reaches its peak at about three-quarters of its 
critical strain (here force/bubble). It is possible that the 
bubble lattice will rupture if the internal tension exceeds 
this value. The cohesive strain is defined as the difference 
between r0 and r, which corresponds to the maximum 
force resisting the bubble (i.e. dV(r)/dr), which increases 
monotonically as the bubble diameter increases13,16). 

 The cohesive strain between two bubbles was defined 
by Shi and Argon 8 using the force-displacement law as 
the ratio of the critical separation distance between the 
initial equilibrium and the maximum resisted force, to the 
diameter of the free bubble. We are interested in 
examining how the size of the bubbles affects the lifetime 
of an ideal foam. According to the variation in the 
cohesive strain resulting from the bubble size, the lifetime 
of the ideal foam increases systematically with the bubble 
size. When the bubble size increases, the foam requires 
more strain before it breaks. As a result of the long 
accumulation time required for the local strain to reach 
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such a large value, the lifetime of the component will 
lengthen over time. With the current state of affairs, it is 
difficult to calculate cohesive strain with a high level of 
accuracy. The separation between bubbles in the initial 
foam cannot be precisely determined, but only that it 
exceeds r0. In their calculation, Nicolson and Lomer 
speculated about the possibility of a bubble raft with a free 
surface, with spherical caps on each bubble; however, in 
our case, the bubbles are pushed up against the flat cover 
glass, with the soap films meeting at a 90-degree angle. 
Consequently, this study uses different boundary 
conditions than previous studies. The present calculation 
has been made based on Nicolson's potential as an 
approximation. The only difference between Lomer's law 
and an adequate version is the magnitude of the repulsive 
contribution at r as opposed to above r0, and it is also more 
difficult to apply. We calculated r0 and r to correspond to 
the inter-bubble forces at different bubble sizes in order to 
calculate the cohesive strain. In this computation the 
surface tension of the solution was taken to be 27 mN/m, 
as discussed above, and Nicolson’s tabulations of β and A 
in 17)  

𝑉𝑉𝐴𝐴  =  (𝜋𝜋𝜋𝜋𝜋𝜋𝛽𝛽2)𝑅𝑅𝑅𝑅𝐾𝐾0 �
𝑟𝑟
𝑎𝑎
� , (1)  

where R is the radius of the bubble, σ the surface tension 
of the liquid, β the non-dimensional radius of the circle of 
contact between the bubble and the fluid surface (b/R), A 
constant chosen to satisfy the conditions at the inner 
boundary, and K0(r/a) the zeroth-order Bessel function 
where a is the Laplace constant (σ/ρ g)1/2 where ρ is the 
density of the soap solution. 

Based on our lifetime data variations, Figure 2 
illustrates a good general agreement regarding cohesive 
strains against bubble diameter. Nicolson's system differs 
from ours, which may explain the difference between the 
theoretical line and the experimental data. Our system is 
different from Nicolson's system discussed above, which 
may explain the difference between the theoretical line 
and the experimental data. 

 
Fig. 2: In hexagonal cells of different sizes, the lifetime of 

perfect bubble rafts varies as a function of bubble diameter. 
 

According to this definition, the lifespan is the duration 
during which strain accumulates until it reaches the 

maximum cohesive strain. Neither the air gap thickness 
between the soap solution and cover glass nor the 
thickness of the soap solution seems to have an impact on 
this. A reduction in the gap results in a more violent 
breakage of the foam. We conclude, therefore, that the air 
gap affects the force exerted on the bubbles, while the 
level of cohesive strain is independent of it. When the 
meniscus is placed at a long distance, it is necessary that 
the cover plate be angled at 90 degrees. It is important to 
note that the inter-bubble potential varies with the 
meniscus height. A thin air gap with a more curved 
meniscus must result in a greater force as proportional to 
dV(r)/dr.   

In this section, we will examine the topological 
correlations in 2D cellular systems. Several correlations, 
such as the Aboav-Weaire and Lemaitre laws, can be 
attributed to cellular networks' equilibrium nature. Thus, 
such correlations are useful to consider in our system. 
With the use of a certain soap detergent liquid, we were 
able to run the experiment for a long period of time before 
the cluster became disordered due to coarsening. This 
gives us the opportunity to observe the evolution of the 
cluster as it relates to the defect. Over a long period of 
time, different experiments were conducted with different 
topological defects.   

As an independent variable, time (t) plays a significant 
role in simulations 18). We will observe in our experiments 
that a number of other factors influence the time evolution 
of foams containing point defects. In accordance with 
simulations carried out in 9), the size of the cluster 
increases over time. Instead of using the length of time as 
an independent variable, the number of bubbles in the 
cluster (nc) may be used.  

In Fig. 3, based on simulations, we find that nc increases 
with time, as well as nb for foams containing large bubbles. 
The latter case shows a close relationship between the two 
quantities, supporting the conclusion from simulations 
19,20) that disorder in the foam propagates outward in 
response to the growth of the central bubble. Simulations 
18) confirm that the boundary is typically only a couple of 
bubbles wide. It is generally observed that nc increases 
smoothly linearly with nb, but we have found that in some 
experiments, nc can actually increase independently of the 
general trend with nb, as shown in Fig. 4. Our theory is 
based on the idea that the cluster was targeted or impacted 
by other regions, leading to a considerable disorder within 
those specific areas. 

In order to describe the temporal behavior of the present 
2D wet foam, a topological transformation can be used 16). 
Among the elementary topological processes, there are 
two primary ones: T1 (neighbor-switching, when one 
vertex shrinks to zero, and is replaced by another by its 
connecting vertex) and T2 (dispersion of cells in two 
dimensions). During the early stages of the evolution of 
certain point defects in 2D foam, distinct sequences of T1 
processes are observed. Cells in the foam exhibit unique 
patterns as a result of these sequences. The distribution of 
topological classes of bubbles in the cluster in these 
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patterns is deterministic, and thus µ’2 has exact values. 
The T2 process tends to occur rarely compared with 2D 
soap froths. As we will discuss later, this is due to the very 
small surface area of 3-coordinated bubbles, relative to 
that of bubbles in the body of the foam. 

Our foam is further complicated by the wetness of the 
current system. The wetness affects the shape of the 
plateau borders between the bubbles and the triangular 
shapes of the plateaus lose their triangular shapes as the 
three-fold borders merge 22). In scenarios of multiple 
borders, there can be often a degree of ambiguity 
regarding the specific adjacency of bubbles. However, it 
is important to note that even when such potentially 
complex situations are encountered in practical 
applications, they are consistently and effectively 
addressed clearly and straightforwardly. 

 The neighbors of the bubbles can be defined in two 
different ways; the first is by defining the touching 
bubbles and counting the number of bubbles that touch 
each other which is not significant in our 2D foam with 
wetness. The other method is to define neighbors based on 
the nearest bubbles surrounding each bubble, which is 
known as Voronoi Tessellation. The Voronoi tessellation 
neighbors are used in our study. It is very difficult to 
estimate the amount of liquid in our foam, so we compare 
it with pictures from simulation 21), and we estimate that 
the liquid fraction (ϕ) in all of our experiments is between 
0.97 and 0.93. 

 The topological and metrical statistics of the cluster 
are presented based on the different defects. Additionally, 
there are the number and area of bubbles as well as the 
second moment (µ2) of topological class distribution 
(coordination numbers). A diagram illustrating the 
topological distribution of bubbles belonging to the 
cluster can be seen in Fig. 5. There is a clear trend in the 
graph that the topological distribution function P(n) 
becomes increasingly large. It appears that nb increases 
over time (the cluster becomes more disordered as time 
passes). Eventually, P(n) became stationary. It is evident 
from Fig. 6 that the second moment of the topological 
distribution (µ2) is linearly increasing with the number of 
sides of the center bubble (nb) to a high value where a clear 
peak can be seen at a certain number of bubbles. 

Fig. 3: Variation of nc and nb as a function of time. 
 

 
Fig. 4: Comparing bubbles including clusters nc to bubbles 

nb that have topological defects nb as neighbors. 
 

 
Fig. 5: Topological class distribution P(n) for evolving 

bubbles containing a topological defect nb,  
 
 

 
Fig. 6: An analysis of the evolution of the second moment 

(µ2) in the cluster with respect to different foams. Data is 
presented for different point defect. 

 
In our experiments, we achieved diverging values of m2 

which are clearly consistent with those achieved in 
simulations 19). In the absence of the large bubble in the 
center, the second moment of the cluster (the boundary) 
appears to be saturated at a low value in comparison with 
µ2, but in accordance with simulations (Fig. 7). 

 

• Ordered Foam 

₀ Disordered Foam 
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Fig. 7: Different foams evolve at different speeds, and thus 

the second moment (2) of the cluster changes. Data pointe are 
for different point defect. 

 

 To determine whether our cluster around the defect 
complies with the Aboav-Weaire law, we now examine the 
cluster around the defect. As a result, cells that have few 
sides and many sides have neighboring cells that have few 
sides and vice versa 1,20).  

Previously, Le Caer and Delannay have shown that cells 
adjacent to an n-sided cell have a mean number of sides of 
1 23), represented by the following equation: 

 

𝑚𝑚(𝑛𝑛) = < 𝑛𝑛 > −𝑎𝑎 + <𝑛𝑛𝑛𝑛(𝑛𝑛)> − <𝑛𝑛>2+ <𝑛𝑛>𝑎𝑎 
𝑛𝑛

.    (2) 

 
This is the Aboav-Weaire law, which combines two 

relations, the semi-empirical Aboav’s law 22,24)            

𝑚𝑚(𝑛𝑛) =  𝐴𝐴 + 𝐵𝐵 
𝑛𝑛

,    (3) 

 
For infinite networks the Aboav-Weaire law has the 

form usually cited: 
 

𝑚𝑚(𝑛𝑛) =  6 − 𝑎𝑎 + 6𝑎𝑎+ 𝜇𝜇2 
𝑛𝑛

,   (4) 

 
that is due to the fact that Euler’s rule implies <n> =6 
 

< 𝑛𝑛 > ≤  6 −  12 
𝑁𝑁

.      (5) 

 
Our data for evolved clusters follows this relation, using 

nc as the numeric value for N. However, certain initial 
states do not follow Euler's rule. Additionally, we found 
that the data all agreed within 1% of Weaire's sum rule. 

It has been pointed out by Weaire that since m(n) is not 
very dependent upon n, deviations from the law may not 
be obvious if nm(n) is plotted against n, as is usually done. 
Accordingly, we plot the data for the various point defects 
as m(n) against 1/n. It is necessary for the slope and 
intercept of a linear fit to the data to be consistent in order 

to claim consistency with the Aboav-Weaire law. 
For each type of point defect, the average coordination 

number of bubbles neighboring n-coordinated bubbles, 
m(n), is plotted against 1/n in Fig.8. The data are shown 
in only one set in each case for clarity (usually that of the 
state at the largest nc (time), when the cluster should have 
evolved towards equilibrium). It is important to note that 
while there are considerable uncertainties regarding the 
data, there was a consistent trend observed across defects 
of different types, which suggests that the variations 
observed are indeed representative of defects of different 
types. For all types of topological defects (Fig. 8), there is 
a linear relationship between m(n) and 1/n. 

m
(n

)

0.1 0.2 0.3 0.4
5

6

7

8

9

1/n
 

Fig. 8: Variation of the average coordination number of 
bubbles neighboring n-coordinated bubbles, m(n), against 1/n. 

Different symbols are for different point defects. 

 
As a general rule, when determining the slope (am) and 

intercept (ac) of a linear fit, the values of a are mutually 
consistent, even if they differ according to the case in hand, 
allowing the Aboav-Weaire law to be applied. 
Occasionally, our 2D foams do not undergo T2 processes 
or cell division, which are not possible in some cases. This 
can explain the differences between unity and a. 

Topological defects, coupled pairs of dislocations, and 
bubbles of impurities (large and small), however, have 
consistently nonlinear relationships. A common feature of 
these types of defects at the end of the experiment was the 
presence of a population of three-coordinated bubbles. As 
a consequence, we concluded that the tiny 3-co-ordinated 
bubbles are responsible for these departures from linearity. 
As a result, we recalculated m(n) for the clusters, 
disregarding the 3-coordinated bubbles (concluded to 
have disappeared as a result of the T2 process). Thus, the 
data were computed in the same way as before. Both 
dislocations and vacancies exhibited linear plots, whereas 
the other types did not. A closer examination of the 
distribution of bubbles within the clusters was performed 
in order to further investigate these differences. In 
particular, we observed bubble clusters containing large n 
and large bubbles in the last clusters of dislocations, 
impurity bubbles, and topological defects (n≥7) in contact 
with one another. The correlations are not as described by 
the Aboav-Weaire law. Moreover, due to the positive 
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association between large bubbles, m(n≥7) is larger than 
it should be based on the trend for lower n. However, in 
the case of dislocations and vacancies, evolution does not 
lead to such associations. 

During our experiments, we have taken a randomly 
selected sample area of foam from within the hexagonal 
cell when the foam appears much more disordered (large 
P(6)). A total of 260 bubbles were present in this sample. 
A linear Aboav-Weaire plot was found for this sample (Fig. 
8), where the slope and intercept of a linear fit were 
consistent with each other. It is evident from the results 
obtained for some isolated defects that the nonlinear 
relationships may be due to the short time scales over 
which our foam evolved from specific initial conditions. 
There is no evidence that clusters are disordered in spite 
of dislocations and vacancies. P(6) values confirm that 
clusters are still ordered in the final stages. It is therefore 
rather surprising to find linear Aboav-Weaire plots from 
this perspective. There is no surprise that we observe 
discordances with the Aboav-Weaire law in some 
instances since polydisperse cell distributions are 
expected to depart from linearity in some instances 24). 
This large variation in size among the bubbles depicted in 
Fig. 8 could potentially considered as a contributing factor 
that accounts for the observed inconsistencies in the figure, 
mainly when n is set at 3 or surpasses 6. 

In another topological correlation involving random 2D 
cellular structures, µ2 varies with P(6) in an apparently 
universal manner. In statistical mechanics, this relation is 
equivalent to random tessellations of the virial equation of 
state. In spite of the fact that one might expect virial 
coefficients to differ from case to case, depending on the 
form of P(n), this is not the case: data for a very wide range 
of 2D mosaics can be fitted by a universal curve 
parameterized by 22,24,25). 

 
𝜇𝜇2𝑃𝑃(62) = 0.15 ±  0.014.   (6) 

 
Therefore, all P(n) examined belong to the same 

universality class 25). 

m
2

0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0

P(6)  
Fig. 9: The second moment (µ2), with P(6), varies as a 

function of the foam evolution. Different symbols are for 
different point defects. 

The relationship between µ2 and P(6) has been 
examined for all types of defects we have examined. As 
can be seen in Fig. 9, each cluster represents the evolution 
of a single defect type. It is reasonable to conclude that the 
data follow a common trend, but the value of µ2 for a given 
P(6) is greater than that for random 2D systems in 
equilibrium. According to Lemaitre's conceptual 
framework, our foams appear to follow the 'virial 
equation' for 2D random systems, but their virial 
coefficients differ from those previously published 25-28). 
This can be attributed to the following reasons: firstly, 
even at the end of the experiment, our clusters are very 
orderly. In addition, our foams have an unusually high 
value of µ2 due to the presence of 3-coordinated bubbles 
and the large n bubbles with which they are associated 
(P(6) preserves the high value of µ2). Even with all this, it 
is striking that, although our clusters have their own initial 
conditions, the data still collapse reasonably well into a 
common structure. There appears to be little impact on the 
initial conditions of the clusters. A comparison was also 
made of µ2 and P(6) for areas of foam in the initial orderly 
region (outside the clusters) which became generally 
disordered. These data were in excellent agreement with 
the trends shown in Fig. 7. 

In the present study, the large values of µ2 are due to 3-
coordinated bubbles, which in the case of froth disappear 
through T2 processes even at the late stages of the 
experiments. In order to investigate this further, we 
investigated P(n) for the entire foam in the hexagonal cell 
during its final evolution, when the foam appears to be 
generally highly disordered. P(n) for this case can be seen 
to be significantly different from the P(n) for the clusters 
about the defects. This result is in excellent agreement 
with Equation 6 and therefore with previous studies 19). It 
is not surprising that our clusters obey Lemaitre's law 
since it applies only to foam in equilibrium. 

As part of this section, we present data concerning all 
types of defects found in the area of the cluster (Ac). Using 
the image process system which has been mentioned in 
previous work, the areas of the cluster boundary (A/) and 
of the large central bubble (Ab) are also calculated for 
impurity bubbles and topological defects. It might be 
expected that the area of a cluster, Ac, increases linearly 
with the number of bubbles in the cluster (nc), as for 
dislocations. 

In the presence of topological defects, the cluster area 
and the cluster boundary area are plotted against 
nc.  There is a roughly linear relationship between Ac and 
A/ as nc increases, as would be expected. To compare with 
simulations 15,26) we plot Ab against nb.  As we expect Ab 
to be proportional to nb

2 in simulations, it is found that Ab 
is proportional to t2 while nb rises roughly linearly with 
time 19,30,31). It appears that the neighboring bubble areas 
decrease with time (increasing nb): nb is larger than one 
would expect for a given Ab due to the departure from the 
expected nb dependence. This suggestion is supported by 
the fact that A/ depends on nc. Thus, the large bubble in the 
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center determines the total area of the cluster. In the 
boundary, the average bubble area (A/) is normalized to 
the area of foam ordered at the same age in ordered areas 
(Ao), falling over time, but fluctuating around a constant 
value nb ≥ 20 (Fig. 10). The average value of A//Ao is 0.89 
± 0.06 for nb ≥ 20 (where µ2 is constant, indicating that the 
foam has reached a steady state).  This value is quite 
close to values (0.88 ± 0.08) found in simulations 16), 
although this value represents the average area of a bubble 
in the boundary while our value represents the average 
area per bubble, including Plateau borders which are not 
insignificant in our wet foam. 

nb

10 20 30 40 50
0.8

0.9

1.0

a'
/a

0

 
Fig. 10: An evolution of bubble sizes in a foam boundary. It 
appears that the data points are fluctuating around a stable 

value. Different symbols are for different point defects. 

 
Geometrical arguments suggest that the number of 6-

coordinated cells in the boundary of the cluster n6 should 
scale as 𝜋𝜋�𝑛𝑛𝑐𝑐  (to within a numerical factor of order 
unity). In the early stages of the experiments, the 6-
coordinated cells around the edge of the cluster are all 6-
coordinated cells in the cluster.  In the late stages of the 
experiments, a few 6-coordinate cells appear inside the 
cluster. In order to obtain a reasonable estimate of nb, we 
can take n6 as the total number of 6-coordinated cells in 
the cluster. Our study examines the relationship between 
n6 and nc by examining the evolution of a single cluster 
for each type of defect 32-33,34,35).  According to Fig. 9, n6 
grows smoothly with nc across all sets of data. The 
variation found, however, deviates from the expected 
dependence. The continuum treatment inherent in 
geometrical arguments must fail in low nc because the area 
available for internal bubbles is limited. As a result of the 
irregular outline of large clusters, there is an increased 
probability of a six-coordinated cell clustering in the 
cluster (as well as a greater number of bubbles in the six-
belt). 

 

4.  Summary and Conclusions 

Two-dimensional foam stability confined to a rigid cell 
has been investigated. Foams of this particular type are 
typically known to have a metastable nature, which 
implies that they exist mostly in a relatively unstable state 

that can vary over time. In the case of foams with 6-fold 
coordination, their metastability leads to breakage around 
140 minutes. While these foams are evolving towards 
their breaking point, there will be a consistent increase in 
the bubble size throughout their lifetime until the ultimate 
breakdown occurs. In contrast, introducing a dislocated 
point or defect stabilizes the foam for a few days during 
the period of gas disproportion. Bubble deformations 
caused by elastic stress fields stabilize defects. When the 
system with a defect tries to achieve equilibrium packing, 
the energy contribution increases because bubble surface 
energy and deformation are quadratic. 

The present study also investigated the evolution of 
disorder around single-point defects in an isotropic 
hexagonal lattice. µ2 increased with time for all types of 
defects in the topological class distribution. In some cases, 
a decrease was also observed at later stages. The decreases 
are not due to generic factors, but rather to the model foam 
used. Computer simulations support this conclusion. In 
foam containing multiple dislocations, they are 
coarsening which leads to a definite peak in µ2. Stavans 
and Glazier's 2D soap froth transient may be explained by 
the latter observation. A further investigation of the 
evolution of clusters, the cluster boundary, and the defect 
has been conducted regarding impurities and topological 
defects. As a result of our study, we conclude from 
simulations that the area of disorder that develops around 
an initial defect (called the boundary) can scale. Various 
bubbles occur at this boundary; topological classes reach 
a stationary state with a constant second moment µ2, and 
bubble areas remain constant. Our work and simulation 
results have different wetness values, resulting in various 
quantitative differences. Furthermore, we have 
investigated various topological correlations found in 
random 2D foam models in addition to defects in 
disordered foam models. Based on the maximum entropy 
argument, these correlations, like Aboav-Weaire and 
Lemaitre laws, pertain to statistical equilibrium. Aboav-
Weaire plots can emerge in some systems, such as those 
containing a defect at the outset. We were unable to verify 
these correlations' generic origins due to limited system 
statistics. While the Lemaitre law collapses smoothly for 
all types of defects (m2 against P(6)), this law shows a 
distinct variation. It exists because µ2 is higher than 
expected for P(6) given the high values of µ2. Another 
consequence resulting from the nature of the mode foam 
was added. We concluded, however, that due to the highest 
degree of disorder observed, the plot with multiple 
dislocations may be closer to the universal relationship 
due to the collapse. 
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