Deformation Behavior of Polyurethane Adhesive in the Single-Lap Joint Based on the Microbeam X-ray Scattering Method

Obayashi, Kakeru Graduate School of Engineering, Kyushu University

Kamitani, Kazutaka Institute for Materials Chemistry and Engineering, Kyushu University

Chu, Chien-Wei Institute for Materials Chemistry and Engineering, Kyushu University

Kawatoko, Ryosuke Graduate School of Engineering, Kyushu University

他

https://hdl.handle.net/2324/7172245

出版情報:ACS Applied Polymer Materials. 4 (8), pp.5387-, 2022-08-12. American Chemical Society

バージョン:

権利関係:This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of ACS Applied Polymer Materials, copyright ©2022 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see Related DOI. Supporting Information

Deformation behavior of polyurethane adhesive in the single-lap joint based on the microbeam X-ray scattering method

Kakeru Obayashi¹, Kazutaka Kamitani², Chien-Wei Chu²,

Ryosuke Kawatoko, Chao-Hung Cheng¹, Atsushi Takahara³, Ken Kojio^{1,2,3,4,5*}

¹Graduate School of Engineering, ²Institute for Materials Chemistry and Engineering, ³Research Center for Negative Emission Technology, ⁴World Premier International Research Center Initiative -International Institute for Carbon-Neutral Energy Research, ⁵Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan Phone: +81-92-802-2515, Fax: +81-92-802-2518

*Author to whom correspondence should be addressed.

kojio@cstf.kyushu-u.ac.jp

Figure S1. Synthesis scheme of the PPG-MDI-PU adhesive used in this study.

Figure S2. The dynamic viscoelastic properties of the PPG-MDI-PU adhesive used in this study.

Figure S3. Measurement positions for SAXS of the PPG-MDI-PU adhesive during cyclic lap shear deformation.

Figure S4. 1D WAXS profile of PPG 1000.

Figure S5. 1D SAXS profiles of the (a) minor axis and (b) major axis direction at q = 0-0.20 nm⁻¹ for the PPG-MDI-PU adhesive at various strains.

Figure S6. Schematic illustration of the deformation mechanism of the cylindrical hard segment domains in the microphase-separated structure of the PPG-MDI-PU adhesive during the shear deformation process. (a) and (b) indicates two representative orientation state of the cylindrical hard segment domains.

Figure S7. Cyclic stress–strain curves of the PPG-MDI-PU adhesive during cyclic lap shear deformation.

Figure S8. Image of the PPG-MDI-PU-SLJ sample in the initial state using cyclic test.

Figure S9. Strength of the singularities in SLJ.