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ABSTRACT

Fast and accurate prediction of high-speed flowfields is of particular interest to researchers in fluid science and engineering to enable efficient
design exploration and knowledge discovery. The reliability of prediction is another important metric for the performance of prediction
models. While predictive modeling approaches with and without reduced-order modeling (ROM) via machine learning techniques have
been proposed, they are inherently subject to loss of information for ROM-based approaches and substantial computational costs in model-
ing for non-ROM-based approaches. This paper proposes an accurate ROM-based predictive framework with minimum information loss
enabled by incorporating Gaussian process latent variable modeling (GPLVM) and deep learning. The stochastic nature of GPLVM allows
for uncertainty quantification that indicates the degree of prediction error or reliability of prediction without requiring validation data. The
applicability for supersonic/hypersonic viscous flowfields has been examined for two cases including axisymmetric intakes and two-
dimensional fuel injection in scramjet engines by comparison with other predictive models. Comparable or superior prediction accuracy over
the other models has been achieved by the proposed approaches, demonstrating its high potential to serve as a new competent, data-driven
technique for fast, accurate, and reliable prediction of scramjet flowfields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148974

NOMENCLATURE

CFD Computational fluid dynamics
CNN Convolutional neural network
DMD Dynamic mode decomposition

GPLVM Gaussian process latent variable model/modeling
MAE Mean absolute error

MAPE Mean absolute percentage error
MLP Multilayer perceptron
POD Proper orthogonal decomposition
RBF Radial basis function

RMSE Root mean squared error
RMSPE Root mean squared percentage error
ROM Reduced-order model/modeling
UQ Uncertainty quantification

I. INTRODUCTION

Supersonic combustion ramjet (scramjet) engines draw attention
as a promising propulsion technology for hypersonic atmospheric

flights in high-speed point-to-point transportation as well as access-
to-space transportation. As a class of airbreathing propulsion, scram-
jets are beneficial in terms of efficiency, maneuverability, and safety.1

To enable space transportation, they need to be employed in combi-
nation with other propulsion systems as combined cycles, e.g.,
rocket-based and turbine-based combined cycles (RBCC and TBCC,
respectively) due to lack of propulsive ability outside the hypersonic
regime. A feasibility study of RBCC-based space transportation sys-
tems has revealed their advantages over conventional systems using
only rocket engines in the case of two-stage-to-orbit (TSTO).2

Scramjet research and technological development have been con-
ducted since the 1940s and reached a technological level where nota-
ble milestones have been marked such as the first successful in-flight
supersonic combustion in the HyShot program3 and the world’s fast-
est flight at a Mach number of 9.68 by X-43A in the Hyper-X pro-
gram.1 Toward further development and utilization of scramjet
engines, researchers and engineers endeavor to advance methodolo-
gies for effective design and knowledge discovery from the viewpoints
of both design and physics.
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Various approaches have been proposed and employed for
designing scramjet engines and their components (e.g., intake, fuel
injector, combustor, and nozzle). Analytical and numerical techniques
are commonly employed in conjunction with mathematical algo-
rithms or empirical approaches. Design optimization is a capable
alternative for both design exploration and knowledge discovery.
Multi-objective design optimization studies have been conducted via
evolutionary algorithms for scramjet intakes,4–6 fuel injectors,7,8 com-
bustors,9,10 and nozzles.11,12 Fujio and Ogawa have conducted data
mining for the outputs of intake design optimization to reveal the
physical rationales that account for the optimality of the resultant
design.13 These studies, which would otherwise be difficult due to sub-
stantial costs for computational fluid dynamics (CFD) simulations,
have been realized by employing machine learning techniques includ-
ing surrogate modeling, which can replace CFD simulations with pre-
dictions from machine learning. While surrogate models allow for
prompt assessments of performance with respect to design criteria of
interest, they do not provide direct insight into the rationales behind
the results obtained from physics and engineering perspectives. This
limitation has motivated researchers to develop new approaches that
can retain and provide detailed physical information comparable to
that from CFD simulations.

Fast prediction of flowfields is a promising approach to enable
low-cost yet high-fidelity assessments in design exploration and
knowledge discovery in fluid science and engineering.14 Predictive
modeling approaches can be classified into two groups, depending on
the involvement of reduced-order modeling (ROM) techniques in the
approach, namely, ROM-based and non-ROM-based approaches.
ROM is a dimensionality reduction technique to extract meaningful
features and patterns from flowfield data as low-dimensional represen-
tations while the flowfield data are recognized as high-dimensional
data. Mode decomposition techniques such as proper orthogonal
decomposition (POD)15 and dynamic mode decomposition (DMD)16

are often employed for the ROM of flowfield data. Comprehensive
reviews of these techniques in fluid dynamics are provided by Taira
et al.17 and Rowley and Dawson,18 and studies on their usage and
applications have also been reviewed by Taira et al.19 These ROM
techniques have been adopted for the construction or prediction of
flowfields based on reduced information. Bui-Thanh et al. employed
gappy POD to construct compressible flowfields over airfoil based on
surface pressure distributions.20 Mifsud et al. reported a predictive
framework that combines POD and linear regression to predict high-
speed external flowfields.21 Other studies have conducted prediction of
high-fidelity flowfields based on simplified or low-fidelity flowfields
obtained via numerical simulations.22,23 While these studies yielded
accurate construction of high-fidelity flowfield data, a large number of
training data were commonly required. For high-speed internal flow-
fields, Sun et al. employed POD and radial basis function (RBF) to pre-
dict inflow-dependent ramjet inlet flowfields characterized by curved
shock waves and shock/boundary-layer interaction.24 The study
reported the difficulty in predicting shock trains and separation shock
waves while demonstrating the applicability of the RBF-POD predic-
tive framework for such flowfields. Brahmachary et al. performed the
prediction of scramjet intake flowfields for various shapes employing a
similar predictive approach, also reporting the difficulty in predicting
shock waves.25 Such difficulties can be attributed to the fact that con-
ventional ROM techniques employed in these studies discard the

information in lower modes because what they solve are not ROM
problems but decomposition problems. Another potential factor of the
difficulty is that these approaches rely on linear superimposition of
modes in prediction or reconstruction of flowfields despite highly non-
linear variations in physical properties associated with complex phe-
nomena such as shock waves. Therefore, accurate ROM techniques
that can resolve and represent nonlinear behavior are required to
improve the prediction performance of ROM-based predictive
frameworks.

Non-ROM-based predictive approaches often employ deep-
learning techniques that are capable of predicting highly nonlinear and
discontinuous distributions. Fujio and Ogawa employed a deep-
learning model for the prediction of scramjet intake flowfields by using
design variables as inputs.26 Accurate prediction of flowfields in the
presence of shock waves was achieved owing to the flexible fitting capa-
bility of deep learning, while the cost of model training was relatively
high even with the acceleration using graphics processing units
(GPUs). The predictive approach has been employed for the prediction
of fuel injection flowfields inside a scramjet combustor too.27

Convolutional neural networks (CNNs) have also been employed for
the prediction or reconstruction of scramjet flowfields. Kong et al.
employed a CNN to predict velocity fields based on wall pressure pro-
files,28 and Chen et al. employed it to reconstruct scramjet combustor
flowfields to enable real-time monitoring.29 Similar studies have been
conducted by using various deep-learning techniques,30,31 and Li et al.
summarized the recent progress in deep-learning techniques for flow
prediction and control.32 Non-ROM-based models, in particular deep-
learning-based models, feature high accuracy even for complicated
flowfields that would require larger computational costs for training,
whereas ROM-based models are characterized by high computational
efficiency with reasonable accuracy. High accuracy comparable to that
of deep-learning models and low computational cost comparable to
ROM-based models represent the ideal balance for the objective of pre-
dictive modeling using state-of-the-art machine-learning techniques.

In addition to computational efficiency and prediction accuracy,
the reliability of prediction is another important criterion for the utili-
zation of predictive modeling. Uncertainty quantification (UQ) pro-
vides a means to assess the reliability of flow predictions without
additional true evaluation (i.e., CFD simulation) of flowfields. Despite
considerable benefits of knowing the reliability of the prediction prior
to using the prediction outputs, few studies have conducted uncer-
tainty quantification of flow prediction. Qiu et al. have employed a
model incorporating CNN into the Bayesian theory to perform both
prediction and uncertainty quantification.33 Fujio and Ogawa
employed an ensemble-based method with Monte Carlo Dropout and
a distance-based method for deep-learning prediction, and the results
of the former approach indicated the difficulty in predicting
boundary-layer separations caused by shock interactions despite the
significant additional computational cost it required.26 Another nota-
ble advantage of UQ is that it provides useful insight into the error dis-
tributions for the improvement of model performance. Thuerey et al.
discussed the importance of comprehension of the sources of predic-
tion errors to improve the model prediction accuracy.34 Therefore, the
prediction model that is capable of quantifying the prediction uncer-
tainty can assure reliable use of prediction.

A nonlinear ROM technique, Gaussian process latent variable
model (GPLVM), also attracts attention of researchers. While POD is
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a linear ROM technique, GPLVM acquires the capability of nonlinear
ROM by introducing nonlinear kernel functions and the assumption
of Gaussian distributions, and it is thus known as probabilistic kernel
principal component analysis.35 Reduced-order modeling is performed
by mapping the multi-dimensional data onto a latent variable space,
where the dimensions of the latent variable vectors can be determined
by the users. Nakaya et al. employed GPLVM to investigate transient
dynamics of hydrogen combustion by analyzing the latent variables.36

Nishimoto et al. employed an extension of GPLVM called shared
GPLVM to investigate the effect of penetration height on flame stabil-
ity in supersonic combustion.37 These studies have shown that the
latent variables obtained via GPLVM can well represent the physical
characteristics of the original data. These studies demonstrate the
prominent capability of GPLVM as a ROM technique, but it has not
been employed for predictive frameworks of flowfields. Further to the
notable performance of GPVLM for dimensionality reduction,
GPLVM is capable of quantifying the uncertainty in reconstruction
from the latent variables to the original data. This is another desirable
characteristic that promotes employment of GPLVM in frameworks
of flowfield prediction.

The present study proposes a ROM-based predictive framework
that employs Gaussian process latent variable models as the ROM
technique and deep learning as the predictive capability, aiming to
realize fast, accurate, and reliable prediction of flowfields inside scram-
jet engines. The prediction model is capable of estimation of prediction
uncertainty owing to the stochastic characteristics of GPLVM. Case
studies are conducted for axisymmetric scramjet intake flowfields and
two-dimensional fuel injection flowfields to verify the applicability and
to investigate the characteristics of the predictive framework. The per-
formance is examined by comparison with the POD-based and deep-
learning-based prediction models, which were previously proposed to
predict supersonic/hypersonic flowfields.25,26 Uncertainty quantifica-
tion is also performed to assess the potential prediction errors. The
selection of kernels and characteristics of the proposed framework are
discussed to enhance its applicability and capability in the end.

II. METHODOLOGIES
A. Reduced-order-modeling-based predictive
framework

The present study proposes a reduced-order-modeling-based
predictive framework for fast, accurate, and reliable prediction of
supersonic/hypersonic flowfields. Gaussian process latent variable
modeling (GPLVM) is employed for dimensionality reduction and
combined with a deep learning method, in particular, multilayer per-
ceptron (MLP) to impart the capability of prediction. GPLVM is a
nonlinear ROM technique that suitably serves for the purpose of this
because of minimum loss of information in dimensionality reduction
incurred in the training process. In addition, GPLVM allows for
assessment of uncertainty of the data reconstruction because it is a sto-
chastic process that provides the outputs in the form of probability.
The dataset of flowfields is compressed into sets represented by latent
variables, which are fed to reconstruct flowfields. A regression model
is thus employed to predict sets of latent variables by using the design
variables as the inputs. The overview of the present model is schemati-
cally shown in Fig. 1. Due to the difficulty in comprehending the dis-
tributions and characteristics of latent variables, a deep learning model
is employed to associate the latent variables (targets) with the design

variables (inputs) so as to allow for flexible fitting without preliminary
knowledge of the relation between targets and features. The framework
yields a model that predicts one flow variable and multiple models are
thus generated to predict multiple variables of flowfields.

1. Gaussian process latent variable modeling

Gaussian process latent variable modeling is a nonlinear ROM
technique using a Gaussian process and known as an unsupervised
Gaussian process.35 While other ROM techniques such as POD and
DMD perform dimensionality reduction by solving mode decomposi-
tion problems and discarding lower modes, GPLVM solves the dimen-
sionality reduction problems themselves with a specified number of
latent variables. This effectively allows GPLVM to minimize the loss of
data in reduced-order modeling, in contrast to other ROM methods,
which inevitably incur some losses in the information of the dataset.
The posterior probability of the targets Y for given latent variables Z is
expressed as

pðYjZÞ ¼
YD
d¼1

N yðdÞj0;Kz

� �
; (1)

where N is a multivariate Gaussian distribution, D is the dimension-
ality of data, Y and yðdÞ represent a matrix of target data and the dth

column, respectively. Therefore, Y and yðdÞ are a matrix of flowfield
data and the dth flowfield data in the present study. Z is the matrix of
latent variables and Kz is a kernel matrix.

Reconstruction and prediction of flowfields are performed by
feeding a set of latent variables, and GPLVM provides the predicted
probability distribution of the target as follows:

FIG. 1. Schematic of ROM-based predictive framework using GPLVM and deep
learning.
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pðy�jz�;Y;ZÞ ¼ N kT�K
�1
z Y; k�� � kT�Kz

�1k�
� �

; (2)

k� ¼ kðz�; z1Þ; kðz�; zwÞ;…; kðz�; zNÞð Þ; (3)

k�� ¼ kðz�; z�Þ; (4)

where the subscript � denotes the targeted case andN is the number of
samples or the size of the dataset. k represents the kernel function. The
expectation and variance of the predicted probability distribution are
then regarded as the predicted or reconstructed flowfield and the
uncertainty of prediction, respectively. From Eq. (2), the expectation
and variance can be expressed as follows:

EðpðYjZÞÞ ¼ kT�Kz
�1Y; (5)

VðpðYjZÞÞ ¼ k�� � kT�Kz
�1k�: (6)

Kernel functions indicate the similarity between the dataset and
the input data and determine the characteristics of the model. In the
present study, five kernel functions summarized in Table I are consid-
ered with hyperparameters h0 and h for the ROM of flowfields.

The training of GPLVM is performed to maximize the probabil-
ity in Eq. (2). Gradient-based optimization minimizes the loss function
LGP, which is defined as follows:

LGP ¼ log pðYjZÞð Þ
¼ �ND

2
log ð2pÞ � D

2
log jKzj � 1

2
tr Kz

�1YYT
� �

: (7)

Limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm38 is employed, and the modeling and prediction of GPLVM
are performed by using a Gaussian process framework GPy.39

2. Deep learning

Multilayer perceptron (MLP) is employed for deep learning to
predict latent variables from design variables. Deep learning operation
is performed by using Tensorflow.40 The architecture of MLP in the
present study is schematically shown in Fig. 2.

The input layer receives a set of design variables as the inputs.
Hidden layers then play a role in mapping the inputs to the output
space. The numerical process in a hidden layer is expressed as follows:

h1j ¼ f w1
j xj þ b1j

� �
; (8)

hlj ¼ f
XNl�1

k¼0

wl
jkh

l�1
k þ blj

0
@

1
A; (9)

where xj is the jth input, Nl�1 is the numbers of neurons in the (l � 1)
th layer, blj is the bias for the jth neuron in the lth layer, and hlj is the
output from the jth neuron in the lth layer. f represents the activation
function, for which rectified linear unit (Relu function) is used in the
present study. The numbers of layers and neurons in each layer are
determined to be 5 and 1024, respectively, based on a preliminary
investigation conducted by the authors.

The training of MLP is performed by minimizing the loss func-
tion defined in Eq. (10) via a stochastic gradient descent algorithm
Adam (adaptive momentum estimation),41

LMLP ¼ 1
NNlv

XN
m¼1

XNlv

n¼1

~y�m;n � y�m;n

� �2 þ kwTw; (10)

where N and Nlv are the numbers of training data and latent variables,
respectively. ~y and y are the predicted and actual values of target data,
and the superscript � represents the standardized properties. The sec-
ond term in Eq. (10) is a regularization term to mitigate the risk of
overfitting. k is the coefficient that determines the degree of regulariza-
tion (10�5 in the present study), and w is the matrix composed of the
weights and biases of neurons. The training process is iterated for
10 000 epochs with a learning rate of 10�5.

TABLE I. Kernel functions considered in the present study.

Name Definition

RBF
kðx; x0Þ ¼ h0 exp

jx � x0j
h

� �
Matern52

kðx; x0Þ ¼ h0 1þ
ffiffiffi
5

p jx � x0j
h

þ 5jx � x0j2
h2

� �
exp �

ffiffiffi
5

p jx � x0j
h

� �
Matern32

kðx; x0Þ ¼ h0 1þ
ffiffiffi
3

p jx � x0j
h

� �
exp �

ffiffiffi
3

p jx � x0j
h

� �
Exponential

kðx; x0Þ ¼ h0 exp � jx � x0j
h

� �
Linear kðx; x0Þ ¼ h0xx0

FIG. 2. Schematic of MLP architecture.
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3. Error measurements

Various indicators of prediction errors are considered in this study
because error assessment based on a single indicator cannot adequately
represent the characteristics and tendencies of prediction errors. The
error measurements considered are summarized in Table II. Among
these error metrics, the mean absolute error (MAE) is mainly employed
because it allows for intuitive understanding of the degree of prediction
error.

B. Target configurations

The capability of the present ROM-based predictive framework
is assessed through application to two cases, namely, (1) axisymmetric
intake flowfields and (2) two-dimensional fuel injection flowfields in a
scramjet engine. The intake flowfields are characterized by the large
variation in the intake geometry and subsequently the shock structure,
whereas the injection flowfields require prediction of the distributions
of various chemical species in the mainstream as well as injection
plume. The framework yields models that predict static temperature,
static pressure, and velocity components individually, and the other
flow properties such as Mach number and density can be calculated
subordinarily from the predicted variables. Mass fractions of helium
(injectant) and oxygen are predicted additionally for injection
flowfields.

1. Axisymmetric intake

The present study considers a three-ramp axisymmetric configu-
ration, which was employed in the SCRAMSPACE program.42 The
schematic of the geometry is shown in Fig. 3 with its design parame-
ters. Among the eight design variables, six parameters, namely, h1,

Dh2; Dh3, l2, l3, and rc, are used to determine the intake shape and the
ranges of design variables are bounded as shown in Table III to allow
for reasonable variations in intake geometries. The intake entrance
radius ri is fixed at 0.075m to ensure a constant incoming mass flow
rate. The remaining design parameter l1 is determined by the geomet-
ric relations of the other parameters.

The operating conditions are calculated assuming a starting point
of scramjet operation at an altitude of 30 km on an ascent trajectory
with a constant dynamic pressure of 49.7 kPa. The condition is sum-
marized in Table IV. The Reynolds number is calculated by using the
intake entrance radius as the reference length.

This configuration was also used as the subject of flow prediction
in the other study conducted by the authors26 and Brahmachary
et al.25 The former employed direct prediction via MLP, whereas the
latter employed a POD-based predictive framework. These models are
employed to be compared with the performance of the present model.

2. Two-dimensional fuel injection

The flowfields caused by two-dimensional fuel injection (Fig. 4)
are considered as another subject of the present study. The injection is
controlled by its pressure and angle (pj and aj, respectively) with their
bounds, as summarized in Table V. The inflow conditions are shown

TABLE II. Error measurements considered in this study.

Name (abbreviation) Definition

Mean absolute error (MAE)
MAE ¼ 1

N

XN j~y � yj
Mean squared error (MSE)

MSE ¼ 1
N

XNð~y � yÞ2

Root mean squared
error (RMSE) RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XNð~y � yÞ2
r

Mean absolute
percentage error (MAPE) MAPE ¼ 1

N

XN j~y � yj
jyj

Root mean squared
percentage error (RMSPE) RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN ~y � y
y

� �2
s

FIG. 3. Schematic of intake geometry and design parameters.

TABLE III. Upper and lower limits of design variables (intake).

Design variable Unit Lower limit Upper limit

h1 deg 3.5 6.5
Dh2 deg 2.5 5.5
Dh3 deg 0.5 4.0
l2 m 0.03 0.07
l3 m 0.01 0.05
rc m 0.02 0.04

TABLE IV. Freestream conditions (intake).

Altitude (km) 30.0
Mach numberM1 7.7

Static pressure p1 (Pa) 1,197
Static temperature T1 (K) 226.5
Reynolds number Re1 2.172 �105

FIG. 4. Schematic of two-dimensional fuel injection and design parameters.
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in Table VI, determined based on the preceding experiment conducted
by Inoue et al.,43 and the airflow consists of oxygen and nitrogen with
mass fractions of 0.23 and 0.77, respectively. The helium is injected at
a sonic speed from the injector for comparison with the experiment.
The area of the injector (with the width perpendicular to the direction
of injection, wj) is adjusted according to the injection pressure to
ensure a constant mass flow rate of the injectant, i.e., 31.1 kg/(s m),
which would yield a fuel/air equivalence ratio of 0.142, if hydrogen
were used as the fuel. The Reynolds number based on the distance
from the leading edge of the flat plate to the center of the injector slot
is 1:81� 107.

C. Computational fluid dynamics

The steady-state flowfields inside scramjet intakes and around
fuel injection are calculated by solving the Reynolds-averaged
Navier–Stokes (RANS) equations by utilizing ANSYS Fluent 2021
R144 with the shear-stress transport (SST) k� x turbulence model
proposed by Menter.45 The flowfields are calculated assuming an ideal,
calorically perfect gas with a constant specific heat at constant pressure
and a thermal conductivity of 1006.43 J/(kg K) and 0.0242W/(m K),
respectively. The viscosity is calculated via Sutherland’s law. The flux
computation is performed by using AUSMþ (advection upstream
splitting method plus) with second-order spatial accuracy. Spatial dis-
cretization is achieved by the Green–Gauss cell-based method. The
computational domain is discretized by structured grids generated by
an open-source mesh generator Gmsh,46 which has the capability of
mesh generation via scripts. The detailed information on the computa-
tional setups and meshes as well as the results of the validation study
for each case are presented in Secs. IIC 1 and IIC 2.

1. Axisymmetric intakes

The dataset of axisymmetric intake flowfields employed in the
present study was generated in the preceding study conducted by Fujio
and Ogawa,26 comprising 500 geometries for training and 100 for eval-
uating the performance for unseen geometries. The intake surface is
assumed to be an isothermal wall with a static temperature of 300K.

Convergence has been ensured for all cases so that the energy residual
becomes smaller than 10�5 or the residual of mass flow rate decreases
within 0.1%. The nominal computational mesh consists of 120 000 cells
(301 nodes along the centerline and the intake surface and 401 nodes
in the radial direction) and the numbers of cells and nodes in each
direction are fixed for all cases. The mesh for the baseline case is dis-
played in Fig. 5 along with the boundary conditions. The mesh resolu-
tion is determined by examining the flowfields and performance with
those obtained with the coarse and fine meshes comprising 30 000 and
480 000 cells, respectively. The exit flow profiles are compared in Fig. 6.

The validation study is conducted by comparison with an experi-
mental result for an axisymmetric three-ramp intake conducted in the
SCRAMSPACE program.47 The wall pressure coefficients calculated
from the numerical simulation using the computational setups
described above are compared with those obtained from shock tunnel
testing in Fig. 7. Reasonable agreement can be seen between the CFD
and experimental results, verifying the suitability of the present
numerical arrangements for axisymmetric three-ramp intakes.

TABLE V. Upper and lower limits of design variables (fuel injection).

Design variable Unit Lower limit Upper limit

pj Pa 5:0� 104 2.0 �105

aj deg 30 90

TABLE VI. Inflow conditions (fuel injection).

Flow condition Inflow Fuel injection

Gas O2/N2 He
Mach numberM1 3.76 1
Static pressure p1 (Pa) 1:3� 104 � � �
Static temperature T1 (K) 74.4 214
Fuel mass flow rate _mHe ½kg=ðs �mÞ� 31.1 0.194
Reynolds number Re1 1:81� 107 � � �

FIG. 5. Computational mesh and boundary conditions (baseline intake geometry,
nominal mesh resolution).26

FIG. 6. Comparison of intake exit flow profiles among meshes with different
resolutions.26

FIG. 7. Comparison of wall pressure coefficient distributions between CFD (pre-
sent) and experiment47 (intake).
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2. Two-dimensional fuel injection

The dataset of two-dimensional fuel injection employed in the
present study was generated in the preceding study conducted by
Akiyama and Ogawa,27 comprising 300 cases for training and 100 for
evaluating the performance for unseen cases. The convergence crite-
rion of the numerical simulations is set to 10�3 for the energy residual
and 10�3 kg/s for the difference in mass flow rate between the inflow
(total of mainstream and injection) and outflow. The boundary condi-
tions are depicted in Fig. 8 with the nominal mesh and design parame-
ters. The bottom wall is assumed to be an adiabatic wall and the
injection slot is taken to be a slip wall.

A preliminary study has been performed to examine the validity
of the numerical modeling as well as to determine a suitable resolution
that can adequately resolve the flowfield at reasonable computational
cost. The computational meshes consist of 66 280 cells for the coarse
resolution, 136 473 cells for the nominal resolution, and 498 830 cells
for the fine resolution. Figure 9 displays the wall pressure distributions
for each resolution and that of the experimental measurement
reported in the preceding work.43 The pressure distribution with the
nominal mesh agrees with that of the fine mesh, indicative of the rea-
sonable resolution provided by the nominal mesh. Based on this

analysis, the nominal mesh resolution has been chosen for the present
study. The CFD result also agrees with the experimental result, indicat-
ing the validity of the numerical setup.

III. RESULTS
A. Axisymmetric intakes

1. Performance of ROM and prediction

The results are discussed for static temperature T first, followed
by a summary of the results of the other flow properties, namely static
pressure p and axial and radial velocity components u and v, respec-
tively. This is because static temperature distributions represent the
effects of both shock waves and boundary layers. The performance of
GPLVMs in producing ROM of intake flowfields is evaluated based on
reconstruction errors, which are defined as the difference between
original flowfields and the flowfields returned from GPLVMs using
the actual latent variables as inputs. The average reconstruction errors
are compared among GPLVMs with various kernels and POD for
static temperature with respect to the number of modes Nm or that of
latent variables NLV in Fig. 10. Except for the case of GPLVM with the
linear kernel, GPLVMs have achieved more accurate dimensionality
reduction than POD. The close overlap between GPLVM with the lin-
ear kernel and POD is reasonable because it is known that GPLVM
with the linear kernel and automatic relevance determination (ARD)
is equivalent to principal component analysis. The difference in the
kernel has been found to affect the ROM performance of GPLVM,
and the exponential kernel has achieved the minimum reconstruction
error among the kernels examined in the present study. While the
accuracy of POD increases with the number of modes used for recon-
struction, the reconstruction accuracy becomes nearly independent of
the number of latent variables in the case of GPLVMs with the expo-
nential and Matern32 kernels when it is larger than 5 and 15, respec-
tively. Although this characteristic of GPLVMs may restrict the
maximum accuracy of ROM, these results indicate their capability of
effective dimensionality reduction, which is deemed suitable for flow
prediction because larger numbers of modes/latent variables may
affect the accuracy of the predictive part in the present framework.

The average reconstruction MAE is compared between GPLVM
with the exponential kernel and POD for the other flow properties in
Fig. 11. The vertical bars represent the standard deviation of the recon-
struction MAE. The exponential kernel has been selected for the pre-
sent study due to its suitability observed in Fig. 10, where the MAEs
have been reduced to a reasonably small level at a small number of

FIG. 8. Computational mesh and boundary conditions (fuel injection, nominal mesh
resolution).

FIG. 9. Comparison of wall pressure distributions from CFD with various mesh res-
olutions27 and experiment43 (fuel injection).

FIG. 10. Comparison of average reconstruction MAEs of static temperature among
GPLVMs with different kernels and POD (intake).
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latent variables, indicative of the superior performance of GPLVM
with this kernel, as compared to POD.

The prediction accuracy is compared in Fig. 12. Smaller predic-
tion errors can be observed for GPLVMs than POD for the same num-
ber of latent variables/modes except for the cases using the RBF kernel
with a larger number of latent variables than 10. The smallest predic-
tion error is achieved in the case of the exponential kernel with five
latent variables. The prediction error with POD becomes minimal
with a moderate number of modes (20 in the present case) because the
reconstruction error decreases with the number of modes whereas the
prediction errors increase in the predictive part. This signifies that
GPLVM is a more suitable ROM technique for predictive modeling
than POD, while POD can reduce the reconstruction error to almost
zero by using all modes.

The superiority of the GPLVM-based predictive framework over
the POD-based one has further been confirmed by conducting predic-
tive modeling for other flow properties in Fig. 13. Table VII compares
the prediction errors between GPVLM with the exponential kernel
and POD with respect to various error measurements, indicative of

smaller values for GPLVM for all error measurements. The analysis
below is conducted by using the most accurate model for each flow
property (e.g., GPLVM with five latent variables for static
temperature).

Predicted flowfields via GPLVM with the exponential kernel are
compared with actual (CFD) flowfields in Fig. 14 and the distributions
of absolute error (Eabs;T � jT � ~T j) are shown in Fig. 15. The dis-
played cases have the smallest MAE of static temperature (ID 66), the
median MAE (ID 37), and the largest MAE (ID 64), respectively. The
ID number is the identifier of each case in dataset. Relatively large pre-
diction errors are observed in the vicinity of shock waves for all cases
while the other regions have been predicted accurately. Such prediction
errors in shock regions have also been reported in the preceding stud-
ies.25,26 In the predicted flowfield with the largest MAE [Fig. 15(b)], the
prediction errors increase downstream where multiple reflected shocks
interact. Due to the dependency of the characteristics of prediction
error distributions on those of models observed here, the criteria for
selection of suitable kernels for supersonic/hypersonic flow prediction
are discussed in Sec. IVA. The distributions of absolute errors in the

FIG. 12. Comparison of average prediction MAEs of static temperature among
GPLVMs with different kernels and POD (intake).

FIG. 13. Comparison of average prediction MAEs between GPLVM and POD for
other flow properties (intake).

FIG. 11. Comparison of average reconstruction MAEs between GPLVM and POD
for other flow properties (intake).

TABLE VII. Comparison of average prediction errors between GPLVM with expo-
nential kernel and POD (intake).

Model MAE MSE RMSE MAPE RMSPE

T GPLVM 6.88 284.7 15.53 0.010 0.025
POD 10.77 604.9 23.30 0.018 0.041

p GPLVM 1155 2.57� 107 4245 3.54� 104 4.65� 107

POD 1471 4.08� 107 5170 5.87� 104 6.46� 107

u GPLVM 7.659 534.6 18.00 52.21 1045
POD 8.737 554.7 19.80 413.1 8271

v GPLVM 6.54 348 17.9 7627 5.31� 104

POD 10.3 704 25.8 5.87� 104 2.55� 106
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predicted flowfield for ID 37 are displayed in Fig. 16 for the other flow
properties. As with the case of static temperature, relatively large
prediction errors are present in the vicinity of shock waves.

2. Uncertainty quantification

While POD is a deterministic ROM technique, GPLVM features
a stochastic behavior in reconstruction. This enables uncertainty quan-
tification (UQ) by using the variance of reconstruction which is calcu-
lated by Eq. (6). The correlation coefficients between the uncertainty
in reconstruction and the prediction errors are summarized in Table
VIII, with an example shown in Fig. 17 for MAE in static temperature.
Strong correlations are observed for most error measurements except
for the cases of mean absolute percentage error (MAPE) and RMSPE
of static pressure. This potential UQ capability of GPLVM to indicate
prediction errors is of particular interest in the practical use of predic-
tive models, as discussed in the preceding study.26 The present
GPLVM-based predictive framework is thus advantageous in terms of
not only accuracy but also reliability warranted by its UQ capability.

It is noteworthy that the present UQ only considers the uncer-
tainty in reconstruction (GPVLM part), excluding that in prediction
(MLP part). It follows that the uncertainty is determined only by the
latent variables. Therefore, it can be considered that the uncertainty in
reconstruction implicitly takes the prediction uncertainties of latent
variables into account in the form of perturbation or variation from
the unknown actual latent variables, i.e., prediction errors of latent var-
iables. Large errors in the predictive part are subsequently reflected on
the uncertainty in reconstruction. This has been verified by investigat-
ing the relation between uncertainty in reconstruction and perturba-
tion in latent variables in Fig. 18 for static temperature. The
perturbation is randomly added within the given maximum percent-
age differences. An increasing tendency in uncertainty is observed as
the perturbation in latent variables increases except for the linear ker-
nel, with which ROM fails to represent the relation between uncer-
tainty and variation in latent variables because of its inadequate

accuracy, as seen in Fig. 10. This indicates the importance of the accu-
racy of ROM for valid UQ.

3. Comparison with direct prediction

The performance and characteristics of the proposed GPLVM-
based predictive framework are assessed by comparison with a non-
ROM-based model. It is known that MLP is capable of predicting
flowfields without involving ROM approaches (thus called direct pre-
diction in the present study), as demonstrated in the preceding stud-
ies.26,48 The configurations of the direct prediction model employed
for comparison are the same as those used for the predictive part in
the present ROM-based approaches. The POD-based approach is also
considered for the comparison. For GPLVM-based and POD-based
approaches, the models with the minimum averaged MAE have
been employed among the models with different numbers of latent
variables/modes. The prediction accuracy is compared for various
error measurements in Fig. 19 in the relative form of error measure-
ments. GPLVM has resulted in smaller error values than those of
direct prediction for all error measurements for static temperature and
axial velocity [Figs. 19(a) and 19(c), respectively], whereas direct pre-
diction has produced better performance than the GPLVM model for
static pressure and radial velocity [Figs. 19(b) and 19(d), respectively].

The predicted flowfields are assessed by comparing the distribu-
tions of static temperature and static pressure on the axis and the intake
surface in Figs. 20 and 21, respectively. The direct prediction model has
yielded the most accurate prediction for axial distributions of static
temperature and static pressure due to its capability to represent non-
linear and discontinuous distributions, as opposed to the results in Fig.
19(a) for static temperature. The comparison of surface distributions of
static temperature in Fig. 21(a) indicates that the direct model cannot
predict the flowfields near intake surface. The predicted flowfields in
the vicinity of the intake surface are compared in Fig. 22. Large aver-
aged prediction errors of static temperature and axial velocity compo-
nent for the direct model [Figs. 19(a) and 19(c)] can be attributed to

FIG. 14. Comparison between predicted (GPLVM) and actual (CFD) intake flowfields.

FIG. 15. Absolute error distributions in intake flowfields for static temperature.
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large prediction errors in the vicinity of the intake surface. Further
investigation on the characteristics of direct prediction models has not
been conducted because it is beyond the scope of the present study.

B. Two-dimensional fuel injection

1. Performance of ROM and prediction

The results for the case of two-dimensional injection flowfields
have been assessed with respect to the same metrics as those used for

the axisymmetric intakes. In addition to static temperature, helium
mass fraction is also investigated mainly due to the importance of spe-
cies distributions for fuel injection, while the other flow properties
(static pressure p, velocity components Vx and Vy, and oxygen mass
fraction cO2 ) are summarized in a brief manner. While the flowfields
consist of three species (i.e., helium, oxygen, and nitrogen), mass frac-
tions of two species (He and O2) have been predicted because the
mass fraction of N2 can be calculated as cN2 ¼ 1� ðcHe þ cO2Þ. Figure
23 compares the average reconstruction errors among the GPLVMs
with various kernels and the POD-based predictive model for static
temperature and helium mass fraction. It shows similar tendencies to
those of the axisymmetric intakes in Fig. 10, and the GPLVMs can
offer more accurate dimensionally reduction than POD except for
GPLVM with the linear kernel. As with the case of axisymmetric
intakes, the exponential kernel has achieved accurate dimensionality
reduction, again indicating its suitability for the ROM of supersonic/
hypersonic flowfields.

Figure 24 also compares the average reconstruction errors
between GPLVM with the exponential kernel and POD for the other
flow properties, indicative of more accurate reconstruction achieved
by GPLVM than POD.

The prediction accuracy is compared in Fig. 25, which shows
higher prediction accuracy of GPLVMs than POD as well, while the
Matern52 kernel has shown slightly better performance than the expo-
nential and Matern32 kernels. Figure 26 compares the prediction

TABLE VIII. Correlation between uncertainty in reconstruction and prediction errors
for GPLVM with exponential kernel (intake).

MAE MSE RMSE MAPE RMSPE

T 0.7919 0.6917 0.7836 0.7572 0.7417
p 0.8514 0.6821 0.7791 0.1615 0.2371
u 0.7111 0.6848 0.7716 0.9017 0.9016
v 0.6733 0.6042 0.6944 0.5290 0.4656

FIG. 17. Relation between uncertainty and prediction MAE for static temperature
(intake).

FIG. 18. Relation between uncertainty in reconstruction and uncertainty in latent
variables for static temperature (intake).

FIG. 16. Absolute error distributions in intake flowfields for other flow properties.
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errors between GPLVM with the exponential kernel and POD, while
the other metrics are compared in Table IX for all targeted flow prop-
erties. The prediction errors are small for all metrics for GPLVM,
demonstrating the capability of the GPLVM-based predictive models
to predict fuel mixing flowfields accurately.

Figure 27 compares the predicted flowfields via GPLVM with the
exponential kernel with the actual (CFD) flowfields, and the absolute
error distributions for static temperature and helium mass fraction are
shown in Figs. 28 and 29, respectively. The displayed cases have the
median MAE (ID 32) and the largest MAE (ID 15) for static tempera-
ture and the median MAE (ID 66) and the largest MAE (ID 49) for
helium mass fraction. The regions where the phenomena relevant to
fuel injection occur are enlarged to facilitate investigation. Accurate
flow prediction has been achieved for both static temperature and
helium mass fraction, as seen in Fig. 27. Relatively large errors are
observed in the vicinity of the shock waves for static temperature in
Fig. 28. On the other hand, prediction accuracy has deteriorated only
around the mixing layer in the case of helium mass fraction (Fig. 29).
Relatively large prediction errors for static temperature have also been
observed near shock waves in intakes in Fig. 15. On the other hand,
relatively large prediction errors near shock waves (particularly separa-
tion and bow shocks) have not been observed for chemical species
(Fig. 29). This is because the distributions of chemical species are not
largely affected by the difference in such regions and the mass fractions
of chemical species are not affected by shock waves due to the nature
of frozen flow. Relatively large prediction errors of mass fractions
occur in the regions where a fair amount of injected species exists
because the mass fraction distributions of chemical species vary only
in these regions.

FIG. 19. Comparison of prediction errors among GPLVM-based, POD-based, and
direct prediction models (intake).

FIG. 20. Comparison of centerline static temperature and static pressure distribu-
tions among different models (intake, ID 37).

FIG. 21. Comparison of surface static temperature and static pressure distributions
among different models (intake, ID 37).
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Figure 30 shows the distributions of absolute errors for the other
flow properties. In the case of static pressure and velocity components,
the distributions are shown for ID 32, whereas the oxygen mass frac-
tion distribution is shown for ID 66, which corresponds to the cases
with the median absolute errors for static temperature and helium
mass fraction, respectively. All targeted flow properties have been pre-
dicted with reasonable accuracy, as indicated by small prediction errors.
The error distributions of static pressure and velocity components are
similar to that of static temperature [Fig. 28(a)] while that of oxygen
mass fraction is akin to that of heliummass fraction [Fig. 29(a)].

2. Uncertainty quantification

The uncertainty associated with the prediction of injection flow-
fields has been quantified and the results have been summarized in the
form of correlation coefficients between uncertainty and error mea-
surements in Table X, showing a strong correlation between uncer-
tainty in reconstruction and the prediction errors. The observed
tendencies of the correlation coefficients are similar to those observed
in the case of the axisymmetric intakes in Table VIII. The mass

fractions of chemical species (cHe and cO2) are characterized by large
values of correlation coefficients.

Distributions of uncertainties obtained via GPLVM with the pre-
dicted latent variables are displayed in the design space in Fig. 31, with
the training data denoted by white circles. The uncertainties are found
to increase in the region where training data are rather sparse such as
near the corners of the design space.

FIG. 23. Comparison of average reconstruction MAEs among GPLVMs with differ-
ent kernels and POD (fuel injection).

FIG. 24. Comparison of average reconstruction MAEs between GPLVM and POD
for other flow properties (fuel injection).

FIG. 22. Comparison of static temperature distributions in vicinity of intake surface
(ID 37).
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A region with large uncertainty is present around 1:5� 105 Pa of
injection pressure and 80� of injection angle in helium mass fraction
[Fig. 31(b)]. To prove into the factors that account for this large uncer-
tainty, the distributions of helium mass fraction are displayed in Fig.
32 for two cases (IDs 239 and 14) sampled from this region. A rela-
tively small helium mass fraction distribution is observed downstream
of the injection in the case of ID 239, while no such distributions are
found for ID 14. Figure 33 displays the distributions of latent variables
for the training data. An isolated distribution of the latent variables
can be seen for helium mass fraction for ID 239 [Fig. 33(b)], while

such distributions are not found for static temperature [Fig. 33(a)],
consistent with the observation in Fig. 31. It follows that uncommon
flowfields that have unusual distributions of flow variables are also
characterized by unusual distributions of latent variables in the ROM
via GPLVM. In addition, the predictive part (MLP) may give rise to
larger prediction errors than usual for such cases, consequently result-
ing in such large uncertainties. These results are indicative of the utility
of this characteristic to detect anomalies in the training dataset by
scrutinizing the values of latent variables, while further investigation is
required to enable nonintrusive anomaly detection without losing
important characteristics of the dataset.

3. Comparison with direct model

The prediction errors among the three prediction models for
static temperature and heliummass fraction are compared in a relative

FIG. 25. Comparison of average prediction MAEs among GPLVMs with different
kernels and POD (fuel injection).

FIG. 26. Comparison of average prediction MAEs between GPLVM and POD for
other flow properties (fuel injection).

TABLE IX. Comparison of average prediction errors between GPLVM with exponential kernel and POD (fuel injection).

Model MAE MSE RMSE MAPE RMSPE

T GPLVM 0.604 4.71 1.69 4.5� 10�3 0.0170
POD 2.00 19.5 4.21 0.0168 0.0496

p GPLVM 90.7 1.3� 105 308 6.6� 10�3 0.0399
POD 314 5.5� 105 707 0.0300 0.164

Vx GPLVM 3.08 143 8.22 24.5 483
POD 8.93 447 18.7 1.4� 103 2.7� 104

Vy GPLVM 1.74 56.7 6.52 32.3 933
POD 6.79 314 17.2 737 2.5� 104

cO2 GPLVM 1.3� 10�3 4.3� 10�5 4.3� 10�3 7.91 16.5
POD 4.6� 10�3 6.7� 10�5 7.6� 10�3 102 169

cHe GPLVM 1.3� 10�4 1.9� 10�6 1.0� 10�3 5.48 22.2
POD 1.0� 10�3 3.4� 10�6 1.7� 10�3 29.8 73.5
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manner in Fig. 34. For both static temperature and helium mass frac-
tion, GPVLM with the exponential kernel has achieved the most accu-
rate prediction among these three models, while the accuracy of the
prediction via GPVLM is comparable to that of the direct model in the
case of axisymmetric intake flowfields in Fig. 19. It is deduced that
GPVLM is applicable to the prediction of various supersonic/hyper-
sonic flowfields with reasonable accuracy, while the adaptability varies
depending on the characteristics of the dataset or target flowfields. The
results of static pressure and velocity components are similar to that of

static temperature, while oxygen mass fraction has the same trend as
helium mass fraction.

Static temperature distributions in the vicinity of the bottom wall
are shown in Fig. 35. It can be seen that GPLVM can predict thermal
boundary layer accurately, while direct prediction has relatively large
prediction errors, as is consistent with the results of axisymmetric
intake flowfields (Fig. 22). Figure 36 displays the predicted distribu-
tions of static temperature and static pressure on the bottom wall from
different models. While GPLVM and POD predicted the distributions
precisely, the direct prediction again incurred relatively large errors.
These results indicate that the ROM-based methods can commonly
predict flow structures such as the boundary layers and freestream
accurately, because the flow structures do not vary significantly even
with the variations in design variables and latent variables.

IV. DISCUSSION
A. Influence of kernels

In GPLVM-based predictive modeling, the selection of kernels
has been found to have significant impact on prediction performance
and characteristics. The selection criteria of favorable kernels for the
prediction of supersonic/hypersonic flowfields are discussed in the
present section. For both axisymmetric intake and two-dimensional
fuel injection cases, the exponential kernel achieved high prediction
accuracy, while the RBF kernel resulted in the largest reconstruction
errors and large prediction errors. The linear kernel, on the other
hand, showed similar characteristics to POD-based ROM and predic-
tion. The distributions of relative prediction errors in static tempera-
ture are compared among GPLVM-based predictive models with
different kernels in Fig. 37. A characteristic difference can be observed
in the error distributions around the centerline shock reflection.

FIG. 27. Comparison between predicted (GPLVM) and actual (CFD) flowfields of
injection.

FIG. 28. Distributions of absolute errors of static temperature in injection flowfields.

FIG. 29. Distributions of absolute errors of helium mass fraction in injection
flowfields.
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While the errors in centerline distributions are present only in the
vicinity of the shock reflection for the exponential kernel, those of the
linear kernel are characterized by a wider spread than the others.
Detailed comparison is made with respect to the centerline static tem-
perature distributions in Fig. 38.

The difference observed above can be explained by different char-
acteristics of the kernels. In GPLVM, the kernel plays a role in weight-
ing the training data based on the similarity with the prediction
inputs. Figure 39 graphically illustrates the weights for all training data

FIG. 30. Absolute error distributions in injection flowfields for other flow properties.

TABLE X. Correlation coefficients between uncertainty in reconstruction and predic-
tion errors for GPLVM with exponential kernel (fuel injection).

MAE MSE RMSE MAPE RMSPE

T 0.7604 0.6128 0.7253 0.7554 0.6062
p 0.7294 0.6699 0.6699 0.6709 0.3312
Vx 0.6502 0.4895 0.6261 0.8103 0.8107
Vy 0.8203 0.7542 0.7982 0.6297 0.3223
cHe 0.9514 0.9056 0.9009 0.9544 0.9034
cO2 0.9416 0.8701 0.8675 0.8718 0.8393

FIG. 31. Distributions of uncertainty in reconstruction (fuel injection).

FIG. 32. Helium mass fraction distributions from CFD.
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to reconstruct the output that corresponds to the given input for each
kernel. Darker color represents larger weights. In the case of smooth
kernels like the RBF kernel [Fig. 39(a)], a relatively large number of
training data are used to reconstruct outputs, resulting in less sharp
shock waves in predicted flowfields. GPLVM with the linear kernel
and POD use all training data for prediction or reconstruction [Fig.
39(c)], resulting in more blurred shock waves in predicted flowfields.
The exponential kernel, which is relatively non-smooth function on
the other hand, refers to fewer training data for prediction [Fig. 39(b)].
This is deemed to account for a relatively accurate and crisp prediction
of shock waves for this model.

As discussed here, the selection of the kernel has been found to
have influence on the outputs hence accuracy of prediction to some
extent, while most of the kernels considered have yielded superior per-
formance to the POD-based approach. Although the present study has
employed a commonly used kernel for each model, it may help to
improve its performance to use multiple kernels in combination or
design new kernels optimized for each flow prediction problem.

B. Characteristics of GPLVM-based predictive
modeling

The characteristics of predictive modeling are compared among
GPLVM-based, POD-based, and direct approaches in Table XI, where
the symbols denote favorable/possible (	), fair/possible with some
modification (4), and unfavorable/difficult (�) characteristics.
Comparison is made with respect to five criteria to allow for effective
selection of prediction approaches including (a) prediction accuracy,
(b) computational cost, (c) availability of uncertainty quantification,
(d) capability of multivariate prediction, and (e) applicable computa-
tional mesh type.

GPLVM-based and direct prediction approaches offer accurate
prediction with different characteristics, whereas the POD-based
approach is inferior to the other approaches for the case of axisymmet-
ric intakes, as discussed in Sec. IIIA 3. The proposed GPLVM-based
approach has also yielded the highest accuracy in the case of two-
dimensional injection flowfields, as presented in Sec. III B 3. For all
models, further improvement can be made by tuning the hyperpara-
meters of the deep-learning models. In the case of GPLVM, the use of
different kernels can alter the prediction accuracy, and the selection of
suitable kernels therefore may allow the proposed framework to

FIG. 33. Distributions of latent variables for training dataset (fuel injection).

FIG. 34. Comparison of prediction errors among all models (fuel injection).

FIG. 35. Comparison of static temperature profiles (fuel injection, ID 32).

FIG. 36. Comparison of wall pressure distributions among different models (fuel
injection, ID 32).
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provide flexible applicability for various problems, while such flexibil-
ity of deep learning has already been recognized.14

The computational cost of ROM-based approaches consists of
those for ROM and predictive modeling. GPLVM requires a computa-
tional cost for gradient-based optimization of latent variables and
kernel hyperparameters and POD requires one for singular value
decomposition (SVD), while the costs of predictive modeling are
the same between these two approaches in the present study. The
computational time for modeling is summarized in Table XII for
the axisymmetric intake problem. It indicates that the computational
time for the ROM part is much smaller than that for the MLP part.

The computational time for the MLP part largely depends on the
number of training epochs, which varies between ROM-based models
(POD and GPLVM) and the direct model, i.e., 10 000 and 250, respec-
tively. The number of epochs can be reduced by adjusting the setups
of hyperparameters. The direct prediction model usually requires
much larger computational cost than the others, while it can be
reduced by the acceleration via graphics processing units (GPUs).

FIG. 38. Comparison of centerline static temperature distributions of intake flow-
fields among GPLVM-based predictive models with different kernels.

FIG. 39. Characteristics of kernels in data reconstruction in GPLVM.

FIG. 37. Comparison of prediction error distributions in intake flowfields among
GPLVM-based predictive models with different kernels.

TABLE XI. Comparison of characteristics of three predictive modeling approaches
(	: favorable/possible, 4: fair/possible with some modification, �: unfavorable/
difficult).

GPLVM POD Direct

Prediction accuracy 	 4 	
Computational cost 	 	 4
Uncertainty quantification 	 � 4
Multivariate prediction 4 � 	
Applicable mesh type Structured Structured Any

TABLE XII. Comparison of computational time for training among three models
(intake).

ROM part (h) MLP part (h) Total (h)

GPLVM 0.2 19.5 19.7
POD 0.0 19.5 19.5
Direct � � � 297.2 297.2
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Uncertainty quantification (UQ) is a key technique to increase
and assure the reliability of prediction. Furthermore, UQ helps to
improve the model accuracy by indicating the data that should be
added to the existing dataset. As discussed in Secs. IIIA 2 and IIIB 2,
GPLVM is capable of UQ without requiring any additional treatments
due to its stochastic characteristic. UQ for the direct model is reported
by using the Monte Carlo Dropout and ensemble of prediction.26

However, the approach inherently requires additional model training
processes, which inevitably incur additional computational costs, and
tuning may well be required for the Dropout rate which determines
the probability of the Dropout. To our knowledge, there are a few
approaches of UQ that are applicable for POD-based approaches.

The capability of multivariate prediction, i.e., the ability to predict
multiple flow properties (e.g., static temperature, static pressure, and
velocity components) by one model, is a desirable feature because the
assessment of performance parameters such as compression efficiency
and drag for intakes and mixing efficiency for fuel injection essentially
requires the information on multiple flow properties. The direct predic-
tion model can inherently deal with multiple variables in one model,
whereas the GPLVM-based and POD-based approaches have difficulty
in predicting multiple properties. To enable multivariate prediction via
GPLVM, shared GPLVM has been proposed by Ek49 and this can be
adopted as the extension of the proposed predictive modeling.

As regards suitable mesh types, GPVLM-based and POD-based
modeling approaches are difficult to apply to datasets with unstruc-
tured grids because they require a consistent and specific allocation of
computational nodes or cells. On the other hand, the direct approach
does not specify the mesh type of datasets or even the number of nodes
in each data. It can thus be reasonably concluded that the proposed
GPLVM-based predictive framework is more efficient and reliable due
to its sufficiently high accuracy with low computational cost as well as
its capability of uncertainty quantification.

V. CONCLUSIONS

The present study has proposed a new ROM-based predictive
framework of supersonic/hypersonic flowfields using a Gaussian pro-
cess latent variable model (GPLVM) in conjunction with deep learn-
ing. GPLVM is employed for dimensionality reduction of the flowfield
dataset into an arbitrarily small number of latent variables. The predic-
tion of flowfields is then achieved by predicting the latent variables via
deep learning which employs the design variables as inputs. The pre-
sent study employs GPLVM for two reasons, namely, (1) GPLVM is a
ROM technique itself while conventional ROM techniques in flow
prediction often employ decomposition techniques subject to loss of
information on the dataset and (2) the stochastic characteristic of
GPLVM allows for uncertainty quantification in prediction. The capa-
bility and applicability have been assessed for axisymmetric supersonic
intake flowfields and two-dimensional fuel injection flowfields.

The capability of GPLVM as a ROM technique has been investi-
gated by comparison to POD for the same number of latent variables
or modes. GPLVM has been found to offer dimensionality reduction
with smaller reconstruction errors and hence loss of information for
all kernels except for the linear kernel. Efficient ROMs have resulted in
more accurate prediction than POD-based predictive modeling as well
as direct prediction while the computational cost is comparable to that
of POD-based prediction and significantly smaller than that of direct
prediction via deep learning. Furthermore, uncertainty quantification

is available in the case of GPLVM owing to its characteristic as a sto-
chastic process, which allows for effective use of prediction, whereas
the POD-based prediction model does not offer such capability and
direct prediction requires further computational cost for it. In terms of
both accuracy and reliability, GPLVM-based predictive modeling
offers advantages over POD-based and direct predictive modeling
approaches at reasonable computational cost for modeling.

Scrutinization of the prediction outputs has revealed that the
selection of kernel has considerable influence on the predicted flow-
fields, signifying the possibility of favorable selection of kernels for
supersonic/hypersonic flowfields. In particular, shock waves in pre-
dicted flowfields have been affected considerably by the difference in
the kernel. It has been found that smooth kernels such as RBF
(Gaussian) and Matern52 are not suitable while the exponential kernel
characterized by a relatively pronounced function allows for sharper
prediction of shock waves, which cannot be achieved by POD. Direct
prediction via deep learning has been found to realize sharp prediction
of shock waves owing to its capability to fit highly nonlinear or discon-
tinuous distributions, while the prediction accuracy in near-wall
regions has been deteriorated.

The present predictive framework has demonstrated its capabili-
ties of accurate prediction and uncertainty quantification in super-
sonic/hypersonic flowfields in scramjet engines. While further
investigation is required to examine the applicability of the present
approach for wider ranges of flow regimes, GPLVM-based flow pre-
diction represents a promising alternate for fast, accurate, and reliable
predictive modeling for supersonic and hypersonic flowfields.
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