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ON THE HEAVING MOTION OF TWO CIRCULAR 
CYLINDERS ON THE SURFACE OF A FLUID 

By Makoto 0HKUsu* 

We investigate the hydrodynamic force upon two circular cylinders when 
they are given a forced heaving motion. 

The wave amplitude at a distance from the cylinders and the increase or 
decrease in the inertia of the cylinders due to the fluid motion can be the­
oretically obtained by a procedure which is similar in principle to Ursell's 
one for one cylinder. 

In addition we measure the wave amplitude at infinity and show that 
theoretical and measured wave amplitudes are in good agreement .. We find 
that the theoretical added mass of the two cylinders has a negative value 
in some cases. It is desirable to confirm this results by experiment. 

1. Introduction 

We calculate the hydrodynamic force acting on two circular cylinders con­
nected with each other, when they are immersed in a fluid of .infinite depth 
with their axes in the free surface and given a forced heaving motion, and 
compare calculation with experiment. In the aspect of theoretical calculation 
Ursell's solution11 for one circular cylinder and Tasai's solution•J for a cylinder 
with Lewis form cross-section are well known. In addition Tasai3> and Porter•> 
compared these results with the measurements. An investigation of similar 
problems for the case of two cylinders also seems to be necessary for understand­
ing, for example, the behaviour of catamaram ships or floating station in waves. 
In treating such problems it is a method most commonly used that we determine 
the singularity distribution on the body surface to satisfy the boundery condi­
tion on the surface by solving numerically integral equation. 

In this paper, however, we adopt the method of series expansion by wave 
free potentials which Ursell proposed in his first paperu on one circular cylin­
der. 

Measurements are made mainly about the wave amplitude at a distance from 
the cylinders. But in order to compare directly calculation with experiment it 
seems to be indispensable to measure pressure on the surface of the cylinders. 
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168 M. OHKUSU 

2. Fonnulation · of problem and calculation 

We consider the .fluid motion which arises when two infinitely long circular 
cylinders, which are connected with each other and immersed in a fluid with 

. their axes lying in the mean free surface, oscillate vertically about their mean 
position. The motion is assumed to be two dimensional and in the stationary 
state with a period of 2-n:/w. We deduce the amplitude of the waves which 
travel away from the cylinders and the added mass of the cylinders due to the 
fluid motion under the following assumptions. 

( i ) Surface tension and viscosity of a fluid can be neglected. 

(ii) The fluid motion is irrotational and a velocity potential and a conjugate 
stream function exist. 

(iii) Compared with the dimension of the cylinder cross-section the amplitude 
of the cylinder oscillation and the fluid motion is small, and the length 
of the wave which arises is large. After all to the first order . we can 
linearize the boundary conditions on both the free surface and the body 
surface. 

Take the origin of the coordinate at the center of the line joining the axis 
A and B of two circular cylinders as shown Fig. 1, where the axes of the 
cylinders are in the mean free surface in their mean position. The x-axis is to 
the right and .the y-axis is vertically downward. The coordinate of the center 
A, B of the cylinders is respectively (-p, 0), (p, 0) and then the distance of 
between A and B is 2p. 

X 

(X,y) 
y 

Fig. 1 Coordinate system. 

Suppose that the cylinders oscillate about their mean position like · 

(1) 
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THE HEAVING MOTION OF TWO CIRCULAR CYLINDERS 169 

where I is the amplitude of the motion. 

Then the velocity potential I]) can be expressed as follows 

(2) 

and it is required to find a velocity potential¢ which satisfies the boundary con­
dition on the cylinder surface and the free surface, and gives a progressing wave 
train at infinity. 

The velocity potential ¢ satisfies 

0 2¢ o'</1 --- + ~ =0 for y<0 
OX2 oy2 ' 

(3) 

On the free surface the pressure is constant, then to the first order 

K,1,+ o<f; =0 
'I' oy , (4) 

where K is w'/g. 
The boundery condition on the cylinders is that the velocity component normal 
to the boundary surface just inside the fluid is equal to the corresponding com­
ponent of the velocity of the cylinders. 

~! = - iwl cos 6, (5) 

where n is outward nor,mal to the cylinder surface and () is the angle which 
the normal makes with a vertical line through the center of the cylinder 
(counterclockwise is positive). 

In addition the so-called radiation condition at infinity is necessary. This 
is 

</1~Y(y)e-1Krx1 as lxl-c>oo (6) 

It is of course that ¢ must satisfy the condition at y-c>oo. 

The following condition is imposed on a conjugate stream function cf; as a 
boundary condition on the cylinder surface instead of (5). 

3¢ . I {} 
ac)(} = lW COS , 

cp=iwl a sin() ± C, (7) 

where C is constant and positive sign is taken on the cylinder A and neg­
ative sign on the cylinder B. 

The velocity potential ¢ must be, of course, ·symmetrical and the stream 
function cf; must be antisymmetrical with respect to the y-axis. 

Applying an idea1l by which Ursell constructed the solution for similar 
problem on one cylinder, we can comparatively easily obtain the solution for 
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170 M. OHKUSU 

two cylinders which satisfies the foregoing conditions. Suppose the velocity 
potential ¢ can be expressed in the form 

¢=¢.1°+¢s0+¢A1 +¢n1 +¢A2+¢n2+ ············ (8) 

where ¢ 1i°. rfas" is respectively the velocity potential that represents a fluid motion 
when a cylinder A or B oscillates individually, that is, Ursell's solution, and ¢'}., 
<fai is obtained one by one as a diffraction potential of 1i-1, ¢1-1 as follows. 
¢A' is a diffraction potential of <fan' by the cylinder A under the condition of 

:n (¢A' +<fan") =0 on the surface of the cylinder A, <fan' is a diffraction of <bA" 

by the cylinder B and once more ¢A' a diffraction of </Jn' etc .. 

Strictly speaking, it is necessary to prove the convergence of this series, but 
here we assume that the series converges and it gives the s.olution which we 
want to obtain, because on physical grounds it seems to be true and in addition 
we can do qualita~ively such discussion as follows. 

A diffraction potential ¢'Ji is proportional to the amplitude of the diffracted 
wave and it is conceived5 > that the diffraction amplitude of a progressing two 
dimensional wave is necessarily smaller than that of the incident wave as far 
as the wave length is not so small compared with depthwise dimension of the 
cylinder. On the other hand the amplitude of the stationary wave which exist 
near around the cylinder rapidly decreases as a distance from the cylinder in­
creases, and therefore a diffraction of the stationary wave becomes smaller as 
a diffraction occurs. That is 1¢1l=el</J1-'I, e<L 

Each of ¢1, ¢i is diffraction wave potential by the cylinder A and B, then they 
are expressed as a conbination of a series of symmetrical and antisymmetrical 
wave free potentials with respect to a vertical lihe through the center of each 
cylinder, and the potentials with a wave train diverging away at infinity, e. g. 
the functions describing a source and a dipole at A or B. It is proved by Ursell 
that such a series uniformly converges if a boundary condition on the cylinder 
is symmetric and the series constitutes of only symmetrical terms. By just the 
same procedure as· Ursell we can easily prove the uniform convergence of the 
series when the boundary condition is antisymmetric and accordingly the series 
is constructed by only antisymmetrical terms. After all it follows that the 
series converges uniformly for such a case of more general boundary condition 
as this diffraction problem. Accordingly if we define the collection of diffrac­
tion potentials by A and B as 

¢A='PA1+¢2A+'PA3+······, </Jn=</Jn1+</Jn"+</Jn3+ ......... (9) 

where we have rp"(x, y)=<fan(-x,y) 
then we immediately obtain the following expression for ¢ 
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THE HEAVING MOTION OF THO CIRCULAR CYLINDERS 171 

+ C 1/l { </>s(Kr A• 0 A) + </>s(Kr s, 0 s) 

+ L] P,.[f,.(Ka, rA/a, OA)+f,.(Ka, rs/a, Os)]) 
m-1 

+C2/l{q;D(KrA, OA)_;__q;D(Kro, Os) 

+ 2J Q,.[g,.(Ka, rA/a, OA)-g,.(Ka, rs/a, Os)]} 
m=l 

(10) 

where 'Ps (KrA, OA), q;5 (Krs, Os) are the velocity potentials due to a source 
placed at A and B, and 'PD (Kr A, OA), 'Pn (Krs, Os) the velocity potentials due to 
a dipole at A and B. r A is a distance from A to a point(x, y) and rs a dis­
tance from B to this point. 0 A is the angle that the r A makes with a vertical 
line through A and Os the angle that the rs makes with the line through B 
(counterclockwise is positive) as shown Fig. 1, and they are given by 

'Ps(Kr, 0) = -irce-Krcoso e•Kr I s1na I 

. J= sin(Krt cos 0)-tcos(Krt cos 0) -Krt I slnO I d 
+ l+t2 e t 

0 

(11) 

( v 0) - -Krcoso IKr I s100I Kr I sin O I 
'PD n.r, = +rce e - (Kr)2 

+ J= tsin(Kr (COS 0) + cos(.Krtcos 0) -Krt lslnO, d 
- l+r e t 

0 

(12) 

f,. (Ka, rA/a, OA), f,. (Ka, rs/a, Os) are wave free potentials symmetrical about 
A or B, and g,. (Ka, rA/a, OA), g,. (Ka, rs/a, 00 ) are antisymmetrical about A or 
B and they are given by6i 

Ka cos(2m-l)O cos2m0 
f,.(Ka, r/a,O) = (2m-1) (r/a) 21n-1 + (r/a)•m 

Ka sin 2m0 sin(2m+l)O 
_g,.(Ka, r/a, 0) = 2m(r/a)•m + (r/a)2m+1 

(13) 

(.1/l, (.2/l, P,., Q,. are complex numbers and the wave elevation r: due to <f>A+<l>s 
is at x➔-oo 

r:=R.e [ -r:1 e-lK(W+•JtJ-r:1e-HKx-P+uil) 

_ i,: 2e-lCKx+ P+r,t) + i,: 2e-lCKx-P+ r,t)] (15) 

The conjugate stream function ¢ can be easily derived from the velocity 
potential <f> as follows 

7l"CIJ ,1, = TCW (''' o+''' o) gl 't' gl 't'A 't'S 
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172 M. OHKUSU 

+ ~ Pm[$m(Ka, rA/a, OA)+~m(Ka,rn/a, On)]} 

+? {<Pv(KrA, OA)-<Pv(Krs,On) 

+ f\ Q., [7/m(Ka, rA/a, OA)-71,.(Ka, rn/a O~)]} (16) 

Here <Ps (Kr, 0), <Pv (Kr, 0) are the conjugate harmonic function of <fJs (Kr, 0), 
<fJv (Kr, 0) and they are 

<Ps(Kr, {)) = +rre-Krcos O eiKr I sinO I 

+ 1= tsin(KrtcosO) +cos(Krtcos{)) e-Krt I sinol dt for O?O (17) 
- l+t' -

0 

,I, = i-rre-KrcusOeiKr I sin O I + Krcos {) 
'l'D (Kr)' 

-f ''_sin(Kr tcosO)-t cos(Krt cosO) -Krt I sinoid 
1 + t" e t 

0 

(18) 

~m (Ka, r/a, 0), 7/m (Ka, r/a, 0) are also the conjugate of fm (Ka, r/a, 0), 
gm(Ka, r/a, O) 

Kasin(2m-1){) sin2m{) 
$,,,(Ka, r/a, {)) = (2m-l)(r/a) 2m-i + (r/a)'"' (19) 

· Ka cos 2m {) cos(2m+ 1)0 
71,,,(Ka, r/a, 0)=- 2m(r/a)2m - (r/a)2m+1 (20) 

If <P satisfies the condition (7) on the surface of the cylinder A, then it 
satisfies the condition on the cylinder B because it is antisymmetrical about the 
y-axis. Since ¢A0 is the solution for the case of one cylinder, it satistfies the 
following condition on the cylinder A. 

Therefore the condition for <P on the cylinder A becomes as follows 

C- ~o/ <fB"= (/ { <Ps(Ka, 0) +<Ps(Krn, OB) 

+ ~ Pm[~m(Ka, 1, O)+~m(Ka, rn/a, On)]} 

+ -¥-{ <Pv(Ka, 0)-<Pv(KrB, On) 

+ ~ 1 Q.,[7/m(Ka, 1, 0) -71.,CK.a, rn/a, OIi)]} 

(21) 

(22) 
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THE HEAVING MOTION OF TWO CIRCULAR CYLINDERS 173 

where 0 =tan-' (sin O -2P/a) 
B COS(} 1 

(rli/a) 2 = 1-2(2P/a)sin 0+ (2P/a) 2 

(23) 

(24) 

If we determine the unknown coefficients P,,, Qm, ,,/!, , 2/l and C satisfying 
this equation, we obtain the solution ¢ or <jJ by inserting these coefficients 

into the equation (16) or (10) and the ratio A defined as 

A- wave amplitude at infinity 
- amplitude of forced heaving 

(25) 

where ( 0// is the ratio when one cylinder oscillates, that is a contribution due 
to ¢A0 or ¢B0 (Appendix 1). The ratio is proportional to the square root of the 
damping force acting upon the cylinder which is out of phase with the displace­
ment of the cylinder. In addition we can obtain a vertical component Py of 
a fluid dynamic force per unit length acting upon the cylinder from the 
expression for the velocity potential ¢. 

Jr./2 

P, = - pae-;"' i w ¢ cos (} d O , 
-n/2 

(26) 

where p is the fluid density. 

Then the component of Py, which is in phase with the acceleration of the 
cylinder is 

· - pg~a J~:
12 

Im [ ~7 ¢] cos Odo , (27) 

and the added mass coefficients iii with the nondimensional quantity, which is 
defined as the added mass/the mass of the fluid displaced by unit length of the 
cylinder, is given by 

(28) 

The coefficients Pm, Qm, ,,!!, ( 2// and C are the roots of infinite number of 
equations. Then we replaced this system of equations with a finite number of 
equations, where the coefficients are P,. (Ka, M), Q,. (Ka, M) (m=l, 2, .· ..... , M). 
We evaluated the known functions in the equations (22) at some chosen values 
of (} and determined P,., Q,,, ,,/!, , 2/l and C so as to be fitted at these O by 
least square method. 

Here we selected M=6 (P,., Qm, , 1//, ( 2// are complex numbers, then the 
number of unknown coefficients amouts to 28 because we can eliminate C), 
0= -90°, -81°, - 72°, ...... , 0°, 9°, 18', ...... , 90' and solved a set of 28 simultaneous 
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174 M. OHKUSU 

linear equations for P,., Qm, t;, 1/l, ( 2// which the least square condition provided. 
Where the terms which are expressed by an integral in ¢ 5 (Kr, 0), ¢v (Kr, 0), 
etc. were evaluated by the expansion as shown in Appendix 2. 

The added mass coefficient was calculated by numerically integrating the 
velocity potential according to the equation (28). 

The calculation was carried out by using a computer FACOM 230-60 of Kyu­
shu University Computer Center. 

Some examples of the calculated A and iii for four cases 2P/a=3.0, 4.0, 5.0 
and 6.0 are shown in Table. 1 and Fig. 4, 5, 6, 7, and 8; 

Finally we add that the procedure adopted here can be applied to the problem 
on the swaying or rolling motion of two cylinders with almost no modification. 

Table 1. The calculated values of /4 m 

~I 3.0 

I 

4.0 5.0 

I 

6.0 

A I m A I m A I 
- A I 

-m m 

0.05 0.170 3.104 0. 172 2.865 0.173 2.665 0.174 2.488 
0.10 0. 313 2.280 0.319 2.029 0.323 1. 782 0.326 1. 559 
0.15 0.441 I. 915 0.456 1. 646 0.467 1. 255 0.473 1. 028 
0.20 0.560 1. 734 0.590 1. 435 0. 613 1. 047 0.624 0.585 
0.25 0.674 I. 630 0. 730 1. 305 0.774 0.727 0. 779 -0.156 
0.30 0.787 1:600 0.888 1. 208 0.963 o. 168 0.853 -1. 327 
0.35 0. 905 I. 624 1. 091 1. 071 1. 120 -1. 134 0.572 -1.662 
0.40 1. 033 I. 697 1. 376 0.592 0.855 -2.207 0. 137 -0. 680 
0.45 1. 187 I. 829 I. 659 I. 369 0.290 -1. 198 0. 143 -0.586 
0.50 1. 391 2.041 1. 126 -2. 983 0.062 -0.407 0.312 0.227 
0.55 1. 708 2.358 0.356 -1. 587 0.265 -0. 026 0.426 0.371 
0.60 2.312 2. 600 0.040 -0. 712 0.395 0.017 0.509 0.452 
0. 70 1. 828 -5. 174 0.394 -0.042 0.557 0.369 0.627 0.544 
0.80 0.039 -1. 365 0.562 0.215 0.653 0.468 0.707 0.599 
0.90 0.383 -0.426 0.664 0.352 0. 728 0.532 0. 766 0.643 
1.00 0.571 -0.040 0.734 0.442 0. 779 0.581 0. 811 0.682 

3. Experiment 

The experiment was carried out at the small water tank at Tsuyazaki (60 M 
x 1.5 M x 1.5 M), Research Institute for Applied Mechanics, Kyushu University. 
We layed two cylinders between the water tank walls at the right angles to the 
axes of the cylinders in the free surface, where the velocity component parallel 
to the axes of the cylinders vanishes and the fluid motion is expected to be two 
dimensional, and we measured the height of a single regular wave train travelling 
away from the cylinders which was generated by giving to the cylinders the 
forced motion with a period 211:/w. 

In Fig. 2 are shown the forced heaving apparatus used and the position of 
a wave height meter at the water tank which is of ultra-sonic type and used 
for the measurement of the wave height. In Fig. 3 are illustrated the details 
of this apparatus and the dimension of the cylinders which are made of wood. 
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Fig. 2 Forced heaving apparatus 

/ 

Wave Height Meter 

14 M 

::e 
I() 
-: 

aratus 

Wave Damper Wave Damper 

Fig. 3 Water tank and arrangement of experimental apparatus 
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3M 

The forced heaving apparatus is driven by a AC motor M through a crank 
C as shown· in Fig. 2. A guide equipment G is installed to the apparatus and 
a beam B is sufficiently stiffened so that we may make as small as possible the 
vibration of a driving rod R or a beam B which is likely to disturb the wave 
form generated by the heaving motion of the cylinders. The heaving displace­
ment of this apparatus is measrued by a potentio meter P and we confirmed 
that it made almost perfect sinusoidal motion. 

About the diffraction wave from the ends of the water tank, Tasai3l inves­
tigated when he carried out his experiment in this same tank and we confirmed 
his result by making the similler experiment again. That is, the amplitude of 
diffracted waves from the wave damper placed at the ends of this tank is a 
few or 10 percents of that of incident wave and it may be said that the wave 
system propagates at 1/2 of the phase velocity (group velocity) corresponding to 
the heaving period. In our experiment we adopted the records of the wave 
height meter as a data when all the water surface at the right side of the ap­
paratus was filled with the waves. 

The radius a of the cylinders is 150 mm and the amplitude of their forced 
heaving motion is selected to be a/10, that is 15 mm. If this amplitude is too 
small, the accuracy of the measurement of the wave height or pressure on the 
body surface decreases. On the other hand the larger the amplitude, the larger 
the influence of nonlinearity. Then this value was carefully adopted after we 
examined Tasai's results for one cylinder and made some measurements with 
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176 M. OHKUSU 

several kinds of the amplitude. 

Since the measured amplitude of motion by the potentio meter was a little 
changed due to its period (a shorter period made smaller the amplitude about 
0.5 mm) we measured the amplitude every time we changed the heaving period 
Tw (=2rr/w). As shown later only a little variation of Tw some times results in 
a sudden and large change of the wave height. Accordingly we made the 
experiment varying Tw by as small step as possible and in the range of Tw where 
a sudden change of the wave heights occured we endevoured to find out a 
period at which the wave height reached to the maximum or minimum by 
continuosly varying the number of revolution of the motor. 

Photo 1, 2 are some examples of the records of the minimum and maximum 
wave height. 

The experiment were carried out for four cases 2p/a=3.0, 4.0, 5.0 and 6.0 
(2p is the distance between the centers of two cylinders). The results are shown 

in Fig. 4, 5, 6, 7 in the form of A (wave amplitude/motion amplitude)~Ka ( = 
w 2 •a/g). These figures show that the wave height becomes almost zero (not 
perfectly zero because there is a little space between the ends of the cylinders 
and the tank wall whether we like it or not and consequently a small three 
dimensional wave is generated around this space) at some Ka which depends 
upon the value of 2p/a. When Ka deviates a little to smaller side from Ka of 
the minimum wave height, the wave height become maximum. The difference 
between both values of Ka is, for example, only 0.15 in case of 2p/a=4, which 
corresponds to 0.13 sec in Tw. Especially for the case of 2p/a=3.0 this difference 

Photo. 1 
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THE HEAVING MOTION OF TWO CIRCULAR CYLINDERS 177 

Photo. 2 

is too small and we can not change w by smaller step. 

The noteworthy fact observed in our experiment is that the standing wave 
at the water surface between two cylinders becomes unusually high in the range 
of Ka where a abrupt change of travelling wave height occurs, that is, between 
the maximum and minimum wave height. And such a phenomenon was observed, 
that there was almost no waves outside the cylinders while inside the cylinders 
the wave height was so large that the water got over the cylinder. 

4. Discussion of results 

· -In. comparison of theoretical and measured A the agreement is very good in 
the frequency Ka=0~l.2 as shown in Fig. 4, 5, 6 and 7. We can find from these 
figures that maximum A becomes unusually large for small distance-radius ratio 
2P/a. There seems to be a deviation between theoretical calculation and meas­
urements in the range of the frequency from Ka of maximum wave amplitude 
to Ka of minimum (zero) amplitude. It is perhaps due to the fact that the wave· 
is so high in this range, but here is almost no measured value because the forced 
heaving apparatus used was not complete, then in future we should make sure 
of this results. 

We tried to calculate the amplitude of the wave progressing to the left ( -x 
direction) from the. cylinder B as shown• in Fig. 9. We can immediately find 
from this figure-that this amplitude reaches to its peak when Ka·is in the range· 

between maximum and minimum A, and moreover its peak value is unusually 
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Theoretical (2P/Q=6) 
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0.2 0.4 0.6 0.8 1.0 /.2 

Fig. 4 The amplitude ratio (wave amplitude/heaving amplitude) 
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Fig. 5 The amplitude ratio (wave amplitude/heaving amplitude) 
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A 

Theoretical ( 2P/O = 4 J 
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0 '/ 
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Fig. 6 The amplitude ratio (wave amplitude/heaving amplitude) 

large, especially for small 2P/a, compared with the wave amplitude which one 
cylinder produces without interference with another cylinder. 

At the water surface between two cylinders there is no progressing wave 
but standing wave. If we neglect the stationary wave near around each of the 
cylinders, the amplitude of the standing wave between the cylinder is considered 
to be twice of the amplitude of the waves progressing to the left from the cylin­
der B because the wave with the same amplitude and the same phase is progres­
sing to the right (x direction) from the cylinder A. For·example, the amplitude 
of this standing wave for 2p/a=,3.0 amounts to 16 x heaving amplitude. Since 
in such a case, as stated in Section 3 the water got over the cylinder, we could 
not continue the measurement. 

As Ka tends to zero, the amplitude ratio A tends to 4Ka assuming 2p/a to 
be large enough to be able to neglect (a/2p) 2 • It may be shown as follows. 
We know from Ursell's solution for one cylinder 

(29) 

Then we can calculate the velocity V of a fluid near the cylinder A due to this 
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Fig. 7 The amplitude ratio (wave amplitude/heaving amplitude) 

velocity potential. That is 

rrw -, ( Ka ) 
gl V~O(Ka) +0 (ZP/a)• (30) 

Accordingly at infinity the velocity potential· rp is given by 

(31) 

n=±oo 

Let 2p/a tends to infinity we obtain 

(32) 
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Added mass coefficient, due to a component of a fluid dynamic force upon 
one of the two cylinders which is in phase with the displacement of the cylin­
ders, is given in Fig. 8 with that for one cylinder. Added mass coefficient for 
two cylinders is of the s:ime order• as for one cylinder in comparatively small 
Ka, but at some Ka dependent upon 2p/a the former begins to decrease and 
takes a negative value. And it gets to a minimum, then it begins to increase 
and seems to come back again to the level of one cylinder. Especially for small 
2p/a the degree of the decrease is very steep and there can be two or more 
values of free heaving period of the two cylinders for 2p/a = 3.0 neglecting 
damping force. 

According to Yoshiki and others7 l, added mass coefficient of two cylinders 
when Ka tends to infinity (¢=0 is the condition on the free surface) is 1+ 

2~,. which is marked in Fig. 8. In our calculation also such a tendency as the 

added mass coefficient becomes over that of one cylinder is found in the case 
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Fig. 8 Added mass coefficient 
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Fig. 9 Wave amplitude from cylinder B toward cylinder A. 

of 2p/a=6.0. It is of course that negative added mass of the cylinder A or B 
is given rise to as an exciting force by the velocity potential, especially progres­
sing wave potential, due to another cylinder B or A. Ka value at which the 
added mass becomes a minimum with a negative value coincides with the one 
at which the amplitude of progressing wave to the right (to the cylinder A) 
from the cylinder B (or to B from A) has th~ largest value shown in Fig. 9. 
And also this Ka coincides with Ka at which ✓2 •Ao, where A0 is the amplitude 
ratio of one cylinder when there is no interference between two cylinders, is 
equal to A for the two cylinders as shown Fig. 4, 5, 6 and 7. Where ✓2 -A;; 
corresponds to the sum of damping forces acting upon the two cylinders when 
they oscillate without interference -- it is an imaginary case --because the 
amplitude of the damp_ing force for this case is twice of that fo~ one cylinder 

library
ノート注釈
library : None

library
ノート注釈
library : MigrationNone

library
ノート注釈
library : Unmarked

library
ノート注釈
library : None

library
ノート注釈
library : MigrationNone

library
ノート注釈
library : Unmarked



THE HEAVING MOTION OF TWO CIRCULAR CYLINDERS 183 

and A.2 is proportional to the amplitude. The forementioned fact means that all 
of the fluid dynamic force acting upon one cylinder as an exciting force due to 
the velocity potential of another cylinder contributes to the component in phase 
with the displacement that is the _added mass of the former cylinder, when the 
exciting force is the largest. 

We can calculate the behaviour of the added mass when the distance between 
the cylinder is sufficiently large and Ka tends to zero by using Haskind-Newman 
relation.8> 

Since 2p/a is large, the velocity potential r/Jn'+</Jn which comes from the 
cylinder B to A constitutes of only the progressing wave train. The fluid dy­
namic force upon the cylinder A is interpreted as the sum of the forces due 
to <fJA0, the incident wave </Jn"+</Jn and its diffraction <fJA, Then the amplitude 
of heaving force F by the latter two velocity potentials can be obtained as fol­
lows by Haskind-Newman relation 

(33) 

where (• is the wave amplitude of </Jn"+r/Jn and A0 is the amplitude ratio of one 
cylinder. 

We put the amplitudes of the forces out of phase and in phase with the 
displacement of the cylinder respectively as 

2 

( .!!.!l__A sin o 
b W' O 

(34) 

(35) 

After all the added mass coeffcient of the cylinder A due to </J n" + if, n and </J A is 
given by 

(.- ' _ 1 A0 cos o 
mo=----

; (Ka)' 
(36) 

Since the sum of the damping forces due to r/Js'+</Jn, ¢A and ¢.4° is equal to half 
of the damping force of two cylinders, we get 

::4' ( - -2 

2 = --f Ao sin o + A o (37) 

(38) 

In the calculation of A when Ka-'>0 we know ( ~• ), A0 tends to 2Ka and A tends 
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to 4Ka when Ka➔O, and therefore sin /j tends to 1. Therefore m0 becomes zero 
for Ka➔O, and the added mass coeffcient tends to that due to only fPA°. that is 
the value for one cylinder · 

2 (log-1- - 0.46) 
1r Ka (39) 
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Appendix 

A-'t Solution of one cylinder 

According to Ursell I/JA0 or ¢B0 can be derived as follows. ¢A0 is expressed by 

library
ノート注釈
library : None

library
ノート注釈
library : MigrationNone

library
ノート注釈
library : Unmarked

library
ノート注釈
library : None

library
ノート注釈
library : MigrationNone

library
ノート注釈
library : Unmarked



THE HEAVING MOTION OF TWO CIRCULAR CYLINDERS 185 

then the boundary condition on the cylinder A is given by 

i ir Ka sin 8 = ~0 [ </Js(Ka, 8) + .. t r,.f,.(Ka, 1,8)] 

If we take a finite number of this series, we can determine the coefficients t: 0//, r,. 
by least square method. The wave elevation at x--oc is 

A-2. Evaluation of integral 

We put 

1 = J"' t sin (Kyt) + cos ;(Kyt) e-Kt I x, dt 
0 1+12 

J=f"' sin(Kyt)-1cos(Kyt) e-K11x1d1 
0 1+12 

then 

. --I"' e-Kc1x1+1,>t dt 
iI+J- +· o 1 I 

(A-2, 1) 

If K✓x2+y2 =Kr is comparatively small, we can use the following series instead 
of the equation (A-2, 1), which is derived from a well known expansion of the ex­
ponential integral. 

il+J=(A+iB)e-<K,-IK IXJ) 

A=log Kr+ r + :E --(.o..K_r~)_n_co_,s,--n_8 __ 
m-1 n • n ! 

B=- 8+ir- :E -~(K_r)_n_s_in_n_8 __ 
m-1 n • n ! 

where 8=tan-1 lxl /y and r is Euler's constant (=0.5772··· .. ·). 

If K✓ x 2+y2 is large, the following asymptotic expansion is effective. 

[ e'o e210 21 es10 31 em ] 
il+J~ -+--+-· -+-·-+········· Kr (Kr) 2 (Kr) 3 (Kr) 4 
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