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Abstract

We investigate the asymptotic properties of the minimum L1-norm estimator
of the drift parameter for Ornstein-Uhlenbeck type process driven by a general
Gaussian process.
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1. Introduction

Diffusion processes and diffusion type processes satisfying stochastic differential
equations driven by Wiener processes are used for stochastic modeling in a wide variety
of sciences such as population genetics, economic processes, signal processing as well as
for modeling sunspot activity and more recently in mathematical finance. Statistical
inference for diffusion type processes satisfying stochastic differential equations driven
by Wiener processes have been studied earlier and a comprehensive survey of various
methods is given in Prakasa Rao (1999). There has been a recent interest to study sim-
ilar problems for stochastic processes driven by a fractional Brownian motion to model
processes involving long range dependence (cf. Prakasa Rao (2010)). Le Breton (1998)
studied parameter estimation and filtering in a simple linear model driven by a frac-
tional Brownian motion. Kleptsyna and Le Breton (2002) studied parameter estimation
problems for fractional Ornstein-Uhlenbeck process. The fractional Ornstein-Uhlenbeck
process is a fractional analogue of the Ornstein-Uhlenbeck process, that is, a continuous
time first order autoregressive process X = {Xt, t ≥ 0} which is the solution of a one-
dimensional homogeneous linear stochastic differential equation driven by a fractional
Brownian motion (fBm) WH = {WH

t , t ≥ 0} with Hurst parameter H. Such a process
is the unique Gaussian process satisfying the linear integral equation

Xt = x0 + θ

∫ t

0

Xsds+ σWH
t , t ≥ 0. (1)

They investigate the problem of estimation of the parameters θ and σ2 based on the
observation {Xs, 0 ≤ s ≤ T} and study the asymptotic behaviour of these estimators as
T → ∞.
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In spite of the fact that maximum likelihood estimators (MLE) are consistent and
asymptotically normal and also asymptotically efficient in general, they have some short
comings at the same time. Their calculation is often cumbersome as the expression for
MLE involve stochastic integrals at times which need good approximations for computa-
tional purposes. Further more MLE are not robust in the sense that a slight perturbation
in the noise component will change the properties of MLE substantially. In order to cir-
cumvent such problems, the minimum distance approach is proposed. Properties of the
minimum distance estimators (MDE) were discussed in Millar (1984) in a general frame
work. Kutoyants and Pilibossian (1994) studied the problem of minimum L1-norm
estimation for the Ornstein-Uhlenbeck process. Prakasa Rao (2005) investigated the
problem of minimum L1-norm estimation for the fractional Ornstein-Uhlenbeck process
driven by a fractional Brownian motion.

Our aim in this paper is to obtain the minimum L1-norm estimator of the drift
parameter of a Ornstein-Uhlenbeck type process driven by a centered Gaussian process
and investigate the asymptotic properties of such estimators. El Machkouri et al. (2015),
Chen and Zhou (2020), Lu (2022) study parameter estimation for an Ornstein-Uhlenbeck
type process driven by a Gaussian process. Nonparametric estimation of linear multiplier
in stochastic differential equations driven by Gaussian processes is studied in Prakasa
Rao (2023).

2. Minimum L1-norm Estimation

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the
processes discussed in the following are (Ft)-adapted. Further the natural filtration of a
process is understood as the P -completion of the filtration generated by this process. We
consider a centered Gaussian process G ≡ {Gt, 0 ≤ t ≤ 1} with the covariance function
K(t, s). We assume that the Gaussian process has Holder continuous paths of positive
order and that integration of a non-random function with respect to the Gaussian process
G is defined as a Young integral (cf. Nourdin (2012)). Note that the Young integral
obeys integration by parts formula (cf. Nourdin (2012)). This class of Gaussian processes
includes fractional Brownian motion, sub-fractional Brownian motion and bifractional
Brownian motion (cf. Mishura and Zili (2018)).

Let us consider a stochastic process {Xt, t ∈ [0, 1]} defined by the stochastic integral
equation

Xt = x0 + θ

∫ t

0

Xsds+ ε Gt, 0 ≤ t ≤ 1, (2)

on the probability space (Ω,F , (Ft), P ) where θ is an unknown drift parameters respec-

tively. Let P
(ε)
θ be the probability measure generated by the process {Xt, t ∈ [0, 1]}

when θ is the true parameter. For convenience, we write the above integral equation in
the form of a stochastic differential equation

dXt = θXtdt+ ε dGt, X0 = x0, 0 ≤ t ≤ 1, (3)

driven by the Gaussian process G. Existence and uniqueness of the solution {Xt, 0 ≤ t ≤
1} , for the differential equation given above, follows whenever the process G has paths
of p-variation for p < 2 (cf. Baudoin (2012)). Here after we assume that the solution of
the equation (3) exists and it is unique.
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We now consider the problem of estimation of the parameter θ based on the obser-
vation of Ornstein-Uhlenbeck type process X = {Xt, 0 ≤ t ≤ 1} satisfying the stochastic
differential equation

dXt = θXtdt+ ε dGt, X0 = x0, 0 ≤ t ≤ 1 (4)

where θ ∈ Θ ⊂ R and study its asymptotic properties as ε → 0.

Let xt(θ) be the solution of the above differential equation with ε = 0. It is obvious
that

xt(θ) = x0e
θt, 0 ≤ t ≤ 1. (5)

Let

S1(θ) =

∫ 1

0

|Xt − xt(θ)|dt (6)

We define θ̂ε to be a minimum L1-norm estimator if there exists a measurable
selection θ̂ε such that

S1(θ̂ε) = inf
θ∈Θ

S1(θ). (7)

Conditions for the existence of a measurable selection are given in Lemma 3.1.2 in
Prakasa Rao (1987). We assume that there exists a measurable selection θ̂ε satisfying

the above equation. An alternate way of defining the estimator θ̂ε is by the relation

θ̂ε = arg inf
θ∈Θ

∫ 1

0

|Xt − xt(θ)|dt. (8)

Let G∗
1 = sup0≤t≤1 |Gt|. If G is a fractional Brownian motion or a sub-fractional

Brownian motion, then the maximal inequalities for such processes are known and are
reviewed in Prakasa Rao (2014, 2017, 2020) following the property of self-similarity for
such processes. Maximal inequalities for general Gaussian processes are presented in Li
and Shao (2001), Berman (1985), Marcus and Rosen (2006) and Borovkov et al. (2017)
among others. We will now present a maximal inequality for Gaussian processes due to
Nordin (2012) which will be used in the sequel.

Theorem 2.1. Suppose G is a centered and continuous Gaussian process on the
interval [0, 1]. Let σ2 = sup0≤t≤1 E[G2

t ]. Suppose that 0 < σ2 < ∞. Then m =
E[sup0≤t≤1 Gt] is finite and for all x > m,

P ( sup
0≤t≤1

Gt ≥ x) ≤ exp(− (x−m)2

2σ2
).

From the fact that G is a centered Gaussian process, it follows that

P ( sup
0≤t≤1

|Gt| ≥ x) ≤ 2 exp(− (x−m)2

2σ2
)

under the conditions stated in Theorem 2.1.
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3. Consistency of the estimator

Let θ0 denote the true parameter. For any δ > 0, define

g(δ) = inf
|θ−θ0|>δ

∫ 1

0

|xt(θ)− xt(θ0)|dt. (9)

Note that g(δ) > 0 for any δ > 0.

Theorem 3.1. Suppose G is a centered and continuous Gaussian process on the in-
terval [0, 1]. Let σ2 = sup0≤t≤1 E[G2

t ]. Suppose that 0 < σ2 < ∞. Let m = E[sup0≤t≤1 Gt].
Then there exists a positive constant C such that for every δ > 0,

P
(ε)
θ0

(|θ̂ε − θ0| > δ) = O(e−C[g(δ)]2ε−2

).

Proof: Let ||.|| denote the L1-norm. Then

P
(ε)
θ0

(|θ̂ε − θ0| > δ) = P
(ε)
θ0

( inf
|θ−θ0|≤δ

||X − x(θ)|| > inf
|θ−θ0|>δ

||X − x(θ)||)

≤ P
(ε)
θ0

( inf
|θ−θ0|≤δ

(||X − x(θ0)||+ ||x(θ)− x(θ0)||)

> inf
|θ−θ0|>δ

(||x(θ)− x(θ0)|| − ||X − x(θ0)||))

= P
(ε)
θ0

(2||X − x(θ0)|| > inf
|θ−θ0|>δ

||x(θ)− x(θ0)||)

= P
(ε)
θ0

(||X − x(θ0)|| >
1

2
g(δ)).

Since the process X satisfies the stochastic differential equation (2), it follows that

Xt − xt(θ0) = x0 + θ0

∫ t

0

Xsds+ εGt − xt(θ0)

= θ0

∫ t

0

(Xs − xs(θ0))ds+ εGt

a.s. P ϵ
θ0

since xt(θ) = x0e
θt. Let Ut = Xt − xt(θ0). Then it follows from the equation

given above that

Ut = θ0

∫ t

0

Us ds+ εGt. (10)

Let Vt = |Ut| = |Xt − xt(θ0)|. The relation given above implies that

Vt = |Xt − xt(θ0)| ≤ |θ0|
∫ t

0

Vsds+ ε|Gt|. (11)

Applying the Gronwall-Bellman Lemma, it follows that

sup
0≤t≤1

|Vt| ≤ εe|θ0| sup
0≤t≤1

|Gt|. (12)
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Hence

P
(ε)
θ0

(||X − x(θ0)|| >
1

2
g(δ)) ≤ P [ sup

0≤t≤1
|Gt| >

e−|θ0|g(δ)

2ε
]

= P [G∗
1 >

e−|θ0|g(δ)

2ε
].

Let m = E[sup0≤t≤1 G(t)]. Applying the maximal inequalities for Gaussian processes
given in Theorem 2.1, we get that, for fixed δ > 0, we can choose ϵ sufficiently small so

that e−|θ0|g(δ)
2ϵ > m. For such ε,

P
(ε)
θ0

(|θ̂ε − θ0| > δ) ≤ 2 exp(− ((e−|θ0|g(δ)/2ϵ)−m)2

2σ2
)

= O(e−C[g(δ)]2ε−2

)

for some positive constant C independent of ε.

Remarks: As a consequence of the result obtained above, it follows that

P
(ε)
θ0

(|θ̂ε − θ0| > δ) → 0 as ϵ → 0

for every δ > 0. Hence the minimum norm L1-estimator θ∗ε is weakly consistent for
estimating the parameter θ0.

4. Asymptotic distribution of the estimator

We will now study the asymptotic distribution if any of the estimator θ̂ε after
suitable scaling. It can be checked that

Xt = eθ0t{x0 +

∫ t

0

e−θ0sεdGs} (13)

or equivalently

Xt − xt(θ0) = εeθ0t
∫ t

0

e−θ0sdGs. (14)

Let

Yt = eθ0t
∫ t

0

e−θ0sdGs. (15)

Note that {Yt, 0 ≤ t ≤ 1} is a Gaussian process and can be interpreted as the ”derivative”
of the process {Xt, 0 ≤ t ≤ 1} with respect to ε. We obtain that, P -a.s.,

Yte
−θ0t =

∫ t

0

e−θ0sdGs (16)

The integral with respect to the process G is interpreted as Young integral (cf. El
Machkouri et al. (2015)). In particular, it follows that the random variable Yte

−θ0t
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and hence Yt has the normal distribution with mean zero and furthermore, for any
0 ≤ t, s ≤ 1,

Cov(Yt, Ys) = eθ0t+θ0sE[

∫ t

0

e−θ0udGu

∫ s

0

e−θ0vdGv]

= eθ0t+θ0s

∫ t

0

∫ s

0

e−θ0(u+v)K(u, v)dudv

= R(t, s) (say).

In particular,
V ar(Yt) = R(t, t). (17)

Observe that {Yt, 0 ≤ t ≤ 1} is a zero mean Gaussian process with Cov(Yt, Ys) = R(t, s).
Let

ζ = arg inf
−∞<u<∞

∫ 1

0

|Yt − utx0e
θ0t|dt. (18)

Theorem 4.1. As ε → 0, the random variable ε−1(θ̂ε−θ0) converges in probability
to a random variable whose probability distribution is the same as that of the random
variable ζ defined by the equation (18).

Proof: Let x′
t(θ) = x0te

θt and let

Zε(u) = ||Y − ε−1(x(θ0 + εu)− x(θ0))|| (19)

and
Z0(u) = ||Y − ux′(θ0)||. (20)

Furthermore, let

Aε = {ω : |θ̂ε − θ0| < δε}, δε = ετ , τ ∈ (
1

2
, 1), Lε = ετ−1. (21)

Observe that the random variable u∗
ε = ε−1(θ∗ε − θ0) satisfies the equation

Zε(u
∗
ε) = inf

|u|<Lε

Zε(u), ω ∈ Aε. (22)

Define
ζε = arg inf

|u|<Lε

Z0(u). (23)

Observe that, with probability one,

sup
|u|<Lε

|Zε(u)− Z0(u)| = sup
|u|<Lε

|||Y − ux′(θ0)−
1

2
εu2x′′(θ̃)|| − ||Y − ux′(θ0)|||

≤ ε

2
L2
ε sup
|θ−θ0|<δε

∫ 1

0

|x′′(θ)|dt

≤ Cε2τ−1.
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Here θ̃ = θ0 + α(θ − θ0) for some α ∈ (0, 1). Note that the last term in the above
inequality tends to zero as ε → 0. Further more the process {Z0(u),−∞ < u < ∞} has
a unique minimum u∗ with probability one. This follows from the arguments given in
Theorem 2 of Kutoyants and Pilibossian (1994). In addition, we can choose the interval
[−L,L] such that

P
(ε)
θ0

{u∗
ε ∈ (−L,L)} ≥ 1− β(g(L))−1 (24)

and

P{u∗ ∈ (−L,L)} ≥ 1− β(g(L))−1 (25)

where β > 0. Note that g(L) increases as L increases. The processes Zε(u), u ∈ [−L,L]
and Z0(u), u ∈ [−L,L] satisfy the Lipschitz conditions and Zε(u) converges uniformly
to Z0(u) over u ∈ [−L,L]. Hence the minimizer of Zε(.) converges to the minimizer of
Z0(u). This completes the proof.

Remarks : We have seen earlier that the process {Yt, 0 ≤ t ≤ 1} is a zero mean
Gaussian process with the covariance function Cov(Yt, Ys) = R(t, s) for 0 ≤ t, s ≤ 1.
Recall that

ζ = arg inf
−∞<u<∞

∫ 1

0

|Yt − utx0e
θ0t|dt. (26)

It is not clear what the distribution of the random variable ζ is. It depends on the
Gaussian process G. Observe that for every u, the integrand in the above integral is the
absolute value of a Gaussian process {Jt, 0 ≤ t ≤ 1} with the mean function E(Jt) =
−utx0e

θ0t and the covariance function Cov(Jt, Js) = R(t, s) for 0 ≤ s, t ≤ 1. It is easy
to extend the results to any Gaussian process defined on any interval [0, T ] for any fixed
T > 0. The distribution of

uT = arginfu∈R

∫ T

0

|Yt − utx0e
θ0t|dt,

as T → ∞, has been investigated in Aubry (1999) for a diffusion process, Diop and
Yode (2010) for the Ornstein-Uhlenbeck process driven by a Levy process, Kutoyants
and Pilibossian (1994) for the Ornstein-Uhlenbeck process and by Shen et al. (2018) for
Ornstein-Uhlenbeck process driven by a fractional Levy process.
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