Whole Genome Analysis of Two Pectobacterium Species Isolated from Blackleg Disease of Potato Occurred in Nagasaki Prefecture, Japan

Man Quang LE

Laboratory of Plant Pathology, Division of Agrobiological Sciences, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

IIYAMA, Kazuhiro

Laboratory of Plant Pathology, Division of Agrobiological Sciences, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University

NISHIYAMA, Haruki

Laboratory of Plant Pathology, Division of Agrobiological Sciences, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

OTOFUJI, Hana

Laboratory of Plant Pathology, Division of Agrobiological Sciences, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

他

https://doi.org/10.5109/7169358

出版情報:九州大学大学院農学研究院紀要. 69(1), pp.1-10, 2024. 九州大学大学院農学研究院 バージョン: 権利関係:

Whole Genome Analysis of Two *Pectobacterium* Species Isolated from Blackleg Disease of Potato Occurred in Nagasaki Prefecture, Japan

Man Quang LE^{1, 2}, Kazuhiro IIYAMA^{*}, Haruki NISHIYAMA¹, Hana OTOFUJI¹, Yasuhiro SUGA³, Kenichi TSUCHIYA and Naruto FURUYA

Laboratory of Plant Pathology, Division of Agrobiological Sciences, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819–0395, Japan

(Received October 17, 2023 and accepted November 6, 2023)

In Japan, *Dickeya dianthicola, D. chrysanthemi, Pectobacterium atrosepticum, P. parmentieri,* and *P. brasiliense* are known as blackleg disease pathogens of potato. A transient outbreak of the blackleg disease occurred in Nagasaki Prefecture, and the pathogens were identified as *P. parmentieri* and *P. brasiliense*. Because repetitive extragenic palindromic PCR showed clonal relatedness among strains in each species, two Nagasaki strains (NK5 and NK14) were selected as the representative strains, and their whole genome sequences were determined. Average nucleotide identity analysis supported the identification in the previous study. Multilocus sequence analysis with seven housekeeping genes indicated the relationship between NK14 and other strains isolated in Japan, Russia, China, Switzerland, Poland, and Belgium. NK5 was related to the strains from various geographic locations including Syria, China, Canada, South Korea, Netherlands, Algeria, South Africa, Mexico, and Belarus. Subsequently, core genome multilocus sequence typing was performed with publicly available sequences, indicating that NK14 and NK5 were most closely related to the strains Poland/Russian and Netherlands/Belarus/Russia, respectively. This study concerns the first phylogenetic analyses based on the whole genome sequences of Japanese strains of *P. parmentieri* and *P. brasiliense*, and contributes to the molecular epidemiological analysis of the pathogen of potato blackleg.

Key words: Blackleg disease, Potato, *Pectobacterium brasiliense, Pectobacterium parmentieri*, Whole genome sequencing

INTRODUCTION

Potato (*Solanum tuberosum*) is one of the most important crops in the world, and its production (359 million tons) was ranked sixth among produced crops worldwide in 2020 (FAO, 2022).

Bacterial diseases are severe obstacles to potato production, especially in tropical and subtropical regions and some warm temperate regions of the world. Potato crop losses due to bacterial diseases could be direct and indirect. They are short-term impacts like yield loss and unmarketability, and long-term impacts with environmental, economic, and social effects (Charkowski *et al.*, 2020). Several bacterial diseases affect potatoes worldwide and cause serious damage, especially to tubers. Bacterial wilt and blackleg are considered the most important diseases, potato ring rot, pink eye, and common scab are the minor, and zebra chip is extremely rare (Charkowski *et al.*, 2020). The blackleg disease of potato is caused by six bacterial species including *Pectobacterium atrosepticum*, *P. brasiliense* (synonym of *P. carotovorum* subsp. *brasiliense*; Portier *et al.*, 2019), *P. parmentieri* (synonym of *P. wasabiae* potato isolate; Khayi *et al.*, 2016), *Dickeya dianthicola*, *D. solani*, and *D. chrysanthemi*.

In Japan, blackleg disease caused by five of these species other than *D. solani* has been reported, and the recent expansion of outbreak areas has been noted.

The occurrence of potato blackleg disease has increased recently in Japan, and it is pointed out that epidemiological studies of the disease are needed (Fujimoto et al., 2017).

Recently, the blackleg of potato suddenly occurred in Minamishimabara, Shimabara, and Unzen City in Nagasaki Prefecture. The causal agents were identified as *P. brasiliense* and *P. parmentieri* according to bacterial and biochemical characteristics and phylogenetic analysis based on nucleotide sequences of 16S rRNA and housekeeping genes, *recA*, and *dnaX* (Le *et al.*, 2023).

Whole genome sequences of causal agents of blackleg were determined elsewhere, and epidemical, phylogenetic, and evolutional analyses have been performed. However, to our knowledge, the whole genome of Japanese strains is not determined, and analyses based on the whole genome were limited. A study concerning the phylogenetic relationship of Nagasaki strains with other strains from around the world is necessary for plant protection and disease management. Therefore, whole genome analyses of the two representative strains were performed, and based on this information, the rela-

¹ Laboratory of Plant Pathology, Division of Agrobiological Sciences, Department of Bioresource Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

² Laboratory of Plant Disease Diagnostic, Division of Pest and Natural Enemy Identification, Plant Protection Research Institute, Vietnam Academy of Agricultural Science, Bac Tu Liem District, Ha Noi, Viet Nam

³ Nagasaki Agricultural and Forestry Technical Development Center, Isahaya, Nagasaki, Japan

^{*} Corresponding author: e-mail: iiyama@grt.kyushu-u.ac.jp (K. Iiyama)

tionship to other strains isolated in different geographical locations of the world was studied.

MATERIALS AND METHODS

Bacterial strains, culture, and genome extraction

Bacterial strains used in this study are shown in Table 1. The strain was cultured in LB broth (Lennox; 1% tryptone, 0.5% yeast extract, 0.5% sodium chloride, pH 7.0) at 28°C overnight with aerobic conditions. Genomic DNA was extracted by the CTAB method (Wilson, 1987), and stored at -20°C until use.

Repetitive element palindromic (rep) PCR

In the rep–PCR, ERIC1R (5'– ATGTAAGCTCCTGGGGATTCAC–3') and ERIC2 (5'– AAGTAAGTGACTGGGGTGAGCG–3') were used as primers (Versalovic *et al.*, 1991). PCR was performed as previously reported (Kyaw *et al.*, 2019). The PCR products were analyzed with agarose electrophoresis.

Whole genome analysis

Draft genome sequences of *P. brasiliense* NK5 and *P. parmentieri* NK14 were determined as described below. Genome sequencing was carried out on the Illumina NovaSeq platform (Novogene Co., Ltd, Beijing, China). A 350-bp library was prepared and sequenced to obtain 150-bp paired-end reads. Raw reads were trimmed using Trimmomatic v. 0.32 (Bolger *et al.*, 2014), and *de novo* assembly was carried out using SKESA v. 2.3.0 (Souvorov *et al.*, 2018). The resulting draft genome sequences were annotated using the DDBJ Fast Annotation and Submission Tool (DFAST) with default settings (Tanizawa *et al.*, 2018).

Publicly available sequences were downloaded at NCBI and used as reference sequences in the following analyses (Supplementary file 1).

Average nucleotide identity (ANI)

The average nucleotide identity (ANI) between the strains were determined using Pyani v. 0.2.12 (Pritchard *et al.*, 2016). The generated heat maps were modified graphically.

Multilocus sequencing analysis (MLSA)

Seven housekeeping genes including *acnA*, *gapA*, *icdA*, *mdh*, *mtlD*, *pgi*, and *proA* (Ma *et al.*, 2007) in the whole genome sequences were used. Partial sequences of these genes were used for the strains whose whole genome sequences are not determined. The sequences were aligned with MUSCLE (Edgar, 2004), sequences of *acnA* (275 bp), *gapA* (255 bp), *icdA* (471 bp), *mdh* (428 bp), *mtlD* (316 bp), *pgi* (466 bp), and *proA* (415 bp) were concatenated (2626 bp). Maximum–likelihood phylogenetic analysis was performed with IQ–Tree (Trifinopoulos *et al.*, 2016). The phylogenetic tree was drawn using iTOL v.6.8.1 (Letunic and Bork, 2021) and then modified graphically.

Core genome multilocus sequence typing (cgMLST)

The sequences were analyzed using chewBBACA v. 2.8.5 (Silva *et al.*, 2018) with a BLAST score ratio of 0.60 for core genome multilocus sequence typing (cgMLST). Minimum spanning trees were constructed based on the allelic profiles obtained by the cgMLST scheme using GrapeTree (Zhou *et al.*, 2018).

RESULTS

Rep-PCR analysis

The uniformity of rep-PCR fingerprinting patterns of *P. brasiliense* Nagasaki strains was confirmed (Fig. 1). In *P. parmentieri*, the patterns of NK13 and NK14 were the same. Similar results were obtained when other primer pairs for BOX and ERIC PCR were used (data not shown). These results indicated that the

Table 1. Bacterial strain used in rep-PCR analysis

Host	Location (isolated year)	Reference							
Pectobacterium brasiliense									
Solanum tuberosum	Unzen City (2018)	Le <i>et al.</i> (2023)							
S. tuberosum	Minamishimabara City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Minamishimabara City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Minamishimabara City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Minamishimabara City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Shimabara City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Unzen City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Unzen City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Unzen City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Unzen City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Unzen City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Unzen City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Shimabara City (2020)	Le <i>et al.</i> (2023)							
S. tuberosum	Shimabara City (2020)	Le <i>et al.</i> (2023)							
	Host ense Solanum tuberosum S. tuberosum	HostLocation (isolated year)enseSolanum tuberosumUnzen City (2018)S. tuberosumMinamishimabara City (2020)S. tuberosumShimabara City (2020)S. tuberosumUnzen City (2020)S. tuberosumShimabara City (2020)							

1) Asterisks indicate the strains used in the whole genome analysis as representative strains.

Nagasaki strains in both species used here were clonal.

Whole genome analyses

NK5 and NK14 were selected as the representative strains for *P. brasiliense* and *P. parmentieri*, and whole genome analyses were performed. Statistics of genome

Fig. 1. Comparison of rep–PCR profile fingerprint patterns of genomic DNA from Nagasaki strains of *P. brasiliense* (KuroAshi 1 to NK22) and *P. parmentieri* (NK13 and NK14). ERIC1R and ERIC2 were used as a primer pair.

assembly and annotation are summarized in Table 2. Over 4.6 million clean reads were used for genome assembly in both *P. brasiliense* NK5 and *P. parmentieri* NK14. The numbers of contigs were 40 and 43, and total contig sizes were approximately 4.91 Mb (coverage read depth, \times 302) and 4.86 Mb (\times 289) in NK5 and NK14, respectively.

Nucleotide sequences determined in this study have been deposited at DDBJ/EMBL/GenBank. The accession numbers for *P. brasiliense* NK5 and *P. parmentieri* NK14 are BSWF01000001 to BSWF01000040 and BSWE01000001 to BSWE01000043, respectively.

ANI between NK5/NK14 and the type strains of *Pectobacterium* species were calculated (Fig. 2). ANI values were 0.962 and 0.990 between NK5–*P. brasiliense* IPO 3540^T and NK14–*P. parmentieri* RNS 08–42–1A^T, respectively. The ANI values between NK5/NK14 and other strains were below 0.95, which is the most used standard cutoff for species demarcation and corresponds to 70% in DNA–DNA hybridization (Richter and Rosselló-Móra, 2009).

MLSA

Branch lengths were short in the phylogenetic tree for *P. parmentieri*, indicating that the nucleotide sequences were highly conserved (Fig. 3). In particular, the concatenated sequences were identical in NK14, PB20, HAFL01, IFB5619, IPO1955, QK–5, and IFB 5485.

On the other hand, the corresponding sequences were relatively diverse in *P. brasiliense* (Fig. 4). P. *brasiliense* NK5 was closely related to CFBP 7357 and formed a clade with kbs–1, pcbm–1, CFBP 5381, A1, and so on. In the tree, *P. brasiliense* strains were divided into three, subgroup I, II, and III. Subgroup I contained only IPO 0590. NK5 and IPO 3540^{T} belonged to different subgroups, III and II, respectively. ANI values between IPO 3540^{T} and other strains were higher than 0.95. These ANI

Table 2. Statistics for the genome assembly and annotation of *P. brasiliense* NK5 and*P. parmentieri* NK14

P. parmenueri NK14		
Statistics	P. brasiliense NK5	P. parmentieri NK14
Genome assembly		
Number of clean reads	4,951,513 reads	4,683,794 reads
Total nucleotide	1,485,453,900 bp	1,405,138,200 bp
N50/L50	315,539 bp/5 contigs	418,489 bp/4 contigs
N90/L90	69,086 bp/16 contigs	88,942 bp/13 contigs
Longest contig	732,862 bp	939,572 bp
Average length of contig	122,811.27 bp	112,988.86 bp
Number of contigs	40 contigs	43 contigs
Total length	4,912,451 bp	4,858,435 bp
GC content	52.1%	50.5%
Coverage read depth	×302	×289
Genome annotation		
Number of coding sequence	4,262	4,373
Number of rRNA	6	4
Number of tRNA	66	67
Number of CRISPRs	3	4

Fig. 2. Average nucleotide identity (ANI) between P. brasiliense NK5, P. parmentieri NK14, type strains of Pectobacterium species, and Dickeya chrysanthemi, calculated using the program Pyani. ANIb means identity determined using BLAST+. The dendrogram directly reflects the degree of identity between genomes. Details of strains are shown in Supplementary file 1. The number after strain is also described in the supplementary file.

values suggested that the strains belong to the same species, and subgroups similar to MLSA were shown (Fig. 5).

CgMLST

In cgMLST for *P. parmentieri*, the training file for Prodigal v. 2.6.3 (Hyatt *et al.*, 2010) was made with the complete sequence of the type strain, RNS08–42–1A^T. On the other hand, the genome data of *P. brasiliense* IPO 3540^{T} was a draft sequence. Therefore, the finished sequence of strain 1692 which was shown to be closely related to the type strain in MLSA analysis (Fig. 4) was used for training file construction. The number of loci found in at least 95% of *P. brasiliense* genomes was 2048, and that of *P. parmentieri* was 3187.

P. parmentieri NK14 was closely related to a Poland strain (IFB5604) and a Russian strain (PB20), and followed by the strains from China, Belgium (Fig. 6A). In the analysis for *P. brasiliense*, the close relationship between NK5 and the strains from Belarus, Netherlands, and Russian strains was shown (Fig. 6B).

DISCUSSION

Potato blackleg is a common bacterial disease that

causes serious losses in potato production worldwide. In Japan, the disease is known to be caused by five pathogens. Fujimoto (2022) examined the pathogen composition of blackleg occurred since 2000 and found that *P. brasiliense*, *P. parmentieri*, and *D. dianthicola* accounted for 44.7%, 42.9%, and 12.4%, respectively; *P. atrosepticum* was not observed; *D. chrysanthemi* was shown to be locally restricted (Fujimoto, 2022). Although seed potato production is strictly managed in accordance with the Plant Protection Law in Japan (Kawakami *et al.*, 2015), the occurrence of potato blackleg has increased recently (Fujimoto *et al.*, 2020).

Under the current circumstances, blackleg caused by *P. brasiliense* and *P. parmentieri* suddenly occurred in Nagasaki Prefecture in 2018 and 2020 (Le *et al.*, 2023). Since the phylogenetic relationship with other strains was not studied, we determined the whole genome sequences of Nagasaki strains (*P. brasiliense* NK5 and *P. parmentieri* NK14) and performed the phylogenetic analyses including ANI, MLSA, and cgMLST in this study.

The number of loci was low in the cgMLST analysis for *P. brasiliense*, suggesting that some assemblies were of low quality. However, we used all assemblies in our analy-

Fig. 3. Maximum–likelihood phylogenetic tree constructed using multilocus sequence analysis based on seven concatenated housekeeping genes (*acnA-gapA-icdA-mdh-mtlD-pgi-proA*) of *P. parmentieri* strains. Circles at the nodes indicate the bootstrap values over 80% (1,000 replications). *P. punjabense* SS95^T and *P. wasabiae* CFBP 3304^T were used as outgroups. The scale shows substitutions per site.

sis to ensure as much geographic diversity as possible.

It was shown that *P. brasiliense* NK5 was related to the strains isolated in Syria, China, Canada, South Korea, Netherlands, Algeria, South Africa, Mexico, Belarus, and Russia by MLSA, and cgMLST indicated a close relationship with the Netherlands Belarus, and Russia strains. Whereas, *P. parmentieri* MLSA indicated that NK14 was related to Poland, Russia, Switzerland, China, and Belgium strains. In cgMLST, NK14 was shown to be very similar to the Poland, China isolates.

The relationship with other Japanese strains was not determined in cgMLST, because of the lack of whole genome sequence data, but MLSA suggested that some strains (u15571a, ECC3 for NK14, kbs–1, kbs–2, pcbm–1, pcbm–2, pcbm–3 for NK5) were closely related with Nagasaki strains.

MLSA suggested that *P. brasiliense* was divided into three subgroups, but differences among the subgroups remain unknown. Comparative analysis of biological and pathological properties among the subgroups will be needed.

Until now, strain-level genotyping of bacteria has been promoted mainly by fragment analysis, including pulsed-field gel electrophoresis, PCR-based analyses like rep-PCR, and randomly amplified polymorphic DNA-PCR (RAPD-PCR). In the phylogenetic and epidemical analyses of the blackleg pathogens, which are isolated worldwide, it will be necessary to compare strains from different areas of the world. Genome sequence information is available worldwide and can be used for high-resolution and robust analysis. To our knowledge, this is the first report of genome sequences of the two causal agents of blackleg of potato isolated in Japan. The information in the present study contributes to the analysis of the molecular epidemiology of blackleg of potato.

Fig. 4. Maximum–likelihood phylogenetic tree constructed using multilocus sequence analysis based on seven concatenated housekeeping genes (*acnA-gapA-icdA-mdh-mtlD-pgi-proA*) of *P. brasiliense* strains. Circles at the nodes indicate the bootstrap values over 80% (1,000 replications). *P. polonicum* DPMP315^T, *P. carotovorum* DSM 30168^T, *P. polaris* NIBIO1006^T, and *P. jejuense* 13–115^T were used as outgroups. The scale shows substitutions per site. The strains with the asterisks were used in the ANI analysis shown in Figure 5.

Fig. 5. Average nucleotide identity (ANI) between P. brasiliense strains, calculated using the program Pyani. ANIb means identity determined using BLAST+. P. polaris NIBIO1006^T, and P. jejuense 13–115^T were used as outgroups. The dendrogram directly reflects the degree of identity between genomes. The gray solid bars represent subgroups in MLSA.

AUTHOR CONTRIBUTIONS

M. Q. Le determined whole genome sequencing, performed rep–PCR, MLSA, and cgMLST analyses. K. liyama designed the study, performed data analysis, and wrote the paper. H. Nishiyama performed cgMLST. H. Otofuji performed data analysis, and wrote the paper. Y. Suga collected disease samples and isolated the causal agent. K. Tsuchiya and N. Furuya supervised the work. All authors assisted in editing the manuscript and approved the final version.

REFERENCES

- Bolger, A. M., M. Lohse and B. Usadel 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, **30**: 2114–2120
- Charkowski, A., K. Sharma, M. L. Parker, G. A. Secor and J. Elphinstone 2020 Bacterial Diseases of Potato. In: Campos, H., Ortiz, O. (eds) The Potato Crop. Springer, Cham
- Edgar, R. C. 2004 MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics*, **5**: 113
- FAO 2022 World Food and Agriculture Statistical Yearbook 2022. Rome
- Fujimoto, T., S. Yasuoka, Y. Aono, T. Nakayama, T. Ohki, M. Sayama and T. Maoka 2017 First report of potato blackleg

caused by *Pectobacterium carotovorum* subsp. *brasiliense* in Japan. *Plant Dis.*, **101**: 241

- Fujimoto, T., S. Yasuoka, Y. Aono, T. Nakayama, T. Ohki and T. Maoka 2020 First report of potato blackleg caused by *Dickeya chrysanthemi* in Japan. J. Gen. Plant Pathol., 86: 423–427
- Fujimoto, T. 2022 Management to prevent the occurrence of potato blackleg disease. *Plant Prot.*, **76**: 468–475, in Japanese
- Hyatt, D., G. L. Chen, P. F. Locascio, M. L. Land, F. W. Larimer and L. J. Hauser 2010 Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*, **11**: 119
- Kawakami, T., H. Oohori and K. Tajima 2015 Seed potato production system in Japan, starting from foundation seed of potato. *Breed. Sci.*, 65: 17–25
- Khayi, S., J. Cigna, T. M. Chong, A. Quêtu–Laurent, K. G. Chan, V. Hélias and D. Faure 2016 Transfer of the potato plant isolates of *Pectobacterium wasabiae* to *Pectobacterium parmentieri* sp. nov. *Int. J. Syst. Evol. Microbiol.*, **66**: 5379–5383
- Kyaw, H.W.W., K. Tsuchiya, M. Matsumoto, S. S. Aye, K. Iiyama, D. Kurose, M. Horita and N. Furuya. 2019 Molecular characterization of *Ralstonia solanacearum* strains causing bacterial wilt of solanaceous crops in Myanmar by rep–PCR analysis. *J. Gen. Plant Pathol.*, 85: 33–38
- Le, M. Q., K. Iiyama, Y. Suga, H. Otofuji, K. Tsuchiya and N. Furuya 2023 Isolation and identification of the causal agents of blackleg disease of potato occurred in Nagasaki Prefecture, Japan. J. Fac. Agr., Kyushu Univ., 68: 13–19
- Letunic, I. and P. Bork 2021 Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Res.*, **49**: W293–W296

Fig. 6. Minimum spanning tree based on core genome multilocus sequence typing (cgMLST) profiles of 36 *P. parmentieri* (A) and 103 *P. brasiliense* (B) strains. The trees were created using 3,187 loci (A) and 2,048 loci (B) The numbers at the nodes indicate strains, and the details are listed in Supplementary file 1. The numbers of different alleles between pairs of strains are shown near the connecting lines. If the number of different alleles is less than 1000, the lengths are according to scale (logarithmic values) and are indicated by solid lines. When the numbers are greater than 1000, the lengths are indicated as shortened dotted lines. The collapsed node indicates the number of difference alleles is lower than 6 and 4 in the trees for *P. parmentieri* and for *P. brasiliense*, respectively.

- Ma, B., M. E. Hibbing, H. S. Kim, R. M. Reedy, I. Yedidia, J. Breuer, J. Breuer, J. D. Glasner, N. T. Perna, A. Kelman and A. O. Charkowski 2007 Host range and molecular phylogenies of the soft rot enterobacterial genera *Pectobacterium* and *Dickeya. Phytopathology*, **97**: 1150–1163
- Portier, P., J. Pedron, G. Taghouti, M. Fischer-Le Saux, E. Caullireau, C. Bertrand, A. Laurent, K. Chawki, S. Oulgazi, M. Moumni, D. Andrivon, C. Dutrieux, D. Faure, V. Helias and M. A. Barny 2019 Elevation of *Pectobacterium carotovorum* subsp. odoriferum to species level as *Pectobacterium odoriferum* sp. nov., proposal of *Pectobacterium brasiliense* sp. nov. and *Pectobacterium actinidiae* sp. nov., emended description of *Pectobacterium carotovorum* and description of *Pectobacterium versatile* sp. nov., isolated from streams and symptoms on diverse plants. *Int. J. Syst. Evol. Microbiol.*, **69**: 3207–3216
- Pritchard, L., R. H. Glover, S. Humphris, J. G. Elphinstone and I. K. Toth 2016 Genomics and taxonomy in diagnostics for food security: soft– rotting enterobacterial plant pathogens. *Anal. Methods*, 8: 12–24
- Richter, M. and R. Rosselló–Móra 2009 Shifting the genomic gold standard for the prokaryotic species definition. *Proc. Natl. Acad. Sci. U S A.*, **106**: 19126–19131
- Silva, M., M. P. Machado, D. N. Silva, M. Rossi, J. Moran-Gilad, S.

Supplementary file 1. List of reference strains used in this study

Santos, M. Ramirez and J. A. Carrico 2018 chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. *Microb. Genom.*, **4**: e000166

- Souvorov, A., R. Agarwala and D. J. Lipman 2018 SKESA: strategic k-mer extension for scrupulous assemblies. *Genome Biol.*, 19: 153
- Tanizawa, Y., T. Fujisawa and Y. Nakamura 2018 DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. *Bioinformatics* 34: 1037–1039
- Trifinopoulos, J., L. T. Nguyen, A. von Haeseler and B. Q. Minh. 2016 W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Res.*, 44: W232-W235
- Versalovic, J., T. Koeuth and J. R. Lupski 1991 Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. *Nucleic Acids Res.*, 19: 6823–6831
- Wilson, K. 1987 Preparation of genomic DNA from bacteria. In "Current Protocols in Molecular Biology", ed. by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl, John Wiley & Sons, New York, pp. 2.4.1–2.4.5
- Zhou, Z., N. F. Alikhan, M. J. Sergeant, N. Luhmann, C. Vaz, A. P. Francisco, J. A. Carriço, M. Achtman 2018 GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens *Genome Res.*, 28: 1395–1404

	Species								Accession number			
No.	(Dickeya	Strain	Source ¹⁾	Location	Year		and t	ind (milD	mai	
	/Pectobacterium)	NORTH INT		** ~ .		ucnA	gapA	ICUA	man	muD	pgi	proA
1	D. chrysanthemi	NCPPB 402 '	Chrysanthemum x morifolium	U. S. A.	unknown				JCA_000406105.			
2	P. actiniaiae	A212 C10 A1CT	Kiwi mut	South Korea	2006				JCA_000803315.1	1		
3	P. aquaticum	A212-S19-A10 CEDD 1526 ^T	Solanum tubarosum	France	2016				GCA_003382305.3	, I		
5	P hetavasculorum	NCPPB 2705 T	Beta yulaaris	U.K.	1937				GCA_0007498451			
6	P brasiliansa	130	potato	Belarus	2020				GCA_0222207051	1		
7	P hrasiliense	1001	S tuberosum	Canada	2020	IF926767	IF926777	IF926787	IF926797	IF926807	IF926817	IF926827
8	P. brasiliense	1692	potato	Brazil	2015				GCA 009873295.1			
9	P. brasiliense	21PCA AGRO2	napa cabbage	South Korea	2021			(GCA 026723725.1	l		
10	P. brasiliense	A079-S20-O15	river water	France	2016				GCA_020406955.1	l		
11	P. brasiliense	A1	Cephalocereus tetetzo	Mexico	2017				GCA_019426325.1	l		
12	P. brasiliense	B6	Brassica rapa subsp. pekinensis	China	2013				GCA_000808355.1	l		
13	P. brasiliense	BC1	Chinese cabbage	China	2002				GCA_001932635.1	l		
14	P. brasiliense	BD163	S. tuberosum	South Africa	1999				GCA_022172285.1	1		
15	P. brasiliense	BD255	potato	South Africa	2011				GCA_001238575.1			
16	P. brasiliense	BL-2	potato	China	2018			(JCA_017255075.1			
17	P. brasiliense	BZA12	cucumber	China	2015				JCA_002764035.			
18	P. brasiliense	CEDD 5250	Gossyptum sp.	U. S. A.	1964				JCA_013449485.1	1		
20	P brasilianse	CEDD 7257	S. tuberosum	Suria	2003				GCA_012449475.1	1		
20	P brasiliansa	CFBP 8736	river water	France	2005				GCA_0134496851			
22	P brasiliense	CFIA 1001	potato	Canada	2010				GCA_000738115.1			
23	P brasiliense	CFIA 1009	potato	Canada	2008				GCA_000738105.1	-		
24	P. brasiliense	CFIA 1033	potato	Canada	2009				GCA 000738125.1	1		
25	P. brasiliense	Ec-153	S. tuberosum	New Zealand	2005			(GCA 023507985.1	l		
26	P. brasiliense	F126	S. tuberosum	Russia	2012				GCA_003990515.2	2		
27	P. brasiliense	F152	S. tuberosum	Russia	2014			(GCA_002930555.1	l		
28	P. brasiliense	F157	S. tuberosum	Russia	2015				GCA_002930535.1	1		
29	P. brasiliense	HG1501090308	cucumber	China	2016	KX010014	KX010023	KX010032	KX010041	KX010050	KX010068	KX010077
30	P. brasiliense	HNP201719	potato	South Korea	2017				GCA_009931555.1	1		
31	P. brasiliense	ICMP 19477	potato	New Zealand	2004				GCA_001038675.1			
32	P. brasiliense	IPO 0590	S. tuberosum	Peru	1979				GCA_016950315.1			
33	P. brasiliense	IPO 0821 IPO 2540T	S. tuberosum	Israel	1986				JCA_016950285.1			
34	P. brasiliense	IPO 3540 *	S. tuberosum	Brazii South Africa	1999				JCA_016950255.1	l.		
36	P. brasiliansa	IPO 3630	S. tuberosum	South Africa	unknown				GCA_016950195.1			
37	P hrasiliense	IPO 3643	S tuberosum	unknown	unknown				GCA_0169502251	1		
38	P brasiliense	IPO 3644	S tuberosum	Netherlands	unknown				GCA_016950185.1	1		
39	P. brasiliense	IPO 3649	S. tuberosum	unknown	unknown			(GCA 016944615.1	l		
40	P. brasiliense	IPO 3650	S. tuberosum	unknown	unknown				GCA_016949525.1	l		
41	P. brasiliense	IPO 3707	S. tuberosum	Netherlands	2013				GCA_016949595.1	L		
42	P. brasiliense	IPO 3708	S. tuberosum	Netherlands	2013				GCA_016949545.1	l		
43	P. brasiliense	IPO 3709	S. tuberosum	Netherlands	2013				GCA_016949435.1	l		
44	P. brasiliense	IPO 3710	S. tuberosum	unknown	unknown				GCA_016944595.1	1		
45	P. brasiliense	IPO 3711	S. tuberosum	unknown	2013				GCA_016949375.1			
46	P. brasiliense	IPO 3843	S. tuberosum	Netherlands	2013			(JCA_016950125.1			
4/	P. Drasiliense	IPO 3844	S. tuberosum	wetherlands	2009				JCA_016950075.			
40	P brasiliansa	IPO 4054	S. tuberosum	unknown	unknown				GCA_010950115.1			
50	P hrasiliansa	IPO 4055	unknown	unknown	unknown				GCA_016040515			
51	P. brasiliense	IPO 4057	S. tuberosum	Netherlands	2017				GCA 016944555			
52	P. brasiliense	IPO 4058	S. tuberosum	unknown	unknown				GCA 016949915.1			
53	P. brasiliense	IPO 4060	S. tuberosum	Netherlands	2017			(GCA 016944435.1			
54	P. brasiliense	IPO 4062	S. tuberosum	Netherlands	2017			(GCA_016944315.1	l		
55	P. brasiliense	IPO 4064	S. tuberosum	unknown	unknown			(GCA_016950085.1	1		
56	P. brasiliense	IPO 4065	S. tuberosum	unknown	unknown			(GCA_016944295.1	l		
57	P. brasiliense	IPO 4066	S. tuberosum	unknown	unknown			(GCA_016949655.1			
58	P. brasiliense	IPO 4067	S. tuberosum	unknown	unknown			(GCA_016950015.1			
59	P. brasiliense	IPO 4068	S. tuberosum	Netherlands	2017			(GCA_016949975.1			
60	P. brasiliense	IPO 4071	S. tuberosum	unknown	unknown			(JCA_016944275.1			
61	P. brasiliense	IPO 4073	S. tuberosum	unknown	unknown			(JCA_016949795.1			
62	r. brasiliense	IPO 4131 IBO 4122	S. tuberosum	unknown Natharland	unknown 2017			(JCA_016949255.1			
64	P brasiliansa	IPO 4132	B. Inderosum	Netherlands	2017				GCA_016944255.1			
65	P brasiliense	IPO 4135	insect	Netherlands	2017				GCA 016949335			
00					2017							

66 67	P. brasiliense P. brasiliense	kbs-1 kbs-2	potato potato	Japan Japan	2017	LC145701	LC145702	LC145703	LC145704	LC145705	LC145706	LC145707
68	P. brasiliense	LMG 21372	S. tuberosum	Brazil	2002	20110700	20110707	G	CA 000754705.	1	Loriorio	201.0711
69 70	P. brasiliense P. brasiliense	LMG 2407 NAK 241	Lycopersicon esculentum S. tuberosum	Tanzania unknown	1954 unknown			G	CA_922014665. CA 016949885.	1		
71	P. brasiliense	NAK 243	S. tuberosum	unknown	unknown			G	CA_016949835.	1		
72	P. brasiliense P. brasiliense	NAK 245 NAK 247	S. tuberosum S. tuberosum	unknown unknown	unknown unknown			G	CA_016949855. CA 016949875.	1		
74	P. brasiliense	NAK 250	S. tuberosum	unknown	unknown			G	CA_016949775.	1		
75	P. brasiliense P. brasiliense	NAK 252 NAK 254	S. tuberosum S. tuberosum	unknown unknown	unknown unknown			G	CA_016949735. CA 016949705.	1		
77	P. brasiliense	NAK 384	insect	unknown	unknown			G	CA_016949355.	1		
78	P. brasiliense P. brasiliense	NAK 385 NAK 396	hyacint	unknown unknown	unknown unknown			G	CA_016949345. CA 016949295.	1		
80	P. brasiliense	NAK 397	gyacint	unknown	unknown			G	CA_016949315.	1		
81 82	P. brasiliense P. brasiliense	NAK 430 NAK 432	insect	Netherlands	2018 2018			G	CA_016949235. CA 016949145.	1		
83	P. brasiliense	NAK 433	insect	Netherlands	2018			G	CA_016949215.	1		
85	P. brasiliense P. brasiliense	NAK 434 NAK 435	insect	Netherlands	2018			G	CA_016949135.	1		
86	P. brasiliense	NAK 466	water	Netherlands	2017			G	CA_016949155.	1		
87	P. brasiliense P. brasiliense	NAK 408 NAK 470	water	Netherlands	2017 2017			G	CA_016949055.	1		
89	P. brasiliense	NAK 431	insect	Netherlands	2018	10820110	10220112	G	CA_016949275.	1	10820114	10820120
90	P. brasiliense P. brasiliense	PcbHPI01	s. tuberosum cucumber	South Africa	2012	JQ820119	JQ820118	JQ820117 G	CA_001429565.	2	JQ820114	JQ820120
92	P. brasiliense	pcbm-1	potato	Japan	2017	LC145715	LC145716	LC145717	LC145718	LC145719	LC145720	LC145721
95	P. brasiliense P. brasiliense	pcbm-2 pcbm-3	potato	Japan Japan	2017 2017	LC145722 LC145729	LC145723 LC145730	LC145724 LC145731	LC145725 LC145732	LC145726 LC145733	LC145727 LC145734	LC145728 LC145735
95	P. brasiliense	S2	B. rapa subsp. pekinensis	China	2014			G	CA_000808375.	1		
96	P. brasiliense P. brasiliense	SR10 SR11	squash pumpkin	U. S. A. U. S. A.	2019 2019			G	CA_020423105. CA_020295425.	1		
98	P. brasiliense	SR5	pepper	U. S. A.	2019			G	CA_020295605.	1		
100	P. brasiliense P. brasiliense	SR7	pumpkin	U. S. A. U. S. A.	2019			G	CA_020296625. CA_020297385.	1		
101	P. brasiliense	SR8	squash	U.S.A.	2019			G	CA_020295505.	1		
102	P. brasiliense P. brasiliense	TS20HJ1	Zingiber officinale	China	2015			G	CA_002068115.	1		
104	P. brasiliense	Y21	B. rapa subsp. chinensis	China	2013			G	CA_000808235.	1		
105	P. brasiliense P. brasiliense	¥29 ¥3	B. rapa subsp. chinensis B. rapa subsp. chinensis	China	2013			G	CA_000808245.	1		
107	P. brasiliense	Y31	B. rapa subsp. pekinensis	China	2013			G	CA_000808295.	1		
108	P. brasiliense P. brasiliense	Y49	B. rapa subsp. chinensis B. rapa subsp. chinensis	China	2013			G	CA_000808255.	1		
110	P. brasiliense	Y52	B. rapa subsp. chinensis	China	2013			G	CA_000808385.	1		
111	P. brasiliense P. brasiliense	Y62	B. rapa subsp. chinensis B. rapa subsp. chinensis	China	2013			G	CA_000808455.	1		
113	P. brasiliense	Y64	B. rapa subsp. chinensis	China	2013			G	CA_000808195.	1		
114	P. brasiliense P. brasiliense	ZLMLSHJ5	B. rapa subsp. pekinensis S. tuberosum	China	2013 2018			G	CA_000808335.	1		
116	P. carotovorum	DSM 30168 T	S. tuberosum	Denmark	unknown			G	CA_900129615.	1		
117	P. colocasium P. fontis	M022 ^T	waterfall	Malaysia	2013			G	CA_020181655. CA_000803215.	1		
119	P. jejuense	13-115 ^T	Cucumis sativus	South Korea	2022			G	CA_026800125.	1		
120	P. oaorijerum P. parmentieri	CFIA1002	potato	Canada	2007			G	CA_000734765.	1		
122	P. parmentieri	Ec-009	S. tuberosum	New Zealand	2005			G	CA_023508125.	1		
125	P. parmentieri	HC	potato	South Korea	2005			G	CA_023508005.	1		
125	P. parmentieri	IFB5408	S. tuberosum	Poland	2013			G	CA_003628575.	1		
120	P. parmentieri P. parmentieri	IFB5432	S. tuberosum S. tuberosum	Poland	2013			G	CA_003992745.	1		
128	P. parmentieri	IFB5441	S. tuberosum	Poland	2013			G	CA_003628655.	1		
129	P. parmentieri	IFB5485 IFB5486	S. tuberosum	Belgium	2012			G	CA_003628595.	1		
131	P. parmentieri	IFB5597 IFB5604	S. tuberosum	Poland	2014			G	CA_003628025.	1		
132	P. parmentieri	IFB5605	S. tuberosum	Poland	2014			G	CA_003628715.	1		
134	P. parmentieri P. parmentieri	IFB5619 IFB5623	S. tuberosum	Poland	2014			G	CA_003628735.	1		
136	P. parmentieri	IFB5626	S. tuberosum	Poland	2014			G	CA_003628015.	1		
137	P. parmentieri P. parmentieri	IPO 1955 NV1532B	unknown	unknown	unknown 2016			G	CA_016950275.	1		
139	P. parmentieri	NY1533B	potato	U. S. A.	2016			G	CA_016107195.	1		
140	P. parmentieri P. parmentieri	NY1540A NY1548A	potato	U. S. A. U. S. A.	2016			G	CA_016107165.	1		
142	P. parmentieri	NY1584A	potato	U. S. A.	2016			G	CA_016107135.	1		
143 144	P. parmentieri P. parmentieri	NY 1585A NY 1587A	potato	U. S. A. U. S. A.	2016 2016			G	CA_016107095. CA_016107085.	1		
145	P. parmentieri	NY1588A	potato	U. S. A.	2016			G	CA_016107065.	1		
146	P. parmentieri P. parmentieri	NY1712A NY1722A	potato	U. S. A. U. S. A.	2017 2017			G	CA_016107025. CA_016107035.	1		
148	P. parmentieri	PB20	sewage water	Russia	2014			G	CA_002920045.	2		
149	P. parmentieri P. parmentieri	QK-5 RNS08-42-1A ^T	S. tuberosum potato	France	2019 2008			G	CA_016864935. CA 001742145.	1		
151	P. parmentieri	SCC3193	S. tuberosum	Finland	2012			G	CA_000260925.	1		
152	P. parmentieri P. parmentieri	WC19161	S. tuberosum	China	2017 2019			G	CA_003121785. CA 016126895.	1		
154	P. parmentieri	WPP163	unknown	unknown	unknown			G	CA_000024645.	1		
155	P. polaris	NIBIO1006 ^T	S. tuberosum	U. S. A. Norway	2010			G	CA_002847345. CA_002307355.	1		
157	P. polonicum	DPMP315 ^T	ground water from potato field	Poland	2016			G	CA_005497185.	1		
158	r. punjabense P. quasiaquaticum	8895 ^т А477-S1-J17 ^т	5. tuberosum fresh water from irrigation canal	Pakistan France	2017			G	CA_012427845. CA_014946775.	2		
160	P. versatile	CFBP 6051 T	S. tuberosum	Netherlands	2001	1 0 1 1 1 1	1 (1999)	G	CA_004296685.	1	1 00 00 00	1 00 00 00
161 162	P. wasabiae P. wasabiae	BNS2-2 CFBP 3304 ^T	potato Eutrema japonicum	Japan Japan	2018 1987	LC258444	LC258452	-LC258460 G	LC258468 CA_001742185.	LC258476 1	LC258484	LC258492
163	P. wasabiae	ECC2	potato	Japan	2018	LC258445	LC258453	LC258461	LC258469	LC258477	LC258485	LC258493
164	r. wasabiae P. wasabiae	ECC3 HAFL01	potato potato	Japan Switzerland	2018	LC258446 KP027712	LC258454 KM017545	LC258462 KP027713	LC258470 KM017537	LC258478 KP027714	LC258486 KP027715	LC258494 KP027716
166	P. wasabiae	MAFF 301620	potato	Japan	2018	LC258451	LC258459	LC258467	LC258475	LC258483	LC258491	LC258499
167	P. wasabiae P. wasabiae	NACAB192 NAONI191	Brassica oleracea var. capitata Allium cepa	Japan Japan	2019 2019	LC597924 LC597925	LC597971 LC597972	LC597997 LC597998	LC598023 LC598024	LC598049 LC598050	LC598075 LC598076	LC598080 LC598099
169	P. wasabiae	NAPoBL202	S. tuberosum	Japan	2021	LC597939	LC597960	LC597986	LC598012	LC598038	LC598064	LC598092
170	P. wasabiae	NAPoSR191 NASOIL208	soil	Japan Japan	2021 2020	LC597946 LC597935	LC597967 LC597956	LC597993 LC597982	LC598019 LC598008	LC598045 LC598034	LC598071 LC598060	LC598102 LC598088
172	P. wasabiae	TNR271000	S. tuberosum	Japan	2018	LC258450	LC258458	LC258466	LC258474	LC258482	LC258490	LC258498
173	r. wasabiae P. zantedeschiae	9M ^T	S. tuberosum Zantedeschia aethiopica	Japan Poland	2018 2005	LC258449	LC258457	LC258465 G	CA_004137795.	1	LC258489	LC258497

1) The sources followed the description of the submitter that registered the sequence.