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PRECISE DETERMINATION OF THE SOLITARY WAVE 
OF EXTREME HEIGHT ON WATER OF A 

UNIFORM DEPTH 

By Hikoji YAMADA/l Gozo KIMURA,2) 

and Jun-ichi 0KABE3) 

In view of the facts that a solitary wave which can be produced upon 
the surface of water of a uniform depth is the limit attained when the wave 
length of a surface wave grows indefinitely and that therefore it constitutes 
an idealized model out of which practical knowledges of long waves may 
be derived, in this paper factors characteristic to the solitary wave of the 
extreme height, including the wave profile and the distribution of the sur­
face velocity, are given in great detail. As a whole, miscellaneous numerical 
values already published by various authors are verified. It is established 
above all that the ratios of wave velocity vs. tidal wave velocity and wave 
height vs. water depth are 1.2854 and 0.8262 respectively, both of which are 
supposed to be correct to the 4th decimal places. 

1. Introduction 

About ten years ago, one of the present authors performed a series of computa­
tions concerning surface waves of permanent type; in particular for the solitary 
wave of the extreme height he found between the wave velocity U and the wave 
height A the relations 

U = 1.286 ✓ gH and A = 0.8266 H. 

Besides, he gave the numerical tables of the wave profile and of the surface 
velocity [1] .4> However, the expressions mentioned above are slightly different 
from those due to McCowAN [2] who showed 

U = 1.25 ✓ gH and A = 0.780 H. 

Recently LENAU published a new calculation [3], in which he arrived at 

U = 1.2862 ✓ gH and A = 0.8281 H, 
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forms very close to ours. In all these equalities, g and H represent the accelera­
tion due to gravity and the depth of water, respectively. 

Taking full advantage of the nowaday situation that the use of electronic 
digital computers has been remarkably expanded, we have been engaged since 
some time ago in evaluating the maximum heights of permanent waves for vari­
ous wave lengths, or, in other words, in determining the so-called breaking index 
curve from a hydrodynamical point of view. Thus we are now given an oppor­
tunity for re-examining and revising the previous computations explained in [1]. 
In the present paper, however, a part of the former procedure is modified, that is 
to say, VILLAT's formula is to be employed instead of representations in terms of 
FOURIER series in order to find conjugate harmonic functions. According to our 
past experience (unpublished), however, the computation technique by means of 
VILLAT'S formula, when applied with the same angular intervals as in FOURIER 
analysis, through which the same degree of accuracy might be naturally expected, 
was found to lead us as a matter of fact to the values of U and A sensibly differ­
ent· from (less by 2 % than) those given in the preceding report [1]. It should 
be necessary, therefore, to determine by all means the side which is correct, 
or more correct, speaking more precisely, and further to know the reason of this 
discrepancy, if possible. On the other hand, as the result of some consider­
ations, the velocity distribution on the water surface for a solitary wave, namely 
-r(a) and 0(11) to appear in the following sections, may be substituted approxi­
mately for those of all kinds of waves in which the wave length L ·satisfies the 
condition L/H -<'.: 10. The velocity distribution on the surface of the highest 
solitary wave, therefore, may be used safely as an approximation to that of any 
wave just breaking, as long as the above condition is fulfilled, and in fact this 
range covers the greater part of the portion practically useful of the breaking 
index curve. 

We may conclude, therefore, that it should be quite significant to have charac­
teristic values of a solitary wave worked out precisely on the basis of the hydro­
dynamical theory toward establishing a basis for accurate numerical works to be 
performed in the future on one hand, and toward computing the breaking index 
curve in great detail on the other. This is the background of our calculations 
to be described in the followings. However, only the solitary wave is treated in 
this paper; the breaking index curve will be discussed separately in near future. 

2. Fonnulation of the problem 

The mathematical theory underlying the present computations of a solitary wave 
is essentially the same as was employed already in the previous paper [1], but in 
what follows it is slightly modified in a manner mentioned elsewhere [ 4]. For 
the sake of completeness, let us begin our discussions with a brief exposition of 
our procedure. 

Let the x-axis of our physical plane z = x+iy be placed along the bottom of 
water, and the y-axis directed upward; A permanent solitary wave can be put 
to rest in reference to a coordinate frame, moving with the velocity of the wave. 
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Let us suppose in what follows that in this coordinate system the water flows 
from left to right. Let the center of the wave crest be situated on the y-axis. 
Denoting the complex potential of this flow by 

W(z) = q;,+irp, 

say, it is well-known that q, the magnitude of the velocity of flow (reduced 
dimensionless by dividing it with U) at the point z, and 0, the angle between its 
direction and the horizontal, can be given through the formula 

_!_ dW = qe-•o. 
U dz (2.1) 

If, therefore, we should succeed in formulating the function W(z), then our prob­
lem would be solved completely. 

Since we are not enabled to find out W (z) directly, we first map the W-plane 
conformally onto the C: ( = ~+i71)-plane by the function 

1-C ( 1rW) 
l+C = cosh 2UH ' 

i.e. C: = - tanh2 ( 41r~)- (2.2) 

In FIGURE 1 which shows schematically the successive transformations above­
mentioned, capital letters and arrows indicate, respectively, the correspondence of 
representative points situated in each of these three domains and that of the con­
tours enclosing them. Thus the region occupied by the flow in the W-plane, 
AO,BCODA, is mapped onto the interior of the unit circle on the (-plane in such 
a way that is specified by the letters and the arrows. COD, the bottom of the 
flow field, is mapped two-fold on the negative ~-axis from -1 to 0. Irrespective 
as to whether we are in the interior or on the boundary, if - q;,+irp corresponds to 
~+i71, then does q;,+irp to ~-i71 and, in particular, points on the ¢-axis are mapped 
on the positive part of the ~-axis from O to 1. Now that the wave profile on 
the z-plane is symmetrical with regard to the y-axis, so are all the streamlines 
with respect to the same axis too. The complex velocity q exp ( - ill) correspond­
ing to W = - q;,+irp is found, therefore, to be nothing but the complex conjugate of 
the same quantity associated with W = q;,+irp. It follows from this fact, through 
the transformation mentioned above, that on the (-plane complex velocities at 
the points ~+i7J and ~-i71 are conjugate to each other, and that especially on 
the ~-axis, irrespective of ~. whether positive or negative, the complex velocity 
gives a value, definite and real. Namely the relations, 

q(C) = q(C) and 0(() = - O(C), (2.3) 

hold in the region of the C-plane consisting of the interior of the unit circle and 
its boundary. The bar above a letter denotes the complex conjugate of the 
quantity. 
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FrouRB 1. Transformations. 

Introducing a new function !J define~ by the equation 

Q(z) = iln ( b ddi:) = 0+i-r, 

where we put -r = In q, 

(2.4) 

(2.5) 

let us scrutinize the property of the function -i!J in the unit circle on the ,_ 
plane. Owing to ScHWARZ's reflection principle analytic continuation may be 
practised across the cut along the ~-axis runni!).g from -1 to 0, and the function 
thus yielded is found regular everywhere in the unit circle. Accordingly, Q itself 
also is a regular function. On the circumference of the unit circle, on the other 



SOLITARY WAVE OF EXTREME HEIGHT 19 

hand, .Q may be proved to be regular except the points ( = + 1 and -1 correspond­
ing respectively to an angular crest, as long as it takes place, and to the point 
at infinity of the z-plane [5]. The function Q, therefore, has the same property 
as the function w introduced before by LEVI-C!VITA [6]; and we may make use 
of his theory without any alteration: differentiating (2.2) we have 

(-TC< arg (<TC). (2.6) 

Rewriting with the aid of (2.4), we are led to 

(2.7) 

If we succeed in formulating Q(() in a way or another, then just by integrating 
(2.7) we can find ( = ((z), and simply through substitution we shall arrive at 
the function .Q(z) or, in other words, at full understanding of the nature of the 
field of flow on the physical plane. 

Since the circumfe~ence of the unit circle ( = exp (ia) (-TC< 11 < TC) corresponds 
to the surface of water; the SJ-function on the surface, i.e. 

is generally an analytic function of exp (ia), a point on the circumference, and 
moreover needs to satisfy the condition on the water surface. On the physical 
plane, this is given explicitly as so-called BERNOULLI'S theorem which is valid 
over the surface of water, namely 

q' + 2gU-2y = constant, (2.8) 

and. by differentiation along the surface (a streamline), we have 

where ds stands for an element of that streamline. If we take ds in the direction 
corresponding to 11 increasing, then ,as obvious from FIGURE 1, since ds is di­
rected reverse to the flow, we should have 

consequently 

dz= - dse10, so that dy = - sin0 
ds ' 

dq g . 0 
q ds = U' sm · (2.9) 

In order to transform (2.9) into a condition on the circumference of the unit 
circle, we have to write ds in terms of da taking account of (2.7). We obtain 
in this way · 
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7r q cos.!!_ 
2 

Substitution of this relation for ds in (2.9) yields 

where we put 

q2 1; = p sec ; sin(}, 

1 
P = rrF2 

and u 
F = ✓gH' 

(2.10) 

(2.11) 

(2.12) 

To sum up, the central part of our problem may be reduced in constructing, in 
the domain composed of the interior and the circumference of the unit circle, 
the function !J(() in such a way that (i) on the circumference the equation 
(2.11) should be valid, (ii) at C: = -1 or a= ±rr, we should have {) = -r = 0, 
and (iii) symmetry property, 

-r(~) = -r(() and 0(() = ,- 0((), 

should be valid everywhere. That the solution of this problem exists for an 
appropriate range of values of p is well-known as the existence theorem. 

3. Calculation scheme for the highest wave 

In order to work out in practice the wave profile and other things by applying 
the general theory to the highest solitary wave which we have in mind specifically 
as our objective, we need preliminarily to take into consideration the facts that 
at the summit (C: = 1, in other words) the wave has the angle of 120° and that 
accordingly the velocity should be zero at this point. With a view to providing 
!J beforehand with the properties 

lim O(a) = ±ir/6 and lim -r(a) = -co, (3.1) 
~il ~ 

let us divide !J(() into two parts: 

(3.2) 

say, in which we put 

i 1-C: 
!Jo(() =-In--• 

3 2 
(3.3) 

It will be readily noticed that .Q0 thus introduced satisfies the conditions (ii) 
and (iii) mentioned at the end of the last section. Besides, on the circumference 
of the unit circle, we have 

say, where 
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for O <a< TC, and 

for - TC < d < 0, 

and 'C' 0(a) = j ln \ sin ; I for - TC~ a< TC. (3.4) 

Properties of these functions agree exactly with those mentioned in (3.1). With 
respect to the remainder, 52,((), therefore, we have only to require that the value 
on the circumference of the unit circle, i.e. 

say, satisfies the following conditions : 

(}, = 0, -r, = a finite real constant at a = 0, 

and (}, = 0, -r, = 0 at d =±TC. 

(3.5) 

(3.6) 

In addition, the function 52,(() should be regular elsewhere on the circumference 
and in the interior of the unit circle. What we have to do next is to specify 
such a function compatible with (i) and (iii) stated before. 

Now, as is well-known, a function 52,((), regular in the unit circle, can be 
determined through an integral operation apart from a constant, purely real or 
imaginary, provided that on the circumference of that circle, (},, the real part, 
or 'l', , the imaginary part, is prescribed. Our problem, therefore, may be reduced 
further to finding O,(a) or -r,(a). However, since they are odd and even func­
tions of a respectively, we have only to evaluate them in the range O < a < TC. 

Conditions necessary for it are (3.5), (3.6), and also (2.11), the surface condition 
left untouched so far. With a view to simplifying the subsequent computations, 
let us introduce a new variable Q(a) defined as 

Q(a) = (3p)-11sq(a), 

where we have obviously q(a) = exp {-r0 (a) + 'L",(a)}. 

Replacing q(a) by Q(a) in (2.11), and after integration, we obtain 

Q3 (a) = { sec ~ sin O(ii)dii, 

where O(ii) = Oo(a)+O,(ii); 

(3.7) 

(3.8) 

in deriving (3.8) we made use of q(O) = 0. Connecting (3.8) with (3.7), we should 
arrive at an alternative form of (2.11). Incidentally, the equality q(TC) = 1 re­
sults in 
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1 J" a . _ · _ 
3P = 

0 
sec 2 sm 0(<1) da, 

through which we are enabled to determine p. 

(3.9) 

Let us continue transformations. Employing the form readily derived from 
(3.7), i.e. 

1 -r(a) = In q(<1) = 3 1n (3p) + In Q(<1), 

we obtain 1 -r,(a) = 3 1n (3p) + t1(<1), 

where we write t 1 (<1) = In Q(a)- ! In sin; • 

Substitution of (3.8) for Q(a) in the above yields 

11(<1) = ! In r sec ; sin {00 (0) +0,(o)} di,- ! In sin ; ; 

(3.10) 

(3.11) 

11(0) = 0 will be verified without difficulty. The combined form of (3.10). and 
(3.11) constitutes our ultimate expression for the .water surface condition. 

At the present stage, we must take into account one more condition: as evi­
dent, this is nothing but an explicit statement that (} ,( <1) and -r ,( <1) are conjugate 
to each other. If we write it by means of VILLAT's formula, we have 

(3.12) 

or considering that -r,(a) is an even function of <1, 

0 ( ) t t sin a J" -r,(0)--r,(<1) d~ 
, <1 = cons an - ~ cos a- cos <1 <1. 

0 

However, from the fact that (}, must be zero at <1 = 0, it follows that the con­
stant on the right-hand side should vanish identically. Furthermore, rewriting 
-r,(<1) in terms of t1(<1) by (3.10), we shall arrive _at 

0 (a)=_ sin af" t1(a2-t1(<1) d~ 
' TC COS <1-COS <1 <1. 

0 • 

(3.13) 

Through the above formulations, we are led to the conclusion that 0,(<1) and 
-r,(<1) are to be found as the solutions of the simultaneous integral equations 
(3.11) and (3.13). It is well-known that (3.12) may be expressed in a simple 
form as a relationship between two FOURIER series representing 0,(<1) and -r,(<1). 
However, in order to attain a satisfactory accuracy by dealing with these series, 
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we need to take a large number of terms. In this paper, we shall choose the 
alternative of evaluating very accurately the integral appearing in (3.13). Once 
O,(a) be found out, it can be derived from the definition of t 1 (a) (see (3.11)) 
that 

Comparing it with (3.9), we obtain 

or (3.14) 

Accordingly, from (3.10) -r, may be calculated by the formula 

(3.15) 

In order to go back from O,(a) and -r,(a) thus worked out to the velocity (q, O), 
obviously we have only to practise the following computations: 

q(a) = exp {-r0 (a)+-r,(a)} = sin113 ; exp {-r,(a)}, 

and 
TC-<1 

O(a) = Oo(a) +O,(a) = - 6- +O,(a). (3.16) 

In concluding this section, it should be noted that out of BERNOULLI'S theorem 
(2.8) and the definition of p (2.12), the maximum wave height A may be deter­
mined in the form 

(3.17) 

4. Procedure of numerical computations 

The iteration method is employed in solving the simultaneous integral equations 
(3.11) and (3.13). Namely, in the first place by assuming t 1 (a) appropriately, t/0> 

say, substitute it for t 1 in (3.13), and evaluate O,(a), 0,11> say, with a method 
of numerical integration. Next, out of O,(a) thus obtained, calculate numerically 
t1(a), t/0 say, makig use of (3.11); this completes the 1st cycle. The similar pro­
cess may be continued in the 2nd cycle to produce 0,<2> and t/2>, say. Compar­
ing these two kinds of o;s and ti's (in other words, 0,(1), t/0 and 0,(2), t 1 12>), 
provided that both pairs be found coincident down to five places of decimals, 
then the values of O,(a) and t 1 (a) thus obtained are to be regarded as correct. 
On the contrary, if there should be sensible differences, the new t 1(a), i.e. t/2>, 

will be brought back again into (3°.13) to yield the 3rd O,(a), 0,13> say. Further, 
repeating the process, we are led to the 3rd t1 (a), t/3>, and between the 2nd and 
the 3rd pairs of (0,, t 1 ) the same test of accuracy will be made. The whole pro­
cedure will be continued uritil satisfactory results are arrived at. The process 
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is shown schematically by FIGURE 2. 

cycle\ t 1(a) O,(a) 

0 t 1 <oJ : starting value 

\t 
1 fl (I) - 0 (I) r 

\t 
2 ( l (2) - 0 (2) 

r 

\t 
3 ( l (3) - 0 (3) 

r 

,\t 

\t 

18 ( l (18) - 0 (18) 
r 

\t 
19 ( l (19) - 0 (19) - O(a) r 

/_ - r, - r(a) 

FIGURE 2. Flow diagram. 

The numerical integrations contained in (3.11) and (3.13) are carried out with 
the aid of SIMPSON'S rule by evaluating the integrands at intervals of 1 ° of their 
arguments ranging from 0° through 180°. However, due to necessity arising from 
the iteration process mentioned above, contrary to the ordinary SIMPSON'S formula, 
both of the integrand and its integral should be computed with the common step, 
always at intervals of 1°. For this purpose, we use the following approximation: 
the integral over the range of 1 ° may be approximated by the rear-half of the 
area between the abscissa and the parabola passing through three points situated 
one after another at intervals of 1 °. Or to be more precise, denoting the values 
of y(x) at the points x = 0, h, and 2h by a0 , a,, and a2 respectively, our approxi­
mation formula is written as 

(4.1) 

However, for the last interval, i.e. from 179° to 180°, the integral is approximated 
this time by subtracting the rear-half obtained in this way from the value com-
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puted through ordinary SIMPsoN's formula over the range from 178° to 180°. Com­
paring with each other the labors involved in the numerical integrations of (3.11) 
and (3.13), it is evident that the latter is about 180 times as large as the former. 

Both of the integrands contained in (3.11) and (3.13) have singular points yield~ 
ing the indeterminate form 0/0; they are a = -n: for (3.11), and a = " in (3.13). 
These points may be treated in the following manner. In die first place, evaluat­
ing the integrand of (3.11) at the point a= -n: by means of limiting procedure, 
we have 

1. a . _) cos 0(-n:) ) 1 2 _1m sec 2 sm O(fJ = 1 . -n: 0'(-n: = 3 - 0,'(-n:); 
• _,,,_. - 2 sm 2 

(4.2) 

since 00 (-n:) = 0,(-n:) = 0, and Oo'(-n:) = - ! , 
where dashes attached to O and 0, denote differentiations with respect to their argu­
ments. Thus all we have to do reduces to computing accurately the value of 
O,'(-n:). With this end in view, we assume for O,(f1) a polynomial of the third 
degree coincident exactly with its values at four points "= 177°, 178°, 179°, and 
180°, and out of this curve the value of 0,'(-n:) can be estimated as follows. 

O,'(-n:) = -{90,(179°) - 4.50,(178°)+0,(177°)}/0.0523599. (4.3) 

In the next place, let us consider the singular point defined by a = " taking 
place in (3.13). Since it is supposed from the beginning that 0,(0) = 0,(-n:) = 0, 
cf. (3.5) and (3:6), the point " in question may be assumed to be not equal to 0 
nor -n:. The integrand can be transformed through a similar process: 

lim t, (a)-t, (f1) 

·-· cos a - cos " 

t,'(fJ) 
= - sin "' 

(4.4) 

where t,'(f1) = dt,(f1)/dfJ. As the approximate value of t,'(f1), we employ the 
central difference having the fJ-point as the center. Namely, we obtain approxi­
mately 

t,'(f1) = {t,(f1°+1°) - t{(f1°-1"))/0.0349066. (4.5) 

After these preliminaries, numerical works of the · iteration can be carried out 
without difficulty. The final values of O;(f1) and t 1(a) are given at intervals of 
1° of a. Theri from (3.16) we find q(f1) and O(f1) ; (3.14) yields p; accordingly 
U and A may be calculated by virtue of (2.12) and (3.17) respectively. And •in 
order to associate O,(f1) and -r,(f1) with properties of a solitary wave, we have 
to evaluate the function .!J,(() = O,(C)+i-r,(C). Writing iras - i.!J,(C) = -r, - iO,, 
let us make use of ScawARZ-P01ssoN's formula with a view to finding out this 
function. Namely, 
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. . 1 Jn e1'+( 
- 1!?,(C) = 1b + 2TC -n-r,(11) el•-( d11, 

ib being an arbitrary constant, purely imaginary. · By replacing -r ,(11) in the inte­
grand by t 1 (11) according to (3.14) and (3.15), and transforming at the same 
time the both-hand sides back to the expression for Q,(C), we are led to 

Now, considering the physical condition that at the center of the bottom, z = 0 
i.e. C = 0, it should be that 8 = 0 or re.Q(0) = 0, since it is obvious from (3.3) that 
re!.?0 (0) = 0, we must have accordingly re.!J,(0) = 0, and so the constant b in 
the above equality should vanish identically. Thus 

. { 1 1 J n e1
' + C } Q,(C) = 1 3 1n (3p) + 2TC -nt1(11) el•-( d11 . (4.6) 

After we have succeeded in working out Q,(C) in this way, we are enabled to 
find the value of Q(C) at any point within the unit circle with the aid of (3.2). 
Introducing this function thus determined into the right-hand side of (2.7), 
after integration we can find C as a function of z. By substitution for C in Q(C), 
we can determine Q(z), or the nature of the flow field. 

We are now in a position to discuss the wave profile x (11), y (11) of the 
solitary wave of the maximum height. Once the profile is determined, the dis­
tribution of velocity on the surface of that wave may be readily derived from 
q(11) and 8(11). Starting from (2. 7), through substitution of exp (i11) for C, we 
may write 

H e101,, 
dz (11) = - ----- d11. 

TC q(11) COS; 

The wave profile, therefore, can be expressed in the forms 

x 0 (11) = __ l_J' cos 8(11) dl1 
H TC 11 ' 

o q(11) cos 2 

y 0 (11) = __ l_J' sin 8(11) dl1 
H TC 11 ' 

o. q(11) cos 2 
and 

where x0 and Yo are connected with x and y by the relations 

Xo = x, and Yo= y - (A+H). 

(4.7) 

(4.8) 

This translation of the origin is simply due to convenience of tabulation of our 
final results. 

The numerical integrations in ( 4.7) are performed using ordinary SIMPSON'S 
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rule, and results are produced from a = 0° to 180° at intervals of 2°. Two remarks 
are necessary for these integrations. First, we have to note that the value of 
x0/ H increases without bounds at a = 180°, and so we adopt the convention that 
the computation of x 0/H is stopped as soon as a= 178° is reached. Second, as 
obvious from the first equation of (3.16), q (a) behaves like (a/2)113 e-tic•> in the 
neighborhood of a= 0. So that sin O(a)/q(a) cos (a/2) and cos O(a)/q(a) cos (a/2) 
may be approximated by sin 30°(2/a)113 e11 c•l or 2-213 et,(,r) a-113, and ·by cos 30° 
(2/a)113 e1,c•> or 3112 2-213 e1•'"> a-Ila, respectively. Over a small distance after start­
ing from the point t1 = 0, therefore, we may put approximately 

sin 0 ---"- = 2-213 e1,c•>11-I13 (l+s,a+s2a2 +s3113 +s4a'), 
qcos 2 

and cos0 a = 3112 2-213 e1,c•>a-113(1+c1a+c2112 +c3a3 +c4a4); 

q COST 

(4.9) 

the numerical coefficients s, and c, (i= l, 2, 3, and 4) are to be determined from 
the known values of the left-hand sides at the points a=l 0

, 2°, 3°, ~nd 4°Y Since, 
therefore, 'the integrals on the right-hand sides of (4.7) can be given in the 
forms 

Jo• COS O ( 1 C C C C ) and a da=2-21a3a12et,c•>a•1a 2+ja+ 8'11'+u"a'+14a1 • (4.10) 
q cos 2 

we can evaluate the integral for the values a = 2° and 4°. On the other hand, 
for a greater than 4°, SIMPSON'S rule is put to use. In this way, a point situated 
on the surface of water is given in terms of a, the parameter, and the mag­
nitude and the direction of the velocity prevailing at that point are given by 
q(a) and O(t1) respectively. 

Finally, as a test of accuracy of numerical computations, we estimate the 
quantity 

q2 (11) + Yo (a)= d(a), 
2rrp H (4.11) 

say, at each station of a used in computations, the second term on the left-hand 
side being the calculated value of the second expression in ( 4. 7), while on the 
other hand the first term might be readily understood by a glance at (3.8). Na­
mely, differentiating once with respect to t1, the both hand sides of that equa-

1) In practice, the numerical coefficients s's and e's were determined by solving 
the simultaneous equations through the ordinary procedure of elementary algebra; no 
routines frequently employed for an electronic computer, such as sweep-out method, 
were not used. 
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tion, dividing with Q, again integrating with ,;, and finally substituting for Q 
the right-hand side of (3.7), we are led to 

q2(,;) = _!__J' sin (}(,;) d,; = 
2rrp rr ,; oq(,;)cos 2 

(4.12) 

So that, theoretically speaking, the quantity defined as A(,;) should vanish 
identically. Its deviation from zero is nothing but the error due to difference 
of two computation procedures applied to the same quantity, and may be re­
garded as a measure indicating the accuracy of numerical works involved. 

5. Results of numerical computations 

In reference [1], by giving relevant numerical coefficients, both of (},(,;) and 
r,(a) were expressed in terms of FOURIER series.1i In the present paper, we 
started our iteration procedure from the values of t1 (,;) computed out of the 
series of r,(,;) at intervals of 1°. The essential part of our numerical works 
consists in repeating the cyclic computation t1 (,;)➔ 0,(<1)➔ t1 (,;)➔ •·· until at 
last we arrive at a state in which further continuation can give rise to no 
sensible change of values. Although it is generally convenient in such a case to 
leave the convergence criterion to an electronic computater and, if the condition 
is proved satisfied, to make a step forward into the next automatically, we took 
the alternative, leaving room for all-round decision for ourselves in any chance 
necessary in the course of the computation, since convergence has to be fulfilled 
at as many as 180 points in the range of ,; (from 1° to 180°) for each of t 1 (,;) 

and 0,(a). 

The machine time to complete one cycle calculation t/n-ll➔ ()/•>➔ t/•> was 
about 13 minutes in the average, so that at the initial stage convergence was 
inspected when the 5th and the 10th cycles have been finished. Afterwards, how­
ever, we used to proceed examining the results after every 2 or 3 cycles. Hav­
ing confirmed that (},<18> and t,<18> were different from (},'m and r1m> respectively 
only by a quantity less than 10-s for all values of a without fail, we performed 
the computation of the 19th cycle, which we took as the final result. At first, 
because the computation method of (},'(rr) were somewhat too rough, we found 
after 11 cycles of iteration still sensible values of A(,;) in the neighborhood of 
,; = rr. The computation scheme of 0/(rr), therefore, was modified into more accu­
rate form mentioned in (4.3) in order that we may be able to continue sebsequent 
cycles more effectively. 

In TABLE I values of q, (}, -x0/H, -y0/H, and A are given altogether for 
various values of ,; from 0° to 180°. On the other hand, in FIGURE 3 the profile 
is shown of the solitary wave of the maximum amplitude, besides at the lower 
part of the same figure the fine structure of the profile i'n the immediate neigh­
borhood of its top is reproduced in a magnified scale. It will be remarked that 

1) See eq. (15) of reference [1]. 
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the part of the curve computed from the approximate expansions (4.11) and 
(4.12) for 11 = 0°, 2° and 4° (the open circles) is connected quite smoothly with 
the portion constructed through SIMPSON'S formula for 11 2; 6° (the closed circles), 
Results embodied as TABLE 1 and FrGURE 3 were yielded by 19 cycles, and it is 
observed everywhere in the range of the variable that .1(11) < 0,0001. Finally, 
the characteristic value, p, is given as 

p = 0.19265, (5.1) 

from which the followings are derived : 

U = 1.2854 ✓ gH and A = 0.8262 H. (5.2) 

The relations summarized in (5.1) and (5.2) may be regarded not only as a 
verification of computations published already by one of the present authors 
[1] and by LENAU [2], but also as the formulas having improved accuracy, cor­
rect possibly to the 4th decimal places, compared with the previous calculations 
above-mentioned. 

The whole of numerical works involved in this study was done with the 
aid of OKIT AC 5090H. The authors take this chance to express their gratitude 
to the staff of the Computation Center of Kyushu University for their coopera­
tion. They are grateful also to Miss S. HosHINO and Mr. N. FUKAMACHI for their 
assistances in preparing the manuscript. 
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TABLE 1. 

q• q(a) 6(<1) _ -x0(a)/H -y.(a)/H .4(<1)X 106 

0 0.00000 0.52360 0.00000 0.00000 0 

2 0.21543 0.51425 0.06705 0,03834 4 
4 27082 50740 10675 06059 4 
6 30941 50122 14026 07908 3 
8 33993 49543 17036 09546 3 

10 36556 48992 19818 11040 3 

12 0.38785 0.48463 0.22435 0.12427 3 
14 40767 47951 24926 13730 3 
16 42561 47453 27315 14965 3 
18 44204 46967 29621 16142 3 
20 45723 46491 31858 17271 3 

22 0.47139 0.46024 0.34036 0.18357 3 
24 48466 45565 36163 19405 3 
26 49718 45112 38247 20421 3 
28 50904 44665 40293 21406 3 
30 52031 44224 42306 22365 3 

32 0.53107 0.43787 0.44291 0.23299 3 
34 54136 43355 46250 24211 3 
36 55124 42926 48187 25103 3 
38 56074 42501 50105 25976 3 
40 56990 42078 52006 26832 3 

42 0.57875 0.41659 0.53893 0.27671 3 
44 58732 41241 55768 28496 3 
46 59562 40826 57633 29308 3 
48 60367 40413 59489 30106 3 
50 61151 40001 61338 30892 3 

52 0.61913 0.39590 0.63182 0.31668 3 
54 62657 39180 65023 32433 3 
56 63382 38772 66862 33188 3 
58 64091 38363 68700 33934 3 
60 64784 37956 70538 34672 3 

62 0.65462 0.37548 0.72379 0.35402 3 
64 66127 37140 74223 36124 3 
66 66779 36732 76072 36840 3 
68 67418 36324 77927 37549 3 
70 68047 35915 79789 38253 3 

72 0.68665 0.35506 0.81660 0.38951 3 
74 69273 35095 83540 39644 3 
76 69872 34684 85432 40332 3 
78 70462 34271 87336 41016 3 
80 71043 33857 89255 41696 3 

82 0.71617 0,33441 0.91188 0.42372 3 
84 72184 33023 93139 43045 3 
86 72744 32603 95108 43716 3 
88 73297 32181 97096 44383 3 
90 73844 31757 99106 45049 3 

92 0.74386 0.31329 1.01140 0.45712 3 
94 74923 30900 03198 46374 3 
96 75455 30467 05284 47035 3 
98 75982 30030 07398 47695 3 

100 76505 29590 09543 48354 3 
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TABLE 1. continued 

a• q(O) I O(o) · . -x0(o)/H -y0(a)/H A(o)Xl06 

102 0.77025 0.29147 1.11721 0.49012 3 
104 77540 28700 13935 49671 3 
106 78053 28248 16186 50330 3 
108 78563 27792 18479 50990 3 
110 .79070 27331 20815 51651 3 

112 0.79575 0.26865 1.23198 0.52313 3 
114 80079 26393 25631 52976 3 
116 80580 25916 28118 53642 3 
118 81080 25433 30663 54310 3 
120 81580 24943 33270 54981 3 

122 0.82078 0.24447 1.35944 0.55655 3 
124 82577 23943 38690 56333 3 
126 83075 23432 41514 57015 3 
128 83573 22912 44423 57701 3 
130 84073 22384 47424 58392 3 

132 0.84573 0.21846 1.50525 0.59089 3 
134 ·85075 21299 53734 59793 3 
136 85578 20740 57062 60503 3 
138 86084 20171 60521 61220 3 
140 86593 19589 64124 61946 3 

142 0.87105 0.18995 1.67887 0.62681 3 
144 87621 18386 71826 63426 3 
146 88142 17762 75963 64182 3 
148 88668 17121 80322 64950 3 
150 89200 16463 84933 65732 3 

152 0.89738 0.15784 1.89831 0.66528 3 
154 90285 15084 1.95058 67341 3 
156 90841 14361 2.00668 68173 3 
158 91408 13610 2.06728 69026 3 
160 91986 12829 2.13324 69903 3 

162 0.92579 0.12015 2.20569 0.70807 3 
164 93190 11161 28617 71744 3 
166 93820 10262 37681 72718 2 
168 94416 09308 48077 73737 2 
170 95162 08287 60289 74813 2 

172 0.95890 0.07181 2.75129 0.75962 1 
174 0.96673 05962 2.94120 77208 - 1 
176 0.97541 04574 3.20674 78601 -9 
178 0.98557 02894 3.65718 80253 -70 
180 1.00000 00000 00 82620 -70 




