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THEORY OF DIFFUSION IN TURBULENCE* 

By Kazunori KITAJIMA 

Summary 

Generalized definitions of Lagrangian correlations in turbulence were in­
troduced, by means of which transfer equations of heat or momentum in trubulence 
were derived in the form of integro-differential equations. The equation of heat 
in particular provides a generalized equation of Fokker-Planck in the theory of 
"Random Walk" and contains the relation presented by G. I. Taylor (1921) as 
a relation derivable in a special case. 

Then a theory determining the correlations in steady process was developed 
by introducing the approximation called as multiple Markov process approxima­
tion. On the other hand, the conception of self-preserving decay model was in­
troduced for homogeneous shear flows. Then based on these considerations a 
theory of nearly isotropic shear flows was proposed. 

§ 1. Introduction 

Since the first study of Osborne ReynoldsUl characteristic mechanisms in fully 
developed turbulence have been pursued on the two lines, the one is the mechanism 
of transformation of energy from eddies to heat, and the other is that of trans­
ference of heat or momentum caused by eddies. The statistical theory introduced 
by G. I. Taylor<2J and Th. von Karman<8l, and directed to the former mechanism, 
has been developed so far by Kolmogoroff<4l, Onsager<5) and Weizsacker<6l, that 
the reasonable explanations have been presented for the local structure of the 
energy spectrum of eddies. 

While, as for the latter, the mechanism of transference, in which anisotropic 
eddies of larger scale not included in the above theories play an important role, 
no reasonable theory has yet been developed beyond the stage of " Mixing length " 
theories. 

Prandtl <7l and Taylor<8l had introduced the conception of " Mixing length " 
which is analogous to the mean free path in the kinetic theory of gas. In these 
theories, however, mixing length itself must be determined based on the empirical 
ground. Gebelein<9l and Frenkiel(loJ had proposed a transfer theory based on the 
stochastic theory, but the limitation of " Markov process " used in these theories 
could not be applied with success to the wide ranged spacial and temporal correla­
tions of turbulent velocities which are particularly characteristic in turbulence. 
Corrsin<11l and Batchelor<12l had developed a correlation theory which is based on 

* The paper presented at the Xth International Congress of Applied Mechanics, Stresa (Italy), 
Sept., (1960). 
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96 K. KITAJIMA 

Eulerian view point of fluid flow and derived some usefull results. 
However, an important step to the more reasonable theory had been suggested 

by G. I. TaylorC13l(1921). He had introduced the conception of Lagrangian correla­
tion of turbulent velocities and applied it to a problem of diffusion in isotropic 
turbulence. 

In this paper, extending the line of thought presented by Taylor, we develope 
a general theory of transfer in turbulence. 

§ 2. Derivation of general transfer equations 

§ 2. 1. Preliminaly formulations 

From Lagrangian view point of fluid flow, a state of turbulent flow may be 
defined as a statistical state of a dynamical system constituting of large number of 
identical particles, whose motions are described by Navier-Stokes' equations of 
motion in their Lagrangian form. 

In order to describe the statistical behaviour of a particle the formality used 
in the classical statistical mechanies has particular merits<14l. So that we shall now 
derive the transfer equations presented by 0. Reynolds by means of the formality 
used by Kirkwood<15l, and Born and Green06l in their theory of general irreversible 
process. 

Now we shall consider a dynamical system composed of N identical particles. 
Denote space and velocity co-ordinates of the particles by (xi i=1···6N) and time 
by t. The equations of motion of N particles are provided by 

where u, is unique function of (xJ, t). 
The statistical states of the system are microscopicaly specified by the probability 

density p in the phase space (xi), and the time change of which is determined 
uniquely by the continuity equation of probability density in the phase space, 

a a 
aTP + OX; (pu,) = o. ·········(2) 

The characteristic lines of the partial differential equation are described by the 
trajectories of the motion of N particles determined by the equations •(1). Then 
the Largragian coordinates (a1, s) in the phase space are defined by means of the 
trejectories of the N particles, 

From the definition we may obtain the relation 

·········(3) 

In virtue of the Lagrangian co-ordinates the continuity equation (2) is re-expressed 
in the form 
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THEORY OF DIFFUSION IN TURBULENCE 97 

......... (2)' 

h O(X1•••XsN) 
w ere a= p 

o(a1•••asN) 
O(X1•••XsN) 

, and "' ( ) , is the Jacobian of the transforma -
u a1•••asN 

tion of variables. 
Then we shall define a physical quantity <f! which is defined as an arbitarary 

function of (xi, t). We obtain by means of (2)' 

a · . a 
Ts (<f!a) = a<p ' <f!= as<{!. ········•(4) 

Using (3), (4) is re-expressed as 

:, (p<f!) + OGX; (p<f! U;) = pip ········•(4)' 

Then we shall now introduce the weight function 0 which is defined as a phase 
function i11variable along trajectories, for which we obtain 

·········(5) 

········•(5)' 

Macroscopic state of the system may be defined statistically by means of small 
number of mean values or correlations, time change of which are described by 
transfer equations. We consider the subspace X; i=l·••n composed of, for instance, 
space co-ordinates of a particle (n=3), then averaging (2)' and (4)' over the re­
maining co-ordinates (xi j=n+l·····•6N), we obtain the continuity equation and 
transfer equations of physical quantity <f!, 

·········(6) 

·········(7) 

where mean density and mean values are defined as 

p=J·JP IT dxj, 
j=n+l 

p<p =J·JP<f! IT dx1 
J=n+l 

Then we shall consider the problem of diffusion of a particle in the space 
(x1). In the theory of "Random Walk" we concern with the conditional pro-

bability 'f'(X1, t/x1,0, 0) IT dx1 of a particle started from the point x,,o at time t=O, 
i=l 

and staying in the space range (x;, x1 + dx1) at time t=t. Selecting 0 such as 
n 

0i=o= II o (x;-X;,o) , 
i=O 
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98 K. KITAJIMA 

where o is the Dirac's delta function, the probability density ,fr is expressed by 

,fr = p(x\, 0) 75 (x;, t) e (xi, t I X;,o, 0) , 

or re-defined by means of Lagrangian co-ordinates as 

1 J J 6Y = p(x;,o, O) • 8a() 1!} dai, 

where {J is the weight function defined as 
n 

17,=t = II o (x; - xi) 
i=l 

.... , .... (8) 

Using (2)' conservation of total probability is easily verified. Finally averaging 
the equation (5)' the continuity equation of the partial probability density ,fr is 
provided by the diffusion equation of a weight function, 

...... , .. (9) 

§ 2. 2. Re-expression of transfer terms 

The terms p ( u1 - ii;) ( e - e) and p ( u1 -ii;) ( rp- rp) are the transfer terms, and 
have been interpretted by analogy with the kinetic theory of gas. A portion of 
fluid mass started from a layer and earring say mean quantity of heat of that 
layer, proceeds some distance L across mean stream and mixes with surrounding 
fluid, thus transfers mean heat from a layer to a layer. 

In order to examine precisely the process of mixing, we shall at first re-express 
the transfer term by means of Lagrangian co-ordinates, 

75 (u1-ii1)(B-e) = J · J (u1-iiJ (B-e)a{J ifda;. 

Then tracing the term (8-0) along the tra­
jectory of a particle back to past, re-express 
the term in the form of time integral, 

t 

(8-e)x,t = h~ce-o)ds +(8-e)s=O, .. ,(10) 
0 s 

Since :s 8 = 0 and (B-e)s=O = 0 by de­

O(} 
finitions, and 08 is re-expressed using (3) 

as 

the transfer term is re-expressed by 

Cr, .• , O) 

I 
t=O ,. 

Fig. (I). 
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THEORY OF DIFFUSION IN TURBULENCE 99 

- ft f · f (ui _!{I_ + R,1 cfo ) D rr df Jdt, 
0 ch· a,1 j=l ········· (11) 

where Rij is the correlation between the compornent of velocity (u1-u1) of a 
particle at the fixed point (xk, t) and the compornent of velocity (u.;) of the same 
particle at the other point ( f k, T), U1 is the partial mean of the compornent of 
velocity (u1-ii;) which a particle startled from a point (f,, T) has at the point 
(xk, t), and D is the joint probability density of the same particle at the two points 
(fk, T) and (x, t), defined as follows; 

n 

?J*t=T =IT o(xi-fi) . 
i=l 

Thus the transfer equation of {J is re-expressed in the form 

0 - - 0 [- -- ftf f { 871 871 } n ] atP e + oxi Pe ui - - ui~ + Rij 8,j D g1 dxk dT = 
0 

o, ·········Cl2) 

or re-writing by means of (8), we obtain the continuing equation of ,y: 
t 

1-,y + _l._ [,Yu1 -f f -f {u} .. 'Y' + R1 o,y or oxt oT J ofj 
0 

,y ( op op )} D n ] - P uia;-+ Rij 0,7 .o !,!1 d,kdT =0. ·········(13) 

The same procedure can be applied for the transfer term of a physical qu­
antity cp. However in this case we must take into account the time change of cp 
along a trajectory by ( 4) 

a C __ ) ( 3q; aq, ) • - cp-cp =- -+ Ui- +cp as oT of1 ' 

and replace the limit of integration by - =. 
Thus we obtain the result : 

cl - - cl [- - - f tf f {u oq, R a<p "'t D n ~{:; d ] - "'"" (14) 01 P cp+ ox; P cp u, - -oo - 1~ + i.1 0 , 1 - IVi, t!i u,k T =p cp, •.• 

where <b1 is the correlation between the compornent of velocity (u1-ii1) and q; of 
the same particle 

<b;=<b;(fk, T; Xk, t) = Dl Jcui-Ut)s=t(q;)s=, ?J*a?J IT da;. 
i=l 

We have derived the above equations for the dynamical system composed of 
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100 K. KITAJIMA 

N identical particles, but we can prove that the same equations hold for the 
dynamical system of continuum such as described by Navier-Stokes' equations of 
motion, and also for the stochastic process under the limitation that the sample 
processes have the contineous velocities. 

§ 3. Examinations of the diffusion equations for particular cases 

§ 3. L Isotropic turbulence 

Omitting the detailed explanstions for these formulations, however, we shall 
then examine the diffusion equation (13) for particular cases. At first, we shall 
consider the case of isotropic and homogeneous turbulence, and take xi i = l, 2, 3 
the space co-ordinates of a fluid particle. In this case p = const., u1 = 0, and the 
correlations R;ii and Ui degenerates into the form 

where e, f, g is the scaler functions defined as, 
Fig. (2), 

g= (u;s1)$,, (uisi)xt./s2, r;=Xi-fi, (r;s;) = 0. 

Then, multiplyin g x1n to the equation (13) and in­

g 

Fig. (2). 

tegrating with respect to the spi,tce co-ordinates over whole space, we obtain the 
expresstions for the time change of the moments. For instances 

d.xin =f Xtn o,fr IT dx1 = ~f X;n l_[ f'f ·f 
dt at j=l ax1 _ 

0 

dxi = O 
dt ' 

tfx-2 J t d; =2 Ru(r)dr , R11(r)=-}-J (/+2g) D4rcr2dr, ········· (15) 
0 

The equation (15) is no more than the equation derived by G. I. Taylor<13l. 

§ 3. 2. Fokker-Planck's equation in velocity space 

Then we shall consider a steady process in the space (x1, u1, i=l, 2, 3) com­
posed of the space and vecocity coordinates of a particle. In this case p(x, u) is 
no more constant. By means of the similar procedure stated above we can derive 
the approximate expressions for the moments 

A,= 4/P = u;-(} -~!J ni1 

LJuz l f Jtf' -'---
D;; = 2LI~ = Lit O O u1 u;(r') dr'dr 
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THEORY OF DIFFUSION IN TURBULENCE 101 

Using these moments and after some approximations, we can derive formally from 
(13) the equation for ,fr similar to Fokker-Planck's one. 

········· (16) 

The similar expressions have been presented by Kirkwood C1 5l and M. S. Green c 7l 

with regard to their theory of general irreversible process. And the expressions 
for the moments were considered to be particularly important, because they relate the 
microscopic and dynamical behaviour of the system to macroscopic and statistical one. 
through the equation (16). However we must point out a fact which was miss-inter­
pretted in . their theories, that is, the values of moments, and consequently the degree 
of approximation of the equation to the original process, are in general dependent 
closely on the choice of At. 

General characters of the argu­
ments can be illustrated by the Fig. 
(3), where curves 1 and 2 are the 
correlations of velocities uu(,) and 

accelalations itit (,) respectively, and 

the curve 3 is the moment D derived 
above. The curve uu(,) must in general 

have the negative part as shown in 
the figure, because in steady process 
the correlation uit (T) is related to the 

d2 
correlation uu{,) by u-u (,) = - d,2 

u zt(-r) 

it it (i) 

Fig. (3). 

uu(,) , and the integral [ itu (,) d, = ; uu(, ),~o = 0 must vanish. Correspond­

ingly D must have a maximum and then decrease and vanish at infinity. While 
Kirkwood have assumed that D has the plateur value independent of At when At 
is sufficiently larger than the microscopic time scale. 

His argument is really correct, as we can prove it, only for such a case as 
the Brownian motion of a colloidal particle which has sufficiently larger mass than 
those of surrounding particles, but not for the systems such as composed of similar 
particles. 

§ 3. 3. Multiple Markov process approximation 

Then we shall suggest an alternative method determining the approximate 
process. 

According to Doob's theorem(18l in the theory of stochastic process, it is well 
known that for any given stationary process there exsists a normal process which 
has the same correlation R with that process, and the normal process is determined 
uniquely provided that the correlation R is given. Based on the theorem we shall 
now find an appropriate normal Markov process which approximates the original 
process. 

We shall now take a normal Markov process in the space (x, x, x •·· x<nl), 
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102 , K. KITAJIMA 

dt 
x<1l = drt x, which is defined by Fokker-Planck's equation, 

......... (17) 

where A . is a linear function of x<•>, and D a constant. Then we shall deter­
mine the constants so that the moments x<1>•, the second moments of Hh deri­
vatives, of the approximate process have the same values as those of the original 
process, and the correlation of the n-th derivatives x<n>xCnl(,) has the same value 

as the original one at the point ,* 
where the correlation is reduced by half 
x<nlx<nl(,*) = xcn>•/2, Fig. (4). Since 

the original correlation xx(,) can be 
expanded into the series 

+···, 
we may have the closer approximation 
for xx (,), the larger the value of n'. Thus 
the problem of determination of the 

xc•> xc•> ( -r:) 

process is reduced to that of the cal- Fig. (4). 

culations of the second moments x <t>• 
by means of the dynamical equations (1). We shall call the procedure stated above the 
multiple Markov process approximation. 

§ 4. Theory of nearly isotropic shear flow 

Then we shall proceed to the problem of determination of transfer coefficients in 
nearly isotropic shear flows. 

It is well known that the turbulence behind grid has the strong tendency to 
decay preserving its spectrum form<10>. Extending the conception to the case of 
nearly isotropic shear flows, we shall introduce now a model in which turbulence 
and mean flow are assumed to decay preserving its spectrum form in company 
with relative magnitude of mean shear. 

In our experimences, such a condition is known to be realized approximately 
in the free turbulences such as two or three dimensional wake and jetC25l. In 
homogeneous shear flows, however, we may note such a condition will only be 
realized under the limitation that some appropriate .devises are enabled to controll 
mean flow and largest eddies so as to maintain the similarity of spectrum form. 

The mathematical treatment of the model thus introduced are considerably 
simplified, since it is reduced to that of steady flow by means of appropriate trans­
formation of variables, and for which the theories stated above can be applied. 

Abridging the detailed explanations for calculations, we shall now review our 
main results. 
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THEORY OF DIFFUSION IN TURBULENCE 103 

We shall consider a homogeneous shear flow, which has mean shear~~- The 

non-dimensional parameter L, ddU · constructed from the root mean square of turbu-
v y 

lent velocity v', and mean scale of eddies L, is considered to be appropriate cha­
racterizing the effect of mean shear to turbulent motions. Then we shall consider 

the case, !:, _ddU ~ 1, that is, the parameter is sufficiently smaller than 1, and 
V y 

the parameter is maintained to be constant during the period of decay in our model. 
From the equations (12) and (14), the transfer terms of heat and momentum 

are in this case simplified as, 

( ) de v e-e =Eo~ dy , 

0 

E9= f vv(r5 dr 

v<_u=u) =Em~~ , Em= f o { V V (r) + V G~~5/ P '%} dr . . ........ (18) 

In these expressions the transfer coefficient of momentum Em differs from that of 

heat Ee by the term ;;~C0 , which is the correlation between the compornent 

of velocity v and the pres~ure gradient ~;; of a same fluid particle. 

On the other hand, for a given energy spectrum of isotropic turbulence, we can 
calculate by means of Navier-Stokes' equations of motion, and under the method 
of perturbation, the moments 

op{ d(op)} 
oy d{ ox ' 

from which we can obtain the correlations vv ( r) and v ~t~ by means of the 

theory stated above. 

vv(y) 

vvfrj 

vilp( T) /pdU 
ax 1/' dy 

Fig. (5). 

v'-r,y 

In Fig. (5), the thick lines are the calculated Eulerian correlation vv(y) and 

the Lagrangian correlations vv( r) and v 0~~) respectively. In these calculations the 

form of spectrum is assumed to be a spherical shell in the wave number space. While 
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104 K. KITAJIMA 

the thin lines are the experimental ones in the turbulence behind grid taken from 
Taylor's paperc2oJ. 

Then, in order to analyse shear flows, We show the Fig. (6), where the 
abscissae is the parameter G/c, where G and c are the rate of generation and 
dissipation of turbulent energy respectively, and is related to the parameter 

0,1 

1. 
0 

Wake Jet Mixing 
G/e 

Fig. (6). 

Bound.Layer· 

L dU (L dU 2 
-v' dy as G j c = k v' dy) . And non-dimensional diffusion and momentum transfer 

coefficients ';;: and EE2° , where E is the turbulent energy, are plotted against the 

parameter G / c for shear flows. The closed circles are the representative experiment­
al values of the two dimensional wakeC21l, jetC22l, free mixing flowc23J, and boundary 
layer on a flat plateC24l repectively, taken from the papers of Townsent, Tamaki, 
Liepmann and Laufer, and Schbauer and other available experimentsC25l. These 
values are obtained averaging local values over y section. As is shown, the dif­
ference between transfer coefficients of heat and that of momentun is remarkable 
particularly in free turbulences. This fact was first pointed out by G. I. TaylorC26l 

in his vorticity transfer theory. 
While theoretical values are these open circles. We shall notice here that the 

value of the transfer coefficient of momentum ~iJ)0 in particular can be derived 

without any other assumptions or approximations than that of self-preserving decay 
model, and takes the exact value 2/15 irrespective of particular form of energy 
spectrum assumed, 

Taking into account the roughness of our approximations employed and the 
nature of scatterings of experimental values, the coincidence of theoretical values 
with experimental ones seems to be fairly wen<27l. 

§ 5. Conclusion 

In conclusion, we shall summarize our main results into the three articles. 
1) At first, we introduced the generalized definitions of Lagrangian correlations, 

by means of which the correct mathematical expressions are obtained for the 
transfer terms connecting with the mean gradients of heat and momentum. Thus 
the transfer equations in turbulence presented by 0. Reynolds were replaced in 
the form of integro-differential equations. The equations of heat, in particular, 
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THEORY OF DIFFUSION IN TURBULENCE 105 

contains the relation provided by Taylor as a relation derivable in a special case. 
2) Secondly, we discussed the relations between the continuity equation of (pro­

bability density (13), and the equation of Fokker-Planck in the theory of 
" Random Walk ", and also that of Kirkwood in the theory of irreversible process. 
Then, based on these considerations, we proposed an approximation theory, called 
as multiple Markov process approximation, for steady dynamical process. 

3) Thirdly, we introduced the conception of self-preserving decay model for shear 
flows, which combining with the theories developed above enabled us to calculate 
the Lagrangian correlations and transfer coefficients for nearly isotropic shear 
flow, thus obtained the Fig. ( 4) and (5). In particular, the theory provided an 
explanation for the difference between transference of heat and that of mo­
mentum in free turbulences, which was the problem presented first by G. I. Taylor. 

Acknowledgments 

The anthor wishes to express his sincere thanks to emeritus Professor Y. Wa­
tanabe, the ex-director, and Professor M. Kurihara, the director of the Research 
Institute for Applied Mechanics of Kyushu University for their continual encoura­
gement and valuable discussions, and to Professors I. Tani and I. Imai, Tokyo Uni­
versity, for their valuable discussions. 

References 

1) 0. Reynolds, Phil. Trans. Roy. Soc., A 186 (1895) 123. 
2) G. I. Taylor, Proc. Roy. Soc., A 151 (1935) 421. 
3) Th. von Karman and L. Howarth, Proc. Roy. Soc., A 164 (1938) 192. 
4)' A. N. Kolmogroff, Compt. Rend. Acad. Sci. URSS, 30 (1940) 301. 
5) L. Onsager, Phys. Rev., 68 (1945) 286. 
6) C. F. Weizsacker, Z. Phys., 124 (1948) 614. 
7) L. Prandtl, Z.A.M.M., 5 (1925) 136. 
8) G. I. Taylor, Phil. Trans. Roy. Soc., A 215 (1915) 1. 
9) H. Gebelein, Turbulenz, (Berlin 1935). 

10) F. N. Frenkiel, Proc. VIII th Int. Congr. Appl. Mech., (1952). 
11) A. Corrsin, J. Aero. Sci., 18 (1951) 417. 
12) G. K. Batchelor, Australian J. Sci. Res., 2 (1949) 437. 
13) G. I. Taylor, Proc. London Math. Soc., 20 (1921) 196. 
14) M. Kurihara, Rep. Res. Inst. Fluid Engin., vol. I, No. 1 (1942). 
15) J. G. Kirkwood, J. Chem. Phys., 14 (1946) 180. 
16) M. Born and H. S. Green, Proc. Roy. Soc., A188 (1946) 10, A189 (1947) 103. 
17) M. S. Green, J. Chem. Phys., 20 (1952) 1281. 
18) J. L. Doob, Stochastic Processes, (New York, 1953). 
19) G. K. Batchelor, Theory of homogeneous turbulence, (Cambridge, 1953). 
20) See 2) and M. S. Uberoi and S. Corrsin, NACA Rep., 1142 (1953). 
21) A. A. Townsent. Proc. Roy. Soc., A190 (1947) 551, Australian J. Sci. Res., 2 (1949) 

451, for Ea/Em see 26). 
22) F. Tamaki, unpublished work. 
23) H. W. Liepman and J. Laufer NACA T. N., 1257 (1947), for Eo/Em see Ruden, Die 

library
ノート注釈
library : None

library
ノート注釈
library : MigrationNone

library
ノート注釈
library : Unmarked

library
ノート注釈
library : None

library
ノート注釈
library : MigrationNone

library
ノート注釈
library : Unmarked



106 K. KITAJIMA 

Naturwissenschaften, 21 (1933) 375. 
24) J. Laufer, NACA Rep., 1033 (1951), A. A. Townsent, Proc. Cambridge Phil. Soc., 47 

(1951) 375, see 25), G. · B. Schubauer, J. Appl. Phys., 25 (1954) 188, for Eo/Em see 
Elias, z. A. M. M., 9 (1929) 434, 10 (1930) 1. 

25) A. A. Townsent, Structure of turbulent shear flows, (Cambridge, 1956). 
26) G. I. Taylor, Proc. Roy. Soc., A135 (1932) 685. 
27) K. Kitajima, § 2, § 3. 1, § 4 (in part), Pre-print 1st Japan Congr. Appl. Mech., Part 2, 

(1951) 64, § 3.2, § 4 (in part), Pre-print Meeting Phys. Soc. Japan, (1954). 

(Received Feb. 28, 1963) 



Reports of Research Institute for Applied Mechanics 
Vol. X, No. 39, 1962 

NOTE 

Supplementary Data for A, and K 4 

By Fukuzo T ASA! 

The progressive wave height and added mass of two dimensional body heaving in a 
free surface were calculated for wide Lewis form section of H=4.0. 

Az and K4 were shown in the Figure. The following nomenclature is used in this 
note. 

Ho= -Jr , B = breadth of the cylinder in a still water line 

T = draught of the cylinder 

Az= amplitude of progressive wave 
amplitude of forced heaving 

two dimensional added mass of cylinder 

½p,.(!J} · Co 
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108 F. TASAI 

Co= 
added mass of cylinder in case of w-oo 

i p,,({)2 
p deusity of fluid 

circular frequency of heaving 

0 A . 1 ffi" BT = sect10na area coe c1ent . 

A = immersed sectional area of the cylinder 

For Ho=4.0, Co is given as follows: 

0 

0.9587 

0.7854 

0.6143 

Co 

1.1030 

1.0 

0.9249 

(Received Jan. 16, 1962) 
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