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STABILITY OF LAMINAR SHEAR LAYER BETWEEN 

PARALLEL UNIFORM STREAMS (I) 

By Hikoji YAMADA* 

Resume First paper on the stability of a shear layer between two 
parallel uniform streams, whose velocity distribution is erf-function. In the 
former half inviscid fluid is discussed by means of polynomial approximation, 
dividing the half domain of existence O S::y < oo into three sub-domains. 
Instability is exhibited only by antisymmetrical oscillations, the wave number 
of neutral stability being a little larger than 1. 

In the latter half we concern with cases of finite Reynolds number and 
employ the method of expansion by means of Hermite functions. To see 
the pertinence of our method inviscid flow is treated again by this procedure, 
results according well with the former ones. Stability curve given by our 
method seems satisfactory except when the Reynolds number is small and 
shall be the subject of next paper. 

Stability of a laminar shear layer between two parallel uniform streams is a 
well-known problem and several efforts have been devoted for solution of this 
difficult problem. Among these efforts those of Helmholtz, Rayleigh, and Rosenfeld 
are well-known and they dealt with a separation surface between two inviscid liquid 
flows. Recent investigations of viscous flow on the basis of the Orr-Sommerfeld's 
stability equation are those of Lessen{!>, Carrier<2>, Esch<8>, and of Tatsumi-Gotoh<4J. 

By these works the region of large Reynolds number and that of extremely small 
one have become clear, but the region between them which has an intermediate 
Reynolds number remains obscure. In Esch's paper whole region has really been 
dealt with, but haply by reason of the singular velocity distribution he adopted his 
stability curve presents a few aspects which are alluded by Tatsumi-Gotoh and, we 
think, require further discussions. We then have intended to study this problem 
and alike in some details, this report being the first one. In this and a following 

'' Now at Kyoto University. This work was carried out when he was a member of 
the Research Institute for Applied Mechanics. 

<1> M. Lessen : On stability of free laminar boundary layer between parallel streams, 
NACA Report no. 979 (1950). 

<2> G. Carrier : Interface stability of the Helmholtz type, Los Alamos Internal Report 
(1954). 

<3> R. E. Esch : The instability of a shear layer between two parallel streams, J. Fluid 
Mech., vol. 3, pp. 289-303 (1957). 

<4> T. Tatsumi and K. Gotoh : The stability of free boundary layers between two uniform 
streams, J. Fluid Mech., vol. 7, pp. 433--441 (1960). 

1 

library
ノート注釈
library : None

library
ノート注釈
library : MigrationNone

library
ノート注釈
library : Unmarked

library
ノート注釈
library : None

library
ノート注釈
library : MigrationNone

library
ノート注釈
library : Unmarked



2 H. YAMADA 

we discuss stability of a more natural shear layer, assuming the erf-function distribu­
tion of mean flow velocity : 

w (y) = 2 - f Y e-t2 di; 
✓ 7r J 0 

(1) 

which is the one used by Carrier in his inviscid case (a fact we read in the Esch's 
paper). Not only we may assume sufficient approximation to a real shear layer, 
but also (1) is free of any singular point from the mathematical point of view. 

§ 1. Stability of inviscid flow (1)--As our mean flow w(y) is parallel we 
adopt the coordinate-system, in which x-axis is along and y-axis is across the flow. 
The stream function ,fr of disturbance, which is superimposed on mean flow, is 
assumed of the form : 

,y = ip (y) eirt(x-ct) (2) 

and the determination of amplitude if! (y) is . to be done by means of the Orr-Som­
merfeld's equation: 

All the quantities are reduced in non-dimensional forms by the characteristic length 
L and characteristic velocity U; R is the Reynolds number UL/v, v the kinematic 
viscosity of the liquid ; dash denotes differentiation by y. At infinity (y = ± oo) 
if! and if!' have to vanish. 

As is well known, this problem has to be unterstood as a characteristic value 
problem for c and if!, being a and R two given real positive constants. Usually 
c has a complex value c= c,+ ic1 and according as Ci is positive, zero, or negative 
the disturbance increases, remains constant, or decreases. The· middle case i.e. the 
case of neutral stability divides stability from instability and the condition C; = 0 
imposes a functional relation between a and R, which is called stability curve. 

Now turning to our problem we determine, at first, the wave number a of 
neutral stability Cc,= 0) of inviscid flow (R = oo ). This number has been cal­
culated by G. Carrier and value a little larger than 1 reported (so we read in 
Esch's paper). His paper being, however, beyond our reach we calculate this case 
again as follows. 

In this case stability equation (3) reduces to 

(4) 

and by means of the well-known theorem of Tollmien characteristic value c has to 
be equal to the velocity of flow at a point Ye, where w" vanishes. In our case as 
w" vanishes at the origin (y = 0) we have c = 0, and then (4) rewrites itself into 

if!" - fa2 + F(y)I if!= 0, (5) 

where 
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STABILlTY OF LAMINAR SHEAR LAYER BETWEEN PARALLEL 
UNIFORM STREAMS (I) 

(6) 

In solving the characteristic problem ( 4) we note that the equation admits 
even and odd functions. We are then to manipulate only with. the half infinite 
region y > 0 with the boundary condition at y = 0: 

for even <f!s (y) 

for odd <f!a (y) 

<f!s' (O) = 0, 

<f!a (0) = 0. 

(7) 

(7') 

We divide then the region O < y < oo into three subregions 1(0 < y < 1.6), II (1.6 
< y < 3.2), and III (3.2 < y < oo) ; in I and II we approximate F (y) by poly­
nomials of 6 degrees, and in III by identical zero, polynomials being determined 
by the values of F at five points of equal intervals and the values of F' (y) at 
both end-points (y = 0, 1.6 and y = 1.6, 3.2). In Table 1 compared are the approxi­
mate values of F(y) with the exact ones, in which we see sufficient accordance. 

Table 1. 

y w(y) (w") W exnrt I (~)approx. I (w")' w uppmx. 
~------------- --------·-·----~--

0.0 0.0000 -2.0000 -2.0000 0.0000 
0.2 0.2227 -1.9473 -1.9475 
0.4 04284 -1.7956 -1.7956 

I 0.6 0.6939 -1.5644 -t.5642 
0.8 0.7421 -1.2829 -1.282~ 
LO 0.8427 -0.9852 -0.9855 

I 
1.2 

I 
0.9103 -0.7049 -0.7049 

1.4 0.9523 -0.4673 -0.4670 

1.6 0.9764 -0.2859 -0.2859 0.7617 
1.8 0.9891 -0.1608 -0.1610 
2.0 0.9953 -0.0831 -0.0831 

II 2.2 0.9981 -0.0393 -0.0393 
2.4 0.9993 -0.0171 -0.0171 
2.6 0.9998 -0.0068 -0.0068 
28 0.9999 -0.0025 -0.0023 
3.0 1.0000 -0.0008 -0.0002 

3.2 I/ -0.0003 0.0000 0.0000 

lil 3.4 I/ -00001 I/ 

3.6 I/ -0.0000 I/ 

00 I/ I/ 

I 
I/ 

Using these expressions of F(y) into (5), and changing y-variable into 7/: 

r;=-l6 inl, 

we have 

and 

y-1.6 
r; = --~- in II, 

1.6 

6 

/1 (7/) = A1 + 2J f3n(l) 7/n, 
n=r 

(8) 
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4 H. YAMADA 

6 

f2 (7/) = A2 + Lj f3n( 2)7/n, (8') 
n=l 

where <p1, q;2 are amplitude functions in the regions I and II, and the constants -l's 
and P's are as follows : 

.~1 == 2.56 (a2 - 2.0000); P1<1l = 0.0000, p2<1l = 8.6088, 

Pi1>=1.1346, /3/1l =-9.3330, p5c1l=4.0378, /36<1l=-0.0601. 

-l2=2.56(a2-0.2859); /31<2>=3.1193, 132<2>=-4.7618, 

/3/2>=1.8528, /34<2>=2.7749, /35<21 =-3.2666, f3s<2>=1.0132. 

As we know from (8) and (8') that ({}1 and <p2 are intergral functions of 7/, 

we assume power series expansions : 

q;j = 2J an<i>71n (j=l, or 2), 
n=O 

(9) 

and insert them in each equation, obtaining 

au> - 1 ~ a(J) r.,(.i) 
n+2- (n+l)(n+2) m°";;;'o n-m I'm 

(j = 1, or 2), (10) 

which determine the expansion coefficients a's. The first two of them, i.e. (aow, 
a1U>), which remain arbitrary, are fixed once to (1, 0) and the other time to (0, 
1), the resulting functions being denoted by q;}•) and q;}a> respectively. anu>•s are 
determined up to n = 20, and each of them, being polynomials of -lj, up to -l} 
(see below). 

In the region III y is replaced by 7/ = (y - 3.2)/1.6 and then (5) reduces 
to 

(11) 

solution of this, which fits to our condition at infinity, is evidently 

(12) 

Now we have to join together the solutions of three regions. At first we 
take up the symmetrical solution <p,(y), which is equal to Aq;1<•l in I. In II and III 
it can be expressed as Bq;2(s)+Cq;2<a> and Dq;3 respectively, and analytical continua­
tion of them requires, as is well known, that the functions and their first derivatives 
should have the same values at the joining points, i.e. y = 1.6 and 3.2, and thus 
we have 

Aq;1<•>(1) - fBq;2<•>(0) + Cq;2<al(0)J = 0, 

A<p1(s)!(l)-fBq;2<•l'(0)+Cq;2(a)l(0)I = o,l 
-fBq;2<•>(1) + Cq;2<a> (l)f + D<p3 (0) = 0,j 

-fB<p2(s)!(l)+Cq;2(a)l(l)J + D<p3'(0) = 0, 

(13) 

where dash denotes differentiation with regard to 7/. 

The condition of solvability of this system of linear homogeneous equations 
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STABILITY OF LAMINAR SHEAR LAYER BETWEEN PARALLEL 
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regarding to A, B, C, Dis 

'Pl (•)~(1) 1 0 0 
'P1<•)' (1) 0 1 0 DC•J (a)= 

0 'P2(•l(l) <pzC"'l(l) 1 
=0, 

0 'P2<•>'(1) 'P2(a)t(t) -1.6a 

which develops easily into 

D<•>(a) = 'P1<•l(l)f 1.6aq;,2C•>(t) + q;,2W(t)j 

+ 'P1<•l'(l) f l.6aq;,2(a)(l) + 'P2(a)'(l) j = 0, 

(14) 

(14') 

and is nothing but -the characteristic equation for the determination of a, through 
A1 and ,lz. The antisymmetric solution 'Pa (y) is dealt with in the same way and 
the characteristic equation reads : 

D<a>(a) = 'P1<"'l(l)fl.6aq;,2<•>(t) + 'P2C8)f(l)j 

(15) 

To solve (14') and (15) we notice at first that the roots a of these equations 
are confined within (O, ✓2), for if a 2 is not less than 2 a 2+F is everywhere 
non-negative and original equation (5) indicates that <p does not vanish at infinity, 
whose vanishing being one of our boundary conditions. When a 2<2 the magnitudes 
of A1 and ,lz do not exceed 5.12 by definition and power series defining an's can be 
cut off at a proper exponent. If we permit inaccuracies in the 4th decimal places 
of each numerical value of 'Pt(l), and accordingly in the 3rd decimal places of 
'P/(1), an's have to be taken into up to n = 20, and every a,. up to -l5, thus each 
<p in "D(a) being polynomials of A1 or ,lz of fifth degree. 

Using these expressions D (a) can easily be calculated for each value of 
a, arbitrarily given, and we know that D<•>(a) = 0 has only one root ao in the 
neighborhood of a= 1.00, and D<"'>(a) = 0 has no root except a= 0. By trial and 

4.0 

Fig. 1. Amplitude functions of neutral stability; cp,1 and cp,u 
are inviscid, cpr + icp, is for aR = 11 .SO, a = 0.800. 

s.o 
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6 H. YAMADA 

error a 0 is fixed to 1.035. We know then that antisymmetrical disturbance (i.e. cp,) 
is instable when 0<a<a0 and stable when a 0<a, and symmetrical disturbance (i. 
e. 'Pa) is always stable. 

The amplitude of neutral stability oscillation cps(y, a 0 ) is shown in Fig. 1, in 
an arbitrary scale, denoting it by 'Psr, To obtain this function we determine B, C 

Table 2. <Psr 

ao 1.0000 
a1 0.0000 
a2 -1.1883 
03 0.0000 
04 0.9527 

!15 0.0567 
06 -0.7275 
07 0.0608 
as 0.3743 
09 -0.0469 

a,o -0.1768 
au 0.0284 
a12 0.0809 
013 -0.0228 
a14 -0.0273 

015 0.0097 
016 0.0093 
a, 7 -0.0041 
018 -0.0030 
019 0.0017 
a20 0.0007 

0.3788 
,.-0.5932 

0.3810 
-0.0019 
-0.2407 

0.2356 
-0.0784 
-0.0582 

0.0911 
-0.0525 

0.0060 
0.0159 

-0.0146 
0.0051 
0.0014 

-0.0029 
0.0017 

-0.0003 
-0.0003 

0.0003 
-0.0001 

and D (assuming A = 1 say) by (13), 
the coefficients cp/s being fixed by use of 
the values a = 1.035, ,11 = - 2.378 and 
A2 = 2.010. ,With B, C and D thus deter­
mined cp1(y, a 0) is expressed by 

cp,<•>(77) in I, 

Bcp2<'>(77) + Ccp2<•>(77) = 'P2(7/) in II, 

2.018e-i.6"',, in III. 

Of cour~e cp1's in these expressions are 
functions defined in (9) and now poly­

nomials of 7/ of degree 20. Their coef­
ficients are fixed with values of A1 and 

A2 above given, and shown in Table 2. 

§ 2. Method of solution in general 
case'- Solution cp of (3) i.e. L( cp)=0 is in 
general a linear combination of four fun­
damental solutions, the two of them being 

so-called inviscid integrals, the other two being viscous integrals. Now the ex­
isting region of oscillation being an entire space (-,-- = < y < = ), the latter two, 
however, drop by reason of the boundary condition at infinity (y = ± =) ; the 
remaining two are slowly varying functions and vanish exponentially at infinity ( cp 
~exp(± ay)). Then cp is quadratic integrable and can be approximated arbitrari­
ly accurately in the mean by a linear combination of functions which belong to a 
complete set of functions. 

We take as such a set of functions the Hermite functions<5> : 

'Fn (y) = KnHn (y)e-Y•/2, Kn = (2nn ! ✓--;)-1/2, 

which are not only complete but orthogonal : 

J:~ 'Fm (Y)'Fn (y) dy =c Omn, 

and approximate cp (y) by a linear combination of them : 

({) (y) = 2..J lln'Fn (y), 
n=O 

n = 0, 1, 2, •.. , (16) 

(17) 

(18) 

<5> Cf. Courant-Hilbert : Methoden der mathematischen Physik, vol. 1 (2nd ed.), chap. 
2 § 9, and Jahnke-Emde-Losch: Tafeln hoherer Funktionen (Teubner 1960). 
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STABILITY OF LAMINAR SHEAR LAYER BETWEEN PARALLEL 
UNIFORM STREAMS (I) 

the number of terms being appropriately chosen. As <p vanishes more slowly at 
large y according as a becomes smaller, more terms of the series should have been 
taken in for an approximation required. Here we use (18) with the number of 
terms fixed, and cases of small a will be discussed separately in another way in a 
subsequent paper. 

Several formulas concerning to Yn (y) are, by the difinition (16), derived 
from those of so-called Hermite polynomials Hn (y) : 

!In (y) = (- )nev• ( d~ r e-u• (n>0), (19) 

d 
dy Hn(Y) = 2nHn-1 (y) (n>0), (19') 

Hn+I (y) - 2yHn (y) + 2n Hn-1 (y) = 0 (n>0), (19") 

where fl_ 1 is identically zero. From these we have following two relations: 

✓2(n+ 1) Yn+l - 2y-.Jrn +✓2n-.frn-1 = 0 (n>0), 

d /n · I n+l dy Yn= T Yn-1 - f ~ 2 Yn+l (n2.2), 

(20) 

(20') 

which are fundamental, -.fr -1 being identically zero. By the former we calculate 
numerical values of Hermite functions successively and by the latter we express the 
derivatives of a Hermite function by the functions themselves. Especially by re­
peated use of it we have 

.,. If = ✓ (n- l)n .,. I - 2n+ 1 .,. + ✓(n+ !)_(n+ 22 ·_;;· 
'I' n 2 'I' n- 2 'I' n 2 'I' n+2, (21) 

.,. 1111 _✓(n-3)(n-2)(n-1)_1t .,. _ ✓(n-1)n(4n-2) 
'I' n - , 4 . 'I' n-4 , 4 'Y1' n-2 

(21') 

which we will require immediately, functions with negative suffixes ~ing identically 
zero. Evidently -.Jrn is even or odd function of y according as n is even or odd 
integer .. 

Each term of (3) i.e. L(cp) vanishes exponentially when y tends to infinity 
and then L (cp) is expressible by means of Yn, i.e. 

= 
L(<p) ~ ~ /Jm'Y1'm.(Y), 

7!';=0 
(22) 

and (3) is equivalent to 

Pm = 0, m = 0, 1, 2, .. • , .(22') 
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8 H. YAMADA 

where /3,n's are: 

When we integrate every term of this expression by parts several times the. deriva­
tives of cp in the integrand are reduced to cp itself, and afterwards we have to use 
the expansion (18); in this way we know that the degree of approximation of our 
calculation depends on the accuracy of the expansion (18), and not on those of 
its derivatives. The result is the same as direct insertion of (18) and termwise in­
tegration, such that 

/3m =2.J an(---.1--Amn - Bmn + rCmn), 
n=O lp 

where 

and 

Bmn = J:
00 

'Y"mlw1C-t/rn" - a 2't/rn) - wi'',Jrn} dy; 

the notations : 

2 
p = ✓~aR, 

being used. 

(23) 

l (24) 

(25) 

(26) 

Using (23) into (22') we have a set of linear homogeneous equations for 
the expansion coefficients a,,'s, and the condition for non-zero solution is the de­
terminant equation : 

I -i~ Amn - Bmn + r Cmn \ = 0. (27) 

This equation determines numerical values of r i.e. c = Cr + ic1 , for a given pair 
of values (a, p) i.e. (a, R). Especially for the case of neutral stability (ci=O) r 
is real (unknown), and the equation separates into two real equations for p and 
r, a being a given wave number. Stability curve a(R) and neutral wave velocity 
c (a) follow from them. 

The constants Amn and Cmn are easily calculated by the formulas (21) and 
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STABILITY OF LAMINAR SHEAR LAYER BETWEEN PARALLEL 
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(21'), and all vanish except the followings: 

A -A - ✓--(2n-l 2) n-2,n- n,n-2-- (n-I)n - 2- + a , 

✓(n-l)n 
Cn-2,n = Cn,n-2 = 2 , 

the ones which have negative suffixes being zero. 

(28) 

(28') 

Determination of the constants Bmn is a little lengthy. We replace 1frn" in 
(25) by (21) and use the notations: 

lmn = J:= 'Ym W1 'Yn dy, (29) 

(29') 

then 

(30) 

and we have to calculate Imn and J",n• For Imn we rewrite the relations (19), 
(19') for Hermite polynomials into those of Hermite functions: 

(31) 

(n>O), (31') 

and use in (29). Then we see easily that 

Imn = - ✓~,:;;J:~-1- (1Ym-1e-Y•i•) W1 ,J,,,eY212 dy 

(m, n>l), (32) 

where another notation 

9 
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10 H. YAMADA 

[m, n] = J:~ '1/fin e-Y• '1/fn dy (33) 

being used. With this recurrence formula and relations: 

1 
lm,o= ✓2m [m-1,0], lo,o=O, (32') 

which can easily be proved, all lmn are reduced to the integrals of the type [ m, n] . 
The same is true for the integrals Jmn• We use the explicit expression of w" i.e. 
-2ye-Y2 in (29') and rewrite 2Y<Pm by means of (20), resulting into 

Jmn = -✓2(m+ 1) [m+ 1, n] -✓2m [m-1, n] , (34) 

and especially 

Jo,o = 0. (34') 

We have thus been led to integrals of the type [m, n], and these, in turn, 
are reducible to simpler ones, for by means of (19) 

=(- )mKmKn J:"'e-Y2 (-t-r-i:ne-Y2dy=(- )nKmKn [m+n], 

where [m + n] is an integral of the type: 

and. the latter, having a simple recurrence formula : 

[m] =- (m-1) [m-2], 

(35) 

(36) 

(36') 

which can easily be proved by use of (19") and then (19'), we can evaluate start­
ing from the special cases : 

[1] = o, [OJ = ✓ ; . (36") 

We have then completed the integrations. First the .table of [ml, and then 
table of [ m, n] are constructed. With the latter lmn and Jmn are easily calculated, 
and by use of these into (30) the required numerical values of Bmn are found, as 
we see in Table 3. 

§ 3. Stability of inviscid flow (2)-- To see the pertinence of our method 
of integration and to obtain some indications for management of genaral cases 
of finite, Reynolds numb~r, we have engaged ourselves again to the inviscid flow, 
which had been discussed in section 1. In this case equation has been taken up 
in the form (4), i.e. 
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Table 3. Bmn 

~l 0 2 3 4 

I 
-0.37500-0.50000a2 0.73995 + 0.10206 a 2 

I 

0 - - -
1 0.62500 - 0.50000 a2 - -I .01646-0.53033a2 - 1.39699 + 0.12756 a2 

2 - 0.04420 - 0.53033 a2 - -I .45241-0.54127a2 -
3 0.12758 + 0.10206 a2 - -0.36988-0.54127 a 2 - - l.85548-0.54688a2 

4 - 0.63152 + 0.12758 a 2 - -0. 76174-0.54688a2 -
5 0.05419 - 0.03423 (X2 - 1.14875 + 0.14120 a2 - -I .14642-0.55028a2 

6 - -0.08208-0.0489 I a 2 - 1.66988 + 0.14977 a2 -

7 -0.04423+0.01321a2 - -0.26264-0.05883a2 - 2.19280 + 0.15567 a2 

8 - -0.00198+0.02101a2 - -0.46457-0.06605a2 -
9 0.02703 - 0.00545 a2 - 0.07455 + 0.02724 a2 - -0.67876-0.07155a2 

10 - 0.01598 - 0.00947 a2 - 0.17259 + 0.03232 a2 -

5 6 7 I 8 9 10 
I 

-0.288 l 4-0.03423a2 - 0.14068 + 0.01321 a2 - -0.08330-0.00545a2 j 
-0.57120-0.0489la2 - 0.29212 + 0.02101 a2 - I -0.15840-o.oo947a2 

1.99599 + 0.14120 a 2 I - -0.85093-0.05883a2 0.45589 + 0.02724 a2 

2.56856 + 0.14977 a2 - -l .12504-0.06605a2 I 0.62510 + 0.03232 a2 
-2.24695-0.55028a2 - 3.12684 + 0.15567 a2 - -1.39426-0.07155a2 

-2.63305-0.55256a2 - 3.67664 + 0.15999 a 2 - I - t.65962-0.07589a2 

-1.52795-0.55256a2 - -3.01615-0.55420a2 - 4.22092 + 0.16329 a2 

- l .90772-0.55420a2 - -3.39747-0.55544a2 - 4.76148 + 0.16589 az-

2.71675 + 0.15999 a2 - -2.28660-0.55544a2 - -3.77754-0.55640a2 

3.24121 + 0.16329 a2 - -2.66476-0.55640a2 I -4.15681-0.55717a2 

-0.90072-0.07589a2 - 3.76612 + 0.16589 a2 - i -3.04248-0.55717a2 
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12 H. YAMADA 

(37) 

which continues directly to the case of finite Reynolds number (3), and not to 
(5). As the waves of neutral stability have zero wave velocity (c=0) in general, 
which we will show in next section, we have taken it in (37) beforehand. 

As in section 1 <p is symmetrical or antisymmetrical with regard to x-axis, 
and then we have 

<f!s(Y) = aoifro + a21fr2 + .. ·+ asifrs + .. . 
<f!a(Y) = a11fr1 + aaifra + .. · + a9,Jr9 + .. . 

(38) 

(38') 

in place of (18). Inserting these in (37) in turn, L(<p) is antisymmetrical or sym­
metrical, and (37) is replaced by the orthogonality of L(<p) to the set of functions 
( ifr1, ifrs, ifrs, .. ·) or to ( ifro, ifr2, ,fr 4, .. · ), i.e. 

LJ B2m+1,2nll2n = 0 (m=0, 1, 2, ,.,), (39) 
n=O 

or 

Lj B2m,2n+l 02n+1 = 0 (m=0, 1, 2, "' ), (39') 
n=O 

each being nothing but the condition (22') and (23) ; evidently Amn and Cmn do 
not appear in present case. 

Eliminating a2n's from (39) and a2n+ 1's from (39') we have two characteristic 
equations: 

D(•l_(a) = I B2m+1,2n I = 0, 

n<0>(a) = I B2m,2n+l I = 0, 

(40) 

(40') 

which by virtue of Table 4 can be developed into power series of a 2• We cut 
short the expansions (38) and (38') to first five terms, and consequently D's m 
( 40) and ( 40') are determinants of fifth rank, which when developed give 

n<s) ( a) = - 1.1733 - O.6779a2 + 0.5903a 4 

+ O.6434a6 + O.1299la8 + O.OO7788a 10, 

n<al(a) = 1.3173 + 9.694la2 + 10.O9OOa4 

+ 3.264Oa6 + O.3861a8 + O.O1446a10. 

(41) 

(41') 

( 41) gives one and only one root a 0 = 1.067 and ( 41 ') no root ; this character is 
the same as in section 1 and the wave number ao of neutral disturbance is identi­
cal within about 3 % error. 

Making use of the value ao in (39) we obtain the coefficients a2n/ ao (n = 1, 
2, 3, 4), and then by (38) the neutral oscillation amplitude <f!s(Y): 

<p,(y) = 1.37191/fo + O.1382ifr2 + O.1O33,fr4 + O.03O11/fa + O.O2051/fs, 

(42) 

a0 being fixed so as <ps(0) = 1.0000. This function, calculated by means of a table 
of Hermite functions, is drawn in Fig. 1 as </!,n, scale being changed arbitrarily. 
We see good accordance with <f!,1 of section 1 all along y-axis, which proves perti-
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STABILITY OF LAMINAR SHEAR LAYER BETWEEN PARALLEL 
UNIFORM STREAMS (I) 

nence of our method of approximation. 
Thus we have recognized that the expansion of <p into a series of Hermite 

functions is a convenient method of approximate calculation of our problem, and 
series with a few terms would be sufficient in the general case of not very small 
Reynolds number. We proceed then to this case. 

§ 4. Calculation of general case - As we see in (27), (28), and in Table 
3, elements of the determinant (27) have such a special character that (ip )-1 Amn 
+ rC mn and Bmn have non-vanishing elements alternately in rows, and also in 
columns, so that (27) is written in 

l 
-.-Aoo + rCoo, -Bo1, 
lp 

1 . 
- B10 -c--A11 + rC11 

' lp ' 

1 
- Bao, ---.-Aa1 + rCai, 

lp 

-Boa, ············ 

1 
- B12, -.- .413 + rC13, ··· ··· ··· ... 

lp 

-B2a, ········ .... 0, 

1 
- Ba2 -.-Aaa + rCaa ... ········· 

' lp ' 

and then, if we multiply rows of even number by i, the imaginary unit, and also 
columns of odd number by i, the latter multiplication being equivalent to the in­
troduction of new coefficients a2n+1 = -ia2n+1 in places of the coefficients of expan­
sion of odd number a2n+1, i.e. equivalent to the adoption of expansion : 

(43) 

and elimination of ao, d1, a2, aa,··· from simultaneous linear equations, we have 

_l_Aoo + irCoo, B01, ___!_ Aoz + irCoz, Boa, ·········· .. ······ p p 

- B10 -~-A11 + irC11 - B12, _l_ .413 + irC13, ........... . 
' /J ' p 

B2a, ................ .. 0. 

- Bao, - 1-Aai + irCa1, - Ba2, - 1-Aaa + irCaa ........... . 
p p ' 

(44) 

For a real value of a Amn, Bmn, C,nn are all real, as will be seen from de­
finition equations. For a neutral disturbance c, and accordingly r, is real also, and 
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14 H. YAMADA 

( 44) has to reduce into two independent real equations for two real unknowns r 
and p-1• As one of these equations manifests the vanishing of the imaginary part 
of (44), and as imaginary unit i appears in (44) always combined with r, we see 
the imaginary part giving a root r = 0 certainly, irrespective of value a. Non­
exisence of another real root is very probable in view of the single root r = 0 
when R = co, but not being proved here; for proof it seems necessary to discuss 
(44) numerically, which would be a difficult task. We here assume<6> simply the 
sole root r = 0. 

Substituting r = 0 in ( 44), characteristic equation for p reduces to 

1 
Bo1, 

1 
Bo3, -Aoo -Ao2 ..................... 

p ' p ' 

-Bio, 
1 

-B12, 
1 

-Au -Arn ..................... 
P· ' p ' 

1 
B21, 

1 
B23, ~-A20 -A22 ····················· p ' p ' 0, 

-B30, 
1 

-B32, 
1 

-A31 -A33 ..................... 
p ' p ' (44') 

and solution p i. e. R for an arbitrarily given a determines the required stability 
curve. 

When R = co i.e. p- 1 = 0, (44') becomes to 

0, Bo1, 

Bw, 0, 

0, B21, 

ll30, 0, 

0, 

B12, 

0, 

832, 

Bo3, •········•······················· 

0, ································· 

B23, ································· 
0, ......•.......................... 

0, 

(45) 

and in this case the system of linear equations for the coefficients a2m, a,m+i divides 
into two independent sets, the one the set of a2,n+i, the other that of a2m, the 
former giving an antisymmetrical function '7'a(Y), the latter a symmetrical one q,,(y). 
This character had been used in section 3 at the outset and two determinants Deal 
(a), D<'>(a) there appeared are now the constituents of (45), such that (45) is 
equivalent to 

D(aJ(a) • D<'>(a) = 0. (45') 

Turning to the case of finite R we have to abridge the infinite determinant 
( 44') to one of such a few rank, that we are able to advance numerical calcula-

<6> This was also the case in the Esch's paper, cited in footnote (3). 
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STABILITY OF LAMINAR SHEAR LAYER BETWEEN PARALLEL 
UNIFORM STREAMS (l) 

tions, As we have seen in section 3, the cut off there adopted is' sufficiently good, 
and it is then natural in present case to accept it also, i.e. to adopt determinant 
composed of the first ten or eleven rows and columns. When we choose eleven, 
attention has to be paid on the selection of rows, if we want to have the proper 
decompbsition ( 45') in the iimiti_ng case p - oo. At least when p is not large, 
however, such caution is meaningless, and farger rank_ of determinant will promise 
more accurate result. 

We have adopted first ten, and then first eleven, and developed them into 
algebraic equations of 5th degree in p2, both being the same degree. Their coef­
ficients, which are polynomials of a 2, are too complex to be obtained in their 
general form, so that we assigned several numer_ical values for a at first, reducing 
thus Amn, Bmn to numerical values, and then developed the determinants. This de­
velopment has been the most tedious task in our calculations. Result is expressed 
in the form: 

Gn(P) =-" 1 + C1P2 + C2P4 + C3p6 + C4p8 + C5p10 = 0, (n = 9, 10) (50) 

and the coefficients c, are shown in Table 4. The roots p of these equations, then 

Table 4. 

C1 I c2X 10 csX108 I C4Xl05 I c5Xl08 II 
-- ··-·-----.;._....._-

p I aR I R 

0.3 -0.2753 -1.047 -4.162 -2.750 -3.291 1.413 1.252 4.173 
0.4 -0.03935 -0.6209 -2.730 -1.865 -2.225 1.862 1.651 4.126 
0.5 +o.1574 -0.2574 -1.481 -1.078 -1.303 2.765 2.450 4.901 
0.6 +0.2773 -0.02144 -0.6371 -0.5350 -0.6792 4.428 3.924 6.541 
0.7 +0.3245 +o.09886 -0.1683 -0.2220 -0.3169 7.370 6.532 9.331 
0.8 +0.3255 +0.1422 +0.04896 -0.06399 -0.1320 n91s 11.50 14.37 

9 0.9 +0.2930 +D.1364 +0.1168 +0.002300 -0.04640 24.03 21.30 23.67 
0.95 +0.2861 +0.1375 +0.1358 +0.01887 -0.02409 35.57 31.52 33.18 
0.98 +0.2759 +0.1320 +o.1364 +0.02420 -0.01497 45.56 40.38· 41.20 
1.00 +0.2713 +0.1299 +o.1377 +0.02710 -0.01040 55.24 48.96 48.96 
1.05 +0.2424 +0.1174 +0.1284 +0.02951 -0.00181 l.30X 102 U5Xl02 1.1 x102 

1.065 +0.2461 +0.1141 +0.1256 +0.02975 -0.00016 4 x102 4 x102 4 x102 

1.067 0.00000 00 00 00 

0.0 -0.859 -2.80 -12.75 -11.8 -22.9 0.945 0.838 
0,1 -0.802 -2.66 -12.20 -11.3 -22.0 0.970 0;860 
0.2 -0.629 ~2.28 -10.69 -10.0 -19.6 1.056 0.936 
0.3 -0.331 -1.629 -8.03 -7.69 -15.17 1.274 1.13 
0.4 -0.00527 -0.8894 -4.92 -4.899 -9.85 1.75 1.55 

0.5 +0.2302. -0.3237 -2.474 -2.653 -5.53 2.68 2.37 

10 0.6 +o.3605 +0.01265 -0.961 -1.229 -2.75 4.36 3.87· 
0.7 +o.3972 +0.1671 -0.1711 -0.4489 -1.177 7.365 6.53 
0.8 +o.3851 +0.2126 +0.1586 -0.08981 -0.4180 13.32 11.80 
0.9 +0.3508 +0.2046 +o.2546 +o.04888 -0.09093 29:p 26.35 

0.95 +0.3279 -+0.1914 +0.2586, +0.07485 -0.01476 73.49 65.13 
0.964 0.00000 00 00 

0.98 +0.3148 +0.1822 +0.2534 +0.08259 +0.01445 - -
1.00 +0.3089 +o:11s8 +0.2530 +o.08718 +0.02863 -

aR, and then R, are shown also in that table. For the case n=9, · to each a -which 
is less than a certain number ao one and only one p was found; and none above 
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16 H. YAMADA 

a 0• a 0 is here nothing but the wave number corresponding to the inviscid liquid, 
and is of course equal to ao = 1.067 found in section 3. 

Some remarks are necessary for the case n = 10. As is said above, values 
of p which are not too large are almost equal to the corresponding values of n = 
9, and are expected to be more accurate ones than the latters. There will then 
be not any solid reason to reject G1o(P) = · 0 as irrational in cases of large P, and 
especially of p = oo. In fact the determinant of first eleven rows and columms 
does vanish and not determine the corresponding wave number when p=oo. This 
means zero absolute term in the expansion of determinant into a polynomial of 
p-1, and r~ults in an algebraic equation of 10th degree in p, i.e. G1o(P) = 0, one 
degree smaller than the rank of determinant. In this case, as in the other case, 
a0 is to be determined as a vanishing point of the coefficient cs of G10 (p ), and 
interpolating values given in Table 4, we find a0' = 0.964, which can be accepted 
as a rough approximation to ao = 1.035 of section 1. 

If we write a'2n+1/P instead of a2n+1 in (43) we have the characteristic equa­
tion 

Aoo, B01, Ao2, Boa, ........................... 
-Bio, p-2Au, -B12, p-2A13, ........................... 

A20, B21, A22, B2a, .............. ., ............ 
-Bao, p-2Aa1, -Ba2, P-2Aaa, ........................... 0, 

(51) 

which replaces ( 44'), and the development of this equation, cut off to first eleven 
rows and columns is, as is easily understood, nothing but the equation G10(p)=0. 
Above all, cs is proportional to the left hand side of (51), abridged of course to 
eleven rank, and made p-1 vanish; this determinant really vanishes at a 0'=0.964. 
The characteristic function corresponding to this a 0' is, as seen from the substitu-
tion above introduced, in a form : · 

(51') 

a fact which accords well with the result of the other case in section 3. 
The value ao' depends, however, on the elements A2m,2n (m, n=0, 1, 2, 3, 4, 5), 

this character being irrational from theoretical point of view. Presumably this value 
approaches gradually to a 0 = 1.035 or so, we think, when the rank of determinant 
is increased, and becomes free of the elements. If we cut off (51) to first ten 
rows and columns, and make p-1 vanish, it must be identical with the correspond­
ing one of ( 45). Apparent difference between them is the appearance of A2m,2n 
in the former, which has no effect on the symmetrical characteristic function, and 
excludes unnecessary discussion of antisymmetrical one. 

The stability curve a as a function of aR, above obtained, is shown in Fig. 
2 and Fig. 3, in the former the general feature and in the latter the feature when 
a is small being indicated. In these figures we see no hump in the intermediate 
region of aR which has been a remarkable point of Esch's results, and see rather 
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STABILITY OF LAMINAR SHEAR LAYER BETWEEN PARALLEL 
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11 r--------,--,---------,--,---------,--,---------r--~ 1.1 

n=JO 

o.s r-------+---t-r-----+---t-------+--t-------+------1 

0( 

Fig. 2. Stability curves ; solid curves are those of § 4, broken line is Esch's 
approximation, 0 that of Esch by computer, e inviscid point of§ 1. 
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Fig. 3. Stability curves for small aR; marks being the same as in Fig. 2. 
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18 H. YAMADA 

an accordance with that of Lessen in its general feature. 
When a is small our approximation is expected to be rough, as is stated at 

the outset. Compared with Esch's first approximation for very small a, which has 
acquired more general meanings through the work of Tatsumi and Gotoh, and a 
value a at one point aR = 1, which has been calculated by Esch by means of an 
electronic digital computer, both being shown in the figures, our stability curve 
seems to be rough when aR is 3 or smaller (a is 0.55 or smaller). These cases of 
small a will be the principal theme of the second paper. 

The velocity distribution of neutral waves, which is a stationary flow pattern 
by reason of c = 0, is given by (2), and <p(y) there by (43). Now the characteristic 
value p being inserted, linear equations for ao, a1, a2, ila, · • • have all the coefficients 
real (set of these coefficients forms the determinant ( 44') ), and therefore a2m, il2m+r 

are also all real (ao= 1 assumed). Then we have 

<p (y) =<!'r(Y) + i<pi(Y); 

<!'r(Y) = aoifro + a2ifr2 + ··· , 
<l'lY) = a1 'Yr + ll3,Y3 + • • • 

and the disturbance stream function (2) rewritten into 

l 
,fr= <p,(y)cos(ax) - <p;(y) sin (ax). 

(52) 

(53) 

As an example we have taken the case (a= 0.800, aR = 11.50), in which 
a's are as follows : 

ao = 1.0000, iii = 0.0916, a2 = 0.2821, aa = -0.0172, 

a4 = 0.1119, a5 = 0.0199, a6 = 0.0624, a1 = 0.0085, 

as = 0.0228, a9 = 0.0121. 

Using a table of Hermite functions we calculate numerical values of <!'r and </'1, 

which we see indicated in Fig. 1, in comparison with </'sr and </'sJI. Stream lines 
of these disturbance flows will be given in the second paper. Remarkable is the 
small imaginary part, and antisymmetricity of flow about x-axis ( the centre line of 
our shear layer) seems nearly conserved down to a pretty small Reynolds number, 
and therefore flow pattern remaining almost the same (To be continued)<1>. 

(Received Sept. 20, 1960) 

(7J Almost all numerical computations of the paper are undertaken by Miss S. Hoshino, 
to whom our thanks are due. 
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