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PERMANENT GRAVITY WAVES ON WATER 
OF UNIFORM DEPTH 

By Hikoji YAMADA 

Summary. Levi-Civita's formulation (as an eigenvalue problem) of per-
manent water wave problem, which deals with a field function, holomorphic 
in the unit circle and satisfying a certain boundary condition on the circum­
ference of it, are extended to the periodic waves in a canal of uniform depth, 
deep water waves and solitary wave being two special cases of it Application 
of an iterative procedure on this formulation supplies sufficiently accurate results, 
example being given. Some discussions on mass transport and eigenvalue are 
also included. 

§ 1. Transformation onto unit circle. We have already treated the periodic waves 
of permanent type on deep water,< 1~ which is the Levi-Civita's case.'2l and the solitary 
wave in a canal of uniform depth.C-3l In these cases the leading principles of calcu­
lation ,are the transformation z = z(O of the water region z (complex) onto a unit 
circle \(I ;S;; 1, and the determination of the field quantity Q(i::) = (} + i',, where (} 
is the direction angle of the flowing velocity and r = log q, q being the magnitude 
(measured by means of the velocity U at infinity as unit) of the velocity, by an 
iterative procedure as accurate as we are required. In this paper we deal with 
the periodic irrotational waves in a canal of uniform depth 4 l by the same principles, 
such that the two cases mentioned above are the special cases of our present one. 

We observe the waves from the coordinates system 0-xy which follows after 
the permanent waves as fast as the waves, so that the wave form stands fixed relative 
to the axes, and water flows steadily from left to right (say). The origin O is at 
one wave crest, x-axis is horizontal and directed to right, y-axis vertical and upward 
(Fig. 1 a). 

Let the wave-length be denoted by L and the mean depth by D. We define 
the wave velocity U by the formula 

JL/2 L L 
UL= -L/(x,y)dx = <p( 2 )- <p (- 2 ), (1) 

where rp is the potential function and u(x, y) is the horizontal component of the 

OJ H. Yamada, Reports of Res. Inst. Appl. Mech. Kyushu Univ. (this journal), vol. 5 
(1957), pp. 37-52 and 143-155. 

C2l T. Levi-Civita, Math. Annalen, vol. 93 (1925), p. 264. 
C3l H. Yamada, Reports of Res. Inst. AppL Mech. Kyushu Univ. (this journal), vol. 5 

(1957), pp. 53-67 and vol. 6 (1958), pp. 35-47. 
C4J This is the case treated by K. J. Struik, Math. Annalen, vol. 95 (1926), pp. 595-634; 

our calculation in this paper is, we think, much more simple and perspective. 
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128 H.YAMADA 
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flow velocity. The wave 
velocity thus defined is 
coincident with that of 
Stokes' waves when D 
tends to infinity, and with 
that of solitary wave 
when L tends to infinity. 

A 
(a) z-pfa,ne 

:r 
. . • ~- . . . . ~ (l) 

_ ~ 1%»>7>77»>»»mJJ17TII/ J/ / 11?/l?llfllll/)7/A C I 

B 

ci> w-/a,ne 
Fig. 1. 

The complex poten­
tial function 

W(z) = <p + i¢, (2) 

in which ¢ is the stream 
function and arbitrary 
constant is fixed so that 
W(O) = 0, maps the 
physical z-plane onto the 
W-plane as shown in 
Fig. lb, the same alpha­
betical letters . indicating 
the same points of special 
interest. · The distance 
0 A of the W pfane is 
the flux through any 
sectional plane of the 
flow, and when we de­
note it by UH, by use 

of above defined U, H is the length nearly equal to D, but differs a little; the 
difference has an important physical meaning which will be referred to later. 

Now we introduce the complete elliptic integrals, K(k) and K 1 = K(k'), of the 
first kind with the modulus k and its complementary modulus k 1 = ✓ 1 - k:, and 
define the numerical value of k by the relation 

K 1 H 
-=2-
K L 0 

With k, k 1, K and K 1 thus defined we do successive transformations: 

and 

W =2K W 
I UL ' 

1 
z = sn( W1 + iK', k) = k. sn(TVi, k)' 

1 . 
k + Z sn ( W, , k) + 1 

Z - log - -- = log ( W k) - 1 ' 1 - 1 sn 1, 

--Z 
k 

(3) 

(4) 

(5) 

(6) 
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PERMANENT GRAVITY WAVES 129 

or 

In these transformations sn is the 
Jacobian elliptic function with modulus 
k, and the mappings of each steps are 
as shown in the· figures 2a-2d which 
will be understood easily. One point 
of notice is the cut (barrier) from 
( = 0 to ( = - 1, the points B, C 
lying on one side and the points B', 
C' on the other side of the cut. The 
position of B ( or B') is 

(n=l-~(1- ✓1-k"). (8) 
k2 

By this series of transformations 
one wave-length region of the W-plane 
( from one trough to next trough) is 
mapped onto the unit circle (with cut) 
in the (-plane, the transformations 
being combined into one equation : 

( 2K ) .1-( 
sn UL W,k = -1 2✓,· (9) 

§ 2. Correspondence between z and 
c;. (9) is the first relation we aimed 
at, but as our object is the relation 
between the physical plane z and the 
unit circle C, we must have anew one 
relation between z and W. Such 
a relation is the complex velocity : 

dW I I -10 -dz= v e , (10) 

where j v I and (} is the speed and 
direction of flowing water, (} being 

6'~='UL£.raLl.~µ.d~~~~ 

(a)~-/am 

A B C 0 

(t)Z-pfa,ne 

I 
711Ji111/)}Jj}J)/}Jh(-i~3'11////1117)7J//))@ll(ff.,) 

I 
4«r<«vL«&e«0¼( 9 )WP//.// (/ft/(14~) 

A 13 c 
(C) ~-~ 

Fig. 2. 

the angle measured upwards from the horizontal direction (to right). We denote 
Jvl/U by q and logq by-r, in accordance with the special cases stated above, and 
then ( 10) becomes to 

1 dW -iO -!O(z) 
U d~=qe =e ' (10') 
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the field quantity .!l(z) being defined by the relation: 

.!l(z) = 0 + i-r = i log(~':')· (11) 

Evidently !J(z) is holomorphic at every interior point of the water region; and may 
have singular points at the. boundary of the region. 

As z has to be a certain function of I;, holomorphic at every interior point of 
the cut unit circle, we have from ( 10') 

1 dW de -«om 
- . --· -=e 
U d: dz 

i.e. ( 1 dW) etoc,, de' 
dz= U dC (12) 

where .!l(t:). is the transformed of .!l(z) on the t:-plane. On the other hand, 
differentiating (9) with regard to I;, we have 

ldW L 1 il+C' 

u ,if= 2K en(~~ w)dn(t1 w). 4 ✓~,a .. 
Also from (9) it results 

( 2K ) 1 + C: en ULW =2✓ 1;, dn(2K w) = ✓ 1 + k2(1-C)2 
-UL 4t: ' 

and making use of these relarions in above one, we have 

1 dW . L 1 
---1-----,.a===;=;;==== 
U d( - 4K ✓ ,2 + k 2 I; (l - C') 2 • 

4 

Finally combining (12) and (13), it results 

dz= i L 1 emc,) d" 
4K/ k 2 "'' ,2 + 4, (1- C)2 ' 

which is our required relation between z and C. 

(13) 

(14) 

In (14), however, .!l(C') is unknown presently, and the determination of it is 
the essential point of our wave problem. When it is determined (14) can be integrated, 
giving z = z(C) which is our final object. 

As our wave form is symmetrical about the vertical line through the crest i.e. 
Dy-axis, it can easily be verified that the function - i.!l(z) = -r - ifJ has conjugate 
complex values at every pair of symmetrical points z = x + iy and z = - x + iy. 
To this pair of points, on the other hand, corresponds a pair of two points of W-plane, 
situated symmetrically about ¢-axis, by the due choice of origin of W above stated. 
But now these two points becoming, by the transfarmation (9), to a pair of con· 
jugate points in the (•plane, we know that - i!J(C:) has a pair of complex conjugate 
values at every pair of conjugate points in the uriit circle IC: I ~ 1. Above all it 
takes real value on the real axis because of the horizontal velocity at points under 
crest or trough, or at the bottom, .and all along the cut - 1 ~ C < 0 values of the 
two sides coincide by reason of the periodicity of waves. Thus the function - i!J(C), 
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PERMANENT GRAVJTY WAVES 131 

and consequently JJ(::) itself, is not only holomorphic in the cut unit circle, but also 
in the unit circle without cut. 

The precise functional from of .!J(C) has to be determined by the condition 
prescribed on the boundary 'Cl= 1, which corresponds to the free surface of the 
physical plane. If desired, we can expand Q(r:,) into a power series of (: 

-JJ(c) = i ~ a,, C" (15) 
n=U 

about the ongm C = 0 and the expansion coefficients an's which are all real, are 
to be determined by the boundary condition. 

§ 3. Surface condition. Along the streamline which constitute the free surface 
of water prevails a constant (atmospheric) pressure and by the Bernoulli's equation 
we have 

• 2g 
q" + U2 Y = const, (16) 

or differentiating this along the arc s of this streamline 

dq g ·o 0 q-+- sm = 
ds U2 

(17) 

where O is the inclination of free surface velocity. 
When we take dz along the free surface this is equal to dse10 and has to corre­

spond to d( = i e1rr d11 on the unit circle ( = e1rr, 11 being the arc length of the unit 
circle. The correspondence is given by (14) and by use of the expression (11) 
we arrive easily at the relation: 

(18) 

When we take this relation into (17), which is the surface consition in the physical 
plane, it can now be trasformed into a condition in the (-plane: 

2 dq sinO 
q -=p---,-c======, 

da /1- k 2 sin2 (;) 

(19) 

where 

(20) 

(19) is the boundary condition at JCJ= 1, which is, as cited above, neccessary for 
the determination of Q((), and p is ·the eigenvalue which has to be determined 
simultaneously with Q(c). From p the wave velocity U follows at once. 

Now our mathematical formulation is thus settled, and we can see that the two 
cases treated already (Stokes' waves and solitary wave) are the special cases 
(k = 0 an:d k = 1) of our present one: 

For k=O we have K=rr/2, K'=oo. and then H= co by use of (3), i.e. the 
case of deep water. In this case (14), (19) and (20) reduce to 
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132 H. YAMADA 

. L __!_emwdC, dz= z2rr ( 

2 dq = p sinO, 
q da 

gL 
P=21ru2' 

and this is the very formulation of Levi-Civita.C"l 

(21) 

For k = 1 we have K = oo, K'= rr/2 and then L = oo by (3), i.e. the case of 
solitary wave. Then making use of (3) again we know that 

L H 2H 
2K= K'=-; 

and by means of this (14), (19) and (20) reduce to 

dz= ?H 1 incod 
7r ✓ ( (1 + () (' 

q2 ~! = p sin {,I sec ( ; ) , 

gH 
P = rr u2, 

which is our formulation of the solitary wave recently reported.C7J 

(22) 

§ 4. Iterative determination of !J. As the direct determination of SJ((), which 
satisfies the condition (19) is difficult generally, we give here an iterative procedure 
which enables us the determination of any desired order of accuracy. For the sake 
of simple calculation<8l we use the variable Q(a) defined ·by 

(3;)1 13 =Q i.e. -r=logQ+!log(3p) 

instead of q. Then (19) is changed into 

dQ3 

da 

and when integrated it becomes to 

sinO 

/ 1- k 2 sin2 (;) 

Q3(<1)- Q3(0) = r sinO(a') 1 da'' 

0 /1-k2 sin2 G) • 
which we use in place of (19). 

(23) 

(24) 

(6) See the paper of the footnote (1) or (2). 
(7) c.f. footnote (3). 
C8l The ·procedure here described is the simplified version of the method used in our preced­

ing reports. 
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PERMANENT GRAVITY WAVES 133 

To determine the wave precisely one more conatant, it is well known, is required 
and we take as this constant the ratio of the surface velocities at crest and trough': 

Q(0) q(0) 
p=--=-~ 

Q(rr) q(rr)' 
(25) 

and making use of this in (24), with a= rr, we have the relation which connect_s 
Q(O) to the given p : 

(26) 

Now the iterative procedure: we take an approximate function 0(a), given 
in some arbitrary way, as the starting approximation, and by means of this calculate 
Q(0) by (26), and then Q(a) by (24), or by 

Q(a) = (1- p3)-I/3{ r / sinO(a') . -, da' + p3 r I sinO(a') . 1 da'} I/3 • 

Cl}1 l-k2 sin2 (;) o-ll-k2 sin2 (;) 

(27) 

As this Q(a) is connected to -r(a) by (23), we have the values of -r(a) determined 
but an additive constant. From -r(a) we obtain 0(a) which is the conjugate function 
of -r(a): 

1 f 2,t ' 
<1 -<1 

0(a) = const.-~ {-r(a')--r(a)}cot-.- da', 
2rr 2 

• (I 

(28) 

and if we prefer to the power series expansion (16), -r(a) has to be expressed in 
a Fourier series : 

( ) _ ~ s ( ) + undetermined 
-r a - ~ 1 an co nd constant ' (29) 

and O (a) is then given at once: 

0(a) = - I: an sin(na). (30) 
n=l 

The undetermined constant of -r(a) has no influence on O(a), for such a constant 
of 6(a) is determined by the condition 6(0) = 0. 

The value of 6(a) thus obtained is the second approximation, and is generally 
different from the starting first approximation.< 9J We repeat above calculation then 
taking the second approximation as the starting one and the third approximation 
for 6(a) is obtained, and so on. Such cycles of calculation have to be repeated 
until the difference between the starting and resulting ones of a cycle is within 
the permissible error, and then (} (a) and Q( a) are determined. 

\~) Iterative procedure in this sense converges actually, as will be seen in the following 
example, and also in the examples already reported. If this procedure were divergent, 
the iteration in the inverse sense, using (19) i_nstead of (24), _ would be hoped forcon­
vergence. 
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.134 H.YAMADA 

. To fix the value of eigenvalue p we may use any one relation which contains q( 11), 
for by use of the equation (23) or 

q(a) = (3p)113 • Q(11), (23') 

we can bring the eigenvalue into an equation as a sole unknown quantity. Here 
we take up as such a relation the expression of wave-length. As .the wave form 
is given by 

L ei9 
dz= dse19 = - - --======d11, 

4 K q(11)/ i- k2 sin2(;) 

(31) 

which is nothing but the equation (18), we take its real part : 

L J-"L/2 L J" cosO --= ~=-- --~=====• 
2 4K . . 11 

o oq(11)/t-k2 sm2 ( 2 ) 
(31') 

from which follows the aimed equation at once: 

(3p)l/3 = _1_ r cos0(11) d11; 
2 K o Q( 11 ) / 1 - k2 sin2(; ) 

(32) 

p can be obtained by mere quadrature. 
Lastly r(11),. or q(11), is obtained by means of (23), or (23'), and Q(() for 

any inner point· ( of the unit circle is expressed by the Schwarz-Poisson's formula : 

l f 2,r lcr 
Q(()=ia0 +- fJ(11)e__+(d11. 

2rr e1" - ,-• 0 ... 

(33) 

When Fourier expansion (29) is used Q(() can be written down at once by (15). 

§ 5. A numerical example. The case of k = sin 80'= 0.98481 (K = 3.1534, K' = 

1.5828) is taken up as an example. By (3) and (8) 

H · (L ) L = 0.2510 H = 3.984 , (11= -0.7041. 

Here we calculate the highest wave, and, as in the preceding papers, we employ 

i.e . 

i 1-( 
.t?o(() = 3 log2 - (34) 

Ou(11) + iru(11) = rr ~ 11 + ~ log sin(;) (34') 

(rr 2; 11 2; 0) 

. as a rough approximation for .Q(() in the neighborhood of the singular point ( = 1, 
which· corresponds to the angular crest. 
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PERMANENT GRAVITY WAVES 135 

As the starting value of 0(<1) we have used the solution for the highest solitary 
wave, which we have reported recently, expecting in vain that our present solution 
is near to it. SJ is expressed : 

~ 

JJ(c;)=.!Jo(()+i .'2: anr.'", 
. n=O 

and then 
~ 

0(<1) = 00(<1)-.'2: an sin(n<1), 
n:::.t 

log Q(<1) = '1"0(<1) + ao' + .'2: an cos(n<1), 
n=l 

1 
aJ = aa' + 3 log ( 3 p) . 

In the course of the iteration calculus log Q( <1) has, as 
stated above, been used in place of '1"(<1). 

We take a's up to a12 and assume the others zero. 
Seven cycles of iteration were necessary for convergence, 
and results are as given in Table 1. Determination of 
p and au is done along the scheme given above. Numeri­
cal integration by Simpson's rule is used, the division of 
the interval being 7.5'; at <1 = 0 Q(<1) vanishes and some 
cautions were necessary for the evaluation of (32). From 
p-value it follows : 

U = ✓ _!!_ · g L = 1.050 ✓ g L 
2pK 2rr 2rr 

or 

U= ✓ IK'. gH=0.8361 ✓ gH. 
2p 

(a,i) 
au 
a1 

a2 
a3 

a~ 
a5 
an 
a7 
as 

a~ 
a10 
au 
a12 

p 

(35) 

l (35') 

Table 1. 

( + 0.0080) 
+ 0.1094 
-0.0442 
+ 0.0246 
-0.0023 

+ 0.0054 
+ 0.0005 
+ 0.0023 
+ 0.0009 
+ 0.0014 

+ 0.0009 
+ 0.0010 
+ 0.0009 
+ 0.0005 

0.4519 

0(<1) and q(<1) calculated by (35') and (23') are shown in Table 2; numbers in 
parentheses in the second column are the starting values of the last cycle and we 
see good convergence. There is tabulated also the wave form (x/L, y/L) calculated 
by (31), whose integrals are improper by reason of q(O) = 0. The wave form is 
inscribed also in Fig. 3, in comparison with the deep water wave, and we see more 
resemblance of the two forms than in our preoccupied vision. 

One test of the accuracy of the solution is the degree of satisfaction of the 
surface co~dition (16), which in this case of extreme height becomes to 

(16') 

With the values in Table 2 (<1 = 180'), the two terms on the left side are 1.4566 
and - 1.4562, and the sum of them 0.0004 is equal to zero within the accuracy of 
numerical integration. 

This accuracy of numerical integration can be known comparing the integral 
values: 

f J L m 
dz= [i- e · ]dr-4K. k2 ., 

✓ (2 +-((1-(i 
4 

(36) 
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136 H. YAMADA 

Table 2. 

a (deg.) 6 (rad.) q -x/L -y/L 

0 0.5236 (0.5236) 0.0000 0.0000 0.00000 
1.5 0.4923 (0.4923) 0.4435 

15 0.4698 (0.4699) 0.5525 0.0491 0.02678 . 
22.5 0.4544 (0.4545) 0.6277 
30 0.4385 (0.4386) 0.6893 0.0796 0.04170 

37.5 0.4196 (0.4197) 0.7405 
45 0.4020 (0.4020) 0.7829 0.1067 0.05379 
52.5 0.3865 (0.3865) 0.8209 
60 0.3710 (0.3711) 0.8567 0.1327 0.06440 
67.5 0.3538 (0.3539) 0.8896 

15 0.3366 (0.3367) 0.9189 0.1589 0.07407 
82.5 0.3205 (0.3206) 0.9464 

. 90 0.3041 (0.3042) 0.9736 0.1864 0.08316 
97.5 0.2863 (0.2864) 0.9994 

105 0.2680 (0.2681) 1.0235 0.2161 0.09190 

112.5 0.2495 (0.2496) 1.0466 
120 0.2300 (0.2301) 1.0697 0.2496 0.10043 
127.5 0.2093 (0.2093) 1.0922 
135 0.1870 (0.1870) 1.1140 0.2894 0.10885 
142.5 0.1632 (0.1633) 1.1350 

150 0.1371 (0.1372) 1.1551 0.3397 0.11705 
157 5 0.1079 (0.1080) 1.1739 
165 0.0756 (0.0757) 1.1903 0.4080 0.12430 
172.5 0.0393 (0.0393) 1.2025 
180 0.0000 (0.0000) 1.2069 0.5000 0.12775 

taken between any two points of special interest. As the integral along a closed 
contour which lies wholly in the water region vanishes identically, we must have 
(cf. Fig. la and 2d) 

_!_ fB' [ ]de~m{1 r· [ ]de}, 
L ·A 0 

(37) 

and 

_ _!_ r c 
L A 

]de=-~ f' [ 
L B' 

1 r ]de +3{L c-[ ]de}, (37') 

0.1 az a3 04 O.!, 

~?£ 

-0.05 1-------'.::,,,,k:------,l------l'---------l-------l 

-010 'H., 

1 -0$ ..._ _____ ..._ ____ __,J..._ ____ __, _____ __,1, _____ ........ 

Fig. 3 
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PERMANENT GRAVITY WAVES 137 

where m and S denoting the real and imaginary parts of the expression in { } . 
The right-hand side of (37) is 1/2 by (31'), and its left-hand side gives the numerical 
value 0.4999. The left-hand side of (37') is 0.3480 and the two terms on the right· 
hand side are 0.12775 and 0.22031, their sum being 0.3481. Thus the error seems 
to be several tenth of one per mille. Integrals are all done by Simpson's rule of 
7.5' division with proper cautions at the improper ends. 

§ 6. Mass transport. The time duration T(.P), which is necessary for a water 
particle on a streamline ¢ to go through one wave-length distance, is given byCw) 

l}T, 

fT drp 
= J _VL U"qi. (38) 

" 
Fig. 4. 

In this duration the wave advances the disttance UT( i/J ), i.e. the coordinates of 
reference in which waves have the velocity U recedes the the distance UT(¢) 
backwards. In this coordinates then particles advance the distance UT(¢) - L 
meanwhile, and the velocity of this advance is, in mean, 

V(i/J) = UT(</J)-L 
T(¢) . (39) 

Next we denote by dA the water quantity included in a wave-length, and by 
dQ(</J) the water quantity of advance per unit time (mass transport), both bounded 
by two streamlines ¢ and ¢ + d¢. Then by the definition of V(¢) 

dA 
dQ(</J) = L · V(¢), 

and by the definitions of stream function and T( ¢) 

dA = d.P • T( ¢) . 

Combing these two equations we have 

and then the expression of the total mass transport Q follows at once : 

which, by means of (38), can be written into 

Q = dL J Jdipd4'(q-2- l)' 

(40) 

(41) 

(41') 

CtoJ In the followings c.f. F. Ursell, Proc. Carob. Phil. Soc., vol. 49 (1953), pp. 145-150. 
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where the integral is to be extended over one wave-length domain in. the W-plane 
(hatched area in Fig. lb). 

On the other hand, extending the integral over the same area, we have 

or 

LD = J J:~:: ;~ dy,d¢ = JJ U;q2 dy,d¢, 

D 
L 

= 1 Jr 1 ( U L)2 7dy,drJ; ., q ' 

and introducing this into ( 41') we have . 

Q= U(D-H), 

which is the result, anticipated above, combining D, H and Q. 
In the preceding example 

L 1_,_,2 L j-112 
n(-2)= 0 (A+y)dx=A(-2)+L2 0 (~)a(;), 

(42) 

(42') 

(43) 

and the last integral has to be evaluated by means of values in the last two columns 
in Table 2. This is done making use of the Gauss· interpolation formula for every 
set of three successive points, and gave the value 0.04417 £2. Then D/L=0.2597, 
and Q/ UL= 0.0087 by ( 43). 

§ 7. Distribution of eigenvalue p. We have seen that the permanent periodic 
waves in a canal of uniform depth constitute a two-parametric family of solutions, 
parameters being k, the modulus. and p, the eigenvalue. For a given k ( 0 ~ k ~ 1) 
there is a maximum and a minimum values of p, maximum belonging to infinitesimal 
amplitude and minimum to the highest one. 

For the infinitesimal waves His equal to D, and the well-known velocity formula: 

Table 3. 

0 k(= sinll) L/H 
I 

Pmax Pmin 

deg. 
0 0.0000 0.0000 1.0000 0.8381 

3 0.0523 0.7246 0.9992 
20. 0.3420 I.2937 0.9698 

45 0.7071 2.0000 0.8504 

70 0.9397 3.0920 0.6490 

80 0.9848 3.984 0.5427 0.4519 

85 0.9962 4.869 0.4772 

87 0.9986 5.519 0.4449 

88 0.9994 6.039 0.4255 

89 0.9998 6.920 0.4013 

90 1.0000 DO 0.3183 0.1921 
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PERMANENT GRAVITY WAVES 
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u2 =~~ tanh(2rr1) 

holds. By use of this in (20) maximum p is found: 

;r ( K') p= 2 K coth ;r K . 

I 
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QEQQ-
----------

_L/4 

} 

j 

10 

(44) 

(44') 

To obtain minimum p as a function of k it is necessary to solve the problem of 
highest wave everytime for every value of k following the model example in section 5. 
Up to the present only three values are known, and these values are given in Table 3, 
together with the highest values calculated by ( 44'). 

With these values the domain for the existence of permanent waves are sketched 
in Fig. 5, in there L/ H being used instead of k for the sake of direct physical 
meaning. 

(Received October 21, 1958) 




