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Abstract A search for the Higgs boson decaying into a
pair of charm quarks is presented. The analysis uses proton–
proton collisions to target the production of a Higgs boson
in association with a leptonically decaying W or Z boson.
The dataset delivered by the LHC at a centre-of-mass energy
of

√
s = 13 TeV and recorded by the ATLAS detector cor-

responds to an integrated luminosity of 139 fb−1. Flavour-
tagging algorithms are used to identify jets originating from
the hadronisation of charm quarks. The analysis method is
validated with the simultaneous measurement of WW,WZ
and Z Z production, with observed (expected) significances
of 2.6 (2.2) standard deviations above the background-only
prediction for the (W/Z)Z(→ cc̄) process and 3.8 (4.6)
standard deviations for the (W/Z)W (→ cq) process. The
(W/Z)H(→ cc̄) search yields an observed (expected) upper
limit of 26 (31) times the predicted Standard Model cross-
section times branching fraction for a Higgs boson with a
mass of 125 GeV, corresponding to an observed (expected)
constraint on the charm Yukawa coupling modifier |κc| <

8.5 (12.4), at the 95% confidence level. A combination with
the ATLAS (W/Z)H, H → bb̄ analysis is performed, allow-
ing the ratio κc/κb to be constrained to less than 4.5 at the
95% confidence level, smaller than the ratio of the b- and
c-quark masses, and therefore determines the Higgs-charm
coupling to be weaker than the Higgs-bottom coupling at the
95% confidence level.

1 Introduction

Since the discovery of a new particle, H , with a mass of
approximately 125 GeV by the ATLAS [1] and CMS [2]
collaborations at the LHC [3], studies of its properties have
indicated that it is consistent with the Standard Model (SM)
Higgs boson [4–7]. The interactions between the Higgs boson
and the charged fermions of the third generation have been
observed by both the ATLAS [8–10] and CMS [11–13] col-
laborations, and CMS has reported evidence for the decay

� e-mail: atlas.publications@cern.ch

of the Higgs boson into a pair of muons [14], while ATLAS
reported a 2σ excess over the background-only prediction
[15]. Direct searches by the ATLAS and CMS collabora-
tions for Higgs boson decays into a charm quark–antiquark
pair, H → cc̄ [16,17], decays into an electron–positron
pair [18,19], exclusive decays into mesons [20–25], and
reinterpretations of the Higgs pT spectrum [26,27], have
not yet found experimental evidence for Higgs boson cou-
plings to the first-generation fermions or second-generation
quarks. Taken together, the results of these measurements and
searches are consistent with the prediction that the coupling
strength of the Higgs boson to each fermion scales propor-
tionally to the fermion’s mass.

In the SM the branching fraction of H → cc̄ is 2.89%
[28], approximately 20 times smaller than the branching frac-
tion of the Higgs boson to a bottom quark–antiquark pair,
H → bb̄. Physics beyond the Standard Model can signifi-
cantly enhance or reduce the coupling of the Higgs boson
to the charm quark, and in turn the H → cc̄ branching
fraction [29–35]. Direct searches for H → cc̄ in proton–
proton (pp) collisions have set upper limits on the cross-
section times branching fraction for the production of a W
or Z boson in association with a Higgs boson decaying into
cc̄. The ATLAS Collaboration has performed a search in the
Z(→ ��)H(→ cc̄) channel, where � = e, μ, using 36.1 fb−1

of pp collision data recorded at
√
s = 13 TeV [16], setting

an observed (expected) upper limit at 110 (150) times the SM
prediction, at 95% confidence level (CL). The CMS Collab-
oration has also performed a search using 35.9 fb−1 of pp
collision data recorded at 13 TeV [17]; the search was con-
ducted in three channels based on the number of charged
leptons, namely the 0-, 1- and 2-lepton channels, targeting
the ZH → ννcc̄, WH → �νcc̄ and ZH → ��cc̄ signa-
tures, respectively. These were combined to set an observed
(expected) upper limit of 70 (37) times the SM prediction, at
95% CL.

This paper presents a new search for V H(→ cc̄), where
V = W or Z , using 139 fb−1 of pp collision data collected
at a centre-of-mass energy of 13 TeV by the ATLAS detec-
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tor from 2015 to 2018. Events are selected in the 0-, 1- and
2-lepton channels and are categorised according to the trans-
verse momentum, pT, of the vector boson and the number of
jets.

Higgs boson candidates are constructed from the two jets
with the highest pT. One of the main challenges in search-
ing for H → cc̄ is to recognise jets originating from the
hadronisation of charm quarks. To identify these jets, a mul-
tivariate charm-jet tagging algorithm is used. Additionally,
a bottom-jet identification algorithm is used to veto bottom
jets, ensuring this analysis is orthogonal to the recent ATLAS
V H(→ bb̄) measurement [36]. Events are selected if one or
both of the two highest-pT jets are c-tagged.

In order to search for the H → cc̄ signal the distribu-
tions of the dijet invariant mass, mcc, in all event categories
are used simultaneously in a binned maximum-likelihood fit,
which allows the signal yield and the main background nor-
malisations to be extracted. The analysis strategy is validated
by the simultaneous measurement of the diboson processes
in which one of the bosons decays to at least one charm quark,
VW (→ cq) and V Z(→ cc̄), where q is a down-type quark.
The result is interpreted in the kappa framework [37,38] in
terms of κc, the modifier of the coupling between the Higgs
boson and the charm quark. The analysis is combined with
the ATLAS V H, H → bb̄ measurement [36] and the results
are interpreted in the kappa framework in terms of both κb
and κc, and in terms of the ratio κc/κb.

2 ATLAS detector

The ATLAS experiment [39] at the LHC is a multipurpose
particle detector with a forward–backward symmetric cylin-
drical geometry and a near 4π coverage in solid angle.1 It
consists of an inner tracking detector (ID) surrounded by
a thin superconducting solenoid providing a 2T axial mag-
netic field, electromagnetic and hadron calorimeters, and a
muon spectrometer. The inner tracking detector covers the
pseudorapidity range |η| < 2.5. It consists of silicon pixel,
silicon microstrip, and transition radiation tracking detec-
tors. Lead/liquid-argon (LAr) sampling calorimeters provide
electromagnetic (EM) energy measurements with high gran-
ularity. A steel/scintillator-tile hadron calorimeter covers the
central pseudorapidity range (|η| < 1.7). The endcap and for-
ward regions are instrumented with LAr calorimeters for both

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar
angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
�R ≡ √

(�η)2 + (�φ)2.

the EM and hadronic energy measurements up to |η| = 4.9.
The muon spectrometer surrounds the calorimeters and is
based on three large superconducting air-core toroidal mag-
nets with eight coils each. The field integral of the toroids
ranges between 2.0 and 6.0 T m across most of the detector.
The muon spectrometer includes a system of precision cham-
bers for tracking and fast detectors for triggering. A two-level
trigger system is used to select events. The first-level trigger
is implemented in hardware and uses a subset of the detector
information to accept events at a rate below 100 kHz [40].
This is followed by a software-based trigger that reduces the
accepted event rate to 1kHz on average depending on the
data-taking conditions. An extensive software suite [41] is
used in the reconstruction and analysis of real and simulated
data, in detector operations, and in the trigger and data acqui-
sition systems of the experiment.

3 Dataset and simulated event samples

This analysis uses data recorded by the ATLAS detector dur-
ing Run 2 of the LHC, which took place from 2015 to 2018
at a centre-of-mass energy of 13 TeV. Data were collected
using a combination of missing transverse momentum trig-
gers [42], in the 0- and 1-lepton channels, and single-lepton
triggers [43,44], in the 1- and 2-lepton channels. Events are
required to be of good quality and recorded while all rele-
vant detector components were in operation [45]. The dataset
corresponds to an integrated luminosity of 139.0 ± 2.4 fb−1

[46].
The Monte Carlo (MC) simulation samples used in this

analysis are largely the same as those used in the ATLAS
V H(→ bb̄) analysis [36], and are summarised in Table 1.
Samples of simulated events were generated for V H pro-
duction with a Higgs boson mass, mH , of 125 GeV, for both
H → cc̄ and H → bb̄ decays, with branching fractions of
2.89% and 58.2%, respectively, and for the main background
processes (t t̄ , single-top, V+ jets and diboson). The samples
are used to optimise the analysis and perform the statistical
analysis of the data.

The background from multi-jet events is negligible in the
0- and 2-lepton channels after applying the selection crite-
ria detailed in Sect. 4. In the 1-lepton channel, it is esti-
mated using a data-driven method. All samples of simulated
events are initially normalised to the most accurate theoret-
ical cross-section predictions currently available. Samples
produced using alternative event generators are used to assess
systematic uncertainties in the modelling of the signal and
background processes, and are discussed in Sect. 5.

All samples of MC events were passed through the ATLAS
detector response simulation [47] based on Geant4 [48] and
were reconstructed with the same algorithms as used for data.
The effect of multiple interactions in the same and neighbour-
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ing bunch crossings (pile-up) was modelled by overlaying
the simulated hard-scattering event with inelastic pp events
generated with PYTHIA8.186 [49] using the NNPDF2.3lo

set of parton distribution functions (PDF) [50] and the A3
set of tuned parameters (A3 tune) [51]. The simulated events
were weighted to reproduce the distribution of the average
number of interactions per bunch crossing seen in data. The
EvtGen1.6.0 program [52] was used to describe the decays
of bottom and charm hadrons in all samples, except those
generated with Sherpa [53–55].

4 Object and event selection

4.1 Object selection

Interaction vertices are reconstructed from tracks in the
ID. The vertex with the highest sum of squared transverse
momenta of associated tracks is used as the primary vertex
[87].

Electrons are reconstructed by matching ID tracks with
energy clusters in the EM calorimeter [88]. Electrons are
required to have pT > 7 GeV and |η| < 2.47. They must
satisfy the loose identification criterion, based on a like-
lihood discriminant combining observables related to the
shower shape in the calorimeter and to the track matching
the energy cluster, and are required to be isolated in both
the ID and calorimeter using pT-dependent criteria. In the
1-lepton channel, more stringent requirements are placed on
the identification and isolation of electrons. These electrons,
called tight electrons, are required to satisfy the tight likeli-
hood criterion and a stricter calorimeter-based isolation.

Muons are reconstructed within the acceptance of the
muon spectrometer, |η| < 2.7 [89]. They are required to
have pT > 7 GeV, to satisfy the loose identification crite-
ria and to be isolated in the ID using pT-dependent criteria.
As with electrons, in the 1-lepton channel more stringent
requirements are placed on the identification and isolation
of muons. These muons, called tight muons, must satisfy
the medium identification criteria and a stricter track-based
isolation, and have |η| < 2.5.

Hadronically decaying τ -leptons [90,91], identified with
a medium quality criterion [91], are required to have pT >

20 GeV and |η| < 2.5, excluding the transition region of
1.37 < |η| < 1.52 between the barrel and endcap sections
of the electromagnetic calorimeter. Reconstructed τ -leptons
are not directly used in the event selection, but are used in
the calculation of missing transverse momentum and to avoid
double-counting reconstructed τ -leptons as other objects.

Jets are reconstructed from topological clusters of energy
deposits in the calorimeter [92–94] by using the anti-kt algo-
rithm [95,96] with a radius parameter of R = 0.4. The jets
are classified as central or forward jets depending on their
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pseudorapidity. Jets are classified as forward jets if they have
2.5 < |η| < 4.5 and pT > 30 GeV. Jets are classified as
central jets if they have pT > 20 GeV and |η| < 2.5. Addi-
tionally, central jets with pT < 120 GeV are required to be
identified as originating from the primary vertex using a jet-
vertex tagging algorithm [97]. To improve the measurement
of each jet’s energy and direction, and consequently the mea-
surement of mcc, if any muons are found within a cone of jet-
pT-dependent size around the jet axis, the four-momentum of
the muon closest to the jet is added to the jet four-momentum,
following the procedure described in Ref. [36]. An over-
lap removal procedure is applied to avoid double-counting
between electrons, muons, hadronically decaying τ -leptons
and jets.

Central jets are tagged as containing either b- or c-hadrons
using two discriminants resulting from multivariate tagging
algorithms, MV2 and DL1 [98]. Jets are b-tagged using the
MV2 discriminant, configured to select b-jets with 70% effi-
ciency in simulated t t̄ events. A c-tagging configuration of
the DL1 discriminant, DL1c, was optimised for this analysis,
and includes a veto on jets b-tagged by the MV2 algorithm.
This configuration gives an average efficiency of 27% to tag
c-jets in simulated t t̄ events, and b- and light-jet misidentifi-
cation rates of 8% and 1.6%, respectively. The efficiencies in
simulation are calibrated to match those in data using control
samples of t t̄ and Z+jets events with a precision of 5%–10%,
using methods identical to those applied to b-tagging algo-
rithms [98–100]. Jets in simulated events are labelled using
information from the MC generator’s event ‘truth’ record,
exclusively as b-, c-, or τ -jets, in this order, according to
whether they contain a b-hadron, c-hadron, or τ -lepton with
pT > 5 GeV within a cone of size �R = 0.3 around their
axis. Jets not labelled as b-, c- or τ -jets are labelled as light
jets. Diboson, V+ jets and top-quark backgrounds are clas-
sified according to the flavour labels of the jets that form the
Higgs boson candidate in those selected events.

To maximise the statistical power of the available MC
samples, the c-tagging requirement is not applied to the
diboson, V+ jets or top-quark samples. Instead, events are
weighted by the probabilities for each jet to be c-tagged,
based on its flavour label and as a function of the jet pT and
|η|, to obtain predictions for events with either one or two c-
tagged jets. This is referred to as truth-flavour tagging since
it uses information from the MC generator’s event ‘truth’
record. In the V+ jets samples, differences of up to 20% are
observed between the two methods and are corrected for by
weights assigned to each jet, dependent on the �R to the clos-
est other jet and on the flavour labels of the jet and the clos-
est other jet. Finally, to correct for any residual non-closure
in the truth-flavour tagging procedure, small normalisation
corrections are applied to the diboson, V+ jets and top-quark
predictions such that the number of events for each process
in each analysis region (defined in Sect. 4.2) matches that

obtained when directly applying c-tagging. These normali-
sation corrections vary between 0.9 and 1.05.

The missing transverse momentum, Emiss
T is reconstructed

as the negative of the vector sum of the transverse momenta
of electrons, muons, hadronically decaying τ -leptons, jets,
and a ‘soft term’ which is constructed from tracks associated
with the primary vertex but not with any reconstructed object
[101]. The magnitude of the Emiss

T is referred to as Emiss
T . The

track-based missing transverse momentum, pmiss
T , is con-

structed using all ID tracks associated with the primary vertex
and satisfying the quality criteria detailed in Ref. [102], with
its magnitude denoted by pmiss

T .

4.2 Event selection and categorisation

Events are categorised into 0-, 1- and 2-lepton channels based
on the number of loose electrons and muons they contain.
Events with at least two central jets are selected, and they are
further categorised as 2- or 3-jet events according to the total
number of jets. Events with more than three jets are rejected
in the 0- and 1-lepton channels to reduce the t t̄ background.
In the 2-lepton channel, events with more than three jets are
included in the 3-jet category.

Since the signal-to-background ratio increases for large
transverse momentum of the vector boson, pVT , events with
reconstructed pVT > 75 GeV are selected [103]. Two pVT
regions are used: 75 GeV < pVT < 150 GeV (only in the
2-lepton channel) and pVT > 150 GeV. The pVT corresponds
to Emiss

T in the 0-lepton channel, the magnitude of the vector
sum of the Emiss

T and the lepton pT in the 1-lepton chan-
nel, and the magnitude of the vector sum of the two lepton
transverse momenta in the 2-lepton channel.

The main discriminating variable in this analysis is the
invariant mass, mcc, of the two central jets with the highest
pT, hereafter referred to as signal jets. At least one signal
jet must have pT > 45 GeV. Signal regions are composed of
events in which one or both of these jets are c-tagged, with the
two cases defining separate categories, referred to as 1-c-tag
and 2-c-tag, respectively. Furthermore, any additional non-
signal jet must not be b-tagged. This requirement means that
events in the signal regions can contain at most one b-tagged
jet. Combined with an identical jet selection, this ensures that
selected events are orthogonal to those selected in the ATLAS
V H(→ bb̄) analysis [36]. Events selected in the control
regions are not completely orthogonal with those selected in
the V H(→ bb̄) analysis, and the impact of this is discussed
in Sect. 7. In total, 16 signal regions are defined, arising from
the combination of three lepton channels, two pVT categories
(in the 2-lepton channel), two number-of-jets categories and
two number-of-c-tagged-jets categories.

To reduce the background contamination in all channels,
the �R between the two signal jets is required to be �R <

2.3 in events with 75 < pVT < 150 GeV, �R < 1.6 in
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events with 150 < pVT < 250 GeV and �R < 1.2 in events
with pVT > 250 GeV. The �R selection criteria, optimised
for each pVT range, are approximately 80% efficient for signal
events. For each signal region, a corresponding control region
is defined as containing events failing the �R selection, up
to a maximum �R of 2.5. These control regions, hereafter
referred to as the high-�R control regions, are designed to
constrain the V+ jets background normalisations and shapes.

In addition to the high-�R control regions, further control
regions are defined to constrain the modelling of the most
important other background processes. Top control regions,
enriched in t t̄ and single-top events, are defined in all lepton
channels. In the 0- and 1-lepton channels, events with three
jets are selected, and in these events exactly one of the signal
jets is c-tagged and the non-signal jet is b-tagged, resulting
in one control region for each of these lepton channels. In
the 2-lepton channel a pure sample of t t̄ events is selected by
requiring the two leptons to have different flavours (eμ) and
opposite electric charges. One control region is defined for
each number-of-jets category and pVT region combination,
resulting in a total of four 2-lepton top control regions, each
containing exactly one c-tagged jet.

Finally, in the 1- and 2-lepton channels, events in which
neither of the two signal jets are c-tagged and no non-signal
jets are b-tagged are used to constrain the normalisation of
the V+ light-jets backgrounds. One control region is defined
for each number-of-jets category and pVT region combination,
for a total of six 0-c-tag control regions.

A total of 44 analysis regions are defined: 16 signal
regions, 16 high-�R control regions, 6 top control regions
and 6 0-c-tag control regions. The signal-region selection
criteria specific to each channel are described below, and
summarised in Table 2.

0-lepton channel Data were collected using Emiss
T trig-

gers with thresholds ranging from 70 GeV in 2015 to
110 GeV in 2018 [42]. Events must not contain any loose
electrons or muons, and are required to have Emiss

T >

150 GeV. At 150 GeV the Emiss
T triggers are approxi-

mately 75–90% efficient, depending on the year, reaching
a full efficiency plateau at about 200 GeV. A requirement
on the scalar sum of jet transverse momenta, HT, of 120
(150) GeV in 2-jet (3-jet) events is imposed to remove a
small region of phase space where the trigger efficiency
depends on the number of jets. To remove non-collision
backgrounds, pmiss

T is required to exceed 30 GeV. Back-
ground multi-jet events with high Emiss

T typically arise
from mismeasured jet energies in the calorimeter and
can be rejected using angular separation requirements
(detailed in Table 2) between the jets, Emiss

T and pmiss
T .

1-lepton channel Events must contain exactly one loose
lepton, that is then required to also be tight. If the lepton
is an electron (muon), it must have pT > 27 (25) GeV

Table 2 Summary of the signal region event selection in the 0-, 1- and
2-lepton channels. Jet1 and jet2 refer to the two signal jets and H refers
to the jet1–jet2 system

Common selections

Central jets ≥ 2

Signal jet pT ≥ 1 signal jet with pT > 45 GeV

c-jets One or two c-tagged signal jets

b-jets No b-tagged non-signal jets

Jets 2, 3 (0- and 1-lepton); 2, ≥ 3 (2-lepton)

pVT regions 75–150 GeV (2-lepton)

> 150 GeV

�R(jet1, jet2) 75 < pVT < 150 GeV: �R ≤ 2.3

150 < pVT < 250 GeV: �R ≤ 1.6

pVT > 250 GeV: �R ≤ 1.2

0-lepton channel

Trigger Emiss
T

Leptons No loose leptons

Emiss
T > 150 GeV

pmiss
T > 30 GeV

HT > 120 GeV (2 jets), > 150 GeV (3 jets)

min |�φ(Emiss
T , jet)| > 20◦ (2 jets), > 30◦ (3 jets)

|�φ(Emiss
T ,H)| > 120◦

|�φ(jet1, jet2)| < 140◦

|�φ(Emiss
T ,pmiss

T )| < 90◦

1-lepton channel

Trigger e sub-channel: single electron

μ sub-channel: Emiss
T

Leptons One tight lepton and no additional loose leptons

Emiss
T > 30 GeV (e sub-channel)

mW
T < 120 GeV

2-lepton channel

Trigger Single lepton

Leptons Exactly two loose leptons

Same flavour, opposite charge for μμ

m�� 81 < m�� < 101 GeV

and |η| < 2.47 (2.5). In the muon sub-channel, data
were collected with the same Emiss

T triggers as in the 0-
lepton channel. The online Emiss

T calculation does not
include muons, so these triggers effectively select on
pVT and perform more efficiently than single-muon trig-
gers in the analysis phase space. In the electron sub-
channel, single-electron triggers were used to collect data
with thresholds starting at 24 GeV for data collected in
2015 and 26 GeV for data collected between 2016 and
2018 [43]. In the electron sub-channel, there is a sig-
nificant background from events with jets misidentified
as electrons at low Emiss

T . These events are rejected by
requiring Emiss

T > 30 GeV. The transverse mass of the
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reconstructed W boson,2 mW
T , is required to be less than

120 GeV. The number of multi-jet background events
that survive the 1-lepton channel event selection is esti-
mated in each analysis region by performing a template
fit to the mW

T distribution, which offers good discrim-
ination between multi-jet and simulated backgrounds.
The multi-jet mW

T templates are extracted from control
regions defined by inverting the tight isolation require-
ments on the leptons, after subtraction of the simulated
backgrounds. The shapes of the multi-jet mcc distribu-
tions are obtained using the same procedure. More details
of the template-fit method can be found in Ref. [9].
2-lepton channel The 2-lepton channel must contain
exactly two same-flavour loose leptons. At least one of
the leptons must have pT > 27 GeV to be consistent
with the online single-lepton trigger selection. In the
dimuon case, they must have opposite electric charges.
This requirement is not imposed in the dielectron sub-
channel due to a higher probability of charge misidenti-
fication. The invariant mass of the two leptons, m��, is
required to be consistent with the mass of the Z boson,
81 < m�� < 101 GeV.

Following the event selection, the Z + jets, W + jets
and t t̄ processes constitute the main backgrounds in the
0-lepton channel. In the 1-lepton channel, the main back-
grounds arise from the W + jets and t t̄ processes. For both
the 0- and 1-lepton channels, the relative background com-
position depends substantially on the analysis region. In
the 2-lepton channel the main background is Z + jets in
all regions. The efficiency to select the V H(→ cc̄) sig-
nal, in which the V decays to leptons, is ≈ 1–2%, and
the expected signal-to-background ratio in the mass range
100 GeV < mcc < 150 GeV is (1–7) × 10−4 in the 1-c-
tag signal regions and (0.6–8) × 10−3 in the 2-c-tag signal
regions.

5 Systematic uncertainties

The sources of systematic uncertainties affecting this analy-
sis can be broadly divided into two groups: those related to
experimental effects and those due to the theoretical mod-
elling of signal and background processes. The estimation of
these uncertainties closely follows the procedures outlined
in Ref. [36].

2

mW
T =

√
2p�

T p
ν
T(1 − cos(φ� − φν))

, where Emiss
T is used as an

approximation for pν
T.

5.1 Experimental uncertainties

The leading experimental uncertainties in this analysis are
due to imperfect calibration of the c-tagging efficiency, jet
energy scales and jet energy resolutions. Correction fac-
tors for c- and b-tagging are determined from the difference
between tagging efficiencies in data and simulation and are
derived separately for c-jets, b-jets and light-flavour jets [98–
100]. The uncertainties in the correction factors originate
from multiple sources and are decomposed into independent
components that are correlated between different analysis
regions. Two additional uncertainties are included in MC
samples where truth-flavour tagging, described in Sect. 4, is
used. An uncertainty is included in the V+ jets samples, equal
to the �R correction that is applied to improve agreement
between the truth-tagged and direct-tagged simulation sam-
ples, and for each MC prediction an uncertainty is included
in the overall normalisation correction between direct and
truth-flavour tagging.

The uncertainties in the calibration of jet energy scales
and resolutions are estimated from multiple measurements
[92]. Uncertainties in the jet energy scale and resolution are
combined into independent components that are correlated
between different analysis regions. An additional uncertainty
in the calibration of b- and c-jets is also included.

Uncertainties in the reconstruction, identification, isola-
tion and trigger efficiencies of electrons and muons, and the
uncertainties in their energy scale and resolution, have been
measured in data and found to be negligible compared to
other uncertainties [88,89]. These uncertainties, along with
the jet energy scale and resolution uncertainties, are prop-
agated to the calculation of Emiss

T following the method
described in Ref. [36]. The Emiss

T calculation has additional
uncertainties associated with the pT scale, pT resolution and
reconstruction efficiency of the tracks used to build the Emiss

T
soft term, and with the modelling of the underlying event
[101]. An uncertainty in the Emiss

T trigger efficiency is also
included.

The uncertainty in the combined 2015–2018 integrated
luminosity is 1.7% [46], obtained using the LUCID-2 detec-
tor [104] for the primary luminosity measurements. The aver-
age number of interactions per bunch-crossing in simulation
is scaled by 1.03 to improve agreement with data, with an
uncertainty corresponding to the full size of the correction
(±3%).

5.2 Signal and background modelling uncertainties

Modelling uncertainties are evaluated using samples of sim-
ulated events. For each process, four categories of uncer-
tainty are considered: cross-section and acceptance uncer-
tainties, which account for the overall normalisation of back-
grounds that are not allowed to float freely in the global like-
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Table 3 Summary of the background modelling systematic uncertain-
ties considered

VH(→ bb̄)

WH(→ bb̄) normalisation 27%

ZH(→ bb̄) normalisation 25%

Diboson

WW/Z Z/WZ acceptance 10%/5%/12%

pVT acceptance 4%

Njet acceptance 7%–11%

Z + jets

Z + hf normalisation Floating

Z + mf normalisation Floating

Z + lf normalisation Floating

Z + bb to Z + cc ratio 20%

Z + bl to Z + cl ratio 18%

Z + bc to Z + cl ratio 6%

pVT acceptance 1%–8%

Njet acceptance 10%–37%

High-�R CR to SR 12%–37%

0- to 2-lepton ratio 4%–5%

W4+jets

W+ hf normalisation Floating

W+mf normalisation Floating

W+ lf normalisation Floating

W+ bb to W+ cc ratio 4%–10%

W+ bl to W+ cl ratio 31%–32%

W+ bc to W+ cl ratio 31%–33%

W → τν(+c) to W+ cl ratio 11%

W → τν(+b) to W+ cl ratio 27%

W → τν(+l) to W+ l ratio 8%

Njet acceptance 8%–14%

High-�R CR to SR 15%–29%

W → τν SR to high-�R CR ratio 5%–18%

0- to 1-lepton ratio 1%– 6%

Top quark (0- and 1-lepton)

Top(b) normalisation Floating

Top(other) normalisation Floating

Njet acceptance 7%–9%

0- to 1-lepton ratio 4%

SR/top CR acceptance (t t̄) 9%

SR/top CR acceptance (Wt) 16%

Wt / t t̄ ratio 10%

Top quark (2-lepton)

Normalisation Floating

Multi-jet (1-lepton)

Normalisation 20%–100%

The values given refer to the size of the uncertainty affecting the yield of
each background. Where the size of an acceptance systematic uncertainty
varies between analysis regions, a range is displayed. Uncertainties in
the shapes of the mcc distributions are not shown below, but are taken
into account for all backgrounds. CR and SR stand for control region and
signal region

lihood fit; flavour-fraction uncertainties, which account for
uncertainties in the make-up of subcomponents of each back-
ground; relative acceptance uncertainties, which account for
the relative normalisations of backgrounds in cases where
the overall normalisation is considered correlated across two
or more analysis regions; and shape uncertainties, account-
ing for uncertainties in the shape of the mcc distribution
in each region. Unless stated otherwise, normalisation and
shape effects of each systematic uncertainty are treated as
uncorrelated with one another to ensure that modelling uncer-
tainties are not artificially constrained. The decision to cor-
relate or decorrelate normalisation and shape effects is made
for each modelling uncertainty considered and is based on
studies of different correlation models, and in cases where
the impact of the choice is non-negligible, the model giv-
ing the most conservative uncertainty is used. Background
modelling uncertainties considered in this analysis are sum-
marised in Table 3.

VH Uncertainties in the V H(→ cc̄) signal are evalu-
ated following the recommendations of the LHC Higgs
Working Group [105,106], and include uncertainties in
the cross-section of V H production and in the H → cc̄
branching fraction. In addition, acceptance and shape
uncertainties are evaluated by comparing the nominal
V H(→ cc̄) samples with alternatives generated using
Powheg+Herwig7 [107], and by independently vary-
ing the renormalisation (μr) and factorisation (μf ) scales
by factors of one-half and two in the nominal generator.
Comparisons are made separately for the three produc-
tion processes; qq̄ → ZH , qq̄ → WH , and gg → ZH .
Uncertainties in the total acceptance are found to be sim-
ilar between lepton channels, 4–6% in the quark-initiated
processes and 31–35% for gg → ZH . Similarly, uncer-
tainties in the ratio of 3-jet to 2-jet events are found to
be similar between channels for the quark-initiated pro-
cesses, 6–12%, while uncertainties in the gg → ZH
processes are larger, 19–56%. In the 2-lepton channel
an uncertainty is included to account for differences in
acceptance between the two pVT regions, and is 2% for
qq̄ → ZH and 5% for gg → ZH . Uncertainties in the
shapes of the mcc distributions for each of the three pro-
duction processes are evaluated in a similar way, and good
agreement is found between lepton channels, allowing
the use of one shape uncertainty per production process.
Uncertainties in the normalisation of the WH(→ bb̄)
and ZH(→ bb̄) background are taken from the recent
ATLAS measurements [36]. Uncertainties in the number
of jets and pVT acceptance ratios are set to be the same as
those derived for the H → cc̄ signal. Shape uncertainties
in the H → bb̄ background are evaluated in an equivalent
way to the H → cc̄ signal shape uncertainties.
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DibosonUncertainties in the diboson prediction are eval-
uated by comparing the nominal diboson MC samples,
generated using Sherpa, with alternative samples gen-
erated using Powheg+Pythia8 and by independently
varying μr and μf in the nominal samples by factors of
one-half and two. Inclusive acceptance uncertainties are
assigned to the WW , WZ and Z Z processes, and uncer-
tainties in the ratios of 3-jet to 2-jet events and the ratios
of events in different pVT regions are also included.
Uncertainties in the mcc shape of the diboson signal,
VW (→ cq) and V Z(→ cc̄), and background compo-
nents are evaluated separately by comparing MC events
from the two generator set-ups in each lepton channel.
These comparisons are made inclusively in the num-
ber of jets and, in the 2-lepton channel, split into pVT
regions. The shape uncertainties are found to be consis-
tent between channels.

V+jets production The largest backgrounds in this anal-
ysis originate from V+ jets, with W + jets and Z + jets
being the largest background in the 1-lepton and 2-lepton
channels, respectively, and a combination of the two
making up the majority of the background in the 0-
lepton channel. In all channels, the V+ jets background
is divided into three subsamples based on the flavours
of the two signal jets: V+ hf, V+mf and V+ lf, where
hf, mf and lf stand for heavy-flavour, mixed-flavour and
light-flavour, respectively. The V+ hf background con-
sists of the V+ bb and V+ cc contributions, the V+mf
background consists of theV+ bl,V+ cl andV+ bc con-
tributions, where l refers to a light jet that doesn’t contain
a heavy-flavour hadron or τ -lepton, and the V+ lf back-
ground consists of the remaining contribution where nei-
ther of the signal jets contain a heavy-flavour hadron.
In the 0-lepton channel a non-negligible component of
events contains a W → τν decay in which the τ -lepton
decays hadronically and is selected as one of the two sig-
nal jets. These jets are considered as light jets for the pur-
pose of assigning these events to the W+mf and W+ lf
background components.
Uncertainties in the V+ jets backgrounds due to nor-
malisation, acceptance, flavour-fractions and shapes are
evaluated using alternative Monte Carlo generator set-
ups. These include taking the same Sherpa set-up used
to generate the nominal V+ jets samples but varying
μr and μf by factors of one-half and two indepen-
dently, and separate samples generated using Mad-

Graph5_aMC@NLO [108] at leading order in QCD
with up to four additional partons in the matrix element
calculation, interfaced to PYTHIA8.
The normalisations of all the W + jets and Z + jets com-
ponents are free to float in the likelihood fit to data. The
W+ lf and Z + lf components float independently in the

2-jet and 3-jet signal regions. The Z + hf, Z +mf and
Z + lf components float independently in the two pVT
regions. The normalisations of the V+ lf backgrounds
are constrained by the 0-c-tag control regions, while
the V+ hf and V+mf components are constrained by
the signal regions and high-�R control regions. Uncer-
tainties are included to account for acceptance effects
between number-of-jet categories and lepton channels.
Uncertainties in the relative contributions of the compo-
nents of the V+ hf, V+mf and V+ lf backgrounds are
found to be consistent between lepton channels, so one
uncertainty per component is used, taken from the lepton
channel which offers the most precise estimate.
Shape uncertainties are derived in each analysis region
and channel, separately for W+ jets and Z+ jets, with an
uncertainty being included for each of the three compar-
isons performed, namely the comparisons between the
nominal Sherpa sample and the μr and μf variations,
and the comparison with MadGraph5_aMC@NLO+

Pythia8. The comparison between Sherpa and
MadGraph5_aMC@NLO+Pythia8 is performed in a
two-step process. First, a comparison is made in the high-
�R control region, with differences in both the shape and
normalisation between the two models propagated to the
signal regions in a correlated way. Second, the Sherpa

model is weighted such that the two models agree in
the high-�R control region and any residual difference
between the two models in the signal regions is included
as a shape-only uncertainty.

Top-quark background The top-quark background
comprises t t̄ and single-top-quark events. In the 2-lepton
channel, the normalisation of this background in each
signal region is determined using the corresponding top
control region described in Sect. 4.2. Due to the small
size of this background, no shape uncertainties are con-
sidered.
In the 0- and 1-lepton channels, where this background
is larger, t t̄ and single-top Wt-channel events are divided
into two components based on the flavours of the two sig-
nal jets: top(b) events, in which at least one of the signal
jets originates from a b-quark; and top(other) events. For
the latter component, the two signal jets are mostly pro-
duced in the decay of aW boson and therefore their invari-
ant mass peaks at the W -boson mass, while for the former
component it does not. The normalisations of these two
components are free to float separately in the global like-
lihood fit, with information from the top control regions
contributing significantly. The background from t- and s-
channel single-top-quark production is small and is con-
sidered separately, with uncertainties in the t-channel and
s-channel production cross-sections included.

123



Eur. Phys. J. C (2022) 82 :717 Page 9 of 42 717

Acceptance and shape uncertainties are derived sepa-
rately for each component by comparing the nominal
Powheg+Pythia8 t t̄ and single-top MC samples with
alternative samples, generated using Powheg+Herwig7

andMadGraph5_aMC@NLO+Pythia8 [108]. In addi-
tion, the impact of additional radiation is assessed using
Powheg+Pythia8 samples with modified parameter
values. Uncertainties are included to cover differences
in the normalisation between lepton channels, between
number-of-jets categories, and between the signal regions
and top control regions. The dominant single-top contri-
bution comes from Wt production. The estimated uncer-
tainty in the relative contributions of t t̄ and Wt events
to the total top-quark background is included, as is an
uncertainty due to the interference between t t̄ and Wt
events, evaluated using an alternative Wt MC sample in
which the t t̄/Wt interference is dealt with using the dia-
gram subtraction scheme instead of the diagram removal
scheme used in the nominal Wt sample [109,110].
Shape differences in each of the various MC sample com-
parisons are considered as separate shape uncertainties.
Shape uncertainties are derived for each component of
the total top-quark background, top(b) and top(other),
separately for t t̄ and Wt events.

Multi-jet Uncertainties in the multi-jet background are
evaluated separately in the electron and muon sub-
channels. Normalisation and shape uncertainties are
derived by changing the definition of the multi-jet control
region and by modifying the normalisation of the t t̄ and
W+jets backgrounds in this control region by up to 25%.
Additionally, the impact of using an alternative variable
instead of mW

T , namely the azimuthal angle between the
charged lepton and Emiss

T , �φ(�, Emiss
T ), in the template

fit is considered as an uncertainty.

6 Statistical analysis and results

A binned maximum-likelihood fit to the mcc distribution is
performed across the 44 analysis regions to extract three
parameters of interest (POI), μ. The parameters of inter-
est, μV H(cc̄), μVW (cq) and μV Z(cc̄), correspond to signal
strengths that multiply the SM cross-sections times branch-
ing fractions of the V H(→ cc̄), VW (→ cq) and V Z(→ cc̄)
processes, and are extracted by maximising the likelihood
function with respect to both μ and nuisance parameters,
which account for the systematic uncertainties discussed
in Sect. 5. Uncertainties are constrained with Gaussian or
log-normal distributions in the likelihood function with the
exception of the normalisations of the V+ jets and top-quark
backgrounds, which are allowed to float freely in the fit. The
uncertainties due to the limited number of events in the simu-

lated samples used in the fit are included using the Beeston–
Barlow technique [111] for the total MC prediction, exclud-
ing the V H(cc̄) signal. Systematic uncertainties that exhibit
large fluctuations are smoothed and uncertainties with neg-
ligible impact on the final results are ‘pruned’ following the
procedures outlined in Ref. [112].

The V H(→ bb̄) background, expected to be about eight
(two) times larger than the SM H → cc̄ signal in the 1-
c-tag (2-c-tag) signal regions, is included in the likelihood
function with uncertainties; however, at the present level of
signal sensitivity it does not significantly impact the search
for V H(→ cc̄).

The mcc resolution is studied using simulation in the 2-
lepton channel and its value is 10–20 GeV depending on
the signal region. The resolution is better in the 2-jet signal
regions than those with more than two jets, and better in the
2-c-tag signal regions than the 1-c-tag signal regions. In the
2-lepton channel, the resolution in the pVT > 150 GeV signal

regions is better than in the 75 GeV < pVT < 150 GeV signal
regions. The following mcc ranges and uniform binnings are
used in the various signal and control regions:

• 16 bins from 50 to 210 GeV in the signal regions and 0-
and 1-lepton top control regions, with the exception of
the 2-lepton, 2-c-tag, pVT > 150 GeV signal regions.

• 9 (10) bins from 50 to 185 (200) GeV in the 2-lepton,
2-c-tag, pVT > 150 GeV, 2-jet (3-jet) signal region.

• 13 bins from 80 to 340 GeV in each of the high-�R
control regions, with the exception of the 2-lepton, 2-c-
tag, pVT > 150 GeV high-�R regions, where 9 bins from
80 to 350 GeV are used.

• A single bin from 50 to 210 GeV in each of the 0-c-tag
control regions and 2-lepton top control regions.

Selected post-fit mcc distributions, where all normalisa-
tions and nuisance parameters are adjusted by the likelihood
fit, are shown in Fig. 1 for the 0-, 1-, and 2-lepton channels.
Post-fit distributions for the remaining analysis regions can
be found in the Appendix. Table 4 shows the values of the
free-floating background normalisation parameters obtained
from the likelihood fit to data. The fitted signal strengths are:

μV H(cc̄) = −9 ±10(stat.) ±12(syst.)
μVW (cq) = 0.83 ±0.11(stat.) ±0.21(syst.)
μV Z(cc̄) = 1.16 ±0.32(stat.) ±0.36(syst.).

The correlation between μV H(cc̄) and μVW (cq) (μV Z(cc̄))

is 17% (16%), while μVW (cq) and μV Z(cc̄) are 17% anti-
correlated. The probability of compatibility with the SM,
defined as all three POIs being equal to unity, is 84%. The
observed (expected) significances of the VW (→ cq) and
V Z(→ cc̄) signals are 3.8 (4.6) and 2.6 (2.2) standard
deviations, respectively. For the μV H(cc̄) signal strength,
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Fig. 1 Post-fit distributions for six selected signal regions out of 44
analysis regions, with two jets and pVT > 150 GeV for the 0-lepton
(left), 1-lepton (centre), and 2-lepton (right) channels, with one c-tag
(top) and two c-tags (bottom). The total signal-plus-background pre-
diction is shown by the solid black line and includes the H → cc̄ signal

scaled to the best-fit value of μV H(cc̄) = −9. The H → cc̄ signal is also
shown as an unfilled histogram scaled to 300 times the SM prediction.
The post-fit uncertainty is shown as the hatched background. The ratio
of the data to the sum of the post-fit signal plus background is shown
in the lower panel

an upper limit of 26 (31+12
−8 ) is observed (expected) at

95% CL using a modified frequentist CLs method [113],
with the profile-likelihood ratio as the test statistic [114],
using the RooFit/RooStats framework [115,116]. The
limits for the three lepton channels are summarised in
Fig. 2.

The effects of systematic uncertainties are summarised in
Table 5. For each POI, the statistical uncertainty is obtained
from a fit in which all nuisance parameters are fixed to their
post-fit values. The total systematic uncertainty is found
by subtracting the squared statistical uncertainty from the
squared total uncertainty, i.e. σsyst. = (σ 2

tot. −σ 2
stat.)

1/2. Sim-
ilarly, the impact of a subset of the systematic uncertainties
is assessed by performing the fit with only their nuisance
parameters fixed to their post-fit values. For each POI, the
impact is then computed as the square root of the decrease
in the squared uncertainty of that POI between the nominal
fit and the fit with the nuisance parameters fixed. Despite
the additional uncertainties it introduces, the use of truth-
flavour tagging improves the expected limit on μV H(cc̄) by

about 10% due to the improved statistical precision in the
MC predictions.

The improvements in this analysis relative to the previous
ATLAS search for ZH, H → cc̄ [16] are quantified by per-
forming a fit in the 2-lepton channel to the 2015–2016 data,
corresponding to 36 fb−1. Using the same signal regions as
the previous analysis a 36% improvement in the expected
limit is found, with most of the improvement due to better
flavour-tagging performance. After also including the new 2-
lepton signal and control regions introduced in this analysis,
a 43% improvement in the expected limit is found. Adding
the full Run-2 dataset, along with the 0- and 1-lepton chan-
nels, the expected limit is improved by a factor of five in this
analysis, relative to the previous ATLAS search.

The mcc distributions for events with either one or two
c-tagged jets, summed over all channels and regions, after
background subtraction, and using the fitted signal strengths,
are shown in Fig. 3.

The best-fit value of the V H(→ cc̄) signal strength is
interpreted within the kappa framework [37,38], by reparam-
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Table 4 Values of the free-floating background normalisation param-
eters obtained from the likelihood fit to data. The uncertainties repre-
sent the combined statistical and systematic uncertainties. Unless other-
wise stated, normalisation parameters are correlated across all pVT and
number-of-jets analysis regions

Background pVT Jets Value

Top(b) 0.91 ± 0.06

Top(other) 0.94 ± 0.08

t t̄ (2-lepton) pVT > 150 GeV 2 0.76 ± 0.22

3 0.96 ± 0.13

75 < pVT < 150 GeV 2 1.08 ± 0.08

3 1.06 ± 0.07

W+ hf 1.16 ± 0.35

W+mf 1.28 ± 0.14

W+ lf 2 1.02 ± 0.04

3 0.97 ± 0.05

Z + hf pVT > 150 GeV 1.19 ± 0.22

75 < pVT < 150 GeV 1.25 ± 0.25

Z +mf pVT > 150 GeV 1.10 ± 0.15

75 < pVT < 150 GeV 1.11 ± 0.15

Z + lf pVT > 150 GeV 2 1.07 ± 0.03

3 1.08 ± 0.05

75 < pVT < 150 GeV 2 1.12 ± 0.04

3 1.07 ± 0.06

eterising μV H(cc̄) in the likelihood function in terms of the
Higgs–charm coupling modifier, κc, assuming that the cou-
pling modifier only affects the Higgs boson decays. Including
effects in both the partial and full width, considering only SM
decays and setting all other couplings to their SM predictions,
μV H(cc̄) is parameterised as a function of κc

μV H(cc̄)(κc) = κ2
c

1 + BSM
H→cc̄(κ

2
c − 1)

,

where BSM
H→cc̄ is the H → cc̄ branching fraction predicted

in the SM.
Constraints on κc are set using the profile-likelihood ratio

test statistic and are shown at 95% CL for each of the three
channels and for the combined likelihood fit in Fig. 4. The
combination allows an observed (expected) constraint of
|κc| < 8.5 (12.4) to be set at the 95% CL.

7 Combination with VH, H → bb̄

A combination of the analysis presented in this paper with
the ATLAS V H, H → bb̄ measurement [36] is performed
by creating a likelihood function that is the product of the
individual likelihood functions of the two analyses. Two
parameters of interest are used, μV H(cc̄) and μV H(bb̄) for the

0 20 40 60 80 100

)cVH(c
μ95% CL limit on 

σ 1±
σ 2±

Expected
Observed

ATLAS
-1=13 TeV, 139 fbs

c c→VH, H 

0 lepton
 SM×Exp.= 40 
 SM×Obs.= 35 

1 lepton
 SM×Exp.= 60 
 SM×Obs.= 50 

2 lepton
 SM×Exp.= 51 
 SM×Obs.= 49 

Combination
 SM×Exp.= 31 
 SM×Obs.= 26 

Fig. 2 The observed and expected 95% CL upper limits on the cross-
section times branching fraction normalized to its SM prediction in
each lepton channel and for the combined fit. The single-channel limits
are obtained using a five-POI fit, in which each channel has a separate
V H(→ cc̄) parameter of interest

V H, H → cc̄ and V H, H → bb̄ signal strengths, respec-
tively, and are included in both of the input likelihood func-
tions. The importance of including both signal strengths in
a combined likelihood was pointed out by Refs. [29,30].
Experimental systematic uncertainties that are common to
both analyses, detailed in Sect. 5.1, are considered corre-
lated between the two analyses, with the exception of the
flavour-tagging systematic uncertainties due to the different
calibration procedures used forb- and c-tagging. Background
normalisations and modelling uncertainties are considered
uncorrelated between the two analyses.

μV H(cc̄) = −9 ±10(stat.) ± 11(syst.)
μV H(bb̄) = 1.06 ±0.12(stat.)+0.15

−0.13(syst.)

with a correlation coefficient of −12%. The fitted signal
strengths are consistent with those found in the individual
analyses. The expected and observed best-fit values and their
68% and 95% CL contours are shown in Fig. 5.

Although the signal regions of the two analyses are orthog-
onal due to theb-tagging veto used in the c-tagging definition,
a small overlap of events occurs in the control regions used
in the two analyses. To test the impact of this, events that
appear in both analyses are removed from the V H, H → cc̄
control regions. The results are unchanged. Treating the nor-
malisations of the backgrounds as correlated between the
two analyses is also tested and does not affect the expected
sensitivity.

The best-fit values of μV H(bb̄) and μV H(cc̄) are interpreted
in the kappa framework by parameterising the likelihood
function in terms of both κb and κc, while setting all other
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Table 5 Breakdown of
contributions to the uncertainty
in the fitted values of μV H(cc̄),
μVW (cq) and μV Z(cc̄). The sum
in quadrature of uncertainties
from different sources may
differ from the total due to
correlations. In cases where the
upward and downward
systematic variations have
different values, the mean of the
absolute values is shown

Source of uncertainty μV H(cc̄) μVW (cq) μV Z(cc̄)

Total 15.3 0.24 0.48

Statistical 10.0 0.11 0.32

Systematic 11.5 0.21 0.36

Statistical uncertainties

Signal normalisation 7.8 0.05 0.23

Other normalisations 5.1 0.09 0.22

Theoretical and modelling uncertainties

V H(→ cc̄) 2.1 < 0.01 0.01

Z + jets 7.0 0.05 0.17

Top quark 3.9 0.13 0.09

W + jets 3.0 0.05 0.11

Diboson 1.0 0.09 0.12

V H(→ bb̄) 0.8 < 0.01 0.01

Multi-jet 1.0 0.03 0.02

Simulation samples size 4.2 0.09 0.13

Experimental uncertainties

Jets 2.8 0.06 0.13

Leptons 0.5 0.01 0.01

Emiss
T 0.2 0.01 0.01

Pile-up and luminosity 0.3 0.01 0.01

Flavour tagging c-jets 1.6 0.05 0.16

b-jets 1.1 0.01 0.03

light-jets 0.4 0.01 0.06

τ -jets 0.3 0.01 0.04

Truth-flavour tagging �R correction 3.3 0.03 0.10

Residual non-closure 1.7 0.03 0.10
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Fig. 3 The post-fit mcc distribution summed over all signal regions
after subtracting backgrounds, leaving only the V H(→ cc̄), VW (→
cq) and V Z(→ cc̄) processes, for events with a one c-tag and b two
c-tags. The red filled histogram corresponds to the V H, H → cc̄

signal for the fitted value of μV H(cc̄) = −9, while the open red his-
togram corresponds to the signal expected at the 95% CL upper limit
on μV H(cc̄) (μV H(cc̄) = 26). The hatched band shows the uncertainty
of the fitted background
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Fig. 5 The observed and expected best fit values of μV H(cc̄) and
μV H(bb̄) with their 68% and 95% CL contours

couplings to their SM predictions and considering only SM
Higgs boson decays. Constraints on κb and κc are set using
the profile-likelihood ratio test statistic. The expected and
observed constraints are shown in Fig. 6a and b, respectively.
The likelihood function is symmetric relative to the sign of κc
but not to the sign of κb due to the inclusion of κb in the param-
eterisation of σ(gg → ZH) [117], resulting in two minima
in the expected likelihood scan. For most values of κb, a value
of κc is allowed at 95% CL that compensates for the effect
of κb via the width of the Higgs boson and vice versa. The
observed best-fit value is (κb, κc) = (−1.02, 0). The differ-

ence in the value of the log-likelhood function between the
best-fit value and (κb, κc) = (+1.02, 0) is 0.02. These con-
straints complement those from measurements of the Higgs
boson pT spectrum [27,118]. The ratio |κc/κb| is constrained
to be less than 4.5 at 95% CL (5.1 expected). The observed
value is smaller than the ratio of the b- and c-quark masses,
mb/mc = 4.578 ± 0.008 [119], and therefore constrains the
coupling of the Higgs boson to the charm quark to be weaker
than the coupling of the Higgs boson to the bottom quark at
95% CL. The profile likelihood scan, parameterised in terms
of κc/κb, with κb as a free parameter, is shown in Fig. 7.

8 Conclusion

A direct search for the decay of a Higgs boson to a charm
quark–antiquark pair has been performed using 139 fb−1 of
pp collision data recorded at

√
s = 13 TeV by the ATLAS

detector at the LHC. The search uses three channels, ZH →
ννcc̄, WH → �νcc̄ and ZH → ��cc̄. Signal events are
identified using a multivariate charm tagging algorithm.

To enhance the signal sensitivity, events are categorised
according to the pT of the reconstructed vector boson, the
number of jets and the number of c-tagged jets. The mcc

observable is used as the main discriminant in the likelihood
fit to extract the signal. The analysis strategy is validated
with the study of diboson production, which is found to be
consistent with the SM prediction, with observed (expected)
significances of 2.6 (2.2) standard deviations for the V Z(→
cc̄) process and 3.8 (4.6) standard deviations for the VW (→
cq) process.

The analysis yields an observed (expected) limit of
26 (31+12

−8 ) times the predicted SM cross-section times
branching fraction for a Higgs boson, with a mass of
125 GeV, decaying into a charm quark–antiquark pair, at the
95% confidence level, the most stringent limit to date. The
expected limit is a factor of five more stringent than in the
previous ATLAS search for ZH, H → cc̄, due to the larger
dataset, improved c-tagging, and inclusion of the 0- and 1-
lepton channels and additional signal and control regions.
The result is interpreted in the kappa framework, consider-
ing effects on the Higgs boson width and setting all other
couplings to their SM values, which results in an observed
(expected) constraint on the charm Yukawa coupling modi-
fier strength |κc| < 8.5 (12.4), at the 95% confidence level.

A combination with the ATLAS H → bb̄ measurement is
performed. Interpreted in the kappa framework the combina-
tion constrains the observed ratio |κc/κb| to be < 4.5 at the
95% confidence level. This is less than the ratio of the b- and
c-quark masses, mb/mc, and thus constrains the coupling of
the Higgs boson to the charm quark to be weaker than the
coupling of the Higgs boson to the bottom quark at the 95%
confidence level.
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Fig. 6 The a expected and b observed constraints on κc and κb at 68% and 95% confidence levels
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Fig. 7 Expected and observed values of the combined V H, H → cc̄
and V H, H → bb̄ negative profile log-likelihood ratio as a function of
κc/κb, where κb is a free parameter. The vertical green lines correspond
to the values of |κc/κb| for which the Higgs–charm and Higgs–bottom
couplings are equal, where each coupling strength |κi yi | is the product
of the κi modifier and the Yukawa coupling, yi , for i = b, c, and is
equal to mb/mc = 4.578 ± 0.008 [119]
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Appendix

Post-fit mcc distributions for 34 of the 44 analysis regions
used in the statistical analysis of the V H, H → cc̄ search
are shown in Figs. 8, 9, 10, 11, 12, 13 and 14. The
0-, 1- and 2-lepton signal regions are shown in Figs. 8, 9
and 10, respectively, with the corresponding high-�R con-
trol regions shown in Figs. 11, 12 and 13. The 0- and 1-lepton
top-quark control regions are shown in Fig. 14. Figures 15, 16
and 17 show the post-fit background composition, includ-
ing in control regions, for the 0-, 1- and 2-lepton channels,
respectively.
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Fig. 8 Post-fit distributions of the four 0-lepton signal regions. The
total signal-plus-background prediction is shown by the solid black
line and includes the H → cc̄ signal scaled to the best-fit value of
μV H(cc̄) = −9. The H → cc̄ signal is also shown as an unfilled his-

togram scaled to 300 times the SM prediction. The post-fit uncertainty
is shown as the hatched background including correlations between
uncertainties. The ratio of the data to the sum of the post-fit signal plus
background is shown in the lower panel
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Fig. 9 Post-fit distributions of the four 1-lepton signal regions. The
total signal-plus-background prediction is shown by the solid black
line and includes the H → cc̄ signal scaled to the best-fit value of
μV H(cc̄) = −9. The H → cc̄ signal is also shown as an unfilled his-

togram scaled to 300 times the SM prediction. The post-fit uncertainty
is shown as the hatched background including correlations between
uncertainties. The ratio of the data to the sum of the post-fit signal plus
background is shown in the lower panel
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Fig. 10 Post-fit distributions of the eight 2-lepton signal regions. The
total signal-plus-background prediction is shown by the solid black
line and includes the H → cc̄ signal scaled to the best-fit value of
μV H(cc̄) = −9. The H → cc̄ signal is also shown as an unfilled his-

togram scaled to 300 times the SM prediction. The post-fit uncertainty
is shown as the hatched background including correlations between
uncertainties. The ratio of the data to the sum of the post-fit signal plus
background is shown in the lower panel
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Fig. 11 Post-fit distributions of the four 0-lepton high-�R control
regions. The total signal-plus-background prediction is shown by the
solid black line and includes the H → cc̄ signal scaled to the best-
fit value of μV H(cc̄) = −9. The H → cc̄ signal is also shown as an

unfilled histogram scaled to 300 times the SM prediction. The post-fit
uncertainty is shown as the hatched background including correlations
between uncertainties. The ratio of the data to the sum of the post-fit
signal plus background is shown in the lower panel
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Fig. 12 Post-fit distributions of the four 1-lepton high-�R control
regions. The total signal-plus-background prediction is shown by the
solid black line and includes the H → cc̄ signal scaled to the best-
fit value of μV H(cc̄) = −9. The H → cc̄ signal is also shown as an

unfilled histogram scaled to 300 times the SM prediction. The post-fit
uncertainty is shown as the hatched background including correlations
between uncertainties. The ratio of the data to the sum of the post-fit
signal plus background is shown in the lower panel
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Fig. 13 Post-fit distributions of the eight 2-lepton high-�R control
regions. The total signal-plus-background prediction is shown by the
solid black line and includes the H → cc̄ signal scaled to the best-
fit value of μV H(cc̄) = −9. The H → cc̄ signal is also shown as an

unfilled histogram scaled to 300 times the SM prediction. The post-fit
uncertainty is shown as the hatched background including correlations
between uncertainties. The ratio of the data to the sum of the post-fit
signal plus background is shown in the lower panel
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Fig. 14 Post-fit distributions of the 0- and 1-lepton top control regions.
The total signal-plus-background prediction is shown by the solid black
line and includes the H → cc̄ signal scaled to the best-fit value of
μV H(cc̄) = −9. The H → cc̄ signal is also shown as an unfilled his-

togram scaled to 300 times the SM prediction. The post-fit uncertainty
is shown as the hatched background including correlations between
uncertainties. The ratio of the data to the sum of the post-fit signal plus
background is shown in the lower panel

Fig. 15 The background
composition in all 0-lepton
signal and control regions
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Fig. 16 The background
composition in all 1-lepton
signal and control regions
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Fig. 17 The background
composition in all 2-lepton
signal and control regions, for
events with
75 < pVT < 150 GeV (top) and
pVT > 150 GeV (bottom)
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R. Mazini155 , I. Maznas159 , M. Mazza105 , S. M. Mazza143 , C. Mc Ginn29 , J. P. Mc Gowan102 ,
S. P. Mc Kee104 , T. G. McCarthy113 , W. P. McCormack17 , E. F. McDonald103 , A. E. McDougall117 ,
J. A. Mcfayden153 , G. Mchedlidze156b , M. A. McKay42, R. P. Mckenzie33g, D. J. Mclaughlin94 , K. D. McLean172 ,
S. J. McMahon141 , P. C. McNamara103 , R. A. McPherson172,u , J. E. Mdhluli33g , S. Meehan36 , T. Megy38 ,
S. Mehlhase112 , A. Mehta90 , B. Meirose43 , D. Melini157 , B. R. Mellado Garcia33g , A. H. Melo53 ,
F. Meloni46 , A. Melzer24 , E. D. Mendes Gouveia137a , A. M. Mendes Jacques Da Costa20 , H. Y. Meng163,
L. Meng89 , S. Menke113 , M. Mentink36 , E. Meoni41a,41b , C. Merlassino132 , L. Merola69a,69b , C. Meroni68a ,
G. Merz104, O. Meshkov109,111 , J. K. R. Meshreki148 , J. Metcalfe6 , A. S. Mete6 , C. Meyer65 , J.-P. Meyer142 ,
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