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ARTICLE INFO ABSTRACT
Keywords: Materials chemistry is being profoundly influenced by the uptake of machine learning methodologies. Machine
Materials chemistry learning techniques, in combination with established techniques from computational physics, promise to

Kernelized machine learning
Density functional theory
Bayesian optimization

accelerate the discovery of new materials by elucidating complex structure-property relationships from massive
material databases. Despite exciting possibilities, further methodological developments call for a greater
Ensemble methods synergism between materials chemists, physicists, and engineers on one side, with computer science and math
Reinforcement learning majors on the other. In this review, we provide a non-exhaustive account of machine learning in materials
Federated learning chemistry for computer scientists and applied mathematicians, with an emphasis on molecule datasets and
materials chemistry problems. The first part of this review provides a tutorial on how to prepare such datasets
for subsequent model building, with an emphasis on the construction of feature vectors. We also provide a
self-contained introduction to density functional theory, a method from computational physics which is widely
used to generate datasets and compute response variables. The second part reviews two machine learning
methodologies which represent the status quo in materials chemistry at present — kernelized machine learning
and Bayesian machine learning — and discusses their application to real datasets. In the third part of the review,
we introduce some emerging machine learning techniques which have not been widely adopted by materials
scientists and therefore present potential avenues for computer science and applied math majors. In the final
concluding section, we discuss some recent machine learning-based approaches to real materials discovery
problems and speculate on some promising future directions.
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1. Introduction

Materials science, like most fields of science, is undergoing a pro-
found transformation due to the infusion of machine learning (ML)
techniques. A quick search for “materials science machine learning"
on the Web of Science reveals that nearly 2000 papers were published
on this topic in 2020 alone, compared to only around 400 papers in
2017. While the exact cause of this excitement is difficult to trace,
it likely reflects the maturation of computational physics methodol-
ogy combined with the increasing availability of cheap computational
resources. The influence of high-profile international projects such as
the Materials Genome Initiative! and the NOMAD (Novel Materials
Discovery) Consortium in Europe? has also been significant, articulating
a clear and compelling vision for ML in materials science. Broadly
speaking, this vision involves the extraction of complex structure—
property relationships from material databases and predicting new
materials based on them. At present, the majority of these materials-
ML endeavors are being led by materials scientists themselves, and
there are high demands for computer science and math majors to join
these projects as collaborators. On the other hand, materials science
is a specialized area demarcated by a highly developed vocabulary and
methodology, and is not always accessible to researchers of other fields.

That said, materials science is not a well-defined field. Broadly
speaking, it consists of a loose consortium of chemists and physi-
cists (and, increasingly, biologists and engineers) who aim to create
new types of materials (molecules, crystals, glasses, and so on) with
useful physical properties. Much effort in materials science aims to
understand the connection between material structure and material
properties. Moreover, depending on how material structure is defined,

1 https://obamawhitehouse.archives.gov/sites/default/files/microsites/
ostp/materials_genome_initiative-final.pdf
2 https://nomad-coe.eu/about/consortium

two major flavors of materials science can be identified. One of these
flavors, which we refer to as materials engineering, treats materials as
continuous media. It defines structure in terms of the shape of the
material, as measured on micrometer or larger scales, and is interested
in how shapes and constitutive parameters (such as elastic moduli)
affect physical properties. As such, it is well suited for studying solid
materials such as crystals or glasses, with photonic crystals being a
representative topic (Yang et al., 2021). The other flavor of materials
science might be referred to as materials chemistry. It defines structure
in terms of the spatial arrangement of atoms inside of a material, and
explores how this atomic arrangement affects the properties of the
material. Materials chemistry also studies crystals and other types of
solid materials, however, in contrast with materials engineering, it also
considers molecules themselves as potential materials.

While both flavors of materials science have enthusiastically
adopted ML, the focus of this review is materials chemistry. Materials
chemistry, being steeped in a mixture of quantum physics methodology
and chemical intuition, is arguably more opaque towards computer sci-
ence or math majors despite rich potential for spectacular applications.
Indeed, recent trends towards nanoscale miniaturization in materials
chemistry have called for greater orchestration with other scientific
disciplines, including computer science and mathematics. Through im-
pressive collaborations involving atom-scale engineering, computation,
and mathematical modeling, sophisticated architectures such as nano-
machines (Aprahamian, 2020; Balzani et al., 2000; Coskun et al.,
2012) obtained by assembling and maneuvering molecules acting as
(components of) small motors (Koumura et al., 1999; Kudernac et al.,
2011) and shuttles have been reported (Bissell et al., 1994; Collin
et al., 2001), as well as tiny shape-memory alloy structures capable of
performing actuation in the wake of an elastic transformation of their
lattice (Bhattacharya & James, 2005). This emerging research direction
epitomizes the idea that the material or a molecule itself can act as a
machine, a concept first envisioned by Feynman in the 1960s (Feyn-
man, 1960a, 1960b), and was recognized with the 2016 Nobel Prize


https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
https://nomad-coe.eu/about/consortium
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in Chemistry.® This research direction, which involves judicious appli-
cation of structure-property relationships coupled with sophisticated
experimental techniques for controlling the spatial positions of atoms
and molecules, requires a breadth of skill far exceeding those found
within isolated chemistry or physics departments alone; it demands the
skill of computer science and math majors to develop powerful models
for predicting material structure—property relationships.

In recent years, the development of materials chemistry has oc-
curred in tandem with that of density functional theory (DFT), a
technique from computational physics. Given the atomic structure of
a material (that is, the spatial coordinates of its atoms), DFT computes
the energy and various other physical properties of the material using
the equations of quantum physics. While DFT’s origins can be traced to
the early days of quantum physics in the 1920s, the theory developed
predictive power only from the 1990s onwards. Since then, DFT has
gained an enormous following, a point vividly illustrated by the fact
that, as of 2014, 12% of the highest-cited papers on physical sciences
in the entire scientific literature were related to DFT, two of which
were even in the top 10 (Van Noorden et al.,, 2014). Needless to
say, DFT has had spectacular success in predicting and explaining
certain experimental measurements, and has on occasion succeeded to
predict entirely new classes of materials (such as topological insulators,
now one of the major topics in materials chemistry (Kong & Cui,
2011)). While the accuracy of DFT is not perfect when compared to
experiments (especially when predicting certain crystal properties such
as band gaps, or when dealing with materials involving clusters of
molecules), its predictions are usually reliable enough to assist materi-
als chemists. While DFT itself is far from simple, the recent availability
of user-friendly software has enabled DFT calculations to be performed
routinely, giving it something of a black-box quality.

Until about 2010, DFT was mainly used to investigate the prop-
erties of individual materials in detail. However, from about 2010
onwards, a new trend emerged: the use of DFT to calculate proper-
ties for thousands or more different materials in sequence, thereby
generating large databases of reliable, computation-derived data. Nu-
merous databases of DFT-derived data now exist online, including the
NOMAD database,* the Materials Project database (Jain et al., 2013b),
the Quantum-Machine.org database (Blum & Reymond, 2009; Rupp
et al, 2012), just to name a few, and private DFT databases are
now routinely generated by companies and academic research groups
(see (Himanen et al., 2019) for a list of major materials databases
and infrastructures, as well as Table 2 of this review). This combi-
nation of sequential DFT calculations, as well as subsequent analysis,
is commonly referred to as high-throughput computational materials
science. Despite such high-throughput approaches hold great potential
for discovering new materials with novel properties and functionality,
they are time-consuming and can demand enormous computational
resources. Additionally, the deluge of DFT-derived data has resulted in
the paradoxical situation of “drowning in information and starving for
knowledge" (Wilson, 1998). In other words, while materials chemistry
data may be abundant, it is extremely difficult to extract useful conclu-
sions from such databases. Small changes in atomic structure can lead
to profound changes in material properties, making the relationship
between structure and properties immensely complex even for seasoned
chemists and physicists.

It is here where ML enters the scope of materials chemistry. As
far as materials chemistry is concerned, ML is a collection of method-
ologies for learning the associations between patterns (atomic struc-
ture) and numbers (material properties such as energy, electrical con-
ductivity, etc.) (Mohri et al.,, 2012). Over the last ten years, ML
has been enthusiastically embraced by much of the materials chem-
istry community as a potential means to extract useful information
from high-throughput calculations. In early applications during the

3 https://www.nobelprize.org/prizes/chemistry/2016/press-release/
4 https://nomad-coe.eu/about/consortium
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period 2012 to 2016, ML demonstrated an impressive ability to learn
DFT-calculated properties such as atomization energy from molecule
and crystal datasets (Hansen et al., 2013; Rupp et al., 2012; Seko
et al., 2015). Following these papers a tsunami of similar works
was published, confirming the impressive ability of ML to extract
structure-property relationships from material databases of various
kinds (see (Chibani & Coudert, 2020) for a review). Some groups have
deployed these ML-derived relationships into other simulation methods
to reduce computational costs and efforts (Hormann et al., 2019;
Packwood, 2017). While these research lines continue to a considerable
extent, more recent research trends have aimed to extract intelligible
chemical insights from databases (Schwaller et al., 2021) and also to
predict new materials for synthesis on the basis of machine-learned
relationships (Antono et al., 2020; Gu et al., 2019). Other research
groups have gone even further, incorporating such predictive ML into
sophisticated robotics which can synthesize the predicted materials in
an experimental laboratory (Burger et al., 2020; Shimizu et al., 2020).

While ML is reaching fruition in materials chemistry as a method
for understanding DFT-derived datasets and predicting new materials,
numerous problems remain. For example, the choice of feature vec-
tors (descriptors) for encoding atomic structure is known to have a
significant impact on the accuracy of ML predictions, however there
is no systematic framework for constructing them. In addition, certain
types of ML methodology are better suited for certain types of datasets
than others. For some datasets, standard ML methods seem to fail
completely. At present, it is often unclear a priori why some datasets
are amenable to certain methods while others are not. Moreover, the
range of ML methodology currently used by materials chemists is rather
narrow. Thus, there remains plenty of scope for computer science
and math majors to contribute their expertise to materials chemistry,
particularly in the domain of method development, characterization,
and application.

This paper provides a review and tutorial for ML of materials
chemistry datasets. While the materials literature is replete with re-
views on ML (see e.g., (Butler et al., 2018; Correa-Baena et al., 2018;
Morgan & Jacobs, 2020; Ramprasad et al., 2017; Schleder et al., 2019;
Schmidt et al., 2019) and (Mueller et al.,, 2016, Chapter 4), most
of them are written for a materials chemistry audience. The present
review is intended for computer science and math majors who are
interested in collaborating with materials chemists or working with
materials chemistry datasets. The present authors have backgrounds
in applied mathematics and have worked in materials chemistry to
varying degrees. We have experienced the difficulties of entering this
field first-hand. In writing this review we have put ourselves in the
shoes of a young computer science or math major and have asked
ourselves what such a person would want out of a review such as
this one. Presumably, they would have taken chemistry and physics
classes at high school, and would be familiar with the basic concepts of
material structure (atoms, chemical bonds, electrons, and so on). They
might therefore wish to know specifically how these concepts are used
when building ML models. They would probably wish to know how
materials chemistry data are obtained, the extent to which it is reliable,
and which distributional assumptions can be applied when dealing with
it. If they are new to the field then they would probably prefer for
the review to broadly describe the status quo, while keeping tangential
discussions on novel or specialized developments to a minimum; on the
other hand they would probably wish to know whether there are any
emerging topics to which they could make a unique contribution. They
probably prefer for the review to focus on one simple class of materials,
avoiding jarring digressions on solid-state physics, molecular biology,
etc., whenever new classes of materials are introduced. They would
probably prefer for the review to be principled and self-contained, with
the major ML methods presented as a consequence of a set of axioms
within an abstract framework, rather than as pre-existing computer
algorithms. This wish list is quite different from that of a young
materials science major, and while the existing reviews in the materials
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literature describe similar methods and applications to the present one,
none are specifically tailored to these needs.

The outline of this paper is as follows. After reviewing the typical
flow of ML in materials chemistry (Section 2), we describe DFT, the
primary method by which materials chemistry datasets are obtained.
Our introduction to DFT puts emphasis on the approximations involved
and gives general guidance towards good practice (Section 3). Sec-
tion 4 is dedicated to the construction of feature vectors from materials
datasets. Feature vectors are the mathematical objects which carry
materials structure information (atoms, chemical bonding information,
etc.) into the ML model. We review both the classical, well established
methodologies as well as some of the most recent approaches. Follow-
ing this, we review several kernelized ML methodologies (Section 5).
While these techniques are described in detail in ML textbooks, they
are reviewed here because they are the dominant ML methods used
in materials chemistry at present and represent the status quo. Our
review does not cover neural networks or deep learning. Although
these methodologies are attracting growing interest from materials
scientists of all types, the literature landscape remains fragmented
making it challenging to provide comprehensive summary at this stage.
The reader is referred to (Ko et al., 2021; Li et al., 2019; Tsubaki &
Mizoguchi, 2020) for representative applications of neural networks
to this area. We introduce in Section 6 several emerging ML meth-
ods including ensemble learning, reinforcement learning and federated
learning. These techniques have received relatively little attention in
materials chemistry despite the potential for impressive results, and
are areas where computer science and math majors could make useful
contributions. Section 7 gives an illustration of the application of
various ML methods on a dataset. We conclude (Section 8) with future
perspectives on potential avenues for collaboration between materials
chemists and computer scientists and mathematicians.

2. The flow of ML for materials chemistry

In materials chemistry, a typical ML project begins with a list
of candidate materials. These materials could be molecules, crystals,
glasses, monomer units of a polymer chain, or something else. For
pedagogical reasons we will assume without significant loss that these
materials are molecules. Some examples of molecule structures are
shown in Fig. 1-A. In later sections we will consider examples where
the candidate materials are clusters of molecules. For the case where
these materials are molecules, at a minimum our list would contain
the chemical or structural formula for the molecules but little (if any)
other information. An example of such a list is shown in Fig. 1-B. To the
newcomer, it may not be obvious how to build ML models from such a
list, let alone how to predict molecules which optimize some physical
property. It may not even be clear how molecules are represented in
this list.

In this section we briefly explain the process of transforming the
list of candidate molecules into a format useful for ML. This process is
described in Fig. 1-C. The two major steps — obtaining the response
variables and constructing the feature vectors — are discussed in detail
in Sections 3 and 4, respectively.

2.1. The list of candidate molecules and chemical representations

In an ideal situation, each molecule in the list of candidates would
be represented by its three-dimensional structure. The structures shown
in Fig. 1-A are three-dimensional structures and can be represented as
an n X 3 matrix of coordinates and an n-dimensional vector of atom
types, where n is the number of atoms in the molecule. If bonding
information is desired, then an additional matrix describing connec-
tivity between atoms is required as well. However, it is unlikely that
we would be provided with a list of matrices and vectors directly, as it
may consume an enormous amount of storage space if the number of
molecules is large.

Machine Learning with Applications 8 (2022) 100265

Tr O
& O

c List of candidate molecules
* Molecules encoded by a chemical representation
4 4
Get response variables Construct feature vectors
* Obtain molecule structures * Obtain molecule structures
* Calculate properties of * Create feature vectors from
molecules from density molecule structures
functional theory

3
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=]

Database

* Perform cleaning and pre-processing if necessary

Fig. 1. (A) Three-dimensional molecule structures for aminopropan-2-ol (top), benzene
(middle), and cyclohexane (bottom). White, gray, red, and blue balls represent
hydrogen, carbon, oxygen, and nitrogen atoms, respectively. Sticks represent chemical
bonds. (B) Structural formulas for the molecules shown in (A). Structural formulas are
a type of chemical representation. (C) Flow diagram for preparing a database from a
list of molecules.

It is therefore more common for lists of molecules to be compressed
using some kind of chemical representation. A chemical representation
reduces the dimensionality of the three-dimensional molecular struc-
ture into a chemically meaningful format while retaining as much
chemical information as possible. Typical chemical representations
include chemical formulas, structural formulas, SMILES, and SMARTS.

A chemical formula is arguably the simplest representation of a
molecule. It consists of strings of characters describing the number
of each type of atom in a molecule, in rough correspondence with
their position in the three-dimensional atomic structure. For example,
the chemical formula for the molecule propanol is represented as
CH;CH,CH,OH. While compact, considerable structural information
is often lost in the chemical formula. For example, the cyclohexane
and benzene molecules have chemical formulas C¢H;, and C¢H, re-
spectively. Both of these molecules consist of a ring of six carbon
atoms, however this fact may be unclear from their chemical formulas
unless shown to a trained chemist. That said, the relationship between
chemical formula and molecular structure is not unique, and there are
cases where even a trained chemist would not be able to determine
a molecule’s three-dimensional structure from its chemical formula
alone.

A structural formula is a two-dimensional projection of the three-
dimensional structure of the molecule. Examples of structural formulas
are shown in Fig. 1-B. In these formulas, atoms are represented by
their symbols (such as O or Cl), and chemical bonds between atoms
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are represented by lines. Double and triple bonds between atoms are
represented by double and triple lines, respectively. The symbol for
carbon (C) is typically not written explicitly, and is instead represented
as a kink in the bond. Hydrogen atoms are typically ignored. Thus,
the cyclohexane molecule is represented as a hexagon, whereas the
benzene molecule is represented as a hexagon with alternating single
and double lines. Plenty of examples can be found in elementary
chemistry textbooks.

Compared to chemical formulas, structural formulas retain consid-
erably more structural information, and a trained chemist can usually
visualize the three-dimensional atomic structure simply by glancing at
its structural formula. Indeed, for all practical purposes the relationship
between structural formula and three-dimensional molecular structure
is unique and can usually be recovered by using computational physics
techniques (as described in more details in Section 3). However, struc-
tural formulas are not an ideal format for storing molecule structures;
they must be stored in an image format, which may consume space if
many molecules are present.

SMILES® is a relatively new kind of chemical representation which
strikes a balance between chemical formulas and structural formu-
las. Like chemical formulas, SMILES describes the molecule using a
short ASCII string. For example, melatonin (C;3H¢,N,0,) is represented
by the string CC(=0)NCCC1=CNc2clcc(OC)cc2. However, compared
to chemical formulas, SMILES retain considerably more information
on the three-dimensional atomic structure. It is usually possible to
generate a structural formula for a molecule from its SMILES string,
providing that the molecule’s structure is not particularly unusual. For
details on the construction of SMILES strings, the reader is referred
to (Weininger, 1988, 1990; Weininger et al., 1989). A similar chemical
representation to SMILES is SMARTS® which uses ASCII strings for
molecules based upon their substructural patterns. For example, the
aliphatic amines can be written as the recursive SMARTS [([NH,][CX,]),
(INHI([CX, DICX, D), (INX3I([CX4DACK,DICX D]

2.2. Obtaining the response variables and constructing feature vectors

Having clarified how molecule structures are represented in the list,
we turn to the question of building a ML model. In a supervised ML
setting, we need to construct a model of the form y = f(x), where
y is referred to as the response variable (possibly a vector) and x as
the predictor variables. In a materials chemistry setting the response
variable y corresponds to the physical property of interest (or properties
of interest, in the vectorial case). The predictor variables are elements
of a real-valued vector x which encodes the structure of the molecule in
some way. x is the mathematical object that carries material structure
information into the ML model. Materials chemists usually refer to x
as a feature vector, and its entries as features or descriptors. In most
applications of ML, the dimensionality of x, as well as the definition
of each feature, remains fixed for each molecule in the dataset.

Before building the ML model, two independent steps must be
performed. In one of these steps, a subset of molecules must be selected,
and for each of these molecules the response variable must be obtained.
This subset becomes the dataset on which the ML model will be trained
and tested. In most materials chemistry projects, the response variables
are usually obtained using DFT. DFT is a well-established technique
from computational physics which can compute the physical properties
of molecules with good accuracy when compared to experimental mea-
surements. Since such experimental measurements are often difficult to
obtain, they are often substituted by DFT-calculated physical proper-
ties. DFT-derived data also allow us to make convenient distributional
assumptions on the data. While DFT is now a fairly routine technique,
it can be time-consuming. The expense of DFT implies limits to the

5 https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
6 https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
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size of the dataset. The calculation of response variables using DFT is
described in detail in Section 3.

In the other step, we must decide upon a set of features to describe
the molecules with. Starting from the three-dimensional structure of
a molecule (obtained from its chemical representation), features are
usually created considering which structural variables determine the
physical property of interest, on the basis of chemical-domain knowl-
edge (for example, inter-atomic distances are known to have a strong
influence on molecule energies). While there is no systematic method
for constructing features for molecules, a number of strategies has been
developed. We discuss several of these in detail in Section 4.

2.3. Basic workflow for building ML models

Having determined a dataset of molecules from the list of candi-
dates, having calculated the response variables for those molecules with
DFT, and having determined the features to describe each molecule, we
are almost in a position to apply ML and construct a predictive model.

The basic workflow for building ML models on the basis of super-
vised learning can be broken down as follows.

. Data pre-processing

. Feature selection

. Model selection

. Fitting the model to the training data

. Using the model to predict values of the response variables for
the test data.

ga b wh -

In the remainder of this section, we introduce some techniques used for
the first three steps mentioned above.

Data pre-processing

Typically a pre-processing step is needed before proceeding. This
can be accomplished via elementary statistical analysis of the data, such
as computing z-scores to detect outliers which should be re-examined
or removed. While not always essential, it is sometimes desirable to
transform the data in order to improve the predictive performance of
the ML model. Such transformations typically involve conversion of
categorical features into digital strings, normalization so that different
features are measured on a comparable scale, and dimensionality re-
duction, in which the feature vectors are replaced with ones of lower
dimension. Both normalization and dimensionality reduction can be
performed using textbook methods.

Feature selection

Feature selection is the process of reducing the number of predictor
variables (features) when developing a predictive model. It helps to
reduce the computational costs of training models and can improve the
model’s predictive performance, as low generalization errors (predic-
tion errors when the model applied to cases outside of the dataset) are
often associated with low-dimensional feature vectors.

The choice of features depends on the structural information cap-
tured by the features and their relevance to the physical property of
interest (Ponzoni et al., 2017). However, it is not always easy to deter-
mine which features one should keep. For example, there are some 200
scalar molecular descriptors contained in the Python package RDKit,
including the molecular weight, molecular weight with hydrogen atoms
ignored, the number of rings in the molecule, the number of carboxylic
acid groups in the molecule, and so on. Of these 200 descriptors, only
a handful might be relevant to the physical property of interest. How
can we determine which features to use?

While feature selection can be performed on the basis of domain
knowledge (i.e., chemical expertise), some systematic methods can be
applied. One example is to solve a combinatorial optimization problem,
where alternative subsets of features are selected and evaluated by
looking at the predictive performance of an ML model trained using
those features only. This method requires the family of ML models
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to be fixed in advance (see the next section). Another example is to
simply filter features according some statistical measures (e.g., Pearson
correlation or 72) which evaluate the relationship between each feature
and the physical property. Here, features which score poorly according
to these statistical measures are removed. A third example is feature
selection methods which are performed automatically as part of the
learning process. These methods include the penalized linear regressor
(Lasso), decision trees, and random forest.

In general, feature selection methods can be classified into four
types: filter methods, wrapper methods, embedded methods and feature
importance methods. The second example in the above paragraph
describes a filter method. Filter methods identify the features indepen-
dently of any ML model. Wrapper methods make use of a model to
select an important subset of features by recursive feature elimination.
Embedded methods select features during the training process, where
feature importance is calculated after training an ML model using all
features when weights are assigned to each of those features. For a
comprehensive review of feature selection algorithms, we refer the
reader to (Khaire & Dhanalakshmi, 2019).

Feature selection is closely related to dimensionality reduction.
Dimensionality reduction can be performed by creating a small number
of new features by combining the original ones in some way. The most
widely used example is principal component analysis (PCA), which pro-
duces a set of new, uncorrelated features (principal components) which
are linear combinations of the original features. Importantly, much of
the variation in the original features can often be captured using only
a few principal components, allowing for these few principal compo-
nents to be used in place of the original feature vectors. Moreover,
examination of the weight coefficients for the original features within
the principal components helps us to identify correlations between the
original features. PCA has a long history of success particularly in the
area of protein dynamics (David & Jacob, 2014; Lange & Grubmueller,
2008) and folding (Maisuradze et al., 2009). In the pioneering pa-
per (Curtarolo et al., 2003), PCA and DFT calculations were employed
as a tool to make quantitative predictions for the design of new crystal
structures from a class of binary alloys. By unveiling correlations in the
features of a large class of crystalline alloys, the authors were able to
use PCA to develop a principle for structures—properties selection.

Model selection

Returning to the ML workflow, following pre-processing and feature
selection, we specify the training set (usually selected randomly from
the dataset, this is the set which will be utilized to train the ML
model) and the test set (which corresponds to the complement of the
training set in the original dataset and which will be utilized to test
the ML model performance). From an algorithmic standpoint, both sets
are well defined and re-initialization of these sets should be avoided,
particularly during model validation. The selection of the training and
test sets should be prior to the choice of a ML model.

Having pre-processed our database and determined the training and
test data, we are finally ready to build the ML model. Formally, this
involves the selection of a so-called family of ML models. A family
refers to a set of models which have the same mathematical form, make
the same assumptions on the dataset, and are indexed according to the
values of their parameters. In order to determine an appropriate family
of ML models, some insight into the data (for instance, via elementary
statistical analysis) is helpful. For example, for many families of ML
models, including support vector machine (SVM) and kernel ridge re-
gression (KRR) models discussed later, good performance is guaranteed
only when the data is selected independently and identically. If such
distributional assumptions are violated, then a non-parametric family
of models, such as random forests, might be considered. For other cases,
heuristic rules of thumb can be used. For example, in our experience
support vector regression (SVR) models tend to perform better on high-
dimensional datasets compared to KRR models, but only when the
amount of data is small. On the other hand, random forests tend to be
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robust against outliers, but also tend to give biased predictions when
dealing with categorical variables. In Sections 5 and 6, we review a
few families of supervised ML models and discuss their underlying
mathematical principles.

Having selected the family of ML models we can then move on
to training. This amounts to setting the values of the parameters of
the family in order to maximize some accuracy criterion. However, for
many families of models, these parameters are of one of two types. We
refer to these two types as intrinsic parameters and hyperparameters re-
spectively. This distinction is important, because during model training
they are specified in different ways.

Intrinsic parameters appear as a consequence of the type of mathe-
matical object that the family describes. For example, all models in the
family of SVM models describe a linear hyperplane. For this family,
the parameters describing the orientation of the linear hyperplane (w
in Section 5.2.1) are the intrinsic parameters. Simple formulas for these
parameters (such as Eq. (18a)) can usually be obtained by optimizing an
appropriate objective function defined in terms of the training data. We
discuss examples of such formulas and their derivations in Section 5.
Given the training data, intrinsic parameters can be calculated directly
(or occasionally, numerically) according to these formulas.

Hyperparameters account for the remaining model parameters.
Broadly speaking, these parameters do not have a direct connection
with the mathematical object described by the model family. For exam-
ple, in the family of KRR models, a so-called ridge constant A is usually
included to prevent overfitting and to improve the numerical stability
of a matrix inversion operation (see Egs. (34) and (37) in Section 5.1.4).
The ridge constant does not describe the mathematical object of this
family (a linear hyperplane), but nonetheless has a major influence on
model performance. Other common hyperparameters include those of
the kernel function, as described extensively in Section 5. Hyperparam-
eters are often set by cross-validation and grid search techniques. These
are iterative techniques which evaluate model predictions in some way.
At the beginning of each iteration, the values of the hyperparameters
are specified, the values of the intrinsic parameters then calculated
according to their formulas, and the accuracy of the resulting model
is evaluated according to criteria such as mean absolute square error
(MAE) or root mean square error (RMSE). It is quite common to see
the coefficient of determination (R?) used as evaluation criterion in
the materials chemistry literature, despite the fact that it is excessively
sensitive to outliers at the extremes of the data range and insensitive
to those in the middle. In addition to these methods, there are several
systematic selection methods based on information criteria, such as
the Akaike information criterion (AIC) (Akaike, 1974), the Bayesian
information criterion (BIC) (Schwarz, 1978), and Akaike’s Bayesian
information criterion (ABIC) (Akaike, 1980). The AIC and BIC take
into account the risk of overfitting and underfitting by dealing with
the trade-off between the goodness of fit and model simplicity.

3. Obtaining the response variables with DFT

In the majority of materials chemistry applications of ML at present,
the response variables for the training and test data are calculated
from computational simulations, rather than measured from laboratory
experiments. Of the various simulation methods in the computational
physics toolbox, DFT is the most popular. There are at least two reasons
for DFT’s popularity. Firstly, DFT achieves a favorable balance between
physical accuracy and computation time. Secondly, the DFT method is
implemented in numerous software packages, making it accessible to
non-specialists. With these software packages, it is possible to compute
the physical properties for large numbers of candidate materials with
reasonable accuracy, all within days of computational time on typical
high-performance computers.

ML models are data-agnostic, in the sense that they can be built
independently of the data source (which might be experimental, com-
putational or even a combination). However, in practical situations,
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adjustments and customization of the ML model may be required
when the source of the data changes. We refer to (Zakutayev et al.,
2018) for a concise and critical discussion on the main advantages and
disadvantages of using experimental versus computational data sources
when building ML models. For a representative application of experi-
mental datasets to training ML models in materials chemistry (aside
from molecules), see (Legrain et al., 2018), where the performance of
a ML model trained over experimental data from the ICSD dataset”
for the predictions of new half-Heusler materials is compared with
predictions based on high-throughput computations. It is noted that
the latter shows inconsistencies in the predictions of various types, and
a detailed discussion of causes and origins of such inconsistencies is
presented (see also (Schmidt et al., 2019)). As an example of the use
of a combination of experimental and computational data for building
ML models, see (Hautier et al., 2010), where ML models were built on
experimental databases and used to predict new ternary oxides struc-
tures for which phased stability is then predicted via DFT. Typically,
the use of experimental datasets is limited by the availability of datasets
which are sufficiently large and diverse. In experimental research, data
size and data diversity are often conflicting aims (Zakutayev et al.,
2018). More examples are reported in Section 8.1, where we give some
perspectives on materials discovery.

From a model-building point of view, the use of computation (DFT)-
derived data has two benefits. The first benefit is that DFT-derived
data is noise-free. If the same physical property is computed repeatedly
for the same molecule using the same computational settings, then
the same result will always be obtained. In other words, there is no
need to assume that measurements of a physical property contain (say)
a normal random variable as an additive term. This point is non-
trivial when compared to the case of data obtained from laboratory
experiments, which will always contain some random noise due to
inconsistencies in the condition of the laboratory apparatus, laboratory
temperature, quality of the material sample, and so on. The second
reason is that DFT-derived data are easy to collect in an independent
and identically distributed (iid) fashion; in a sequence of molecules, the
result of a DFT calculation for a particular molecule will not depend
upon the result obtained for the previous molecules. Again, this is a
non-trivial difference compared to the experimental situation, in which
the condition of a laboratory apparatus will usually be affected by what
materials have been inserted into it previously. Thus, providing that
the molecules in the dataset have been selected independently and at
random, we can assume that our training set contains noise-free, iid
samples.

The following section provides an introduction to DFT. There are
two reasons for introducing DFT to a computer science and math
audience. The first concerns the accuracy of DFT-derived data. While
DFT-derived data is noise-free, it is not error-free. In DFT, a small but
often important contribution to the energy of the material (the so-called
exchange—correlation energy) is unknown and needs to be approxi-
mated. This approximation introduces an error into the calculation. The
fact that the approximations used are poorly understood makes this
error particularly difficult to minimize. The first purpose of this section
is to explain how this error arises and to introduce the approximations
and corrections that are used to deal with this error. We hope that
this section will enable the audience to understand and question the
approximations used to obtain their dataset, and encourage them think
about how this error could be accounted for in the ML model-building
process.

The second reason for introducing DFT to the audience is that DFT
itself is becoming a target of ML applications. The approximations
used in DFT contain parameters which need to be carefully selected
in order to achieve reliable predictions (such as the mixing parameters
in the hybrid functionals, or the U parameter in the DFT+U method;
see Section 3.3). A number of authors have recently attempted to

7 https://icsd.products.fiz-karlsruhe.de/

Machine Learning with Applications 8 (2022) 100265

optimize these parameters by application of ML optimization methods
(for example (Yu et al., 2020)), and efforts in this area are likely to
continue. However, in order to participate in this emerging area, some
background knowledge of DFT is necessary.

3.1. The Schrodinger equation

DFT is a method to approximate the solutions of the Schrodinger
equation, an axiomatic equation from quantum physics. We will first
briefly introduce the Schrédinger equation before discussing DFT in the
following subsection.

In most areas of materials chemistry, the materials (individual
molecules or otherwise) are modeled as a set of electrons in the
presence of a static set of atomic nuclei. Given the coordinates of the
nuclei, the (time-independent) Schrodinger equation for this model is
written as

HY¥(ry,ry,...,1,) = E¥(r|,r),...,1,), (€5)

where r, is the position vector of electron k, E is a scalar which corre-
sponds to the energy of the electrons in the material, and ¥ (r, 15, ..., 1,)
is a complex-valued, 3n-dimensional function called the wave func-
tion. The square modulus of the wave function, |¥(r,,r,,... ,rn)|2, is
interpreted as the probability of simultaneously finding electron 1 at
position r;, electron 2 at position r,, ..., and electron » at position r,,.
The coordinates of the nuclei enter through the Hamiltonian operator
H, defined as

h2 n 0_2 €2 Z 1 6‘2 ZI
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i#j J
where 7, e, and ¢ are physical constants (the reduced Planck constant,
electron charge, and permittivity of vacuum, respectively), R; is the
position vector for nucleus I, and Z; is the atomic number of nucleus
I. In (2), the second sum is over all electron—electron pairs, and the
third sum is over all electron—nuclei pairs. After operating on the wave
function, the first term gives the kinetic energy of the electrons, the
second gives the potential energy arising from repulsions between pairs
of electrons, and the third gives the potential energy arising from
attractive interactions between the electrons and nuclei.

It can be seen from Eq. (1) that the Schrodinger is an eigenvalue
problem, with the wave function acting as the eigenfunction and the
energy as the eigenvalue. In principle, Eq. (1) could be solved by
specifying boundary conditions for the wave function and employing
techniques from calculus and linear algebra. Doing so would give
us a set of solutions in the form of eigenvalue-eigenfunction pairs
{E, ¥ (r),1y,....1,)}. The solution corresponding to the lowest (most
negative) eigenvalue is the one of primary interest to materials chem-
istry. This solution (which we label as k = 0 for convenience) is known
as the ground-state solution. The ground-state energy E, is defined as
the total energy of the material at zero temperature (0 Kelvin or —273
degrees Celsius). The ground-state wave function Y(r,,r,,....r,) is
defined such that its square modulus is the probability density for the
electrons at zero temperature. The other solutions to (1) are known
as excited states, and are physically meaningful as well. However, for
reasons that will become clear soon, they fall outside of the domain
of DFT and are therefore rarely considered in materials chemistry,
especially when high-throughput calculations and ML are involved.

The second term in the Hamiltonian operator in (2), which cor-
responds to electron-electron repulsions, forbids any attempt at an
analytical solution to the Schrédinger equation except for trivial cases.
During the 20th century, numerous numerical techniques were de-
veloped to solve (1). Most of these methods approximate the second
term in some way, and then solve (1) for the energies and wave
functions directly. These numerical techniques are derived from a rich
and systematic theory (known as post-Hartree Fock theory), however
they usually require enormous computational resources. In practice
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they are limited to systems containing only a small number (10-
100) electrons, and are too costly to be applied to large numbers of
molecules (Kedziera & Kacmarek-Kedziera, 2017; Tsuneda, 2014). With
some notable exceptions (Zhang & Gruneis, 2019), such methods are
rarely used for computing physical properties for materials chemistry.

3.2. Kohn-Sham Density functional theory

DFT started life as a kind of theoretical curiosity in the late 1920s,
before being developed into a systematic method for solving the
Schrodinger equation during the second half of the 20th century. In
contrast to the numerical methods mentioned above, DFT attempts to
compute the ground-state energy from the density of electrons inside
the material, without considering the wave function directly. In order to
proceed, we must define the electron density. Recalling the discussion
following Eq. (1), the probability per unit volume of finding electron 1
at position r, irrespective of the position of the other electrons, is

p(r):/|¥’(r,r2,...,r,1)|2 dr, ...r,, 3)

where we have adopted the ‘physics notation’ [ dr,...r, to denote
integration over (R3)"_1, where R denotes the real numbers. Now,
note that electrons have a fundamental physical property known as
indistinguishability. This fundamental property, which arises from the
quantum nature of ultra-small particles, means that it is impossible to
uniquely label electrons, i.e., Eq. (3) applies equally well to all other
electrons in addition to electron 1. Eq. (3) is therefore the probability of
finding any electron at position r in space, irrespective of the position
of the other electrons, and hence p(r) can be understood as the electron
density at point r.

Modern DFT is motivated by the Hohenberg—Kohn theorem in
1964 (Hohenberg & Kohn, 1964) which roughly states that the ground-
state energy is a functional of the electron density. In other words,
E, = FJ[p] for some functional F, where F maps functions of the type
defined in Eq. (3) to the real numbers. While the Hohenberg—Kohn
theorem was a theoretical breakthrough, it does not tell us the form
of the functional F, nor does it give any clues about how the electron
density could be constructed without knowing the wave function. These
issues were addressed by Kohn and Sham in 1965 (Kohn & Sham,
1965), who created the Kohn-Sham method which forms the basis of
much of DFT today.

The Kohn-Sham method follows a three-step strategy. In step 1,
an artificial electron system in which electron-electron repulsions are
absent is constructed. Crucially, this artificial system is constructed
in such a way that its electron density p,(r) is exactly equal to p(r),
the electron density of the real material in question. In step 2, the
Schrodinger Eq. (1) is solved for this artificial system, which is feasible
due to the absence of the difficult second term in (2). In step 3, the
ground-state energy of the real system is computed from p,(r) by means
of the so-called Kohn-Sham energy functional.

In step 1 of the Kohn—-Sham method, the artificial system contains
the same number of electrons (n) as the real material in question. Due
to the absence of electron—electron interactions, the wave function and
Hamiltonian for the artificial system can be written as

Po(ry, 1y, ... ,1,) = 1(r)da(rp) -+ dy(r,), (©)]
and
H,=H; +H,++H, (5)

respectively. In the above, H, is a so-called one-electron operator
which operates on functions of r, alone. The function ¢, (r) is called
a one-electron wave function, and is an eigenfunction of H,. Kohn and
Sham showed that when the one-electron operators have the form

N
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then p,(r) = p(r) for all r. Note that in (6), the nuclear coordinates
R; are those of the real system, whereas the electron coordinates
r; are those of the artificial system. The function vy(r;), which is
called the exchange—correlation potential, is assumed to be a known
function. p,(r) is the electron density of the artificial system, and can
be calculated as

Pa®) = 1§ + o + -+ + |, ()], %)

In step 2, the one-electron wave functions are computed by solving
the eigenvalue problem for each one-electron operator. The electron
density is then calculated according to (7). However, because the
Hamiltonian in (6) itself depends upon the electron density, these
calculations must be coupled with an iterative procedure called the
self-consistent method. In the self-consistent method, a trial electron
density is inserted in (6) and then an updated electron density is
computed numerically using (7). This updated electron density is then
used as the trial electron density in the next iteration. This procedure
is iterated until the trial and updated electron densities converge in
some sense. Technical details of the self-consistent method can be found
in (Dederichs & Zeller, 1983).

For step 3, Kohn and Sham showed that the ground-state energy
of the real system can be computed through the so-called Kohn-Sham
functional. The Kohn-Sham functional is defined by

R [ e [ Zipan)
Flp =~ 5— ; / 7 (0~ (0)dr I drt

4re, [r —R;|
e Pa(T1)P,(r2)
————dridr, + E , 8
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where F[p,] = E,, the ground-state energy of the real material, and
the asterisk indicates the complex conjugate. Eyc[p,] is called the
exchange—correlation energy functional, and is defined through the
identity vy(r) = S6Exclp,1/6p,(r), where 6 denotes the functional
derivative. For the applications discussed in this paper, Eq. (8) is the
final result of the DFT calculation. Functionals and expressions for
ground-state properties other than the energy can be derived as well.

There are two points to note in passing. First, the one-electron
orbitals and energies of the artificial system themselves have no direct
physical meaning, and are only a means to obtain the electron density
of the real system. Nonetheless, they are often used to approximate
the excited states of the real system. This somewhat unprincipled
approximation often yields surprising agreement with the excited states
calculated by more rigorous methods (see (Stowasser & Hoffmann,
1999)). Second, Eq. (8) strictly pertains to the ground-state electron
density and energy, respectively. While considerable efforts have been
made to extend DFT to excited states (Escudero et al., 2017; Gorling,
1996), these methods are not routine and cannot be employed reliably
in a high-throughput fashion for generating databases. In ML projects,
DFT-derived data tends to be limited to the ground-state properties of
materials.

3.3. The exchange—correlation energy

The exchange—correlation potential vy (r;), which is treated as a
known function in the Kohn-Sham method, is unknown in practice.
In turn, this means that the exchange-correlation energy functional
Exclp,] is unknown. While the exchange—correlation energy is gener-
ally expected to be much smaller than the other terms in (8) (Pribram-
Jones et al., 2015), in practice it must be approximated in some way to
obtain reasonable results. This approximation is the source of the error
mentioned above.

Over the last three decades, thousands of approximate exchange—
correlation energy functionals have been published, each aiming to
improve the accuracy of DFT for various classes of materials. This is
where the shortcomings of DFT come to the fore: there is no universal,
systematic theory from which these approximate functionals are de-
rived. Rather, these approximate functionals are based on broad heuris-
tics and are justified mainly by their performance against experimental
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data. The lack of systematic theory means that we have no method
for systematically reducing the error caused by these approximations.
Fortunately, only a handful of approximate exchange-correlation en-
ergy functionals are used routinely for materials chemistry, and their
domains of applicability have been well characterized. Here, we will
simply list these functionals and give a brief description of the under-
lying assumptions and their performance. Each of these functionals de-
composes the exchange—correlation energy into the so-called exchange
and correlation contributions, i.e.,

Exclp.d = Exlp,] + Eclp,], ©

and approximates Ey[p,] and E-[p,] separately. Roughly speaking, the
exchange contribution Ey[p,] measures the energy cost of switching
the labels of the electrons (this unintuitive phenomenon is a conse-
quence of the quantum mechanical laws governing ultra-small parti-
cles). The correlation contribution E[p,] measures the energy cost
associated with correlated motions of electrons (such as when one
electron moves as a result of repulsive forces arising from the motion
of another electron).

The Local Density Approximation (LDA). The LDA, which was pub-
lished in 1981, is the oldest and arguably simplest of the approximate
exchange-correlation functionals (Ceperley & Alder, 1980; Perdew &
Zunger, 1981). This approximation assumes that the electron density
is locally smooth and does not undergo dramatic variations between
nearby points. Consequently, the LDA works well for metallic systems.
However, for molecules or solids containing covalent bonds, it tends to
predict overly strong bond energies ( Table 1 column 1).

The Generalized Gradient Approximation (GGA). The GGA uses LDA as
a starting point, and relaxes the smoothness assumption by incorporat-
ing a dependence on the local electron density gradient. This heuristic
approach is justified by observing that the local gradient of the electron
density will appear as the second-order term in a Taylor’s series expan-
sion of the exchange—correlation energy functional. Numerous GGAs
have been proposed, the most popular of which is the Perdew—Burke—
Ernzerhof (PBE) functional, which was published in 1996 (Perdew
et al.,, 1996). PBE provides reliable predictions for the energies of
metals, covalently bonded solids, and molecules ( Table 1 column 3),
and is a good ‘default’ starting point for much materials research.
However, it fails for materials involving long-distance electrostatic (van
der Waals) interactions (which typically occur between molecules in an
molecule cluster or molecular crystal). This shortcoming has become
more serious over recent years as experimental materials chemists
have increasingly moved towards systems dominated by van der Waals
interactions (such as graphene-like two-dimensional materials).

Hybrid functionals. Hybrid functionals consist of mixing different
fractions of LDA and GGA exchange energies with the so-called
Hartree-Fock (HF) exchange energy. The HF exchange energy (E?F 8))]
emerges rigorously from so-called Hartree-Fock theory, which is an
older method for solving the Schrodinger equation. For theoretical
reasons, the HF energy is expected to appear in the exchange energy
functional Ey[p,] as well. While the LDA and GGA terms can be
calculated using the methods described above, the most important part
determining the quality of a hybrid functional and its applicability to
a specific set of problems is the mixing weight of each term.

The most widely used hybrid functional for calculating molecule
properties is the B3LYP (Becke, 3-parameter, Lee-Yang-Parr) func-
tional. The functional mixing is given with the following expression:

ESEP = (1 - o EPM + aENF + bES + (1 — ) EQPM + cEQ™. (10)

In Eq. (10), E)B} is the exchange functional from a GGA called Becke88,
and EZ™ is the correlation functional from another GGA called Lee-
Yang-Parr. E® and EL'" are mixed with the LDA exchange and correla-
tion functional and the HF exchange through three parameters a, b, and
¢, which have been set to the values of a = 0.2, b = 0.72, and ¢ = 0.81
by fitting to experimental data. The quality of the B3LYP functional
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Table 1

Comparison of atomization energies for various molecules calculated from density
functional theory with the LDA, PBE, and HSE06 exchange—correlation functionals.
All energies are reported in electron volts. Calculations were performed with DFT as
implemented in the Fritz Haber Institute ab initio molecular simulations (FHI-aims)
package version 1712211 (Blum et al., 2009), using “really tight” basis settings.
Calculations with the LDA functional used the Perdew-Wang 1992 parameterization
(Perdew & Wang, 1992). The HSE06 functional used 25% Hartree-Fock exchange and
a range separation parameter of 0.11 Bohr~!. All molecule structures were relaxed
using the respective exchange—correlation energy functionals and “light” basis orbital
settings prior to energy calculations. Experimental values (with zero-point vibrational
energy removed) are from the Computational Chemistry Comparison and Benchmark
Database (http://cccbdb.nist.gov/).

Molecule LDA PBE HSE06 Experiment
CH, 20.05 18.22 18.08 18.23
C,H, 19.96 18.01 17.51 17.54
C,H, 27.43 24.81 24.41 24.39
CeH, 86.77 77.57 76.70 76.52
CeHg 68.33 61.20 59.98 59.19

strongly depends on the values of these three parameters, and they
may need to be adjusted in order to reproduce better the experimental
measurements for a given subset of molecules.

While the B3LYP method shows remarkable results when applied to
molecules, it has found only limited application in materials science
where its achievements in modeling of metal crystal lattices, com-
plex oxides and semiconductor materials are only moderate. Materials-
oriented hybrid functionals have been developed, and among the most
popular nowadays are the PBEO and HSE (Heyd-Scuseria—Ernzerhof)
families of functionals. The PBEO functional mixes the Perdew-Burke-
Ernzerhof (PBE) exchange energy and HF exchange energy inaset 3 : 1
ratio, along with the full PBE correlation energy:

PBEO _ HF PBE PBE
Eyr’ =025E)" +075E°" + EZ. an

The HSE functional originates from the PBEO functional and is given
by the expression:

HSE _ _ -HF, SR PBE,SR PBE, LR PBE
EXSE = g BT SR w) + (1 - 9 BN (w) + EP™ (w) + EPPE. (12)

In Eq. (12), SR and LR denote the short range and long-range electron—
electron interactions, respectively. The mixing parameter a« determines
the HF and GGA exchange mixing while the adjustable parameter w
determines the relative weight of short range and long range interac-
tions to the exchange energy. The functional known as HSE06 uses the
values ¢ = 0.25 and w = 0.2. For the value of w = 0 the method is
identical with PBEO.

The performance of the HSE06 functional for calculating molecule
properties is illustrated in column 4 of Table 1. These results are typical
for hybrid functionals when applied to molecules. While it tends to
give superior predictions than the LDA or GGA, considerable compu-
tational time is required for computing the Hartree-Fock exchange,
which makes the HSE06 and other hybrid functionals less preferable
for generating databases of material data.

It can be seen that the hybrid DFT functionals are parameter-
dependent methods, and their application to specific problem or class of
molecules or materials can potentially benefit from ML based optimiza-
tion methods. ML methods therefore can not only assist the discovery
of novel materials, but also optimize and improve DFT itself. This is an
area where computer science and math majors could make potential
contributions.

Alternatives to hybrid functionals. While hybrid functionals are usu-
ally more reliable than LDA or GGA-based functionals, their large com-
putational cost can be prohibitive, particularly when high-throughput
calculations are involved. Due to this, a number of alternative methods
have been developed which retain some of the benefits of hybrid
functions while keeping computational costs low. We finish this sec-
tion by introducing three such methods, namely van der Waals (vdW)
functionals, vdW corrections, and DFU+U.
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vdW functionals mix the exchange and correlation terms of an
LDA- or GGA-based functional with a non-local term. This non-local
term accounts for long-distance correlations between electron motion,
which is essential for modeling van der Waals interactions between
materials. Several van der Waals functionals have been developed,
the most prominent ones being from the so-called vdW-DF family
of functionals (Klimes$ et al., 2009, 2011). The present authors have
the most experience working with the rev-vdW-DF2 functional, which
yields excellent predictions for materials such as graphite or molecule
monolayers on surfaces compared to the ordinary LDA or GGA-based
functionals (Hamada, 2014). While the non-local term significantly
increases computational costs, these costs remain modest compared to
those of hybrid functionals.

In addition to vdW functionals, several vdW correction schemes
have been developed. In these schemes, the electron density is first
computed with the LDA or GGA, and then a correction term is added
to account for the effects of van der Waals interactions (Tkatchenko &
Scheffler, 2009). These correction schemes also yield reliable predic-
tions for materials involving van der Waals interactions, without the
additional cost of computing the non-local term.

The DFT+U method is an ad-hoc correction to the DFT-calculated
energy (Eppp) for systems such as transition metal oxides or metal
complex molecules, in which electron-electron correlations are strong.
This correction adds an energy penalty whenever electrons reside at the
same point in space. The major motivation of DFT+U is to alleviate the
so-called self-interaction error without incurring the large costs of com-
puting a hybrid functional. The self-interaction error is an unphysical
effect in which an electron interacts with itself; it manifests in the third
term in the Kohn-Sham function in Eq. (8) whenever r; =r,.

The correction used in the DFT+U method is inspired by the Hub-
bard model from solid-state physics, which describes hopping of elec-
trons between points within a crystal. While several variants of this
correction term exist, one of the most common is

u-J o o o
Eioy = Eppr + B Z <Z Moy my — Z Moy my 'y as)
o m) my,my
For the precise definitions of the nJ, ”fnl, - and nf, o the reader is

referred to (Dudarev et al., 1998). For practical purposes, it is sufficient
to know that the n, ~ measures the number of electrons residing at
the same site within the material, and n,, ,, measures the degree of
electron delocalization between sites. The parameters U and J measure
the energies arising from (Coulomb) repulsions and exchange between
electrons residing at the same site, respectively. In practice, it is more
convenient to define the effective Hubbard parameter Uy = U —J. The
correction term is therefore controlled by adjusting the parameter Usg.

As with hybrid functionals, the effectiveness of DFU+U depends
upon the value of Uy chosen. The estimation of the optimal value
of Uy is often based on empirical techniques where Uy for adjusted
until the DFT+U results reproduce correctly experimental values such
as band gap, lattice parameters, or magnetic properties. A different
approach is to perform DFT calculations with hybrid functionals, and
then adjust the Ugg value until the DFT+U results satisfactory agree
with the results obtained with hybrid functionals. Such an approach
is solely based on computational methods and ideally would result in
low-cost DFT+U calculations with accuracy similar to hybrid functional
calculations. A recent study employed a ML approach to successfully
set the value of U, which in turn could be used for high-throughput
calculations (Yu et al., 2020).

Which exchange—correlation functional or method should be used? This
question continues to polarize the materials chemistry community.
Some people insist on hybrid functionals, despite their high com-
putational costs. Within chemistry departments in particular, DFT is
often equated with B3LYP. Away from chemistry departments, it is
not uncommon to find people with a near-religious zealotry for vdW
corrections or the DFT+U method. Then there are people who disavow
both approaches completely, preferring the simplicity of the GGA or the
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physically principled LDA. A computer science or math major should
keep these points in mind before entering the DFT fray. Their choice
of preferred functional will probably be influenced by the type of
materials chemist that they first encounter.

As far as ML for materials chemistry is concerned, our general
recommendation is to use the PBE functional by default. If materials
with van der Waals interactions are of interest, then a van der Waals
functional or van der Waals corrections could be considered. However,
this recommendation should be accepted with a grain of salt; as the
reader gains experience and confidence in using DFT, they will develop
their own preferences.

3.4. Obtaining molecular structures from DFT

It can be seen from Egs. (6) and (8), the Kohn-Sham method
requires the three-dimensional structure of the molecule (the Cartesian
coordinates of each atom) as input. However, as described in Section 2,
it is unlikely that we would be supplied with this information in a
materials chemistry project. More likely, we would receive a list of
candidate molecules in some compact chemical representation. In order
to correctly calculate the energy of the molecule, it is therefore nec-
essary that we first generate the molecule structure from its chemical
representation.

In fact, it is possible to use DFT to generate the molecule structure
using an iterative scheme. Starting with a trial structure, the energy of
the structure is calculated according to (8), as well as its derivatives
with respect to the atomic coordinates. The atom positions are shifted
a short distance in the direction of decreasing energy, yielding an
updated structure. This process is repeated until the energy difference
between subsequent structures is sufficiently small. This process is
known as structure relaxation. Chemistry software such as ChemSketch
or ChemDraw can be used to generate good trial structures from the
structural formula for the molecule, based upon intuitive chemical
expectations for the bond orientations in the molecule. Some software
packages such as Turbomole can also generate trial structures from
structural formulas in this manner.

While DFT-based structure relaxation is quite efficient for small
molecules (less than around 50 atoms), for larger molecules it can
become quite time-consuming. If we have a large database of medium
or large molecules, it could be unreasonable to perform a structure
relaxation for each one. For such cases, we can perform a so-called
classical structure relaxation instead. Classical structure relaxations use
a similar iterative procedure as the one described above, however
the potential energy and its derivatives are calculated using approxi-
mate formulas derived from Newtonian mechanics (Lorenz & Doltsinis,
2017). Classical structure relaxations are extremely efficient, however
the final results may differ slightly from ones obtained from DFT.
These small differences may affect the reliability of subsequent DFT-
calculated ground-state properties, and therefore caution is advised.
Classical structure relaxations are rarely offered as part of DFT soft-
ware packages, however they can be routinely performed in classical
mechanics simulation software such as LAMMPS (Plimpton, 1995).

3.5. DFT software

One of the major reasons for the popularity of DFT for materials
modeling is the availability of software implementing the Kohn—Sham
method. When considering different software packages, it is important
to be aware that each may be designed for different types of materials
and may employ additional approximations.

Before purchasing a DFT software package, it is also important to
ensure that you have a computer which can run it. Unfortunately, an
ordinary PC or workstation will not do. Rather, a multi-core server
running Linux CentOS (or other non-graphical Linux environment) is
required. A single server will cost between 10,000-20,000 USD, and
several servers may be needed to generate a sufficiently large dataset.
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Table 2
List of some materials open-source databases.
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Database/Projects/ Material type

URL

AFLOW (Material compounds with various calculated properties)
Open Materials Database (Structural information for various materials)
Quantum-machine (DFT-calculated datasets)

AtomWork (Inorganic and metallic materials)
MatWeb (Metal, plastic, ceramic, and composite materials)

O 00N A WN =

—
=]

Crystallography (Crystal structures for organic, inorganic, and metal-organic compounds and minerals)
The Material Project (Inorganic compounds, molecules, nanoporous materials, and various DFT-calculated physical properties)

Open Quantum Materials Database (Various materials with DFT-calculated thermodynamic and structural properties)

NOMAD Repository and Archive (Computational-derived data for mainly inorganic materials)

NIMS Materials (Polymer, inorganic, and metallic materials, with computational data)
Matmatch (Biological, ceramic, composite, glass, metal, and polymer materials)

http://www.crystallography.net/cod/
https://materialsproject.org/
http://aflowlib.org/
http://oqmd.org/
http://openmaterialsdb.se/
http://nomad-repository.eu/
http://quantum-machine.org/datasets/
https://crystdb.nims.go.jp/en/
http://www.matweb.com/
https://mits.nims.go.jp/en/
https://matmatch.com/

DFT software will cost between 0 and 5,000 USD, with various licensing
restrictions to consider. Most DFT software packages are ran from the
Linux command line, and so a basic grasp of bash scripting is required
to use them. A basic ability to write scripts in languages such as Python
or R is useful for processing the output files of the calculation.

Popular DFT software packages for materials chemistry and ML
projects include the Vienna Ab Initio Simulations Package,® (VASP)
(Kresse & Furthmiiller, 1996) Quantum Expresso’ (Giannozzi et al.,
2017), Gaussian'® (Frisch et al., 2016), and the Friz Haber Institute Ab
Initio Molecular Simulations Package (FHI-aims)'* (Blum et al., 2009).
Tutorials for all popular DFT software packages can be found online.
While these packages all implement the Kohn-Sham method, they
each use different numerical methods and approximations. Energies
calculated from different software packages may therefore be difficult
to compare, and users are advised to stick with a single software
package for the duration of their project.

3.6. Open-source databases

An alternative way of obtaining data for ML is to use open-source
databases. Many databases contain large amounts of DFT-calculated
data, and are a good way for newcomers to learn about materials chem-
istry data without having to learn how to perform DFT calculations.
These databases often contain structural information which is needed
for creating feature vectors (see the next section). In Table 2, we give a
non-exhaustive list of open-source materials databases and their URLs.
Besides databases, some of these URLs offer analysis tools to aid in
the design of novel materials (such as The Material Project), online
applications for property predictions using ML, prototype encyclope-
dias (AFLOW), high-throughput toolkit-frameworks for preparing and
running calculations, and analyzing results (Open Materials Database).

4. Obtaining the feature vectors (predictor variables)

At present, there is no systematic framework for constructing fea-
tures or feature vectors for a specific purpose. Instead, feature vectors
are created either from chemical intuition or by applying techniques
from mathematics (such as computational topology) to vectorize the
atom coordinates of the molecules in some way. The freedom involved
in creating feature vectors has led to the proliferation of various types
in the materials chemistry literature. The purpose of this section is
to illustrate to computer science and math majors how basic material
structural concepts, such as atoms and chemical bonds, can be codified
in the form of feature vectors. We do this in the most straightforward
way possible: by surveying the main types of feature vectors used in
the materials chemistry literature. While our survey does not touch
upon the latest developments, the feature vectors discussed here widely

8 www.vasp.at

9 www.quantum-expresso.org
10 www.gaussian.com

11 https://fhi-aims.org/
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known for providing robust descriptions of molecules and producing
ML models with good predictive performance.

While feature vectors can be created with great freedom, they
should ideally satisfy four conditions: correlation with the property of
interest (in this case, the DFT-calculated energy); invariance under per-
mutations of atom numbering or rigid-body translations and rotations;
uniqueness (i.e., no two molecules should give the same feature vector);
and easy to calculate. In order to gain acceptance amongst the materials
chemistry community, feature vectors should use familiar molecular
structure concepts as well (such as inter-atomic distances). In practice,
however, it is difficult to create feature vectors which satisfy all of such
properties simultaneously. Moreover, in order to ensure that feature
vectors are correlated with the physical property of interest, it is impor-
tant to consider the three-dimensional structure of the molecule. This is
because the physical properties of molecules are typically determined
by the structure of the molecule (recall Eq. (8)). If our initial list of
molecules does not contain three-dimensional structural information, it
is first necessary to generate the three-dimensional structures from the
chemical representations for every molecule in the list. In principle this
can be done via DFT or the classical methods described in Section 3.4.

4.1. Structural key

Structural keys are arguably the simplest type of molecule feature
vector. A structural key is a bit vector whose elements are either 0
or 1, where each bit indicates the presence or absence of a specific
structural motif in the molecule (such as particular atoms, aromatic
rings, or particular functional groups). To construct the bit vector, we
need to specify in advance which structural motifs are important to the
property of interest. In this sense, structural keys are constructed on
the basis of chemical intuition. The calculation of structural keys can
be time-consuming because a substructure search needs to be made for
every structural motif in all the molecules in the database. Enormous
computation times may be required if the database is large.

4.2. Molecular fingerprints

Molecular fingerprints improve the generality of structural keys by
eliminating the need to specify pre-defined patterns in advance. A
fingerprint algorithm examines the molecule and generates its finger-
print independently of the other molecules. Molecular fingerprints are
extracted by a hashing procedure, where each atom in the molecule
is assigned a unique integer string based on its environment in the
molecule. An iterative procedure is then performed to extract all struc-
tural motifs from the molecule. A bit vector describing the presence or
absence of structural motifs is then output. Fingerprints usually have
sizes between 1000-4000 bits.

Many different types of molecular fingerprints can be defined, de-
pending upon how the structural motifs are extracted. Some repre-
sentative examples include the atom-pair and topological-torsion fin-
gerprints (Carhart et al., 1985; Nilakantan et al., 1987), and Mor-
gan/Circular fingerprints (Rogers & Hahn, 2010). Each fingerprinting
typology is usually shown to be better suited for specific types of
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molecules. Capecchi et al. has recently invented a new fingerprint
called MinHashed which is suitable for both small and large molecules
by combining substructures and atom-pairs (Cereto-Massague et al.,
2015).

4.3. Coulomb matrix

Coulomb matrices are one of the most popular approaches to form-
ing feature vectors from three-dimensional molecular structures (Rupp
et al.,, 2012). Consider a molecule with » atoms, and let R; and Z;
denote the coordinate and atomic number of atom i, respectively. The
Coulomb matrix C is an nx n matrix whose elements C;; are defined as

1

-z Vi=j,
2 1

Cy=1" 22
= Vi#)
IR; — R,

where Z; is the atomic number of atom / and |R; — R, is the Euclidean
distance between atoms i and j. The diagonal of C consists of a poly-
nomial fit of the nuclear charges to the total energies of the free atom.
The off-diagonal elements represent the Coulomb repulsion for each
pair of nuclei in the molecule. The Coulomb matrix is invariant under
rotations, translation, and other symmetry operations. By construction,
larger entries in the Coulomb matrix are associated with heavier atoms.
With the exception of homometric structures the Coulomb matrix is
a unique representation of a molecule. Homometric structures are
compounds sharing the same set of interatomic distances. If these
interatomic distances happen to be associated with the same types of
atoms, then the two homometric structures will be represented by the
same Coulomb matrix. Instances of homometric structures in a dataset
are rare, but can occur when dealing with crystalline materials or small
organic molecules.

As described in (Hansen et al., 2013), several types of feature
vectors can be extracted from the Coulomb matrix. For brevity, we in-
troduce only two: eigen-spectrum representations and vectorized sorted
Coulomb matrices.

The eigen-spectrum representation is the vector (4,,4,,...,4,)
where 4; is the ith ordered eigenvalue of the Coulomb matrix, that is,
A; > Ay fori=1,...,n (see (Rupp et al., 2012)). In creating the eigen-
spectrum representation, we have reduced a n?-dimensional object to
an n-dimensional one, and have therefore incurred some information
loss. In addition to its simplicity, an advantage of the eigen-spectrum
representation is that it is invariant under permutations of rows and
columns of the Coulomb matrix. Care must be taken when dealing
with databases of molecules containing different numbers of atoms.
This is because the dimensionality of the eigen-spectrum representation
is equal to the number of atoms n in the molecule. Different sized
molecules will therefore result in eigen-spectra of different dimen-
sion. This problem can be dealt with by padding a zero tail onto
the eigen-spectrum representation of each molecule, ensuring that all
eigen-spectra have the same dimensionality.

Vectorized sorted Coulomb matrices are obtained by permuting the
Coulomb matrix in such a way that the rows and columns of Coulomb
matrix are ordered by their norm. This type of data representation
ensures a well-defined ordering of the atoms in the Coulomb matrix.
Feature vectors can then be obtained by vectorizing the Coulomb
matrix.

Other types of feature vectors (such as vectorized random Coulomb
matrices) can be constructed as well. Feature vectors based on Coulomb
matrices have been remarkably successful in ML applications, particu-
larly for predicting molecular atomization energies in which prediction
errors as small as 3 kcal/mol have been reported (Hansen et al., 2013;
Rupp et al., 2012).

An illustration of the Coulomb matrix is shown in Fig. 2 for the
case of a methanol molecule. Its three-dimensional structure is shown
on the left of the figure, and its Coulomb matrix is shown on the
right. The eigen-spectrum representation for methanol works out to
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Fig. 2. Three-dimensional structure of methanol and the corresponding Coulomb

matrix.

Table 3
Different molecular fingerprints for Methanol, as computed using RDKkit (see https:
//www.rdkit.org/).

Feature vector type Number of bits Indexes of 1-bit

Structural key:

MACGS key (166 keys) 167 [93,139, 157,160, 164]
Topological-path 64 [50,59]

Molecular fingerprints:

Atom-pairs 8388608 [1590305]

Morgan fingerprint 1024 [33,131,807]

be [86.71,26.78,0.19,0.18,-0.47,—1.00]. In Table 3, we compare this
feature vector with the molecular fingerprints and structural keys dis-
cussed in the previous section. Here, we use MACCS (Molecular ACCess
System) keys as our example of structural keys, which are one of the
most popular types of structural keys available (Durant et al., 2002).
There are two sets of MACCS keys, one consists of 960 keys and
the other consists a subset of 166 keys. It can be seen that Coulomb
matrices yield very different feature vectors than molecular fingerprints
or structural keys; the choice of feature vector will therefore have a
profound influence on the resulting ML model.

4.4. Many-body tensor representation

The many-body tensor representation (MBTR) is a generalization
of the Coulomb matrix (Huo & Rupp, 2017). It builds upon the bag-
of-bonds concept introduced in (Hansen et al., 2015), and essentially
represents a material as a probability distribution of many-body geo-
metric features. By many-body geometric features, we mean features
such as distances between pairs of atoms (second-order features), angles
between groups of three atoms (third-order features), torsion angles
between groups of four atoms (fourth-order features), and so on.

Fig. 3 displays the MBTR for a benzene molecule for the case of two-
body features only. It can be seen that the MBTR consists of a family of
curves f(x, z,, z,) depending on the curve variable x and parameterized
by z,,z,, where x > 0 and z, and z, are two choices of atom numbers
from z,,z,,...,z

s 4ps

n
Fo(x,z,,25) = Z Wy (i, YDy (x, 8,30, J)C(2,, 2)C (2, 2;). 14)
ij=1
Here, g,(i,j) represents the distance between atoms i and j, and
D, (x, g,(i,j)) is a broadening function of width ¢ centered at g,(i, j),
C(z,, z;) is a function measuring the similarity between elements of type
z, and z;, and w,(i, j) is a weight function which can be used to reduce
contributions from widely separated atoms. In Fig. 3, we choose for
D,(x, g,(i, j)) a normal density function with mean g, (i, j) and standard
deviation o. For w,(i, j), we choose an exponentially decaying function
of the distance between atoms i and j, and for C(z,, z;) we choose the
indicator function (C(z,, z;) = 1 if z, = z;, and 0 otherwise). The formula
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Fig. 3. Many-body tensor representation (MBTR) for a benzene molecule (Eq. (15)). Only two-body geometric features are included. Black: z, = z, = C. Red: z, = z; = H. Blue:
z, = C,z; = H. MBTR was calculated using w, (i, j) = exp(=0.2d;;) where d;; is the distance between atoms i and j, D,(x,g,(i,/)) a normal density function with mean d;; and

standard deviation 0.2 A, and C(z,,z,) = 1 if z, = z, and O otherwise.

above can be directly generalized to higher-order features (see Eq.(3)
in (Huo & Rupp, 2017)).

MBTR is an infinite-dimensional feature representation due to the
dependence on the continuous variable x. While the MBTR itself is
difficult to use as input to practical ML calculations, the distance
between MBTRs of two different molecules may be used in certain ML
methods such as the kernelized methods discussed in Section 5. For
the case where only two-body geometric features are considered, the
distance between MBTR’s for molecules M and M’ can be defined as

d2(M, M) = Z / (f2lx. 25 2)) = fr(x, z,.,zj))zdx. 15)
2j,z;

Eq. (15) can be directly generalized to the cases of higher-order geo-

metric features.

Ref. (Huo & Rupp, 2017) reported a KRR model built by using the
MBTR which achieved near-perfect predictive accuracy when applied
to the atomization energies of certain crystal structures (Huo & Rupp,
2017). Other papers have also confirmed the superior performance of
the MBTR compared to the Coulomb matrix representation when used
to build various ML models (Himanen et al., 2020). While the MBTR
is attracting an increasing number of users, compared to the Coulomb
matrix, it is yet to be widely adopted by the materials chemistry
community. This is probably due to the foreboding generality of its
formulation, as well as the need to fit parameters in the broadening
functions and elsewhere. We will discuss an application of the MBTR
to inter-molecular interaction energies in Section 5.1.4.

4.5. Chemically driven persistence image

Recently, a new representation of molecular structures using per-
sistent homology (PH), a technique from computational topology, has
been introduced in (Carlsson, 2009; Edelsbrunner & Harer, 2008). In
this approach, the three-dimensional structure of a molecule is regarded
as a point cloud in R3. The points in a point cloud are slowly expanded,
and as they expand, connected components (rings and cavities) appear
and vanish. The connected components, as well as the times at which
they appear and vanish during the expansion, have a sensitive depen-
dence on the positions of the atoms in the molecule. The times at which
a connected component appears and vanishes are plotted in a two-
dimensional scatter plot known as a persistence diagram. Feature vectors
for the molecules can then be obtained by vectorizing the persistent
diagram.

13

The PH approach can be improved by introducing atomistic infor-
mation to ensure uniqueness (e.g., by giving the points an initial radius
based upon atomic radii). In (Townsend et al., 2020), the difference
in electro-negativity for connected components was incorporated. The
advantages of persistence images for molecular representation are sta-
bility, computational tractability, and the ability to yield feature vectors
with a fixed dimensionality regardless of molecular size. In addition,
PH has become more accessible in recent years as several libraries
implementing PH algorithms have become available. These include the
GUDHI library for topological data analysis'?> and HomCloud'®.

4.6. Molecular similarity

For many families of ML models, it is the distance between feature
vectors that directly enters the model rather than the feature vectors
themselves. This is useful for situations in which it is difficult to
construct appropriate feature vectors for the materials of interest; we
can quantify the similarity between pairs of materials instead.

This strategy was recently employed in (Packwood & Hitosugi,
2018) to analyze how molecules assemble on metal surfaces. Such
molecular assemblies could serve as components for the nano-machines
described in the introduction. In (Packwood & Hitosugi, 2018), the
authors considered a simplified model for the molecular assembly
process, and rigorously characterized the so-called configuration space
for the model. Each element of the configuration space corresponds to
one way in which the molecules can be arranged on the surface, and the
molecular assembly process can be regarded as a trajectory through this
space. By devising a measure of similarity based upon a metric between
pairs of configurations, the authors could implement an (unsupervised)
ML method to predict the chemical properties needed for the molecule
to assemble in a specific way.

While similarities were used in the above example for unsupervised
ML, they could easily be used for building supervised ML models of
the type described in Section 5. For example, the kernel in Eq. (30)
depends directly on the squared distance between feature vectors. This
distance could be replaced with another similarity metric between pairs
of molecule or material candidates. For the case of molecules, two well-
known similarity metrics are the Tanimoto similarity (Tanimoto, 1957)
and Tversky similarity (Tversky, 1977).

12 https://gudhi.inria.fr/doc/3.4.1/
13 https://homcloud.dev/index.html
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Besides ML model-building, molecular similarity can also be applied
to other tasks such as similarity searching (Willett et al., 1998), prop-
erty prediction (Brown & Martin, 1996), synthesis design (Wipke &
Rogers, 1984), virtual screening (Cereto-Massague et al., 2015), cluster
analysis (Cruz et al., 1996), and molecular diversity analysis (Gol-
braikh, 2000).

4.7. Feature vectors for crystalline materials

While this review focuses on molecules, the field of materials chem-
istry is not restricted to molecules, and a great deal of effort has gone
into developing feature vectors for crystalline materials as well. We
make a few remarks about these cases before returning to molecules
in the next section.

The structure of a crystal can be visualized as an infinite tessellation
of a group of atoms or molecules in space. Crystal structures therefore
possess periodic symmetry, which is difficult to account for in the con-
struction of feature vectors. The more prominent efforts at developing
feature vectors for crystal systems have focused on incorporating peri-
odicity into the methodologies developed for molecules. The success
of the Coulomb matrix has been a particular source of inspiration,
and generalizations such as the Ewald sum matrix and the sine matrix
have been proposed which incorporate periodic symmetry (Himanen
et al., 2020). In contrast to the Coulomb matrix, there are some popular
methods for describing molecules, such as the MBTR described above
and SOAP (smooth overlap of atomic positions) (De et al., 2016), which
can be easily applied to periodic systems after making some minor
adjustments.

As well as generalizing molecule-based methods, there have been
efforts to develop entirely new methods for the case of crystals. A
prominent example is the use of simulated diffraction patterns (Ziletti
et al., 2018). In an experimental laboratory, a diffraction pattern is
obtained by propagating an x-ray or electron beam into a crystal.
The particles of the beam (x-ray photons or electrons) scatter as they
interact with the atoms inside of the crystal, and wave interference
effects between scattered particles results in the appearance of a pattern
of spots when the outgoing beam is detected. The symmetry of this
pattern reflects the periodic symmetry of the crystal, and the intensity
of the spots reflects the types of atoms contained inside; in short, the
diffraction pattern provides a unique fingerprint for the crystal. In the
work of (Ziletti et al., 2018), the diffraction patterns were used as
features for developing a ML classification model. In Ref. (Packwood,
2020), a similar strategy was used to determine the atomic structure
of a metal surface and the surface of a molecular thin film on the
basis of an unsupervised learning approach. These approaches are
novel because they acknowledge crystal symmetry from the outset,
and are not mere generalizations of molecule-based descriptors. On the
other hand, their generation can be time-consuming and may require
substantial computational resources (the diffraction patterns reported
in (Packwood, 2020) were obtained by integrating the time-dependent
Schrodinger equation using a finite-elements technique!).

5. Kernelized classification and regression models for materials
chemistry

In what follows we review families of ML models based upon the
so-called kernel functions. These models represent the status quo for
materials chemistry applications at present. By discussing these meth-
ods in some detail, computer science and math majors will gain a sense
for the majority of the ML applications to materials chemistry so far. In
contrast to reviews oriented towards materials science majors, we will
not introduce these models as mere black-box algorithms. Rather, we
will take a principled approach and illustrate how they are built from a
set of starting axioms. However, for ease of reading, proofs and certain
other concepts such as complexity bounds will be omitted.

We will use the notation X to denote the set of all molecules (or
materials) of interest, and x to denote an element (a molecule) from X.
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Instead of x, we will use either ¢(x) or f(x) to denote the feature vector
for x. As this notation makes clear, the feature vector is treated as a map
from X to R?, where d is the dimensionality of the feature vector. We
will assume that the feature vectors, or at least the distances between
them, are given (perhaps constructed with the methods described in the
previous section).

5.1. Classification and regression models

ML models based upon kernel functions rely on a mathematical trick
which, in essence, transforms a training dataset in such a way that lin-
ear classification or regression techniques can be applied. Despite their
apparent simplicity, these models are often very accurate. Moreover,
the relatively small number of parameters involved in these models
often means that they can be trained with smaller datasets compared
to other types of models such as, for instance, neural networks. While
types of such models exist, here we focus on only two: kernelized
support vector machine (KSVM) and KRR models. Both types of models
adequately illustrate the concept of the kernelized ML methods.

5.1.1. Classical SVM

Before introducing KSVM models, it will be instructive to first
examine their non-kernelized counterpart, classical support vector ma-
chine (classical SVM) models. Consider some training data containing
n molecules x|, x,, ..., x,, € X and suppose that molecule k has a label
v, attached, where y, = +1 if molecule k has a physical property of
interest and y, = —1 otherwise. Our task is to use the training dataset
to determine a function g : X — {—1,+1} which can predict whether a
molecule has the property of interest or not.

To proceed, let ¢(x;) = (¢(xy), Pyr(xy), ..., P, (x,)) be a feature
vector of m descriptors for molecule x;. Molecule x, is therefore
represented as a point in R™, whose coordinates are given by the
components of ¢(x;). The classical SVM method makes the following
harsh assumption: the set X is linearly separable, i.e., a linear hyperplane
can be drawn through R™ such that all molecules lying on one side
of the hyperplane have label —1, and all molecules lying on the other
side of the hyperplane have label +1. Under this assumption, the
classification function g can be constructed by finding an equation for
this hyperplane.

In general, an infinite number of hyperplanes is possible, each of
which has the form w - ¢(x) + b = 0 for any choice of x € X,
where w € R", b € R. In the SVM method, we choose the hyperplane
which maximizes the so-called margin. The margin, denoted by p, is
the minimum distance between the hyperplane and any of the points
d(x)), P(x3), ..., Pp(x,) in the training data.

The (intrinsic) parameters w and b can be determined by solv-
ing a constrained optimization problem. We first consider the max-
imal (hard) margin classifier, which is formulated as the following
minimization problem

. 1 2
Jnin, EIIWII2 (16a)

sty (w-pGxp)+b)=Li=1,..,n (16b)

Let o; € R,; > 0 be the Lagrange multipliers associated with the
constraint (16b). Define the Lagrangian

Lew.b.a) £ Sl - a; [y, (w+ ¢x) +0) = 1] an

As is known from optimization theory, the infimum of this Lagrangian
is achieved when the first-order conditions are satisfied, i.e., when the
partial derivatives of L(w,b,a) with respect to w and b vanish. This
yields the system of equations

w= z @, y;(x;) (18a)
i=1

0= ay, (18b)
i=1
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Next, substituting (18a) back to (17) gives us the infimum of the
Lagrangian as in the following.

inf (19)
weR™, be

n 1 n

RL(W’ b,a) = 21 @; — E --21 ll,-ajy,-yj¢(x,-) . ¢(Xj)~
i= ij=

We then obtain the following dual optimization problem of the primal

optimization problem (16),

n m
1
w2k ay20 z' %~ 5 i; ;07,5 b(x;) - P(x)) (202)
n
st Y ey =0 (20b)
i=1
o >0,i=1,...,n (20c¢)

In passing, note that the equations above are strictly for the case of
the ‘hard’ maximal margin classifier. As shown in (Cristianini & Shawe-
Taylor, 2000), the development of alternative SVM-based classifiers
(such as the soft margin classifier) involves dual optimization problem
similar to (20), namely

n n
1
max ; -5 ,-,2=1 @y b)) - Bx;) 1)
n
s.t. Z a;y; =0 (21b)
i=1
0<a;<C,i=1,...,n (21¢)

where the constraint (21) is often called the box constraint. The
optimization problems (20) and (21) are convex and can be easily
solved by off-the-self software.
Returning to the maximal margin classifier, it can be shown that
the plane which maximizes the margin (known as the maximal margin
plane) satisfies (see (Mohri et al., 2012))

D @ ydx) - dx) + b =0,

(22)
k=1
where x denotes a molecule from X that we wish to classify, and
b=y, — Y aydx) - b(x), 23)

k=1
for any choice of i € {1,2,...,n}. The function for predicting whether
a molecule x* € X has the desired property or not can be found by
projecting its feature vector onto the maximal margin hyperplane. This
is done by computing sgn(w - ¢(x*) + b), or equivalently

g(x*) =sgn (y,- + D oy (d0x) - (™) — plx;) - ¢(x,~))> . (24)

k=1
Note that a feature vector ¢(x,) only contributes to the hyperplane
when the corresponding coefficient «; is non-zero, and hence is called
a support vector. In fact, it can be shown that all such support vectors
lie exactly at a distance p from the hyperplane (Mohri et al., 2012).

The hyperplane in (22) and (23) is calculated entirely from the
training data, and may not perform well when tested against other
molecules. In order to verify the accuracy of the model derived above,
it needs to be shown that the generalization error,

r(g(X)) = P(g(X) #7Y),

where X is a randomly chosen molecule from X with label Y, is small
when g is calculated according to (24). In fact, it is known that the
maximal margin hyperplane minimizes a so-called complexity bound
on (25), providing that the training data are selected independently
and identically from X (see (Mohri et al.,, 2012) for details). This
provides the theoretical justification for the choice of the maximal
margin hyperplane.

Despite its sound theoretical footing, the classical SVM method as
presented above is rarely justified for real applications, including those

(25)

15

Machine Learning with Applications 8 (2022) 100265

related to materials chemistry. The relationship between feature vectors
and molecule properties is complicated, and it is unlikely that we could
ever construct a set of feature vectors which leads to linear separability,
regardless of the depth of our intuition. However, this problem can be
elegantly circumvented by the use of the so-called kernel trick, which
leads us to the versatile KSVM method.

5.1.2. Kernels

A kernel K is a function K X x X - R. When the matrix
K = [K(x;, X )] ux, 18 Symmetric positive semidefinite for any choice of
X1, X9, ..., X%, € X, K is said to be a positive definite symmetric (PDS)
kernel. Furthermore, we have the following important theorem: given a
PDS kernel K, there exists a Hilbert space H and a mapping ¢ : X - H
such that

K(x,x") = (¢p(x), p(x")) (26)
for all x,x" € X, and moreover
h(x) = (h,K(x, ) 27)

for all x € X and h € H. The property in (27) is called the reproducing
property, and the Hilbert space H is therefore called a reproducing kernel
Hilbert space (RKHS). Proof of this theorem can be found in (Mohri
et al.,, 2012, Theorem 5.2). In view of the theorem, it is possible to
think of feature vectors as elements of a RKHS (i.e., a Hilbert space with
the reproducing property). Thus, the inner product between any pair
of feature vectors could be computed using a kernel function according
to (26), providing that the kernel function associated with this RKHS is
known. This is a powerful observation: as can be seen from Egs. (22)-
(24), the maximal marginal hyperplane can be computed from these
inner products (and hence from a kernel) alone, without handling the
feature vectors explicitly. This is the essence of the kernel trick.

Moreover, by thinking in terms of a RKHS, it is possible to work
implicitly with high-dimensional feature vectors by starting with low-
dimensional ones. This is because the PDS kernels associated with high-
dimensional RKHSs can often be written in terms of low-dimensional
vectors. For example, suppose that as a first step in our ML research we
proposed to use two-dimensional feature vectors f(x;) = (f;(x;), f>(x;))
to describe the molecules. Upon consulting with a materials chemist,
we would probably be told that such a low-dimensional representa-
tion would be inadequate, and hence that we should consider a high
dimensional RKHS H, instead. Suppose that we guessed that H; was
associated with the PDS kernel

K(xpx) = (fx) - fxp) +¢)’s (28)

where ¢ is a constant parameter. Noting that this kernel can also be
written as K(x;,x;) = ¢(x;) - $(x;), where

005) = (1002 L2 V2 G 0. V2ef15). Ve faxie ) . (29)

we see that H, is a six-dimensional space whose feature vectors have
elements of the form shown in (29). By appropriate choice of kernel, it
therefore is possible to work in a high-dimensional RKHS even if one
starts with a low-dimensional feature representation for the molecules.
In particular, the Gaussian kernel

K(x,-,xj)=exp< >,

| £ = fxpI?
- 202

where ¢ > 0 is a constant parameter (a hyperparameter), corresponds
to an infinite-dimensional RKHS. This kernel allows us to implicitly
work with infinite-dimensional feature vectors by means of the low-
dimensional feature vectors f(x;). For this reason, the Gaussian kernel
is extremely popular for building ML models. In the context of kernel-
ized ML, we refer to the low-dimensional feature vectors f(x,) as input
feature vectors to distinguish them from the high-dimensional feature
vectors ¢(x,) belonging to the RKHS of interest.

(30)
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5.1.3. Kernelized SVM

Let us now return to the linear separability assumption of the
classical SVM methods, which states that the molecules in the training
data x;,x,,...,x, can be separated according to their classification by
a linear hyperplane. Let ¢(x,), ¢(x5), ..., d(x,) be a set of (potentially
high-dimensional) feature vectors such that the linear separability as-
sumption holds. Supposing these feature vectors lie in a RKHS equipped
with kernel K, we can use (26) to rewrite (22)-(24) as follows,

n
Z v K(xp, x)+b=0,

31
k=1
b=y, — Y aK(x,x), (32)
k=1
g(x’) =sgn <y,- + E o,y (K (xg, X)) — K(xk,x,-))) . (33)
k=1

Here, we have employed the kernel trick, and can hence compute
the maximal marginal hyperplane in the high-dimensional space even
though the high-dimensional feature vectors ¢(x,), ¢(x,), ..., p(x,) are
unknown. Egs. (31)—(33) constitute the KSVM method.

In the KSVM method, we have essentially shifted one unknown
(the high-dimensional feature vectors ¢(x;)) into another unknown (the
kernel function associated with the RKHS to which ¢(x;) belongs). In
practical ML problems, we usually consider a variety of candidate PDS
kernels, each having various functional forms, various parameter val-
ues, and built from various choices of low-dimensional input features.
The SVM method is tested for each candidate kernel, and the kernel
leading to a hyperplane with low generalization error (estimated from
a set of test data) is selected as the predictive model.

Numerous examples of the KSVM method can be found in the
materials chemistry literature. A representative study (Yao et al., 2015)
trained a SVM model to recognize pesticide molecules from a database
of 86 organic molecules. Using input features with five dimensions and
the Gaussian kernel in (30), the authors built an SVM model which
achieved an 85% success rate when compared with test data. This is an
impressive result considering the small size of their training set. More
importantly, they applied their SVM model to 11 new molecules, and
predicted that they all had pesticidal activity. Upon synthesizing and
testing their results in the laboratory, they confirmed this prediction
for all but two of the molecules. In another study (Packwood et al.,
2017) SVM methods were used as part of a larger ML scheme to learn an
interaction energy function for molecules adsorbed on a metal surface.
Using a dataset consisting of pairs of molecules in various orientations,
as well as Coulomb matrices to build input feature vectors, they con-
structed three SVMs: one to classify whether the pairs of molecules
were not interacting (had interaction energy with magnitude below a
cut-off value), another to classify whether the pair of molecules were
undergoing an repulsive interaction, and a third to classify whether the
pair of molecules were undergoing an attractive interaction. The three
SVMs achieved success rates near 92%, 98%, and 98%, respectively,
when tested against test data. Using these SVMs, the authors were then
able to predict how the molecules should be placed on the surface in
order to minimize the total energy.

5.1.4. Kernelized ridge regression

In addition to classification, it is also possible to build powerful re-
gression models using the kernel trick. The scenarios for regression and
classification are similar: we have training data containing » molecules,
X1, Xy, ..., X,, where molecule k has a label y, attached. In contrast to
the classification scenario, in regression the label y, can take any value
in R. We therefore wish to build a function ¢ : X — R which can
predict the value of y for any molecule in the set X.

To proceed, consider an RKHS with a feature map ¢ and PDS kernel
K. Suppose that the feature vector ¢(x) has dimension m for all x € X.
m may be very large. Consider a hyperplane of the form g(x) = w- ¢(x)
for all x € X, where w is an m-dimensional vector. Following the ridge
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regression technique from statistics, we estimate w by minimizing the
objective function
n

F(w) = Alwl> + (W - dix) — 3%,

k=1

(34

where A is a positive hyperparameter, leading to the hyperplane of
equation

n

900 = Y () - p(x),

k=1

(35)

where the coefficients are given by @ = (@®” + AI)"'Y, where ¢ 2
(ay,00,....a)", Y 2 (3,92, ...,y,)", @ the n x m matrix with kth row
¢(x;), and I is an nxn identity matrix (Mohri et al., 2012). Substituting
the feature vector inner products with the kernel K into (34) yields

n
q(x) = ) o K(xy, ). (36)
k=1

Accordingly, we can rewrite a by

a=K+ i)y, 37)

with K 2 @®7. Egs. (36) and (37) together are the predictive equations
for the kernel ridge regression (KRR) method.

The KRR method therefore allows us to work implicitly in a high-
dimensional space in which the property of interest is a linear function,
even if the feature vectors are unknown. In practice, the KRR method
runs in the same way as the KSVM method: we consider a variety of
candidate PDS kernels, each having various functional forms, hyperpa-
rameter values, and each built from various choices of low-dimensional
input features. The hyperplanes are tested for each candidate kernel,
and the one leading to a low generalization error is selected as our
predictive model. Providing that the sample data is independent and
identically chosen from X, the hyperplane obtained from minimizing
(34) also minimizes a complexity bound on the generalization error
(see (Mohri et al., 2012) for details).

The materials chemistry literature is replete with examples of the
kernel ridge regression technique. The pioneering example is from
(Rupp et al., 2012) which used KRR method to learn the atomization
energy for small organic molecules from a training set of over 7,000
examples. Here, atomization energy is the energy required to break a
molecule into its constituent atoms. By using feature vectors built from
Coulomb matrices, as well as the Gaussian kernel in (30), the authors
succeeded to build a KRR model which performed favorably against test
data.

In Fig. 4, we apply the KRR method to the case of three interacting
benzene molecules. Here, data was have been collected by using a
technique called ab initio molecular dynamics (AIMD). In AIMD, the
motions of the atoms are simulated by integrating Newton’s equations
of motion, with the potential energy calculated from DFT (Eq. (8)) at
each time-step. In these AIMD simulations, the three benzene molecules
were placed into a box with dimensions 154 x 154 x 15A with periodic
boundary conditions in all directions, and the dynamics was simulated
for 10,000 time steps of length 1 fs. This resulted in a dataset con-
sisting of 10,000 snapshots of the three benzene molecules in various
locations, and the total energy of the system at each step. We refer to
this as the D3 dataset. A single frame from the D3 dataset is shown
in Fig. 4(A). From these snapshots we also extracted 10,000 pairs of
molecules at random and calculated the total energy for each pair
(resulting in a second dataset D2 consisting of pairs of molecules and
their total energy). Finally, we extracted 10,000 single molecules at
random and calculated their total energy (resulting in a third dataset
D1 consisting of single molecules and their total energies). For each
dataset, we trained KRR models using Gaussian kernels and many-
body tensor representations. Many-body tensor representations used
two-body geometric features (interatomic distances) Gaussian densities,
delta-correlation functions, and unit weights.
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Fig. 4. Benzene interaction energy learned from KRR. The parameter a = 0 for all the cases and y = 0.005 for one molecule case (B) and y = 0.0035 for the two and three molecules

cases (C), (D).

In Figs. 4 (B)-(D) we show predictions of the KRR models compared
to test data for the D1, D2, and D3 datasets, respectively. It can be
seen that the accuracy is lowest for the case of the D1 dataset (Fig. 3B)
and highest for the D3 dataset (Fig. 3D). The fact that the accuracy is
highest for the D3 dataset (which consists of three interacting bodies),
despite the absence of third-order structural features, suggests that such
features are not necessary in order to build accurate ML models for the
energy. Instead, the model performance appears to result from the sen-
sitivity of the MBTR to variations in the dataset. The D1 dataset consists
of a single benzene molecule, and its structural variations consist of
minute changes in bond lengths within the molecule due to thermal
fluctuations of the atom positions during the AIMD simulation. The
peak positions in the MBTR therefore show only minor variations across
the D1 dataset, which may be inadequate to capture the correlation
between structure and energy in the dataset. On the other hand, in the
D2 and especially the D3 datasets, the peak positions in the MBTR show
larger variations due to the large fluctuations in distances between
benzene molecules during the AIMD simulations. Sufficient variation
in the peak positions in the MBTR across the dataset therefore appears
to be important to adequately capture the structure—energy correlation
in the dataset.

5.1.5. Support vector regression

KRR is derived from the square-loss objective function in Eq. (34).
However, there is no requirement that we use a square-loss objective
function, and indeed other regression methods can be derived by con-
sidering alternative objective functions. Here we briefly introduce SVR,
another regression method which is occasionally applied in materials
chemistry. Similar to the KRR method, the SVR method attempts to
construct a hyperplane of the form g(x) = w - ¢(x) + b, where b is a
constant. However, in contrast to KRR, the SVR method is derived from
the objective function

Fo0 = 3IwP +C Y Iy = W+ ) + D), 38)
k=1

where C is a positive constant and | - |, is the so-called e-insensitive

loss, which is defined as

€

|ye = W+ $(x) + b)l, = max(0, [y, — (W - $(xp) + b)| — &) (39

for any £ > 0. This objective function can be understood by considering
the case where the feature vectors ¢(x,) are one-dimensional. In this
case, the SVR method attempts to fit a tube of radius ¢ to the training
data. All feature vectors from the training data that lie within this
tube contribute no loss to the objective function. Feature vectors which
lie outside of the tube contribute a loss proportional to their distance
from the center of the tube. By substituting the argmin of (38) into the
right-hand side of g(x) yields, with some abuse of notation,
n

g(x) = Z(aj{ —a)K(x;, %)+ b (40)
k=1
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as our prediction model (Mohri et al., 2012). Here, aj( and «, are
constants and we have used the kernel trick K(x;,x) = ¢(x;) - $(x).
b can be obtained from any point ¢(x;) such that 0 < a; < C as

b= (a} — a)K(xp. X)) +y; +e, (41)

k=1

or from any point ¢(x;) such that 0 < a;, <C as

n
b=—= Y (a) — a)K(x. X)) +y; —e. (42)
k=1
In the SVR method, ¢ and C are free parameters which can be adjusted
along with those of the kernel. The coefficients «; and «; are then
determined by numerical methods.

The SVR method is analogous to the SVM method in two respects.
First, the tube width ¢ which appears in the SVR method is analogous
to the margin p which appears in the SVM method. Second, it can
be shown that the coefficients @, and «; are non-zero only when the
training feature vector ¢(x,) lies on the tube’s surface. In analogy with
the SVM method, such feature vectors can be thought of as supporting
the tube. In the SVR method, these feature vectors are also referred to
as support vectors.

The presence of support vectors is one of the main advantages of the
SVR method, as it means all other training data can be neglected when
storing the hyperplane A(x). In other words, the SVR method leads to
sparse solutions. The parameter ¢ therefore controls the balance between
the sparsity of the solution and the accuracy of h(x). Larger values of
e lead to wider tubes and hence a smaller number of support vectors,
however the resulting model A(x) may ignore some key points and fail
to capture some important variation in the training data.

While not as popular as KRR, the SVR method has been applied
to several problems in materials chemistry, including the prediction
of molecule energies (Balabin & Lomakina-Rumyantseva, 2011) and
chemical potency (Rodriguez-Pérez et al., 2017).

5.2. Bayesian ML

While not always evident in practice, probability theory and ML
have a close connection. Indeed, many common ML methods are gener-
alizations of methods found in statistics — a field which is firmly rooted
in probability theory.

Mathematically, the notion of probability is clear: probability is
defined as a special case of a measure, which is a type of set function.
However, the physical interpretation of probability is ambiguous. The
most common physical interpretation is the so-called frequentist inter-
pretation, which is based upon our intuitive understanding of chance.
For the case of the SVM method, P(g(X) # Y) is understood as the
fraction of times that a molecule is placed on the wrong side of the
hyperplane, when tested for a large random sample of molecules.
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The Bayesian interpretation of probability is an alternative to the
frequentist interpretation. In the Bayesian interpretation of probability,
P(g(X) # Y) is understood as the degree to which we personally believe
that a randomly chosen molecule would be placed on the wrong side of
the hyperplane. The interpretation of probability in terms of “personal
beliefs" has an important consequence. In the real world, personal
beliefs can, in principle, change, in the face of new data. Thus, if we are
to interpret probabilities in terms of beliefs, then we should have some
method for adjusting probabilities as new data is acquired. In Bayesian
probability theory, this adjustment is done by means of the Bayes’ rule,

P(A|B) < P(B|A)P(A). (43)

While this formula is valid regardless of the interpretation of prob-
ability used, it takes on a special meaning when the Bayesian inter-
pretation is employed. For example, let A denote the event that a
randomly chosen molecule appears on the wrong side of the hyperplane
(i.e., P(A) = P(g(X) # Y)). Moreover, let B denote the event that
a specific molecule x; appears on the correct side of the hyperplane.
Then, P(A) measures our initial degree of belief that a randomly chosen
molecule would appear on the wrong side of the hyperplane. P(A|B)
would then measure our adjusted degree of belief that a randomly chosen
molecule would appear on the wrong side of the hyperplane given that
molecule x; appears on the correct side. In general, P(A) and P(A|B)
will be different, because the fact that x; appears on the correct side
of the hyperplane constrains the ways in which the hyperplane can be
oriented in space. These constraints are accounted for through the term
P(B|A), which scales our initial degree of belief P(A) appropriately. By
allowing for our personal beliefs to be adjusted as new data is obtained,
the Bayesian interpretation of probability naturally lends itself to the
creation of probabilistic models of the learning process via Bayes’ rule
(43).

Bayesian ML methods make use of the Bayesian interpretation of
probability. While several Bayesian ML methods exist, arguably the
most popular and successful method for materials chemistry appli-
cations is Bayesian optimization. Bayesian optimization allows us to
screen databases for materials with optimal properties while reducing
inefficient trial-and-error. Bayesian optimization can also be used to
predict how to design materials in order to maximize a physical prop-
erty of interest. Over the last few years, Bayesian optimization has
become widespread in materials chemistry and has acquired a status-
quo quality. Alongside the kernel methods introduced above, Bayesian
optimization has arguably become one of the two main pillars for ML
applications in materials chemistry at present. The Bayesian viewpoint
also provides a unique take on materials chemistry and connects it
with probability theory, thereby creating potential connections with
fields such as stochastic analysis. Such connections could be explored
by computer science and math majors. For the reasons listed above, we
introduce Bayesian optimization in some detail here.

Bayesian optimization utilizes a regression method called Gaussian
process regression (GPR). In the next subsection, we will review the
GPR method before introducing Bayesian optimization in full. Before
continuing, we must introduce some terminology. In the Bayesian
interpretation of probability, P(A) is referred to as the prior probability
of A, and P(A|B) is referred to as the posterior probability of A (or,
more explicitly, the posterior probability of A given B). Often, Bayes’
rule is written as the equality P(A|B) = L(B|A)P(A), where L(B|A) is
proportional to P(B|A). L(B|A) is called the likelihood function.

5.2.1. Gaussian process regression

As with the KRR method, the purpose of the GPR method is to pre-
dict some real-valued property of each element (molecule or material)
from a set X. However, instead of building a single function for making
such predictions, GPR builds a probability distribution over a space of
functions. Functions to which the probability distribution gives more
weight are predicted to have lower generalization errors.
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Let X be a collection of molecules and consider a functionr : X - R
that we wish to estimate. Here, r corresponds to the physical property
of interest. We suppose that r belongs to a space of functions which
are smooth and finite for all molecules in X. Suppose that we have
a sample of n molecules x;, x Gy X € X for which it is known that
r(x;) = y; 1(x;) = yj,...,7(xg) = yx. Now consider another set of m
molecules x,,, Xgsoerr Xy, €EX for which the values of r(x,), r(xpg)s ... 1(x,)
are unknown. Let the notation r € &6v denote the event where the
point r = (r(x,), r(xp), ..., r(x,)) is contained in a cube centered at point
V= (Vg Ups -0 Uy) and with side lengths 6. Using this notation, we can
write

P(r € 6v|r(x;) = y;, ..
= L(r(x;) = yis -

as our posterior probability for the event r € §v. In (44), the left-hand
and right-hand probabilities are, respectively, the posterior and prior
probabilities for the event r € év, and L is the likelihood function.
We can obtain a more useful expression in a heuristic way, by letting
5 — 0, in a formal sense, and rewriting (44) in terms of probability
density functions. This gives us

() = Vi)

., 1(x) = yIr € 5V)P(r € 6v). (44)

PWgs wvv s Uy Yis v s Vi) = E Wy ooes Vil Vg oo, 0,)7 (Vg ., U)) (45)

where p denotes the posterior probability density function, = is the prior
probability density function and ¢ is the likelihood. In the GPR method,
the prior probability density = is assumed to be the multivariate Gaus-
sian probability density

(Vg -ev s V,) (46)

, xp (-3 - K =)

" K
In (46), the mx1 column matrix u is called the mean vector, and the mxm
matrix K is called the covariance matrix. |K| denotes the determinant
of K. In Eq. (46), v is treated as an m x 1 column vector. Thus, if
7(v,, ..., v,) is particularly large, it means that we have a high degree of
belief that the r(x,) = v,, r(x;) = vg, ..., and r(x,) = v, for the unknown
function r, in the absence of any data.

While the multivariate Gaussian density is assumed mainly for
mathematical convenience, it comes with an additional advantage: it al-
lows us to express our personal beliefs about the function r via the mean
vector u and covariance matrix K. If we let u, be our intuitive guess for
the value of r(x,), then we can set u = (g, g, ... , ). Likewise, if we let
K, measure the degree to which we believe |r(x,) — r(xp)| to be small,
then we can write K = [K,],,x,,- The elements of the covariance matrix
therefore correspond to our intuitive beliefs about the smoothness of r
across the space X.

In the GPR method, the likelihood density # is also written in terms
of a Gaussian probability density (see (Packwood, 2017) for details).
The posterior density in (45) then becomes a product of two Gaussian
densities and can be computed analytically via matrix manipulations.

The result is
1 _
P(Ugs orv 50 1Vis o0 V) X XD (—E(v — KD v - ph)). (47)

In (47), the posterior mean vector and posterior covariance matrix are
defined as

-1
w= K0 K ik = B (48)
and
-1

K* =K_Ka:y,i:kK[;k,i;kKi:k,a:y’ (49)
respectively, where

Kai Kaj Kak

Ky  Kg; K
o R (50)

Ky Ky Kk
K;.i:« is defined similarly, K., ,., is the transpose of K,., ;.. ¥;:x =
Wi yjo-oow)T, and pp = Ly 17, Egs. (47)-(49) are the
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predictive equations of the GPR method. If we are interested in the pos-
terior probability for a single molecule or material, then (47) simplifies
to

*\2

1 (Vg — 1y)

P lYis e y) = exp| — , (51)
¢ " 272K, 2K7,

where
Il,: = Ho t Ka,i:kK;}(,,-;k(y,-;k —Hi:p) (52)
and
K;a = Kua - Ka,i:kK;lk,,';kKi:k,u' (53)

In the above, K, ;., = [Ky;, Ky, -, Ky ] and K., is the transpose of
K, ;.- In practice, Egs. (51)-(53) are more useful than (47)-(49).
Providing that it adequately encodes our beliefs about the smooth-
ness of the function r, the covariance matrix K can be chosen somewhat
freely. Mathematically speaking, it is only necessary for K to be sym-
metric positive definite. A popular choice for the covariance matrix is

the squared exponential function

K;; = aexp(=b - d(x;. x,)), (54)
where

p
b-d(x;, x;) = Zbk (fk(xi)_fk(xj))z’ %)

k=1
fi(x;) and f(x;) are components of the (low-dimensional) input feature
vectors for molecules x; and x s respectively, and a, by, b,,...,b, are
positive hyperparameters. b, b,, ... ,b, measure the inverse relaxation
scale of the function f. Thus, if we intuitively believe that r(x) should
undergo rapid changes with respect to f(x), then b, should be given
a large value (corresponding to a short relaxation scale in the kth
direction). Conversely, if we believe that r(x) only changes slowly
with respect to f,(x), then b, should be given a smaller value. The
hyperparameters should be set carefully, as poor choices of a and
(especially) b are detrimental to the performance of the GPR method.
While it is possible to determine good choices for the hyperparameters
by applying techniques such as empirical Bayes or cross-validation to
the training data (Packwood, 2017), there is no guarantee that the
resulting posterior distribution will perform well when tested against
additional data. In practice, such techniques should be used as a rough
guide, with the final hyperparameter values selected after considering
the physics of the materials in question.

In passing, note that the posterior mean of the GPR method is
actually equivalent to the predictions of the KRR method discussed
in Section 5.1.4. Indeed, rewrite Eq. (36) as q(x) = K(-, x)a, where
K(-, x) = [K(x},x), K(x,X), ..., K(x,,x)], where x|, x,, ..., x, denote the
molecules in the training data. Then, substituting Eq. (37) into the
expression for g(x) above yields

g(x) =K, x)K + AD'Y. (56)

It can be seen that the KRR predictions in (56) and predictions of
the GPR posterior mean in (52) are equivalent in the limit A — 0,
providing that the prior mean vector is set to zero. This demonstrates
an agreement between the frequentist and Bayesian interpretations of
the regression problem, at least as far as predictions are concerned.
Moreover, it can be seen that the kernel matrix, which appears in the
frequentist interpretation of the regression problem, is analogous to the
covariance matrix which appears above.

5.2.2. Example calculation of the posterior distribution

Here, we apply the GPR method to the situation illustrated in
Fig. 5-A which considers the interaction between two nitrogen-doped
pentacene molecules (N-pentacene). The two molecules are flat and lie
in separate, parallel planes. The two planes are separated by a distance
of 3.5A, which means that the two molecules are close enough for a
van der Waals interaction to exist between them. We wish to determine
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the energy-minimizing angle (defined in Fig. 5-A) for the molecule in
the upper plane. Despite being a toy problem, this is a prototype for
other important problems in materials chemistry, such as predicting the
configuration of molecule clusters.

Fig. 5-B shows the interaction energy as a function of orientation
angle (thick blue line). It was painstakingly calculated over a grid of
500 orientations, using DFT with the PBE exchange-correlation func-
tional (Perdew et al., 1996) and van der Waals corrections (Tkatchenko
& Scheffler, 2009), as implemented in the FHI-aims code (Blum et al.,
2009). The energies have been normalized so that the global minimum
is at 0 and the maximum energy is at 1. The blue line can be considered
exact within the approximations of DFT. Two distinct energy minima
are evident, and the curve is asymmetric due to the presence of the
nitrogen atom. The curve is somewhat bumpy as well, which can
probably be traced to the complicated shape of the electron wave
functions in such molecules (Troisi et al., 2005).

While the calculations only require around 20s per orientation on
our computer (a Real Computing C-Server with 32 3.2 GHz Intel Xeon
processors), much longer times may be required for larger molecules or
more complicated systems. In practice, it would be desirable to estimate
the optimal orientation using only a small amount of training data. We
therefore applied the GPR method to this dataset, using 5 randomly
chosen orientations as training data. For illustration purposes, we
consider one-dimensional input feature vectors f(x) = f,(x), where
f1(x) is the orientation of the upper molecule. The hyperparameters
a and b, were set to 1 and 1073, respectively. In Fig. 5-B, the posterior
distribution is visualized by its mean (u*, thin red curve) and its
standard deviation (u* + \/F , black curves). While the exact curve
(blue) does not match the posterior mean so well, it mostly lies within
one standard deviation of the posterior mean. The posterior distribution
therefore places weight mostly on the correct parts of the function
space, and could therefore be used for further analysis such as Bayesian
optimization.

An important technical point needs to be mentioned. It can be seen
from Egs. (52) and (53) that Ki_:lk,i: o the inverse of the covariance ma-
trix, needs to be calculated in order to obtain the posterior distribution.
In practice, the covariance matrix is often ill-conditioned, especially
when the training data contains two or more similar cases (such as
two close angles in the above example), which may result in numerical
instabilities. One way to deal with this problem is to replace K;}(’i: B
with (K;.; ;. + oD)~!, where ¢ is a small positive constant and I is the
n X n identity matrix (with n being the cardinality of the training set).
Here, oI acts as a regularizing term for the kernel matrix, and prevents
columns from being identical to each other. In practice, ¢ is treated as a
hyperparameter. In the calculation in Fig. 5(B), we set ¢ = 10~’. Note
that adding o1 is equivalent to performing GPR on a training set of
noisy data, in which the observations of the function values are in the
form of y, = f(x;)+w,, where w, is sampled from a normal distribution
with mean zero and variance 2. In fact, when this regularizing term
is added, the GPR method becomes exactly equivalent to KRR method
(see Eq. (56)).

5.2.3. Bayesian optimization

The goal of Bayesian optimization is to find the molecule x* € X
which has an optimal physical property and minimizes a cost function
r. Bayesian optimization uses the posterior distribution of the GPR
method to find the global minimizer x*. Given a posterior distribution
(51) computed using an initial sample of training data, a single iteration
of the method runs as follows. We first use an acquisition function to
identify a molecule which is likely to improve our estimate of x*. The
function is then measured for this molecule in some way (either by
DFT calculation or experiment), and the posterior distribution is then
computed again, this time by including the new measurement in the
training data. This process continues iteratively, with the training data
increasing by one molecule at each step, until the global optimizer x*
is obtained.
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Fig. 5. Application of Bayesian optimization to a molecule alignment problem. (A) Two N-pentacene molecules lying in a stacked configuration (see text). The two molecules
lie in parallel planes, with the planes parallel to the page. The darker molecule lies in the plane closer to the reader. The orientation angle of this molecule is defined. White,
brown, and white parts correspond to hydrogen, carbon, and nitrogen atoms, respectively. (B) Exact interaction energy between the molecules (thick blue curve) calculated as a
function of orientation angle. The energy has been normalized (see text). Thin red and black curves correspond to the posterior mean and posterior mean + posterior standard
deviation, as calculated from Gaussian process regression. Black crosses indicate training data. A green curve indicates the expected improvement. A dotted vertical line indicates
the maximum of the expected improvement. (C — H) Posterior distribution plotted after 1, 2, 3, 4, and 5 iterations of Bayesian optimization, respectively. (I) Success probability

of Bayesian optimization (red points) compared to uniform random sampling (see text).

Amongst the various choices of acquisition function for Bayesian
optimization, the most popular is arguably the expected improvement.
The expected improvement for molecule x, is defined as

EI(x,) = (max(ry, — R(x,),0)), (57)

where the angular brackets indicate the expected (average) value with
respect to the posterior distribution, r;, is the minimum function
value in the training data, and R is a random function sampled from
the posterior distribution. We then choose the molecule for which
ET is maximized. The expected improvement therefore considers our
current best guess for the minimum function value, and predicts the
molecule which will improve upon the guess the most. The expected
improvement can be calculated analytically with the formula

*
Fmin = Hy

EI(x,) = (ryy — 15)® )4 Tmin ~ Mo

a’/ = Umin = My Iy - — |
VK VK

where @(u) and ¢(u) are the normal distribution function and normal

density function, respectively, evaluated at point u. Both functions

(58)

K@
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can be accessed within interpreted programming environments such as
Python and R. Proof of Eq. (58) can be found in (Packwood, 2017).
Continuing with our example above, we can use Bayesian opti-
mization to predict the energy-minimizing orientation for the upper
N-pentacene molecule. The green curve in Fig. 5-B is the expected
improvement. It maximizes at 180 degrees, and therefore we perform
the DFT calculation for this orientation and update the training data by
adding this result to it. Fig. 5-C plots the posterior distribution again,
this time calculated from the updated training data. It can be seen that
the mean of the posterior distribution matches the exact blue curve
a little more closely. The expected improvement now maximizes at 0
degrees. Continuing in this manner (Figs. 5-D, 5-E), we see that the
global minimum is essentially reached after 4 iterations of Bayesian
optimization, corresponding to 9 training data points. This requires
9 DFT calculations and hence a computational time of around 9 x
20s = 3 minutes (excluding the negligible time required to calculate
the posterior distribution and expected improvement). In subsequent
steps, the Bayesian optimization algorithm searches in the vicinity of
the global minimum and attempts to improve on the result (Figs. 5-G,
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5-H). In Fig. 5-I, we plot the success probability (the probability that
the minimum energy in the training data is less than 0.01, and hence
sufficiently close to the global minimum). This probability was calcu-
lated by repeating Bayesian optimization 1000 times with the same
hyperparameters as before, but with the 5 initial training data points
chosen randomly each time. For the first few iterations of Bayesian
optimization, the success probability (red points) is comparable to the
result obtained when orientations are chosen at random (black points).
However, after about 6 iterations, the success probability for Bayesian
optimization increases, reaching over 80% after 10 iterations compared
to only around 10% for random sampling. Thus, Bayesian optimization
is clearly the preferred method for this case.

It should be noted that Bayesian optimization acquires information
from the domain X globally before converging to the global minimum.
This behavior is called exploration—exploitation. In the example above,
the exploratory behavior dominates for the first few iterations (where
data is acquired from across the domain and the success probability is
relatively low). Once sufficient data is acquired to estimate the location
of the global minimum, Bayesian optimization switches to exploitation
behavior as it hones-in on the global minimum. This behavior is in
contrast to that of gradient optimizers, which rely on local deriva-
tives to direct the search towards the nearest local minimum. For
the case of the data above, such a gradient optimizer may descend
into the shallow right-hand local minimum if the initial conditions
are not chosen appropriately. The exploration-exploitation behavior
of Bayesian optimization is therefore an enormous advantage when
multiple minima are present across the domain.

6. Emerging learning approaches

Until now, our review has focused on the status quo of ML appli-
cations to materials chemistry. In doing so, we hope to have prepared
the readers for engaging with the vast literature on this field. In this
section, we introduce a few ML methods which are emerging in this
field. Of the numerous new approaches which are entering this field,
we discuss the ones which appear particularly receptive to the unique
skills of computer science and math majors.

6.1. Ensemble methods

Ensemble methods employ the idea of combining the predictions of
several base estimators to improve the generalizability and robustness
over single estimators. Ensemble methods are classified into bagging
(bootstrap aggregation), boosting, and stacking methods.

The main principle of the bagging method is to build several esti-
mators independently from each other on bootstrapped subsets of the
training set and then taking (weighted) averages of the predictions. This
averaging process yields a more accurate estimate than each individual
predictor. Random forest (RF) is an example of bagging methods.

The boosting approach is based on building estimators sequentially
to reduce the bias of the combined estimators. The underlying rationale
is combining several weak models to produce a powerful ensemble.
Examples of boosting methods are adaptive boosting (Adaboost) and
gradient boosted trees (GBT).

Both bagging and boosting methods, in most of the cases, use a sin-
gle base learning algorithm, so that we have homogeneous weak learners
that are trained over different sets. However, there exist some methods
that utilize different types of base learners, resulting in heterogeneous
ensemble models.

Stacking methods belong to the above-mentioned heterogeneous
ensemble models that employ heterogeneous weak learners. These
learners are trained in parallel and their predictions are then combined
to form new feature vectors to train a new ML model called the meta-
model which, in practice, can be any ML model. For example, for a
regression problem, we could choose SVR, KKR, RF, and GBT models
as weak learners. For each of these learners, the prediction over the
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dataset will be collected into a column of a new feature matrix. This
feature matrix along with the original target vector are used to train
a meta-model. This two-level stacking method can be considered as a
generalization of the bagging method based on the above-mentioned
four weak learners, where the deterministic weights for the average
are replaced by the ones calculated from training the meta-model.
Generalization to multi-level stacking methods is straightforward.

Ensemble learning (EL) methods mentioned above are often in
the top ranking of many ML competitions, including Kaggle.!* For
Python user, many EL methods are implemented in Scikit-Learn li-
brary (Pedregosa et al., 2011). For readers who are not familiar with
programming, we recommend using PyCaret,'” an easy-to-use ML li-
brary where a few line of code is required for constructing ML models.
Both libraries are open source.

It should be noted that EL methods are essentially different from
federated learning (FL) approaches described in Section 6.3. While FL is
implemented by the same ML model at each local system with different
subsets of data and different model parameters, EL utilizes distinct ML
models with the same dataset.

Before reviewing RF and GBT, we give a brief introduction to the
decision tree method which is used as the base learner in both methods.

6.1.1. Decision tree

Decision tree is a non-parametric supervised learning method used
for classification and regression. This method is very popular in ML and
data mining due to its intelligibility and simplicity. The method aims to
create a model that predicts the value of a target variable by learning
simple decision rules inferred from the data features. A decision tree
model is constructed by recursively partitioning the feature space into
smaller and smaller subspaces, so that the samples within a subspace
having similar target values can be more easily identified. The final tree
will contain decision nodes and leaf nodes. A decision node has two or
more branches, each represents values for the feature under testing,
while the leaf node represents a decision on the target. The topmost
decision node is called the root node.

Suppose that node m contains a set, denoted by Q,,, of N,, samples.
For each candidate split § = (j,t,,) consisting of a feature j and
threshold ¢,,, the data is partitioned into two subsets:

0°I'(9) = {x = {x}, %y, ...,
Qrigh(g) = 0, \0"(6).

The quality of a candidate split of node m is then computed using
an impurity function for classification problem or loss function for
regression problem:

Xjr s Xy} € Qplx; <11,

left right )
G(Q,,0) = ——H(Q,'(0) + —— H Q).
m m

Here, N'“/' and N'¢/' are respectively the cardinalities of Q' and
Qf,fgh’; H is the metric for measuring the best split in each node.
For classification problem, the common metrics are Gini impurity or
information gain (based on entropy). In regression problems, MSE
or MAE is often used as such metric. The parameter § = (j,z,) is
then selected at each node such that the corresponding split candidate

minimizes the impurity, i.e.,

0* = argmin G(Q,,, ).
[)

Subsequently, the above process is repeated for subsets Qﬁ,ff 0") and
Qf,igh’(o*) until the maximum allowable depth is reached.

The prediction value at each leaf node will be assigned to be the av-
erage value of all the samples on that node for the regression problem.
The label for each leaf in a classification tree is a specific, deterministic
class or a probability distribution over the classes. Mathematically, a

14 https://www.kaggle.com/competitions
15 https://pycaret.readthedocs.io/en/latest/
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Fig. 6. Step by step splitting of the feature space for decision tree classification.

tree can be seen as a piecewise constant approximation where the value
on each subspace created from the splits is the average of target values
of the test sample on that subspace. Fig. 6 gives an illustration of a
tree learned from artificial data shown in dots through four splitting
steps. This is an illustration of a classification problem. The dataset is
a union of 5 clusters each of which contains 60 normally distributed
points centered randomly in the two-dimensional space. Clusters are
demonstrated by different colors. A split 6 is depicted by a line (or
hyperplane in multidimensional space). The tree becomes more and
more complicated when the depth increases. The tree that goes deeply
tends to learn highly irregular patterns, thus causes overfitting, i.e., has
low bias but very high variance.

6.1.2. Random forest

RF is one type of EL methods built on decision trees. The RF
model takes the average prediction of multiple decision tree models
trained on the whole or different subsets of the training set and/or
on the whole or different subset of features. This method, like other
bagging methods, helps to reduce the variance, therefore overcomes
the overfitting of each decision tree component, if any. Generally,
the performance boost in the final model is achieved at the expense
of small bias increase and some loss of interpretability. The training
and prediction phases of RF are very fast due to the simplicity of the
underlying decision trees. They can be parallelized easily because of
the entire independence of the individual trees. Furthermore, this is an
extremely flexible nonparametric model. In many cases, it outperforms
other methods which are under-fitted on some databases or tasks.

6.1.3. Gradient boosted tree

Decision trees of a fixed size are also commonly used as base
learners for gradient boosting. The method is built as an additive model
in a forward stage-wise fashion.

Suppose that we have a training set consisting of n samples. Let
X;, Y;, respectively be the feature vector and target value of the ith
sample in the training set. Let L(x,y) be an arbitrary differentiable
loss function, such as least squares for regression, binomial deviance,
or exponential loss for classification. The model is initialized with a
constant value

Fy(x) = argmin Z Ly, 7).
Y

At the kth step, let A, (x) is the decision tree fitted to pseudo-residues

[3L(y,-, Fk_l(xi))
ik =—|"""35 oy

fori=1,2,...,n.
OF;_1(x;) ]

In other words, we train A,(x) on the training set { (CTN My This
means that at each iteration, a tree is fitted on the negative gradient of
the given loss function of the training samples. The model is updated
along the way as

Fi(x) = Fi_1(x) + 7, hy (%),

where y, is chosen such that it minimizes the loss function

n
v = argmin )" L(y;, Fy_y (5) + 7y (x).
14 i=1
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6.2. Reinforcement learning

Reinforcement learning (RL) is based on the principle of dynamic
programming, where one or multiple agents dynamically interact with
an environment (see Fig. 7(a)) and maximize the returned rewards
so as to derive an optimal policy (or control actions, see Fig. 7(b)).
The environment in RL is usually formulated as a Markov decision
process (MDP), where a finite number of states is assumed and there is
a probability to switch from one state to another.

One important and interesting feature of RL is that it is a model-free
approach. In other words, one does not need to assume a system model,
but can just apply an action and observe the returned reward from the
environment to decide the next action.

We use the RL notions from the work of Sutton and Barto for
multiple agents, as described in Fig. 7(a) (where for simplicity we focus
our attention on the mathematical description for the one-agent model).
The agent and the environment interact with each other, where at
each time step r = 0, 1,2, ..., the agent observes the environment state
S, based on which it chooses a suitable action A,. Upon such action,
the agent receives a reward R,,; (which is a real number) and a new
environment state .S, ;. The essence of RL is therefore to find the set
of optimal actions A, so as to maximize the total reward, starting from
an initial action A4, and an initial environment state .S,. Note that the
agent in general does not know exactly the model of the environment,
i.e. how S,,; depends on .S, and A,, hence it needs to learn its actions
based on the observed states S, and received rewards R,. This is also a
merit of RL as a model-free approach.

Denote the sets of actions, states and rewards by A,,S, and R,,
respectively. Suppose that those sets contain finite numbers of elements
which can be randomly switched from one to another. Then the prob-
ability for the environment state and reward to occur at the time step
t, given the previous environment state and agent action, is

p(s',rls,a) £ Pr{S, =5, R, =r|S,_; =s,4A,_, = a}. (59)

The sequence of the probability function p(-) in (59) is often assumed
to be described by a MDP.

In RL framework, a discount rate y € [0, 1] is usually employed, and
the goal of the agent is to maximize the expected discounted return,

5
k
G = Z Y Ripkt
k=0

which reflects how the agent appreciates the future rewards. Since the
agent must determine the actions to achieve the above goal, it needs to
find the best policy to move at the next time step. Denote such policy
by = and the probability of taking action « in state s under policy = by
7(als). Consequently, the value function of a state s under a policy z,
denoted v,(s), is defined as

S, = s} s

where E_ denotes the expected value with respect to z. This function
is also called the state-value function for policy x. In a similar manner,

(60)

o]
e () 2 E [G|S, = 5] =E, { Z Y*Rigisn
k=0
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Fig. 7. Illustration for reinforcement learning (Bertsekas, 2021; Sutton & Barto, 2020).

we can define the action-value function q,(s, a) for policy = as follows.

S,:s,A,:a}.

(s
q,(s,a) 2 E,[G/|S; =s,A,=a] =E, { z 7th+k+1
k=0

(61)
Denote
v,(s) 2 max v (s)Vs €S, q.(s) = max 4,(s,a)Vs € S,a€ A. (62)
Noting that G, = R,,| + yG,,, one can obtain
0,(5) = max Y p(s'.rls, a)(r +70,(5")) (63)

s'r

and
4.(5,0)= Y p(s" rls, @) +y maxq.(s', ") (64)

s’
which are the Bellman optimality equations revealing how the values of
a state and an action depend on that of future states and actions. Those
equations show a strong relation of RL with dynamic programming,
where one wants to find the optimal policy to maximize the state-value
or action-value function by solving a Bellman equation. In fact, having
q.(s, a) makes it easier to choose actions.

In general, it is not easy to solve the Bellman optimality equations
above, and thus usually approximation methods are needed to find the
optimal policies. Policy iteration and value iteration are such methods
(see (Sutton & Barto, 2020) for details), but they require a complete
model of the environment and expensive computational expense. To
overcome the above drawbacks, Monte Carlo methods can be utilized,
where sample transitions of the MDP can be simulated and then aver-
aged in order to solve the Bellman optimality equations. Such Monte
Carlo simulations are based on experience, hence they are an example
of learning from experience methods. Letting V' be an estimate of v, for
states .S,, the Monte Carlo methods update becomes

V(S) < V(S) +alG, = V(S)] (65)

with a constant step-size a > 0.

Another remarkable class of methods for RL is called temporal-
difference (TD) learning. The simplest form of TD learning, called TD(0),
updates

V(S) < V(S) +alR, | + 7V (S;4) = V(SHI (66)
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The advantage of TD methods over Monte Carlo methods is that they
learn to act from the current actions, and do not need to wait until
the end of a sample process as in Monte Carlo methods. The popular
Q-learning algorithm is in fact an off-policy TD method, i.e. it is
independent of the policy being followed. Q-learning is represented by
the following update

O(Sy A) < O(Sp, A) + a[ Ry +y max Q(Syy, ) = O(Sy, A)), (67)

where O(S,, A,) is the action-value function to directly approximate the
optimal g¢,.

Finally, we introduce a type of RL method called policy gradient, in
which parameterized policies are learned. Denote 6 € R the policy
parameter vector, r(als,0) = Pr{A, = a|S, = 5,06, = 6} the probability
that action a is taken at time 7 given that the environment is in state s at
time 7 with parameter 0. Then policy gradient methods aim to maximize
a scalar performance index, denoted by J(), by updating the policy
parameter vector 6 in a gradient ascent, as follows,

0,1 =0, +aVJ(b,), (68)

where a > 0 is a step-size. Usually the gradient VJ(6,) is not known
exactly, hence a stochastic approximation of it, denoted by VJ(6,),
is employed. If the value functions are also utilized in the learning
process, then the methods are called actor-critic, where the former term
refers to the policy learning and the latter term indicates the value
function learning.

There have been only a few papers on utilizing RL for materials (Liu
et al., 2020a; Mills et al., 2020; Neil et al., 2018; Popova et al., 2018).
In (Liu et al., 2020a), RL was combined with DL to obtain a deep
reinforcement learning (DRL) approach for materials synthesis at the
atomic-scale (in particular thin-films using atomic layer deposition)
and the Stein variational policy gradient (SVPG) method was employed
to train agents for optimizing specific materials descriptors. Lattice-
based Monte Carlo simulations have been performed as an environment
for training agents, in which an initial atomic configuration and rate
parameters for distinct events which can occur were provided as inputs.
Consequently, the simulations proceed with the events based on their
probabilities. The state, action space, and rewards for agents are 2D
images of surfaces of the thin-film growth process, the rate of depo-
sition of atoms, temperature, and a reward function with the surface
roughness as its input.

Note that we do not introduce the background of DL and its uses in
materials chemistry, in order to keep the current review more concise
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Fig. 8. Illustration for the operation of federated learning.

and focused. Interested readers can refer to other works for such
purposes, see e.g., (Chibani & Coudert, 2020; Elton et al., 2019).

In (Neil et al., 2018), 19 new open-source benchmarks have been
proposed to explore the abilities of RL in de novo molecular design.
The SMILES notation (Section 2.1) has been employed to represent
molecular structures as labeled graphs with atoms as vertexes and
bonds as edges, and to encode them as sequences of symbols. Dif-
ferent reward functions have been used in (Neil et al.,, 2018) in-
cluding the SMARTS and Tanimoto similarity defined for fingerprint
vectors of molecules based on the Functional Connectivity Fingerprint
Counts (FCFC4) method for single-objective maximization, and a more
complex function for multi-objective maximization.

DRL and SMILES have also been employed in (Popova et al., 2018)
for de novo materials discovery. Here an approach named ReLeaSE
(Reinforcement Learning for Structural Evolution) was proposed in
which one generative and one predictive deep neural network (DNN)
were employed to train the system at two phases of the proposed
approach. In the first phase, both DNNs were separately trained using
supervised learning. In the second phase, the generative DNN acted as a
centralized agent, while the predictive DNN serves as the environment
in the RL framework. The set of actions was defined as an alphabet
containing letters and symbols utilized to define canonical SMILES
strings that are most commonly used to encode chemical structures,
whereas the set of states consisting of all possible strings in the alphabet
with lengths from zero to some fixed value T. The reward function was
set as a function of the predicted property of the material.

To this end, possibly what hinders the widespread adoption of
RL in materials discovery is formulating the problem into a rigorous
mathematical framework and choosing effective reward functions. We
anticipate that the combination of RL and DL, i.e., DRL may become
dominant methodology in this direction.

6.3. Federated learning
Unlike conventional ML approaches where local data from local

systems are shared with a data server (distributed ML) or with other
local systems (decentralized ML), federated learning (FL) proposes to
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share local model parameters without the need to share local data, as
illustrated in Fig. 8. As a result, the data privacy of local systems is
protected, which is critical in a number of applications, e.g., in medical
and health science where data of patients are confidential (Sheller et al.,
2020). Moreover, the number of model parameters are often much
smaller than the amount of data to be shared, therefore the amount
of information exchange in FL is lighter than that of conventional ML
approaches. Decentralized FL architectures consisting of local systems
directly sharing local model parameters with one another and operating
without the need for a central server hosting a global model are also
available.

Federated averaging, a simple FL implementation based on the
stochastic gradient descent (SGD) algorithm, is described in (McMahan
et al,, 2017). Suppose that there are K local systems (or clients)
collaborating to learn an ML model whose parameters are denoted
by w and suppose that an objective function in form of a finite-sum,
fw) & % >, fi(w), needs to be minimized, i.e.,

min f(w). (69)
weRd

Let k = 1,2,..., K be the index for the local clients, and P, be the set
of indexes of data points on client k. Letting n, denote |P,|, the (69)
can be rewritten as

y 2 Fyw),

i=1

min
weRd

(70)

where F,(w) £ nl Z fi(w). For details on implementing federated
k o
averaging over locallecrl){(ents we refer to (McMahan et al., 2017).

To the best of our knowledge, applications of FL in materials
chemistry-related problems are yet to be reported. As a nascent and
emerging methodology, FL seems to mainly be of interest in areas
such as medical care and finance, where data protection and privacy
are crucial (see, e.g., (Yang et al., 2019) for a discussion). Possible
directions for the adoption of FL in materials chemistry may arise
in situations where one of the parties in a collaboration belongs to
a private company and therefore needs to retain the confidentiality
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and ownership of data. Another direction is to combine FL with other
ML techniques in order to enhancing their performance and accelerate
materials discovery.

7. Illustration of ML for materials

The purpose of this section is to walk the reader step-by-step
through the basic ML workflow (after feature vectors have been created
and response variable data has been obtained) and compare the use of
some ML methods introduced in previous sections for a specific dataset.

In order to test some of the ML models introduced in Sections 5 and
6, we train a series of ML methods using publicly available datasets. We
make use of the QM7 dataset'® which contains 7165 molecules, each
composed of up to 23 atoms. QM7 dataset is a subset of the larger GDB-
13 (Blum & Reymond, 2009) dataset, which consists of nearly 1 billion
stable and synthetically accessible organic molecules.

The QM7 dataset provides 23 x 23 Coulomb matrices, their eigen-
spectra (resulting in a feature matrix of dimension 7165 x 23), and
atomization energies are computed for each molecule using DFT as
implemented in FHI-aims using the PBEQ hybrid functional. The target
vector (response variable values) y contains atomization energies in
units of kcal/mol.

Before proceeding, we examine the data at hand more closely. Fig. 9
illustrates the distribution of atomization energies—target values (left)
and the Pearson correlation of the atomization energies with each of the
columns in the feature matrix X (right). We test whether the energies
are normally distributed. To do so, we set up a classical hypothesis
test with p-value equal to 0.05. We use D’Agostino and Pearson’s
test that combines skew and kurtosis to produce an omnibus test of
normality (D’Agostino, 1971; D’Agostino & Pearson, 1973). Based on
our calculations we discover that the null-hypothesis (that the data is
not normally distributed) can be rejected.

The profile of the energy histogram is in fact right-skewed, as
seen in Fig. 9. The small density in the right-side of the histogram
implies a harder task for training regression models to make accurate
predictions for high-energy molecules (Fernandez et al., 2018). This
is a manifestation of data imbalance, a problem usually defined for
classification and possibly not common for regression. Due to data
imbalance, the regression model will likely return sharper predictions
for molecules with energy values in a neighborhood of the mean
and possibly give unacceptable estimates for molecules with large
energy values. Data imbalance appears to some extent in almost all
real-world applications, which may be caused by biased sampling or

16 http://quantum-machine.org/datasets/
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measurement errors. Even though several methods have been proposed
for dealing with imbalanced data, including simply harvesting more
data, so-called up/down samplings, and transformation of the vector
of target (response) variables, data imbalance remains a challenging
problem (see (Krawczyk, 2016)). Decision trees often perform well on
imbalanced datasets. In this methods, information from the tails can
also be extracted and processed by the model.

The Pearson correlation coefficient is a classical tool for quantifying
the degree of linear correlation between two sets of data. The graph on
the right of Fig. 9 shows that only the first four largest eigenvalues
of the Coulomb matrix have positive correlations with the atomization
energy, while the others have a negative correlation. Most of them
have correlations of large magnitude (0.2 or more), suggesting that they
should be retained when used to train the models.

We train models using four different methods and the QM7 dataset.
The methods are SVR (see Section 5.1.5), RF (see Section 6.1.2), GBT
(Section 6.1.3), and KRR (Section 5.1.4). For each model, 20% of the
dataset is held out as the test set, while the rest is used as the training
set. Grid search and cross-validation are used to tune hyperparame-
ters, and normalization is not applied. Scikit-learn libraries (Pedregosa
et al.,, 2011) are used for this numerical calculation. To compare the
performance of different ML methods, the mean square error (MSE) is
employed for comparison.

7.1. Parameter setting

For the SVR model, a linear kernel, i.e., K(x,y) = xTy, is chosen as
a simple baseline model, with regularization parameter set to 1.

The RF model was built using 20-fold cross-validation. Grid search is
performed for the number of estimators taking 25 points spaced evenly
on the interval (50, 150). We discover the optimal random forest model
from the above grid as the one with 108 estimators.

GBT for regression models was performed with 100 boosting stages.
The learning rate y, at each stage is equal to 0.1. The learning rate
controls the contribution of the weak learners in the final combination.
The number of boosting stages and learning rate strongly interact.
Smaller values of learning rate require a larger number of boosting
stages to maintain a constant training error. The loss function is chosen
to be the squared loss, so that the initial prediction constant function
Fy(x) takes the mean of the target values in the training set.

The KRR model was built with 10—fold cross validation. Grid search
is performed for regularization strength a taking 10 points spaced
evenly on the interval (10~'9,1075). The selected kernel is either a radial
basis function (rbf) based kernel given by,

Kppi(x, ) = exp(=7llx = ylI?),
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Fig. 10. Prediction results of ML methods on QM7 dataset. The dashed line indicates the predictions coincide with observations. The axes inserted within each of the graphs
demonstrate the distributions of the error for the training set and the test set. See on-line version of this article for the colors.

or a Laplacian kernel given below,

KLaplacian(x’ y) = exp(—rllx =y,

where ||-||; denotes the Manhattan distance. The parameter y is set to be
one of 10 points evenly sampled on a log scale in the interval (—12, -9).
The best KRR model from the above grid is the one with a« = 3.5938,
y = 2.1544, and with Laplacian kernel.

7.2. Numerical results

Simulation results for the employed methods are displayed in
Fig. 10. After choosing the parameters and after training the model over
the training set, we perform comparisons between observations and
the predictions of the values of atomization energies for each molecule
in the training set and test set. The observed values of the response
variables are represented by the x-coordinate and the predicted values
are represented as the y-coordinate.

Looking at the result of SVR, we see that there are many training
points that are far from the line y = x, indicating that the model has a
poor generalization error. We can also see that the linear kernel is too
simple to capture the non-linear nature of the data. Furthermore, the
effect of imbalanced data can be observed, as the data points with high
energies are poorly predicted as the model is biased towards the mean.

To this end, the RF model performs the best on the QM7 dataset,
followed by the KRR and GBT models with SVR being the worst
performer. Their MSE measurements are respectively 113.60, 137.45,
364.58, and 7002.42. The superior performance of the RF model might
be explained by the fact that it is a non-parametric model, and hence
that it makes no assumptions on the distribution of the data.
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8. Conclusions and outlooks
8.1. Accelerated materials discovery

Over the last decade, the integration of data science and compu-
tational chemistry and physics have resulted in new paradigms for
the design of new materials. Spearheaded by the Materials Genome
Initiative in the US,Y” (Liu et al., 2020b) as well as by analogous
programs around the world, use of high-throughput computational
methods has allowed systematic exploration of the chemical space (that
is, the set containing all possible molecules that can be, in principle,
created according to chemical rules (Dobson, 2004)) by overcoming
the intrinsic limitations of trial-and-error approaches, in an effort at
the intersection of chemistry, statistics and computer science. In this
arena, statistical and ML methods can play a leading role for deducing
predictive models for structure—property relationships. We therefore
end this paper by providing a general discussion about how ML is used
for real materials discovery.

The design of materials with targeted properties via chemical intu-
ition and trial-and-error has traditionally been the dominant approach
in materials chemistry. In the data-driven era, computational power
and statistics offer an avenue for by-passing the inefficiency bottlenecks
of this old approach, as well as to overcome limitations of human
experience. In a nutshell, the idea consists in exploiting atomistic
calculations to compute properties and structures for a limited set of

17 https://obamawhitehouse.archives.gov/sites/default/files/microsites/
ostp/materials_genome_initiative-final.pdf
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molecules which represents a sample of a high dimensional chemical
space. Then, by using the properties of the initial set of molecules to
train ML models and determine correlations among the structures and
their properties, and rules for predicting new materials can be deduced.

Conceptually, the most general strategy for the identification of
a material with desired target properties is the direct inspection of
the chemical space and in the determination of the properties for
each single molecule populating the chemical space. Such a program
is exclusively based on computational brute-force and turns to be
unpractical in most realistic situations. First of all, direct investigation
of the chemical space entails listing a countable, possibly infinite, col-
lection of molecules, which makes automatization an unfeasible task.
Additionally, the determination of physical and chemical properties
for each individual molecule, either via experimental measurement or
numerical computation, can be a very demanding task in terms of
processing time and resources.

A number of contributions have appeared over the last decade
using accelerated strategies for materials discovery based on ML meth-
ods, rather than brute-force methods. Besides the above-mentioned
work (Curtarolo et al., 2003) that paves the way to using atomistic
calculations and statistics in a coordinated way to extract patterns and
correlation in materials datasets (see also (Curtarolo et al., 2012)),
prediction of properties of dielectric polymers based on a KRR model
is illustrated in (Pilania et al., 2013). The concept in (Pilania et al.,
2013) is based on a superposition principle which is proven to pro-
duce effective regression for n-block molecules (n > 4) obtained by
assembling n molecular units taken from a set of allowed molecular
blocks and by training a model over 4-block polymers. The same
superposition principle for n-block dielectric polymers is exploited in
combination with a strategy for modifying existing structures with the
goal of designing novel materials with targeted properties in (Wang
et al.,, 2014). Additional examples of a scheme for the discovery of
polymers with high-dielectric constant crystalline structures presented
in (Mannodi-Kanakkithodi et al., 2016) (see also (Sharma et al.,
2014)).

As a paradigm of a strategy particularly suitable for scaling and
automatization as well as testing with experimental data, we illustrate
the approach of (Pilania et al.,, 2013) and (Wang et al., 2014) in
the following. The strategy involves an evolution operation on a set
of molecules, leading to sequences of generations of offsprings. An
iterative scheme is set up so that the new generations of molecules
undergo subsequent down selection and optimization until a class of
molecules with properties sufficiently close to a prescribed target is
discovered. A flow chart of the algorithm developed in (Mannodi-
Kanakkithodi et al., 2016) is displayed in Fig. 11. The core of the
algorithm is constituted by a ML model, trained off-line, for predictions
of a list of molecular properties. The purpose of exploiting statistical
regression is to allow on-the-fly predictions of properties for high
volumes of molecules bypassing time-consuming DFT computations,
thus guaranteeing up-scaling of the numerical platform.

A randomized set of molecules (or other types of materials) provides
the initial dataset from which both a training set as well as a testing set
for the ML algorithm are extracted. Chemical properties of the training
set molecules are obtained also off-line with DFT. Besides the standard
requirements to avoid poor generalization errors and overfitting, choice
of the training set should be representative of the chemical space,
so that meaningful predictions for more general molecules can be
effectively performed. Training sets in (Mannodi-Kanakkithodi et al.,
2016) and (Pilania et al., 2013) populated by 4-block molecules assem-
bled from a pool of seven elementary units are shown to successfully
produce predictions for properties of n-block molecules (with blocks
taken from the same pool of elementary units) for » up to 8.

Translation of chemical formulas into digital strings (feature vec-
tors) allows the necessary task of processing the information stored
in the training set, so that quantitative predictions can be performed
for new generations of molecules. This procedure originates from the
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Fig. 11. Conceptualization of a simple iterative loop for the accelerated discovery of
materials and structures.

assumption that a (somehow direct, although unknown) relation exists
between the desired physical property and the nature of the molecule’s
building blocks. Correlations between the chemical properties and
fingerprint entries can be unveiled by computing classical statistical
descriptors (such as, for vectorial fingerprints, the Pearson correlation
matrix). In this way, trends in the data can be observed and empirical
rules in terms of positive (constructive) and negative (destructive)
contributions of the individual chemical unit on the overall properties
of interest can be deducted. Both in (Mannodi-Kanakkithodi et al.,
2016) and (Pilania et al., 2013), features consist of simple enumeration
of the elementary building blocks resulting in the introduction of an
array (fingerprint) for each molecule. This choice responds to the
requirement that molecular features should be simple to automatize,
intuitive and easy to generalize, so that any molecules that can be
possibly created at each iteration, given the chemical space, can be
fingerprinted.

In the above references, search and discovery of new materials with
desired properties is conducted via direct inspection over a pool of can-
didates updated dynamically at each iteration of the algorithm. Pools
are composed of molecules for which properties are predicted on-the-
fly via ML, thus bypassing time-consuming DFT calculations. A score,
computed as a function of properties predicted via ML, is associated to
each molecule. Molecules with highest scores are stored as the solution
to the optimization problem. On the contrary, molecules with low score
may be disregarded or undergo evolution process ultimately giving rise
to a new generation and a new pool of candidates for screening in the
next iteration. Design of the evolution method leverages the availability
of high volumes of potential candidates for which properties can be
predicted with ML, instead of being computed with DFT. An important
design requirement, the evolution algorithm allows transfer of informa-
tion to the future generations so that molecules with properties close
to the desired target can effectively be discovered (see (Lookman et al.,
2019) where an approach aimed at extracting valuable information
from data uncertainty as well is shown).

A thorough, although highly inefficient, strategy for evolution is
enumeration, that is, the listing of all possible molecules that can
be assembled by simply considering all admissible combinations and
permutations of admissible elementary blocks. For instance, in the case
of n-block polymers obtained by combining a list of 7 admissible blocks
as in (Mannodi-Kanakkithodi et al., 2016; Pilania et al., 2013), the
number of potential candidates is exponential in n leading soon to an
unmanageable flow of operations even for relatively low n even after
ruling out duplicates or unfeasible candidates.

More efficient approaches for the generation of molecules or mate-
rials are based on rule-based chemical filters, random search and, most
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relevant, the use of genetic algorithms (see (Jain et al., 2013a) for a
comparison of the properties of the above-mentioned methods). These
are a family of computational models for the generation of individuals
starting from an initial set of ancestors via a cascade of cross-mutations
and mating (crossover). Finally, iterations are arrested when a stopping
criterion measured in terms of molecules performance (such as, for
instance, molecules’ score or number of molecules sufficiently close to
a target score) is met.

Even after completing the above protocol, investigations of thermo-
dynamical stability are required to determine which predicted materials
are expected to be synthesizable. Alongside classical methods such
as computation of formation energy or simple DFT-based structural
relaxation, nowadays one often encounters other methods. One such
method uses a criterion based on the energy convex hull, which is
particularly relevant for solid-state materials. This prescribes a com-
pound as being unstable if its DFT-computed ground state energy lies
(sufficiently) above the convex hull of the predicted formation energies
of all competing chemical phases in a chemical space (see (Akbarzadeh
et al., 2007; Armiento, 2020; Kozinsky & Singh, 2021) for details).

In (Balachandran et al., 2018), a ML model for classification of
perovskites was trained from a dataset of experimentally reported
perovskite compounds and utilized to predict new perovskites. Thermo-
dynamical stability of all discovered perovskites was investigated with
DFT computations and convex hull analysis using data from the Open
Quantum Materials Database (see Table 2). We also refer to (Li et al.,
2018), where various ML models are trained for the classification of
perovskite compounds as being stable or unstable based on the energy
convex hull criterion, and a number of available ML models were tested
for regression on the values of the energy convex hull as well as for
DFT-calculated formation energies.

In (Scheleder et al., 2020), the thermodynamic stability of two-
dimensional materials was assessed using a ML method for classifying
into classes corresponding to low, medium, and high stability. The
boundary for separating those classes was also based on the formation
energy and the energy above the convex hull.

8.2. Outlooks

Control of material properties via design of nano- and micro-scale
features is one of the most promising arena for applications of autom-
atized data-driven methods and ML. However, despite the availability
of vast and cheap computational resources, there remains significant
rooms for major advances.

One of the main difficulties lies in the understanding of highly
complicated correlations between atom-scale features and meso/macro-
scale material properties. Intuition and simple empirical rules may
suffice in a number of cases such as dielectrics (Pilania et al., 2013;
Wang et al., 2014), and perovskites (Balachandran et al., 2011; Jain
et al., 2013a). Nevertheless, the mapping between molecular features
and material properties remains in general one of the central open
problems in materials science. In addition to the ML methods presented
here, one could also apply DNNs, fuzzy models, and expert systems
to learn this mapping, just to name a few. While DNNs and fuzzy
models can be used to approximate unknown and uncertain material
feature—property relationships, expert systems provide a formal means
to incorporate the valuable knowledge of materials chemists into the
materials discovery process. While expert systems and similar methods
have not been widely reported in the materials chemistry literature yet,
they could serve as an intellectual framework for a genuine collabora-
tion between materials chemists, computer science, and math majors.
Having made it to the end of this review, we invite intrepid readers to
pursue this direction.
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