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Abstract 

Research interest in the Kinki region, southwestern Japan, has been aroused by the frequent occurrence of micro-
earthquake activity that do not always coincide with documented active fault locations. Previous studies in the Kinki 
region focused mainly on deep, large-scale structures and could not efficiently resolve fine-scale (~ 10 km) shallow 
crustal structures. Hence, characterization of the upper crustal structure of this region at an improved spatial resolu-
tion is required. From the cross-correlation of the vertical components of the ambient seismic noise data recorded by 
a densely distributed seismic array, we estimated Rayleigh wave phase velocities using a frequency domain method. 
Then, we applied a direct surface wave tomographic method for the measured phase velocity dispersion data to 
obtain a 3D S-wave velocity model of the Kinki region. The estimated velocity model reveals a NE–SW trending low-
velocity structure coinciding with the Niigata–Kobe Tectonic Zone (NKTZ) and the active Biwako-seigan Fault Zone 
(BSFZ). Also, we identified fine-scale low-velocity structures coinciding with known active faults on the eastern side of 
the NKTZ, as well as sets of low-velocity structures across the Tanba region. Furthermore, sedimentary basins manifest 
as low-velocity zones extending to depths ranging from ~ 1.5 to 2 km, correlating with those reported in previous 
studies. Our results therefore contribute towards fundamental understanding of earthquake faulting as well as tec-
tonic boundary and will be useful for hazard assessment and disaster mitigation.

Keywords: Ambient noise tomography, S-wave velocity model, Niigata–Kobe Tectonic Zone, Kinki region, Zero-
crossing method, Surface waves
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Introduction
To unravel heterogeneities within the crustal structure 
and upper mantle over a wide area, very few geophysi-
cal techniques with proven efficacy are available (Sue-
moto et al. 2020). Active-source geophysical techniques 
such as seismic reflection and refraction can be used 
to map and characterize geological structures at high 
resolution. A striking example is a study by Sato et al. 
(2009), in which deep seismic reflection profiling was 
employed to reveal several active reverse faults along 
a 135-km-long Osaka–Suzuka seismic profile. Like-
wise, Ito et al. (2006) conducted a similar survey along 
the N–S-trending Shingu–Maizuru line. However, this 
approach only provides details about fault locations 
and geologic boundaries along the profiles, and het-
erogeneities across the profiles can only be established 
from multiple profiles. Therefore, this approach is not 
well suited to constructing large-scale geological mod-
els for areas as large as the Kinki region.

Conversely, P- and S-wave travel-time tomography 
utilizing earthquake data over a wide area has provided 
significant results, resolving major structures such as 
faults and geologic boundaries (Kato et  al 2009, 2021; 
Matsubara et  al. 2008; Nakajima et  al. 2009; Yolsal-
Cevikbilen et  al. 2012). Even so, the downside of this 
approach is that the resolution of geological structures 
depends on the distribution of natural earthquakes 
(Suemoto et  al. 2020). Using teleseismic data, surface 
wave tomography can also be applied. However, due to 
the occurrence of attenuation and scattering as distant 
waves propagate, teleseismic propagation paths compli-
cate short-period (< 20 s) measurements (Bensen et al. 
2007; Yang 2014). Such short-period measurements are 
the core of our objectives in this study as we seek to 
resolve shallow crustal features within the Kinki region.

The emergence of ambient noise tomography (ANT) 
in recent years has transformed seismic tomography 
because it can circumvent the shortcomings of traditional 
earthquake surface wave tomography (Sabra et al. 2005; 
Shapiro et  al. 2005). The ANT method utilizes ambient 
noise to extract surface wave Green’s functions between 
pairs of seismic stations by cross-correlating continuous 
seismic waveforms recorded at those stations (Shapiro 
et  al. 2005; Weaver and Lobkis 2004). In this method, 
surface wave dispersion data between pairs of seismic 
stations can be estimated in the absence of earthquakes 
because each station can operate as a virtual source and 
a receiver (Shapiro et al. 2005; Weaver and Lobkis 2004). 
Since the inception and further developments of perma-
nent and temporary high-quality seismic networks, ANT 
has been successfully utilized to delineate subsurface 
geologic features in various geological settings (Chen 
et  al. 2018; Lin et  al. 2008; Nishida et  al. 2008; Shapiro 
et al. 2005). Suemoto et al. (2020) applied ambient noise 
surface wave tomography to estimate a high-resolution 
3D S-wave velocity structure of the San-in area using 
continuously recorded seismic waveforms by a seismic 
network comprising Hi-net stations (Obara et  al. 2005) 
and the Manten project array (Iio et al. 2018). Similarly, 
Nimiya et  al. (2020) successfully utilized continuously 
recorded ambient noise data by Hi-net stations to con-
struct the 3D S-wave velocity model of central Japan.

Numerous destructive earthquakes have occurred 
in the Kinki region (Hyodo and Hirahara 2003; Usami 
2003), particularly in the western side of the Kinki tri-
angle (Tanba region; Wakita 2013), bounded by the 
ENE–WSW strike–slip Arima-Takatsuki Tectonic 
Line (ATTL) to the south (Hallo et  al. 2019; Iio 1996; 
Katao et  al. 1997; Matsushita and Imanishi 2015) and 
the reactivated Niigata–Kobe Tectonic Zone (NKTZ) 
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to the east (Sagiya et  al. 2000). Additionally, there is 
an inconsistency between the hypocenters of micro-
earthquake events recorded across the entire Tanba 
region and the location of documented faults (Kato 
and Ueda 2019). Some of these events are linearly dis-
tributed between pairs of known faults, or in the same 
direction as known faults (Oike 1976). The chain of 
seismic alignment between pairs of known faults sug-
gests the possible existence of concealed active faults 
in those areas, or continuity of known fault systems. 
Therefore, constructing a high-resolution 3D S-wave 
velocity structure of the Kinki region contribute to 
investigating the possible existence of undocumented 
fault zones in areas characterized by aligned distribu-
tion of earthquake hypocenters.

Previous seismic studies in the Kinki region (e.g., 
Nishida et  al. 2008) focused mainly on deep, large-
scale structures and could not efficiently resolve fine-
scale (~ 10  km) shallow crustal structures and sharp 
geological boundaries. As such, we applied ambient 
noise tomographic inversion to provide an improved 
constraint on shallow-crustal structures and geological 
boundaries in the Kinki region using data recorded by 
the densely distributed permanent and temporary seis-
mic stations.

Geologic setting
In the Kinki region, southwestern Japan, the Eurasian 
(EUR) plate overrides the subducting Philippine Sea 
(PHS) oceanic plate (Aoki et al. 2016). The southeastward 
movement of the incipient Amurian plate (Amur Plate) 
with respect to the EUR plate and a shift in the subduc-
tion direction of the PHS plate (Taira 2001) has generated 
relatively new, large fault zones or continually reacti-
vates the old ones, a process referred to as neotectonics 
(Barnes 2008).

The major contributors in neotectonics faulting in the 
Kinki region comprise, among others, the reactivated 
Median Tectonic Line (MTL; black line in Fig. 1a), which 
has a right-lateral strike–slip fault movement (Barnes 
2008). The MTL divides the Kinki region into outer zone 
and inner zone (Matsushita 1963). On the one hand, the 
outer zone is characterized by four zonally arranged ter-
rains from north to south: namely, the Sanbagawa meta-
morphic terrain, Chichibu terrain, Hidaka terrain, and 
Muro terrain (SMZ, CT, HT, and MT; Fig.  1a). On the 
other hand, the zonal arrangement of geologic forma-
tions in the inner zone is not prominent, and it is charac-
terized by the Neogene volcanic and sedimentary series 
of the Tango-Tajima terrain (TTT), the Yakuno intrusive 
rocks and marine formations of the Maizuru zone (MZ), 

Fig. 1 a Map of the Kinki region showing the spatial distribution of tectonic structures. Red lines represent active faults (GSJ-AIST 2021), thick 
purple, yellow, and light blue lines represent the Niigata–Kobe Tectonic Zone (NKTZ), Rokko Active Fault Zone (RAFZ), and the Arima-Takatsuki 
Tectonic Line (ATTL), respectively. Also shown are the locations of the Median Tectonic Line (MTL), and tectonic divisions of the Kinki region, 
comprising Tango-Tajima Terrain (TTT), Maizuru Zone (MZ), Mino-Tamba Terrain (MTT), Ryoke Terrain (RT), Sanbagawa Metamorphic Zone (SMZ), 
Chichibu Terrain (CT), Hidaka Terrain (HT), and Muro Terrain (MT). The insert shows the location of the Kinki region within Japan. b Topographic map 
of the Kinki region. Black and red triangles indicate the locations of permanent and temporary stations, respectively. White, broken lines indicate the 
boundaries between the Northwestern Mountainland, Central Lowland, and Kii Mountainland
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Cretaceous granites of the Mino-Tanba terrain (MTT), 
and metamorphic and granitic rocks of the Ryoke terrain 
(RT; Fig. 1a) (Matsushita 1963).

Huzita (1980) delineated a triangular-shaped neotec-
tonics zone characterized by the E–W compression in 
the upper crust and undulating topography of alternat-
ing sedimentary basins and mountain ranges, called the 
Kinki triangle (gray-shaded area in Fig. 1a). This tectonic 
zone provided Kinki region with its civilizational home-
lands, including the Osaka, Nara, Kyoto and Ise basins 
(Barnes 2008). The Kinki triangle is characterized by 
numerous Quaternary active faults predominantly ori-
ented in the N–S direction and some NE–SW or NW–
SE strike–slip faults (Research Group for Active Faults of 
Japan 1991).

Around the Osaka area, numerous strike–slip and 
reverse active faults of diverse orientations exist 
(Research Group for Active Faults of Japan 1991). The sig-
nificance of these faults was highlighted by the highly cat-
astrophic 1995  Mw 7.2 Kobe earthquake, which resulted 
from the strike–slip displacements on the Rokko-Active 
Fault Zone (Kanamori 1995; Katao et al. 1997). In addi-
tion, a shallow crustal earthquake of  Mw 5.6 occurred in 
2018, proximal to the zone of intersection between the 
ATTL, the Uemachi and Ikoma fault zones (Kato and 
Ueda 2019; Sato et al. 2009). These earthquakes are a tes-
tament to how susceptible life is to displacements along 
these fault zones and highlight the need to identify zones 
prone to strong crustal movement in a quest to minimize 
the effects of destructive earthquakes. Such zones include 
fault zones which are difficult to ascertain from surficial 
evidence, as well as active and new fault systems, which 
are likely to be the locus of future events.

Data and methods
We utilized the vertical component of continuously 
recorded seismic waveforms by permanent and tempo-
rary stations from April 1 to September 30 during the 
year 2019. The permanent stations included 78 Hi-net 
stations, 1 Kyushu University station, 1 Tokyo University 
station, 1 Nagoya University station, 10 AIST stations, 14 
Kyoto University stations and 9 JMA stations, and tem-
porary stations comprised 104 Kyoto University Manten 
project stations (Iio et al. 2018; Katoh et al. 2018), that are 
distributed around the central part of the Kinki region. 
We note that velocity type seismometers with the damp-
ing constant of 0.7 and the natural frequency of 2  Hz 
were used for the Manten Project stations. The corre-
sponding poles ( p1 and p2 ) and zeros ( z1 and z2 ) are p1 
= − 8.7965–8.9742i, p2 = − 8.7965 + 8.9742i, z1 = z2 = 
0. Combining these set of stations enabled us to obtain 
a dataset with adequate short-period surface waves ray 
paths coverage and a subsequent 3D S-wave velocity 

model of high-resolution. Firstly, we computed the cross-
correlation of ambient noise to extract surface waves 
propagating between pairs of seismic stations. We then 
estimated Rayleigh wave phase velocity measurements 
between station pairs using the zero-crossing method 
(Ekström et  al. 2009). Finally, we constructed the shal-
low crustal 3D S-wave velocity structure by applying the 
direct surface wave inversion method (Fang et al. 2015).

Preprocessing and cross‑correlation
After partitioning daily seismic waveforms into 30-min-
long segments with a 50% overlap, we eliminated the 
instrumental response of each dataset. Next, cross-cor-
relation spectra for all the paired seismic stations were 
computed from the resulting seismograms (Ekström 
2014). Then, the daily cross-correlation spectra were 
stacked over a 6-month-long time series. The time-
domain cross-correlations computed from stacked 
cross-correlation spectra clearly shows the Rayleigh wave 
propagation between station pairs (Fig. 2).

Surface wave phase velocity measurements
Phase velocity measurements can be conducted in either 
the time domain or frequency domain. The time domain 
analysis requires the high-frequency approximation 
and only considers those interstation distances exceed-
ing three wavelengths (λ) (Bensen et  al. 2007; Lin et  al. 
2008; Yao et al. 2006). In contrast, the frequency domain 
approach has no theoretical limitation for interstation 
distances (i.e., zero-crossing method; Ekström et  al. 
2009). As such, interstation distances up to approximately 
one wavelength can be practically used (Ekström et  al. 
2009; Tsai and Moschetti 2010). In our study, we used the 
zero-crossing method to derive phase velocity measure-
ments between station pairs. This method is based on 
modeling cross-correlation spectra by the spatial auto-
correlation (SPAC) method (Aki 1957; Asten 2006) and 
uses the zero-crossing frequencies of the real part of the 
cross-correlation spectra. The SPAC method is premised 
on the assumption that ambient noise sources are homo-
geneously distributed and that ambient noise is predomi-
nantly surface waves (Aki 1957). Under this assumption, 
a Bessel function of the first kind and zeroth order can be 
used to model the real part of the vertical cross-correla-
tion spectra as follows:

where CCS is the cross-spectrum, f is the frequency, x 
represents the interstation distance, J0 represents the 
Bessel function of the first kind and zeroth order, and 
CR(f) represents the Rayleigh wave phase velocity. In 

(1)Real
(

CCS
(

f , x
))

= J0

(

2π fx

CR

(

f
)

)

,
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the zero-crossing method, we only focus on the zero-
crossing points where both sides of Eq.  (1) should be 
zero. The zero-crossing points are not sensitive to fluc-
tuations in the power spectrum of the background noise 
and non-linear filtering in the data processing (Ekström 
et al. 2009). Using zero crossings simplifies phase veloc-
ity measurements and stabilizes the estimation of phase 
velocities because phase velocity estimation is not 
affected by incoherent noise (Cho et al. 2021).

If fn represents the frequency of the observed nth zero-
crossing point of the cross-correlation spectrum, and Zn 
denotes the nth zero of the Bessel function, we can match 
each fn with the zero-crossing points of the Bessel func-
tion to have all the possible phase velocity dispersion 
curves according to the following equation:

 where m representing the number of missed or additional 
zero-crossing points, takes the values (0, ± 1, ± 2,…). 
Applying Eq. (2) for all observed values of fn yields numer-
ous possible dispersion curves.

We used the GSpecDisp package (Sadeghisorkhani 
et al. 2018) to estimate phase velocity dispersion curves 
uniquely by the zero-crossing method from the stacked 
cross-correlations. To reduce noise effects in the cor-
relations, we applied a velocity filter of 1–4.5 km/s with 
a taper interval of ~ 0.2  km/s. Then, we applied spectral 
whitening to each correlation for amplitude equaliza-
tion (Sadeghisorkhani et  al. 2018). With many possible 
phase velocities occurring at each frequency with regard 

(2)Cm

(

fn
)

=
2π fnx

Zn+2m
,

to Eq. (2) (colored dots; Fig. 3a), it is difficult to uniquely 
determine the phase velocity dispersion curves without 
using a reference velocity dispersion curve as a guide. 
To circumvent this, we manually picked the dispersion 
curve appearing closest to the reference dispersion curve. 
In the GSpecDisp, average velocities can be estimated by 
combining all cross-correlation spectra (average velocity 
module). We estimated average velocities in the period 
range from 2 to 8  s and used the result as a reference 
velocity for dispersion curve estimation in single station-
pair phase velocity picking mode in GSpecDisp (dashed 
black dots; Fig. 3a). Finally, we estimated phase velocity 
dispersion curves between all the possible station pairs 
(red circles in Fig. 3a).

For our dataset, the maximum measurable period 
required an interstation distance (x, in km) of at least 
three wavelengths (λ), defined as the r/λ ratio in GSp-
ecDisp (x/λ ≥ 3). For each cross-correlation function, 
the signal-to-noise ratio (SNR) was defined as the ratio 
between maximum absolute amplitude in the signal win-
dow (between arrival times corresponding to waves with 
1 and 4.5 km/s) and the root mean square amplitude in 
the noise time window (between 500 and 700 s). We used 
an SNR threshold of 10 to reject correlations with low 
signal. Finally, we obtained a total of 23,647 dispersion 
curves (Fig. 3c).

Direct inversion of the surface wave dispersion curves
Ambient noise tomography using phase velocity dis-
persion curves typically involves a two-step proce-
dure. Firstly, 2D phase velocity maps are constructed by 

Fig. 2 Cross-correlation functions showing the empirical Green’s functions between station pairs for frequencies ranging from 0.05 to 1.0 Hz. a 
Cross-correlation function for a station pair with an interstation distance of 57.18 km (shown in Fig. 3b), and b stacked cross-correlation functions 
from randomly selected station pairs, exhibiting Rayleigh wave propagation between paired seismic stations
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travel-time tomography at discrete frequencies. Secondly, 
pointwise inversion of dispersion data for 1D profiles of 
S-wave velocity as a function of depth at each grid point 
is implemented, and combining multiple 1D profiles 

subsequently yields the 3D S-wave velocity structure 
(Shapiro and Ritzwoller 2002; Yao et al. 2008). Nonethe-
less, a 3D S-wave velocity structure can equally be esti-
mated by direct inversion of dispersion data without the 

Fig. 3 a Observed phase velocity dispersion curves (upper panel) and the real part of the cross-correlation spectrum (lower panel). Red and black 
circles in the upper panel represent the selected points of the dispersion curve and the average phase velocity dispersion curve for the region, 
respectively. b Location of the station pair for which dispersion data are displayed in panel a. c Phase-velocity–frequency plot showing the 23,647 
selected dispersion curves for all the station pairs used
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intermediate step of constructing 2D phase velocity maps 
(Boschi and Ekström 2002; Feng and An 2010; Pilz et al. 
2012). Typically, these direct inversion approaches do not 
update the ray paths and sensitivity kernels for the newly 
constructed 3D models.

To estimate the 3D S-wave velocity structure from 
phase velocity dispersion data, we applied a direct sur-
face wave tomography method (DSurfTomo), which is 
based on frequency-dependent ray-tracing and a wave-
let-based sparsity-constrained inversion (Fang et  al. 
2015). This approach circumvents the intermediate step 
of constructing 2D phase velocity maps and iteratively 
updates the sensitivity kernels of period-dependent dis-
persion data (Fang et al. 2015). Furthermore, it accounts 
for the ray-bending effects of period-dependent ray paths 
by using the fast-marching method (Rawlinson and Sam-
bridge 2004). Accounting for such effects in the inversion 
is especially useful for short-period surface waves, which 
are significantly sensitive to the highly complex shallow 
crustal structure (Fang et al. 2015; Gu et al. 2019). There-
fore, this approach is a well-suited tool for determining 
the shallow-crustal structure of the Kinki region using 
short-period surface-waves dispersion data.

In tomographic inversion, the objective is to find a 
model m that minimizes the differences δti(f ) between 
the measured travel times tobsi (f ) and the calculated travel 
times ti(f ) from the model for all frequencies f  . The 
travel time for path i is given as

 where ti(f ) represents the computed travel times from a 
reference model which can be updated during the inver-
sion, vik denotes the bilinear interpolation coefficients 
along the ray path associated with the ith travel-time 
data, Ck(f ) is the phase velocity and its perturbation 
δCk(f ) at the kth two-dimensional surface grid node at 
frequency f  (Fang et  al. 2015). Surface wave dispersion 
is primarily sensitive to S-wave velocity. However, short-
period Rayleigh wave dispersion is also sensitive to the 
compressional (P-wave) velocity in the shallow crustal 
structure (Fang et al. 2015). The P-wave velocity pertur-
bations together with mass density are therefore explic-
itly included in the calculation of surface wave dispersion 
using empirical relationships given by Brocher (2005), 
with R′

α and R′

ρ as scaling factors, leading to the following 
equation:

(3)δti
(

f
)

= tobsi

(

f
)

− ti
(

f
)

≈ −

K
∑
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f
)

C2
k

(

f
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∣

∣

∣
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θk

δβk(zj) =

M
∑

l=1

Gilml ,

where θk denotes the one-dimensional (1D) reference 
model at the kth surface grid node, αk

(

zj
)

 , ρk
(

zj
)

 , and 
βk(zj) represent the P-wave velocity, the mass density, 
and the S-wave velocity, respectively. J indicates the num-
ber of grid points in the depth direction, and M = KJ  
represents a sum of all the model grid points. Equa-
tion (4) can be written as follows:

where d, G, and m represent the surface wave travel-time 
residual vector for all ray paths and discrete frequencies, 
data sensitivity matrix, and the model parameter vec-
tor, respectively. The damping and weighting parameters 
were applied to balance data fitting and smoothing regu-
larization. These inversion parameters were selected on a 
trial-and-error basis for our data considering the diverse 
patterns in inverted S-wave velocity models (weakly 
smoothed and strongly smoothed S-wave velocity mod-
els are shown in Additional file  1: Figures  S1 and S2, 
respectively).

We conducted two inversions with coarser and finer 
grid intervals between grid points in each horizontal 
direction for the entire Kinki region and the northern 
part of the Kinki region (with dense distribution of seis-
mic stations), respectively. The entire Kinki region was 
parameterized into 53 by 58 grid points on the horizon-
tal plane with 0.055° intervals between grid points in 
each horizontal direction, whereas the northern part was 
parameterized into 27 by 75 grid points on the horizon-
tal plane with 0.025° grid point intervals in the latitude 
and longitude directions. For both inversions, we used 9 
grid points along the depth direction (i.e., 0, 0.6, 1.2, 2, 
4, 6, 9, 12 and 16 km) and used dispersion data within a 
frequency bandwidth of 0.0714–1.0 Hz. Empirically, the 
fundamental mode Rayleigh wave phase velocity is pri-
marily sensitive to 1.1 × S-wave velocity at a depth of 
about 1/3 multiplied by its corresponding wavelength (λ) 
(Fang et al. 2015; Foti et al. 2014; Hayashi 2008). Conse-
quently, we averaged the observed Rayleigh wave phase 
velocities at depths of about 1/3λ and then multiplied 
them by 1.1 to construct the initial S-wave velocity model 
of the study area (i.e., a one-third wavelength transforma-
tion; Fig. 4). To account for the influence of topography 
on our S-wave velocity models, we subtracted altitude 
value from the depth value at each grid point. Elevation 
values were smoothed by applying a moving 2D average 
smoothing filter with a window size of 18 km by 18 km 
before correcting for topographic effects. The depth 

(5)d = Gm,
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shown in our final 3D S-wave velocity models is the 
depth below sea level (S-wave velocity models without 
topographic correction are shown in Additional file  1: 
Figures S3, S4, S5 and S6).

Results
To construct a 3D S-wave velocity structure of the Kinki 
region, we applied the direct surface wave tomographic 
inversion using Rayleigh wave dispersion curves. After 
inverting the dispersion data, we ensured reliability of our 
measurements by plotting the spatial ray paths coverage 
in the study area (Fig. 5). From Fig. 5, it is apparent that 
the ray paths density is sufficient to resolve small-scale 
geological features, especially in the most central part 
of the study area where seismic stations are densely dis-
tributed. At the edges, however, the ray paths coverage is 
slightly limited. We further corroborated reliability of our 
S-wave velocity model by conducting a checkerboard res-
olution test using anomalies of 0.12° (~ 13 km; Fig. 6a–c), 
0.2° (~ 22 km; Fig. 6d–f) and 0.4° (~ 44 km; Fig. 6g–i) for 
the entire Kinki region, with an amplitude of the veloc-
ity anomaly set to ~ 5%. The checkerboard resolution test 
(Fig. 6a–c) revealed that tectonic and geological features 
of ~ 13  km could be well resolved in the central part of 
the study area where temporary stations are densely dis-
tributed, and anomalies of ~ 22  km (Fig.  6d–f) could be 
observed in most parts of the study area. The anomalies 
of ~ 44 km (Fig. 6g–i) could be resolved across the entire 
Kinki region including edge of the study area.

Figure 7 displays selected horizontal slices (map views) 
at different depths, exhibiting the lateral distribution 
of S-wave velocities within the study area. The third 

Fig. 4 The initial S-wave velocity model used as a reference in the 
inversion process. The blue line and blue dots represent the average 
S-wave velocity model. The black dots represent all the interstation 
Rayleigh wave phase velocity dispersion curves measured using 
the zero-crossing method transformed to a depth–S-wave velocity 
approximation

Fig. 5 Ray paths derived from the inversion model at two selected frequencies: a 0.5 Hz and b 0.2 Hz. Also shown are the locations of permanent 
seismic stations (black triangles) and temporary seismic stations (red triangles). Blue lines indicate ray paths
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Fig. 6 Horizontal velocity perturbation slices of the checkerboard resolution test results with anomalies of three different sizes: a–c anomaly size of 
0.12° (~ 13 km), d–f anomaly size of 0.2° (~ 22 km), and g–i anomaly size of 0.4° (~ 44 km). The velocity amplitude was ~ 5%. Depth is shown above 
each horizontal slice
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Fig. 7 Horizontal slices of the S-wave velocity model at discrete depth levels below sea level. Depth is shown above each respective panel. a–f 
S-wave velocity models without showing the active faults (S-wave velocity models before correcting for the effects of topography are shown in 
Figure S4). NM and KM represent the prominent high-velocity anomalies
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dimension (depth, in km) is given in the numerical form 
above each horizontal slice. Significant S-wave velocity 
heterogeneities are apparent and are discussed in the fol-
lowing sections. These anomalies highlight tectonic and 
geologic features associated with the study area.

Two broad high-velocity anomalies can be observed in 
the displayed horizontal slices. The first anomaly (marked 
NM in Fig.  7d) appears to be trending in the NE–SW 
direction, whereas the second high-velocity anomaly 
(marked KM in Fig.  7d) occurs from the southern side 
of the study area, trending roughly NE–SW across the 

MTL. These anomalies agree with the results of Nishida 
et al. (2008), which indicated comparable S-wave veloci-
ties in those areas, particularly at a depth of about 2 km 
(see Fig.  20 in Nishida et  al. 2008). Between the two 
distinct high-velocity zones exhibited in Nishida et  al. 
(2008), an elongated low-velocity anomaly is evident. 
Likewise, a prominent low-velocity anomaly is appar-
ent in our results (Figs. 7, 8, 9), flanked on both sides by 
high-velocity zones (NM and KM) and trending roughly 
NE–SW. Although our results and those of Nishida et al. 
(2008) at a depth of about 2  km are similar, our results 

Fig. 8 . Horizontal slices of the S-wave velocity model at discrete depth levels below sea level. a–d S-wave velocity models overlaid with active 
faults (black lines). Depth is shown above each respective panel. Also shown is the location of the Median Tectonic Line (MTL)
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show prevalent small-scale (~ 13  km) low-velocity fea-
tures at a depth of about 2 km and shallower. In the work 
of Nishida et al. (2008), the S-wave velocity model is con-
strained to a minimum depth of about 2  km and such 
narrow low-velocity zones could not be revealed clearly. 
The higher lateral resolution of our velocity model at 
shallow depths (≤ 2 km) than Nishida et al. (2008) model 

ascribes to the use of shorter wavelength surface waves 
and the dense seismic array, particularly in the most 
central part of the study area where temporary stations 
(red triangles in Figs.  1b and 5) are densely distributed. 
Most importantly, prominent anomalies identified in 
our results correlate well with known geologic features, 

Fig. 9 a, b S-wave velocity structure at 1 km and 9 km depths below sea level, and c–f vertical S-wave velocity sections beneath the profiles 
marked in panel a, showing the variation of S-wave velocity with depth (bottom panels) and their respective elevation models in km (top panels). 
The solid black line represents the Median Tectonic Line (MTL), the dashed red closed-curve represents the Niigata–Kobe Tectonic Zone (NKTZ), 
and the thick solid blue line indicates the location of the Arima-Takatsuki Tectonic Line (ATTL). Black triangle represents the location of Hokusetsu 
mountains. Thin, dashed black closed-curves show the locations of major sedimentary basins (SB, Sanda basin; FB, Fukuchiyama basin; OB, Osaka 
basin; NB, Nara basin; OoB, Oomi basin; KB, Kyoto basin; and IB, Ise basin). Also shown on the depth slices are the probable locations of the Kawachi 
plain, Nara basin (NB), Uemachi Fault Zone (UFZ), Ikoma Fault Zone (IFZ), Biwako-seigan Fault Zone (BSFZ), NKTZ, Osaka basin (OB), and Ise basin (IB)
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including fault zones, sedimentary basins, and mountain 
ranges.

Interpretations
The high S-wave velocity features observed in the north-
western part of the Kinki region (marked NM in Figs. 7d 
and 9b) are attributable to the presence of the Yakuno 
intrusive rocks and the Mino/Tamba belts (Fig. 1a). The 
Yakuno intrusive rocks constitute the Maizuru zone, 
and the Mino/Tamba belts are Jurassic accretionary 
complexes composed of non-marine sediments, and the 
extensively distributed granite batholith (Matsushita 
1963; Nakae 1993; Nakajima 1994). Moderate–low ray 
paths coverage towards the edges of the study area com-
promises the resolution of our S-wave velocity model. 
However, the extensive low-velocity anomaly labeled 
NLV in Fig. 7a is attributable to the Neogene volcanic and 
sedimentary series of the Tango-Tajima terrain (Matsu-
shita 1963). The high velocities on the southeastern side 
of the study area may be indicating the presence of the 
zonally arranged Paleozoic and fossiliferous Mesozoic of 
the Chichibu terrain, and the scanty fossils along with the 
undivided Mesozoic of the Hidaka terrain on the south-
ern side of the MTL and the granitic rocks of the Ryoke 
terrain to the northern side of the MTL (Fig. 1a).

A prominent elongated NE–SW trending low-velocity 
anomaly occurring between the high-velocity anomalies 
denoted by NM and KM (Figs.  7f and 9b) is observed. 
This low-velocity feature is consistent with the location 
of the Niigata–Kobe Tectonic Zone (NKTZ, Fig. 1a) and 
the Biwako-seigan Fault Zone on the western shoreline 
of Lake Biwa (BSFZ; Figs. 9b and 11a). The BSFZ is con-
stituted of the NNE–SSW-trending west-dipping faults 
separated by clear small gaps or steps (e.g., the Zeze, Hiei, 
Katata, Hira, Katsuno, Kamidera, Aibano, and Chinai 
faults; Fig.  11a), and is reported to have a reverse fault 
sense of east side subsidence (Takemura et al. 2013).

Both the western and eastern sides of the NKTZ are 
characterized by conspicuous fault systems, with some 
major faults running through geological units, such as the 
Yagi-Yabu faults (YGF-YBF) and the Mitoke Fault (MTF) 
(Mogi et al. 1991). The intervening spaces between fault 
pairs such as the YGF–YBF and MTF faults are often sit-
uated in the terrace and alluvial plain (Katsura 1990). In 
our results, the low-velocity anomaly observed between 
the YGF–YBF and the MTF (Fig. 11) probably represent 
sedimentary units within and around the Fukuchiyama 
basin (FB), but may also be indicating a possibility of 
the existence of active faults interconnecting these fault 
pairs.

Distinct low-velocity anomalies occur at the Sanda 
basin (SB), FB, Osaka basin (OB), Nara basin (NB), Kyoto 

basin (KB), Oomi basin (OoB), and the Ise basin (IB) 
(Fig.  9). The OB manifest as a near-elliptical low-veloc-
ity zone, with the northern and southern edges of this 
zone appearing to be oriented ENE–WSW and NE–SW, 
respectively. The low-velocity values in this area are likely 
to be representing the Plio-Pleistocene Osaka Group 
sediments (Itihara et al. 1997). The ENE–WSW trending 
northern boundary of the OB coincides with the location 
of the Arima-Takatsuki Tectonic Line (ATTL; blue line 
in Fig. 9a), which is nearly parallel to the MTL (Mitchell 
et  al. 2011). Based on this notion, the ATTL marks the 
boundary between high-velocity zones (mountainous 
regions; e.g., the Hokusetsu Mountains) and low-velocity 
zones (basins; e.g., the SB and OB in Fig. 9a).

According to Hallo et al. (2019), the OB is bounded by 
two near-parallel reverse faults on its eastern margin, the 
Uemachi Fault Zone (UFZ) and the Ikoma Fault Zone 
(IFZ). However, the effect of these fault zones is not clear 
in our results. Even so, our results reveal a low-velocity 
feature stretching to deeper parts of the displayed vertical 
sections (Fig. 9c) occurring between known locations of 
the UFZ and IFZ. This low-velocity anomaly corresponds 
to a sub-basin of the OB between the elevated areas of 
Ikoma and Uemachi Upland (Fig.  9c), designated the 
Kawachi plain (Hatayama et al. 1995). The high-velocity 
basement material exhibits undulating topographic pat-
tern, with some synclinal parts representing depressional 
areas in which deep sedimentary basins occur and anti-
clinal parts corresponding to the basement upheavals or 
mountain ranges (Figs.  9c–f and 10c–d). Since surface 
wave inversion is significantly sensitive to the presence 
of sediments, the low-velocity anomalies observed at 
depressional areas are postulated to be representing the 
prevailing thick sediments (Miyamura et al. 1981; Nakay-
ama 1996; Takemura 1985). At the Ise basin (IB, Fig. 9e), 
the high-velocity material appears to have subsided sig-
nificantly. This subsidence may be reflecting the effects 
of the Kuwana and the Yokkaichi reverse faults, which 
form part of the nearly N–S trending Yoro fault system 
(Research Group for Active Faults of Japan 1991). Simi-
lar discontinuities within the high-velocity material are 
evident beneath the OB and KB low-velocity material 
(Fig.  9c–f), likely to be representing the effects of the 
NKTZ and/or BSFZ.

To assess the seismic activity correlating to the distri-
bution of anomalous zones identified in this study, we 
superimposed earthquake hypocenters for the period 
2001–2012 (Yano et  al. 2017) on the S-wave veloc-
ity model (Figs.  10a and 11b). Numerous earthquake 
hypocenters are observed across the high-velocity 
zone on the western side of Hira mountain (Mt. Hira in 
Fig.  11b). By contrast, aligned hypocenter clusters are 
evident within the NE–SW trending low-velocity zone 
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Fig. 10 a Map of seismic events that occurred during the January 2001 to December 2012 period (Yano et al. 2017) superimposed on the S-wave 
velocity model horizontal slice at 3 km depth below sea level. Plotted hypocenters (black dots) are for earthquakes ranging from 0 to 6.5 in moment 
magnitude for depths shallower than 12 km. Blue arrow indicates the location of dense distribution of earthquake hypocenters along the western 
part of the Kii Mountainland. b Distribution of active faults superimposed on the S-wave velocity model horizontal slice at 3 km depth below sea 
level. Solid red lines represent active faults documented before this study (Research Group for Active Faults of Japan 1991). Thick dashed black 
closed-curve and a solid green line indicate the locations of the Niigata–Kobe Tectonic Zone (NKTZ) and the Arima-Takatsuki Tectonic Line (ATTL), 
respectively. Also shown are the locations of the Median Tectonic Line (MTL), Yamada Fault (YDF), Yamasaki Fault (YSF), Jumantsuji Fault (JMF, a 
member of the ATTL), Yabu Fault (YBF), Yagi Fault (YGF), Mitoke Fault (MTF), Hanaori Fault (HOF), Kizugawa Fault (KZF), Suzuka Fault (SKF), Yokkaichi 
Fault (YKF), Yanagase Fault (YNF), Uemachi Fault Zone (UFZ), Ikoma Fault Zone (IFZ), Tanba Block (TA), Hokutan Block (HO), and the Maizuru Block 
(MA). c–f Vertical sections showing the S-wave velocity variation beneath the profiles marked as solid magenta lines in b. Inferred locations of the 
Kyoto basin (KB), Ise basin (IB), Lake Biwa and the Biwako-seigan Fault Zone (BSFZ) and/or Niigata–Kobe Tectonic Line (NKTZ) along the profile are 
also shown on the vertical sections
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consistent with the location of the NKTZ (Fig.  10a). 
Besides these notable clusters, the northwestern part of 
the Kinki region has a wide distribution of hypocenters, 
some of which are aligned in the same trend as elon-
gated low-velocity zones or along the low- and high-
velocity zones interface (Figs.  10a and 11b). Some of 
the linear low-velocity zones that do not coincide with 
known active fault locations but exhibiting chains of 
earthquake hypocenters (Fig. 11b) may be representing 
the weathering effects and sediments associated with 
the activity of undocumented faults or fault zones.

The low-velocity zone along the western part of the 
Kii Mountainland (blue arrow in (Fig. 10a) show a dense 

distribution of earthquake hypocenters. These conspicu-
ous seismic events are bounded to the north by the MTL 
and occur mainly within the Sambagawa and Chichibu 
metamorphic belts. The driving mechanisms of this seis-
mic cluster have been discussed from different point 
of views in other studies (e.g., Kato et  al. 2014; Maeda 
et al. 2021). In particular, Kato et al. (2014) attribute the 
observed low-velocity anomaly and a low Poisson’s ratio 
to the presence of fluid-filled cracks, with fluids such as 
water or partial melt being the key factors driving the 
increased seismicity; whereas, Maeda et  al. (2021) posit 
that the dense seimic events are likely to be controlled 
by lithological properties of the crust, and Kanamori 

Fig. 11 a Enlarged view of the northern part of the Kinki region (shown in Fig. 9) showing the perturbation of S-wave velocity at a depth of 1 km 
below sea level. Also shown are the locations of the Yamada Fault (YDF), Yamasaki Fault (YSF), Yagi-Yabu Fault (YGF-YBF), Mitoke Fault (MTF), Hanaore 
Fault (HOF) and the Biwako-seigan Fault Zone members (Chinai Fault, CF; Aibano Fault, AF; Kamidera Fault, KF; Katsuno Fault, KtF; Hira Fault, HiF; 
Katata Fault, KaF; Hiei Fault, HF; Zeze Fault, ZF) (Kaneda et al. 2008). b perturbation of S-wave velocity at a depth of 3 km below sea level, overlaid 
with earthquake hypocenters (black dots; Yano et al. 2017) and active faults. Black triangles represent the Hira and Hiei mountains. Solid black lines 
show the location of documented active faults (Research Group for Active Faults of Japan 1991)
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and Tsumura (1971) associate the increased seismic-
ity observed on this low-velocity zone with the regional 
structural heterogeneities due to the past activity of the 
MTL.

Conclusions
We used data continuously recorded by a dense seismic 
array consisting of 221 permanent and temporary seismic 
stations to estimate a high-resolution shallow 3D S-wave 
velocity model of the Kinki region. S-wave phase velocity 
measurements between station pairs were derived using 
the zero-crossing method in the frequency domain. We 
then applied a direct surface wave tomographic inver-
sion using high-frequency ambient noise data (0.0714–
1.0 Hz). Our results revealed that S-wave velocities vary 
significantly in the vertical and horizontal directions, 
which is consistent with the geological heterogenei-
ties of the Kinki region. We attribute the conspicuous 
high-velocity zones identified in the northwestern and 
southeastern parts of the study area to the shallow base-
ment material, mountainous regions, or sedimentary 
complexes. Sedimentary basins manifest as low-velocity 
zones. Using horizontal and depth slices of the S-wave 
velocity model, we estimated the locations of the recently 
reactivated Niigata–Kobe Tectonic Zone and the highly 
active Arima-Takatsuki Tectonic Line on the northern 
boundary of the Osaka basin. Also, our results clearly 
reveal the effects of the active Biwako-seigan Fault Zone 
on the western coast of Lake Biwa (Fig. 8e–f).

We also identified several fine-scale low-velocity tec-
tonic structures, coexisting with known active faults, 
such as the N–S-, ENE–WSW-, and NE–SW-trending 
active faults on the eastern side of the Niigata–Kobe Tec-
tonic Zone. Our results revealed elongated low-velocity 
features that are not consistent with known active faults, 
likely to be indicating a possible existence of unidenti-
fied faults on the northwestern side of the Kinki region 
(Fig.  11). These findings allude to the improved resolu-
tion of our S-wave velocity model compared with pre-
vious studies of the Kinki region. The observed linear 
low-velocity zones characterized by aligned distribu-
tion of earthquake hypocenters will be useful for hazard 
assessment and disaster mitigation. The alternating pat-
tern of subsided and uplifted zones observed in the verti-
cal slices of our S-wave velocity model is consistent with 
the tectonic history of the Kinki triangle, which has been 
dominated by the E–W compressional movement and 
has numerous active faults of diverse orientations. These 
results improve our understanding of shallow crustal 
structure in the Kinki region. Furthermore, a good cor-
relation between heterogeneities in the S-wave veloc-
ity model and the spatial distribution of fault traces and 
other geologic features in the Kinki region suggests that 

the approach adopted in this study can be utilized as 
an effective method for unraveling the complex crustal 
structure of environments akin to the Kinki region.
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Additional file 1: Figure S1. Weakly smoothed S-wave velocity models 
with topography correction. This figure is relevant to Figure 7, but the 
smoothing parameter in velocity inversion is weaker. (a–f ) S-wave veloc-
ity models overlaid with active faults (black lines). Figure S2. Strongly 
smoothed S-wave velocity models with topography correction. This figure 
is relevant to Figure 7, but the smoothing parameter in velocity inversion 
is stronger. (a–f ) S-wave velocity models overlaid with active faults (black 
lines). Figure S3. Weakly smoothed S-wave velocity models without 
topographic correction. This figure is relevant to Figure S1. (a–f ) S-wave 
velocity models overlaid with active faults (black lines). Figure S4. Moder-
ately smoothed S-wave velocity models without topographic correction. 
This figure is relevant to Fig. 7. (a–f ) S-wave velocity models overlaid with 
active faults (black lines). Figure S5. Strongly smoothed S-wave velocity 
models without topographic correction. This figure is relevant to Figure 
S2. (a–f ) S-wave velocity models overlaid with active faults (black lines). 
Figure S6. S-wave velocity perturbation of the northern part of the Kinki 
region without topographic correction. (a) S-wave velocity perturba-
tion at a depth of 1 km below sea level. Also shown are the locations of 
the Yamada Fault (YDF), Yamasaki Fault (YSF), Yagi-Yabu Fault (YGF-YBF), 
Mitoke Fault (MTF), Hanaore Fault (HOF) and the Biwako-seigan Fault Zone 
members (Chinai Fault, CF; Aibano Fault, AF; Kamidera Fault, KF; Katsuno, 
KtF; Hira Fault, HiF; Katata, KaF; Hiei Fault, HF; Zeze Fault, ZF). (b) S-wave 
velocity perturbation at a depth of 3 km below sea level. Solid black lines 
represent documented active faults.
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