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ABSTRACT: Binary alloy catalysts have the potential to exhibit higher
activity than monometallic catalysts in nitrogen activation reactions.
However, owing to the multiple possible combinations of metal elements
constituting binary alloys, an exhaustive search for the optimal
combination is difficult. In this study, we searched for the optimal
binary alloy catalyst for nitrogen activation reactions using a
combination of Bayesian optimization and density functional theory
calculations. The optimal alloy catalyst proposed by Bayesian
optimization had a surface energy of ∼0.2 eV/Å2 and resulted in a
low reaction heat for the dissociation of the N�N bond. We
demonstrated that the search for such binary alloy catalysts using
Bayesian optimization is more efficient than random search.

1. INTRODUCTION
Ammonia has emerged as an important hydrogen carrier and is
also an important raw material for synthesizing nitrogen-
containing compounds such as nitrogen fertilizers and
chemicals.1−3 Nitrogen fixation�the direct synthesis of
ammonia from the abundant nitrogen gas in the atmos-
phere�is a very important process. However, since nitrogen is
essentially an inert gas owing to its strong triple bond, a large
amount of energy is required for its activation. The Haber−
Bosch process is well known as the most efficient industrial
method for synthesizing large quantities of ammonia.4 This
process synthesizes ammonia from nitrogen and hydrogen
gases at very high temperatures (>400 °C) and pressures
(>100 atm) using inexpensive iron-based catalysts. However,
the process accounts for 1−2% of the annual global energy
usage and burdens the environment considerably.2,5 Therefore,
it is necessary to develop a catalyst that can promote ammonia
synthesis under milder conditions than those employed in the
Haber−Bosch process. So far, homogeneous6,7 and heteroge-
neous8,9 catalysts have been investigated for ammonia
synthesis.
The rate-determining step in the metal-catalyzed ammonia

synthesis process is the dissociative adsorption of nitrogen
molecules on the catalyst surface.10−12 The triple bond of
nitrogen is very strong and requires a very high bond
dissociation energy (∼226 kcal/mol).13 Ammonia synthesis
requires high temperatures to induce the dissociative
adsorption of nitrogen molecules. Therefore, ammonia syn-
thesis under mild conditions necessitates the development of a

catalyst that can activate nitrogen molecules at low temper-
atures.
Binary alloys have exhibited higher catalytic activity than

pure metal catalysts and, consequently, have attracted
considerable attention as catalysts.14−20 Alloy catalysts that
can promote methane activation21 and CO hydrogenation18 or
control the selectivity of hydrogenation−dehydrogenation
reactions19 have been proposed before. Similarly, alloy
catalysts that exhibit superior activity compared to iron-based
catalysts have also been proposed.14,15 Nitrogen activation
should be achieved under milder conditions by optimizing the
composition of alloy catalysts. However, since many
combinations of metal elements constituting binary alloys are
possible, it is difficult to conduct an exhaustive search for the
optimal combination.
When the number of search targets is large, it is nearly

impossible to perform an exhaustive search on a realistic time
scale. To search for a target that satisfies the required
conditions, efficient sampling must be ensured. Recently,
Bayesian optimization (BO) has been revealed to be an
efficient method for sampling from a huge number of search
targets.22 BO maximizes or minimizes an objective variable
(function) based on some explanatory variables (descriptors).
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The optimal value is proposed based on an acquisition
function, which is a function that takes into account the
predicted value (mean) and predicted variance obtained by
Gaussian process regression.23,24 Various acquisition functions
have been designed to propose globally optimal values by
BO.25 In materials science, BO is used to search for
compositions and structures that can endow certain optimal
physical properties.26−31 Furthermore, BO is widely used in
chemistry to optimize catalysts and synthetic conditions.32−34

In recent years, not only BO but also various informatics
methods have been introduced in the fields of catalysis and
reactivity prediction.35−39

In this study, we explore the optimal catalyst for promoting
the dissociation of the N�N bond�the rate-determining step
in ammonia synthesis, by combining BO and density
functional theory (DFT)40,41 calculations. Using three
acquisition functions and by comparing the results of the
three BOs and random sampling, we demonstrate that the
search for alloy catalysts via the former is more efficient than
that via the latter. To the best of our knowledge, this is the first
study wherein BO and DFT calculations are combined to
search for the best nitrogen activation alloy catalysts.

2. COMPUTATIONAL DETAILS
2.1. Acquisition of Alloy Structures. The structures of

binary alloys used in this study were obtained from automatic-
FLOW for materials discovery (AFLOW).42 AFLOW is a
database based on the results from calculations with the
Vienna Ab initio Simulation Package (VASP).43−46 The tool
AFLOW-CHULL plots the relationship between composition
and enthalpy of formation (convex hull diagram) for the alloys
in the database. We added to the dataset the alloy crystal
structures with negative enthalpies of formation, located at the
bottom of the convex hull diagram. The dataset in this study
consisted of 307 alloys and was identical to the dataset used in
the previous study.21

2.2. DFT Calculations. 2.2.1. Surface Energy Calcula-
tions. The crystal structures of the alloys obtained were cut
along the (111), (110), (101), (011), (100), (010), (001),
(111̅), (101̅), (11̅1), (11̅0), (011̅), and (1̅11) planes, and slab
models with alloy layers as thick as two repeating units and a
15 Å vacuum layer were created. The surface energy of each
alloy was calculated with DFT using the created slab model.
The surface energy of an alloy is defined as follows

(1)

Here, Eslab and Ebulk are the energies in the slab model and bulk
state of the alloy, respectively; nslab and nbulk are the numbers of
atoms in the slab and bulk models, respectively; and S is the
area of the alloy surface in the slab model. We adopted the slab
model with the lowest surface energy for each composition.
DFT calculations were performed using CASTEP as

implemented in Materials Studio 16.1.47 The Perdew−
Burke−Ernzerhof (PBE) functional48 and on-the-fly generated
ultrasoft pseudopotential49 were used. The cutoff energy of the
plane-wave basis set was set to 400 eV, and the convergence
condition for the self-consistent field (SCF) was set to 1.0 ×
10−6 eV. The Brillouin zone was sampled with a spacing of 2π
× 0.05 Å−1 using the Monkhorst−Pack method.50 These
surface energies were already calculated in our previous
study.21

2.2.2. N−N Bond Dissociation on Alloy Surfaces. The slab
models created for the adopted surfaces comprised a four-atom
thick alloy layer and a 15 Å vacuum layer. Geometry
optimization was performed with the fixed bottom two layers
of each alloy slab model. Two nitrogen atoms were placed on
the surface of the optimized slab, and geometry optimization
was performed. All atoms except the nitrogen atoms were fixed.
The reaction heat ΔrH for N�N bond cleavage is expressed
by the following equation

(2)

Here, E2N+slab is the energy of the slab model of the alloy with
two nitrogen atoms, Eslab is the energy of the optimized slab
model of the alloy, and ENd2

is the energy of the nitrogen
molecule.
These calculations were performed using VASP. The PBE

functional was used. The Kohn−Sham equation was solved by
the projector-augmented wave method using a plane-wave
basis set.51 The cutoff energy of the plane-wave basis set was
set to 500 eV, the convergence condition for SCF was set to
1.0 × 10−5 eV, and the convergence condition for structural
optimization was set to 0.1 eV/Å. The Brillouin zone was
sampled at intervals of 2π × 0.05 Å−1.

2.3. Procedure for Bayesian Optimization. BO was
performed on the dataset consisting of 307 stable alloy surfaces
using PHYSBO.52 The Gaussian kernel approximated by the
random feature method was used as the kernel function for
Gaussian process regression.53 Hyperparameters were opti-
mized by maximizing the Type II likelihood.23 The surface
energy at the most stable surface of the binary alloy and the
reaction heat of N�N bond cleavage were employed as
explanatory and objective variables, respectively. As the initial
data for performing BO, we used 30 data points obtained by
equally spaced sampling from an alloy dataset sorted by surface
energy. BO was performed using three different acquisition
functions�the probability of improvement (PI),54 expected
improvement (EI),55 and Thompson sampling (TS)�56,57 for
20 cycles each. For comparison, 20 cycles of alloy search were
performed by random sampling.

3. RESULTS AND DISCUSSION
3.1. Setting Explanatory and Objective Variables. The

best catalyst for the promotion of nitrogen activation would be
the one that lowers the activation barrier for the dissociation of
the N�N bond. However, calculation of the activation barrier
involves a large computational cost. The Brønsted−Evans−
Polanyi relationship suggests a linear relationship between the
activation energy and heat of reaction for elementary
reactions.58 Therefore, the heat of reaction for N�N bond
cleavage, instead of the activation energy, was used as the
objective variable in this study.
The reactions investigated in this study are surface reactions.

Even for the same metal, surfaces with different facets have
different catalytic activities.59 Thus, in this study, it is
inappropriate to employ parameters reflecting only bulk
properties as explanatory variables. Moreover, to improve the
performance of the BO, it is essential to choose explanatory
variables that are closely related to the objective variable.
Logadottir et al. reported that the adsorption energy of
nitrogen atom on metal surfaces was linearly correlated to the
activation energy for nitrogen dissociation when metal surfaces
behaved as catalysts.60 Furthermore, there was a positive
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correlation between the adsorption energy and the surface
energy of metals.61 Consequently, there should be a correlation
between the surface energy of metals and the activation energy
for nitrogen dissociation. Hence, the surface energy was chosen
as the explanatory variable.

3.2. Correlation of Initial Dataset. Figure 1 shows the
relationship between the surface energy and heat of reaction

for N�N bond cleavage for the initial dataset. Details of the
30 data points in this plot are shown in the Supporting
Information (SI). The correlation coefficient was −0.695,
indicating a moderate negative correlation between the surface
energy and heat of reaction for N�N bond cleavage. This
suggested that alloy catalysts with a large surface energy could
reduce the heat of reaction for N�N bond cleavage and that
the search could be made more efficient by examining such
catalysts. However, in this study, the alloy surface with the
highest surface energy did not exhibit the lowest reaction heat
for N�N bond cleavage. Table 1 summarizes the five alloys

that resulted in the lowest reaction heat for N�N bond
cleavage in the initial dataset. Fe2Re3, which has the highest
surface energy in the explored dataset, leads to the fifth lowest
heat of reaction for N�N bond cleavage. The heats of
reaction for N�N bond cleavage on the surfaces of the ReV,
CoTa2, MnTa, and Cr2Ti alloys were more than 0.8 eV lower
than that on the surface of Fe2Re3. Hence, the surface energy
and the reaction heat of N�N bond cleavage do not have a
simple linear correlation. To efficiently search for alloys that
will allow N�N bond cleavage at a low reaction heat, it is
necessary to use BO based on Gaussian process regression,
which can be extended to a nonlinear regression model by
kernel tricks.62

3.3. Comparison of BO Using Each Acquisition
Function and Random Search. Figure 2 shows the

evolution of the minimum value of the objective variable in
the BO and random search. The alloy-catalyzed heats of
reaction for N�N bond cleavage obtained in the three BO
trials performed with each of the three different acquisition
functions were lower than those obtained by the random
search. The lowest heat of reaction for N�N bond cleavage
obtained after 20 optimization cycles is lower for PI, EI, and
TS. The acquisition functions were developed based on two
policies: exploitation and exploration. The acquisition function
that emphasizes exploitation is used when the accuracy of
prediction is important and optimization is efficient. On the
other hand, an acquisition function that emphasizes explora-
tion is used to acquire areas where data acquisition is
inadequate. PI is a function that proposes a point with a
high probability of updating the minimum value of the
objective variable and is weighted toward exploitation.63 Thus,
BO with PI suggests a point near the current minimum of the
objective variable. There is a negative correlation between the
explanatory and objective variables in this study. Therefore,
searching for alloys with lower reaction heats of N�N bond
cleavage in the initial dataset is expected to be the most
efficient approach. In fact, BO with PI suggested the alloy with
the surface energy closest to that of the alloy with the lowest
reaction heat for N�N bond cleavage in the initial dataset;
indeed, the reaction heat for N�N bond cleavage with that
alloy was the lowest.
We focused on the relationship between surface energy and

heat of reaction for N�N bond cleavage in the BO with PI;
Table 2 summarizes the five alloys resulting in the lowest
reaction heats of N�N bond cleavage. The surface energies of
all of the alloys listed in Table 2 are ∼0.2 eV/Å2. The scatter
plot of the relationship between the surface energy and
reaction heat shows that alloys with surface energies of ∼0.2
eV/Å2 exhibit low reaction heat for N�N bond cleavage,
whereas such is not the case for alloys with surface energies

Figure 1. Scatter plot between the surface energy of alloys and the
heat of reaction for N�N bond cleavage in the initial dataset. r
denotes the correlation coefficient.

Table 1. Five Lowest Reaction Heats for N�N Bond
Cleavage on the Alloys in the Initial Dataset and the Surface
Energies of the Alloys

alloy
mirror index

(hkl)
surface energy

(eV/Å2)
heat of reaction

(eV)

ReV (110) 0.204 −3.499
CoTa2 (101) 0.187 −3.235
MnTa (110) 0.190 −2.647
Cr2Ti (1̅11) 0.199 −2.398
Fe2Re3 (110) 0.236 −1.512

Figure 2. Convergence of the optimization of the heat of reaction for
N�N bond cleavage upon search by BO with EI, PI, and TS and
upon random search.

Table 2. Alloys Conferring the Five Lowest Reaction Heats
for the Dissociation of N�N Bond, as Predicted by BO
With PI

alloy
mirror index

(hkl)
surface energy

(eV/Å2) heat of reaction (eV)

HfW2 (111) 0.204 −4.87
Cr2Ta (111) 0.220 −4.35
VW2 (110) 0.202 −4.18
TaW2 (110) 0.201 −4.14
Cr2V (110) 0.203 −3.87
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greater than 0.2 eV/Å2 (Figure 3a). The alloys identified in the
BO using EI also have surface energies of ∼0.2 eV/Å2, except

for Tc2Y (whose surface energy was 0.129 eV/Å2), which has
the fifth lowest reaction heat (Table S1). The BO using TS
shows similar trends as those of BOs using PI and EI (Table
S2). These trends indicate that alloy catalysts with surface
energies of ∼0.2 eV/Å2 are optimal for N�N bond cleavage to
proceed at a low reaction heat. Investigation of the electronic
aspects of the relationship between the energetics of nitrogen
cleavage and surface energies will be undertaken in future
studies.
The alloy resulting in the lowest reaction heat for N�N

bond cleavage, as suggested by BO with PI, is HfW2. Figure
3b,c shows the structure of the slab model of the HfW2(111)
surface and the structure of the 2N-adsorbed surface. The
HfW2 alloy could not be suggested by BO using EI or TS.
Among the datasets used in this study, the surface energy of
HfW2 was the closest to that of ReV, which exhibits the lowest
reaction heat in the initial dataset. Therefore, HfW2 was
proposed owing to the weight of exploitation in PI.

4. CONCLUSIONS
BO was combined with DFT calculations to explore optimal
alloy catalysts for the dissociative adsorption of nitrogen
molecule, which is the rate-determining step in ammonia
synthesis reactions. The correlation coefficient between the
explanatory variable, i.e., the surface energy of the alloy, and
the objective variable, i.e., the heat of reaction for the

dissociation of the N�N bond, for the initial dataset was
−0.695, suggesting a negative linear correlation between
surface energy and heat of reaction. The heats of reaction
obtained by BO with the three acquisition functions were
lower than that obtained by the random search, suggesting
higher efficiency of the former approach. Furthermore, the
alloys resulting in low heats of reaction, as proposed by BO,
had surface energies of ∼0.2 eV/Å2. In contrast, alloys with
surface energies larger than 0.2 eV/Å2 exhibit higher reaction
heat for N�N bond cleavage. Therefore, an alloy surface with
a surface energy of 0.2 eV/Å2 was an optimal alloy catalyst for
promoting the dissociation of the N�N bond. This study has
demonstrated the possibility of combining Bayesian optimiza-
tion and DFT calculations to efficiently search for the best
catalyst to promote nitrogen activation among a vast number
of alloys, significant as a model case where data science and
computational chemistry work hand in hand to challenge
catalyst research. In future, we plan to propose an optimal alloy
catalyst for ammonia synthesis by performing multiobjective
BO using the heats of reaction for the dissociation of the N�
N bond and desorption of ammonia as the objective variables.
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Figure 3. (a) Scatter plot between the surface energy and heat of
reaction obtained after BO with PI (red dots), (b) structure of the
slab model of the HfW2(111) surface facet as seen from different
angles, and (c) top view of the HfW2(111) surface with two adsorbed
N atoms. Black dots in (a) denote the initial datasets. Yellow, gray,
and blue balls in (b) and (c) represent Hf, W, and N atoms,
respectively. The structures were visualized by VESTA.64
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