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 Short stick exercises have been attracting attention from the viewpoint of preventing falls and 
improving the health of elderly people and are generally performed under the guidance of 
instructors and nursing staff at nursing homes. However, in situations such as the COVID-19 
pandemic, where people should refrain from unnecessary outings, it is advisable that individuals 
perform short stick exercises at home and record their exercise implementation status. In this 
paper, we propose an inertial measurement unit (IMU)-sensor-based short stick exercise 
tracking method that can automatically record the types and amounts of exercises performed 
using a short stick equipped with an IMU sensor. The proposed method extracts time-domain 
and frequency-domain features from linear acceleration and quaternion time-series data 
obtained from the IMU sensor and classifies the type of exercise using an inference model based 
on machine learning algorithms. To evaluate the proposed method, we collected sensor data 
from 21 young subjects (in their 20s) and 14 elderly subjects (79–95 years old), where the 
participants performed three sets (10 times per set) of eight basic types of short stick exercises 
(five types for elderly people). As a result of evaluating the proposed method using this data set, 
we confirmed that when LightGBM was used as the learning algorithm, it achieved F values of 
90.0 and 86.6% for recognizing the type of exercise for young and elderly people, respectively.

1. Introduction

 Falls in elderly people often result in fractures and other serious injuries that require 
hospitalization and can lead to people becoming bedridden. Therefore, it is important to engage 
in regular moderate exercise to prevent falls. In recent years, short stick exercises, which are 
simple and easy to perform, have been attracting attention for the purpose of preventing falls and 
improving the health of elderly people.(1) These exercises are generally performed at nursing 
homes and other institutions under the direct supervision of instructors and caregivers.
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 However, in the current COVID-19 pandemic, where people are urged to refrain from going 
out unnecessarily, it is desirable for individuals to perform and record short stick exercises on 
their own. Therefore, a means by which users can easily record how many short stick exercises 
they have performed of each type at home is necessary.
 In existing research on exercise support, Shen et al.(2) developed MiLift, a smartwatch-based 
system that can track cardio and weightlifting workouts with high accuracy. Focusing on weight 
training without equipment, Takata et al.(3) investigated the recognition accuracy of 10 different 
exercises for each position of a wearable sensor. As a result, a 93.5% recognition accuracy was 
achieved when the sensor was placed on the wrist and the waist. Although these studies achieved 
highly accurate motion recognition with body-worn IMU sensors, they did not examine methods 
for short stick exercises.
 In this study, we investigate an approach to identify the types of short stick exercises 
performed by users using only one sensor, an inertial measurement unit (IMU) sensor attached 
to a stick used to perform short stick exercises. Our goal is to realize a support system for short 
stick exercises that can automatically record the types of short stick exercises performed by 
elderly people and how many they perform and provide feedback to improve the movement for 
each exercise.
 In this paper, as a first step toward realizing such a support system, we propose an IMU-
based short stick exercise tracking method that can automatically record the type and number of 
each exercise while a person performs exercises using a short stick equipped with an IMU 
sensor. The proposed method extracts time-domain and frequency-domain features from linear 
acceleration and quaternion time-series data obtained from the IMU sensor and classifies the 
type of exercise using an inference model based on machine learning algorithms.
 In the experiment, sensor data were collected from 21 young participants (in their 20s) for 
eight basic types of exercise and 14 elderly participants (79–95 years old) for five types of 
exercise. We evaluated the performance of the proposed method using the collected sensor data. 
As a result, we confirmed that when LightGBM was used as the learning algorithm in the leave-
one-person-out scenario, it achieved F values of 90.0 and 86.6% for recognizing the type of 
exercise for young and elderly participants, respectively. The results demonstrate that our 
proposed method works well for a variety of short stick exercises for both young and elderly 
people.

2. Related Work

 In this section, we describe related research on health support for elderly people and research 
on exercise support. Dobre et al. developed a system that provides non-intrusive monitoring and 
support for elderly people to enhance the provision of professional healthcare,(4) and Richard et 
al. proposed a health management system that displays temperature and heart rate data on a 
liquid crystal display (LCD) and sends automatic notifications to caregivers and doctors.(5) This 
system immediately detects any physical abnormality in elderly people and enables a rapid 
response. A method to monitor the behavior of elderly people living alone and detect deviations 
from past behavior patterns has also been proposed by Susnea et al.(6)
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 Voicu et al. proposed a human physical activity recognition system based on data collected 
from smartphone sensors.(7) It extracts relevant features from six categories: walking, running, 
sitting, standing, climbing, and descending. Evaluation of the collected data showed that most 
activities were correctly recognized, with four of them achieving an average accuracy of 93%. 
 Kurban et al. proposed a daily motion recognition system using a tri-axis acceleration sensor 
that can be used in various body positions.(8) With this system, walking, sitting, standing, 
jumping, and falling motions are collected from subjects. Principal component analysis is used 
as the feature analysis method for classification, and the proposed method achieves a maximum 
accuracy of 100% and an average accuracy of 96.54%.
 Shen et al. developed MiLift, which can track cardio and weightlifting workouts with high 
accuracy using a smartwatch.(2) The system achieved over 90% accuracy and repeatability in 
tracking both aerobic and weightlifting exercises. Takata et al. also focused on weight training 
without equipment and investigated the recognition accuracy of 10 different exercises for each 
position of a wearable sensor.(3) As a result, they reported that the waist was the optimal position 
when one sensor was used, and when two sensors were placed at both the wrist and the waist, the 
weight training exercise was recognized with a high accuracy of 93.5%. Turmo et al. developed 
a system that uses 3D-printed wearable projection lights to visually assist the user in performing 
correct motor movements.(9)

 Torigoe et al. proposed a method to detect and recognize five types of striking motions in 
kendo by attaching IMU sensors to the wrist, waist, shinai flange, and shinai tip. They analyzed 
inertial sensor data of striking motions of experienced and inexperienced kendo players and 
reported that the proposed method based on dynamic-time warping could detect striking 
motions with an F value of 89.9%.(10) Blank et al. attached inertial sensors to table tennis rackets 
and collected data on eight basic stroke types from 10 amateur and 10 professional players. First, 
a single stroke was detected using an event detection algorithm. The features were then 
computed and used as the input for stroke type classification. They reported a high recognition 
accuracy of 96.7%.(11) Jensen et al. developed a golf putt analysis system using data from an 
inertial sensor attached to the end of a golf club using off-the-shelf components with removable 
sensors.(12) The main functions were automatic putt detection by machine learning and real-time 
parameter calculation in the club coordinate system. The authors also conducted an experiment 
and reported that eight out of 11 subjects detected more than 83% of putts, while the false 
positive rate was only 2.4%. Sundholm et al. used the Smart-Mat, which incorporates a pressure 
cloth sensor in an exercise mat, to recognize 10 standard exercises and count and recognize the 
number of reps.(13) In an experiment conducted by Sundholm et al., in which seven subjects 
repeated each exercise 20 times, a user-independent recognition rate of 82.5% and a counting 
accuracy of 89.9% were obtained. Using scaling and shuffling techniques, Lai et al. developed a 
game that can provide tempo variations in strength training while maintaining the training 
volume and training goals.(14) They conducted a user survey of 24 participants and found that the 
game was entertaining and enjoyed by the participants.
 In this study, we focused on short stick exercises, which have received much attention in 
recent years for their effectiveness in preventing falls and promoting the health of elderly people. 
We attached an IMU sensor to a stick used for short stick exercises and attempted to develop a 
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method by which users can automatically record the type and number of exercises they have 
performed simply by exercising using the stick equipped with the IMU sensor. To our knowledge, 
no study has focused on short stick exercises performed by elderly people or investigated the 
applicability of the methods established in previous studies of human activity recognition to the 
monitoring of short stick exercises.

3. Short Stick Exercise Recognition

 In this section, we describe the sensor device used and its attachment position, the exercises 
recognized in this study, and details of the short stick exercise recognition method.

3.1 Sensor device used and mounting position

 We used a MetaMotionR (https://mbientlab.com/metamotionr/) IMU sensor device attached 
to a short stick. The IMU sensor can perform linear acceleration and quaternion measurements 
and has a recording rate of up to 100 Hz. It can also collect linear acceleration and quaternion 
data wirelessly. A quaternion is an extension of the imaginary axis of a complex number to three 
dimensions. The quaternion value describes the orientation of the sensor. The sensor is 
embedded in a hole in the center of the stick, as shown in Fig. 1. The exerciser performs the 
exercise while holding both ends of the stick. In addition, the stick holding and stick angle are 
consistent.

3.2 Basic exercises as recognition targets

 Eight basic exercises were chosen as recognition targets from the short stick exercises 
introduced in Ref. 1, which are shown in Fig. 2 and explained below.
Exercise A: Stick straddling
 The exerciser holds the stick with both hands and straddles the stick without bending it. Next, 
they lift their hips off the chair and raise the stick to the back of the waist. Finally, they return to 
their original position in reverse order. This exercise increases the flexibility of the legs and 
maintains their range of motion.

Fig. 1. (Color online) Short stick equipped with an IMU sensor.

https://mbientlab.com/metamotionr/
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Exercise B: Stick lifting
 The exerciser holds the stick with both hands and does a banzai (holding up two hands) with 
their back straight. They breathe and raise their shoulder during the exercise. This exercise 
stretches the back and helps prevent falling to the side.
Exercise C: Body twisting
 The exerciser stretches backward and rotates their body to the left and right while holding the 
stick with both hands. Rotating the body helps improve the mobility of the spinal column and 
thorax and is also a necessary element of getting back to one’s feet after losing balance.
Exercise D: Sideways body tilting
 The exerciser holds the stick with both hands, stretches backward, and bends their body to 
the left and right. This exercise helps increase the flexibility of the ribcage.
Exercise E: Falling forward
 The exerciser holds the stick with both hands, leans forward, and places the stick on the floor. 
By doing this exercise, the exerciser loads their weight on the sole of the foot and realizes the 
forward leaning posture necessary for standing up.
Exercise F: Shoulder twisting
 The exerciser holds a stick with both hands and twists their shoulders as if they were turning 
the stick in front of their body. Twisting the shoulders can increase the mobility of the shoulders.
Exercise G: Receiving the stick behind the back
 The exerciser passes the stick behind their back and receives it with the opposite hand. 
Manipulating the stick in an unseen location enhances body movement imagery and increases 
shoulder mobility.
Exercise H: Stick turning with hands
 The exerciser holds the stick with both hands and rotates it by moving the wrists up and down 
alternately. This exercise can increase the mobility and flexibility of the wrists.

Fig. 2. (Color online) Eight types of short stick exercises.
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3.3 Observation of sensor data waveform for each type of exercise

 Figure 3 shows typical sensor data waveforms; the composite acceleration and quaternion, 
which are the combined x-, y-, and z-axis accelerations for each exercise, are shown in the figure. 
The horizontal axis represents the time and the vertical axis represents the magnitude of the 
composite acceleration and quaternion.
 As shown in Fig. 3(a), the above waveforms show that the composite acceleration for Exercise 
A has some spikes. This is probably due to a foot hitting the stick. On the other hand, the 
quaternions show no significant changes in the w-, x-, y-, and z-components. This may be due to 
the nature of the basic movement of exercise A, which does not involve large stick movements.
 As shown in Fig. 3(b), the composite acceleration for Exercise B has two points where it is 
large. This is because the arm is larger when it is raised and when it is lowered. Also, the 
magnitudes of the w- and y-components of the quaternion decrease during the banzai. This is 
thought to be due to the fact that the y-component decreases when the stick is raised.
 As shown in Fig. 3(c), the composite acceleration for Exercise C shows a large overall change. 
We believe this is due to the large and fast movement of raising the stick to chest height, twisting 
the body to the left or right, and returning to the original position. The quaternion sometimes has 
a large z-component and sometimes has a small z-component. This is thought to be the result of 
twisting to the left or right.
 As shown in Fig. 3(d), the composite acceleration for Exercise D shows no significant change 
overall. This is due to the fact that although the movements in this exercise are large, it is 
difficult to move the body quickly. In the quaternion, the x-component decreases as the 
z-component increases, and the x-component increases as the z-component decreases. This is 
thought to be due to the increase in the z-component when the body is tilted to the left or right.
 As shown in Fig. 3(e), the composite acceleration for Exercise E is generally small. This is 
because this exercise only involves bringing the stick from the sitting position to the knee height 
to the foot height, and therefore the stick is not moved quickly. The quaternion shows that the 
y-component increases during the exercise. This is because the y-component increases after the 
arms are lowered and returns to its original magnitude when the arms return to their original 
position.
 As shown in Fig. 3(f), the composite acceleration for Exercise F shows a large change from 
the beginning to the end of the exercise. This is thought to be due to the fact that this exercise 
starts at knee height, moves to chest height, twists to the left or right, and then returns to the 
original knee height, making it easy to move the stick quickly. The quaternion has a point where 
the x-component decreases as the z-component increases and the x-component increases as the 
z-component decreases. This is thought to be due to the fact that the change in the z-component 
increases when the shoulder is twisted to the left or right.
 As shown in Fig. 3(g), the composite acceleration for Exercise G shows a small overall 
change. This may be because the exerciser cannot see the stick, and therefore, if the movement is 
made faster, the exerciser may find it more difficult to perform the exercise. In the quaternion, 
the y-component increases when the exercise begins and returns to its original value when the 
exercise ends. This is because the stick is lowered with the left hand, received with the right 
hand, and returned to its original position.
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Fig. 3. (Color online) Sensor waveforms.
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 As shown in Fig. 3(h), the composite acceleration for Exercise H has two points where the 
acceleration is larger. This is due to the division of the stick into two separate movements when 
it is turned. The quaternion shows that the y-component is larger in some areas and smaller in 
others. This is because the y-component increases when the first turn is made from the left-hand 
side and then decreases when the next turn is made from the right-hand side.

3.4 Proposed method

 Our aim is to develop a method to automatically record the type and number of each short 
stick exercise performed by elderly people. Specifically, an IMU sensor is attached to the short 
stick, and the sensor data (linear acceleration and quaternion) obtained from it is analyzed to 
classify the type of motion automatically.
 An overview of the proposed method is shown in Fig. 4. The linear acceleration (x-, y-, 
z-components, synthetic value) and quaternion (w-, x-, y-, z-components, synthetic value) are 
obtained from the IMU sensor. Here, the sampling rate is 100 Hz. In this study, data 
preprocessing and feature extraction are performed in accordance with the findings of existing 
studies;(10,15) we apply a sliding window with a window size of 1.28 s (1 window = 128 samples) 
and a step size of 0.64 s. We first apply a noise reduction process to nine different time-series 
data using a 0.3 s median filter. Next, we separate the sensor data into time-domain and 
frequency-domain series using a Fast Fourier transform. Then, feature extraction processes 
based on the 17 functions (mean, std, mad, max, min, energy, entropy, iqr, autoregression, range, 
rms, skewness, kurtosis, maxFreqInd, meanFreq, energyBand, psd) shown in Table 1 are applied 
to the time-domain and frequency-domain series. Through these processes, a 225-dimensional 
feature vector is generated from one window of sensor data. Our method uses a recognition 
model based on machine learning to infer the type of short stick exercise for this feature vector. 
The machine learning models used for the exercise recognition include nine typical machine 
learning algorithms [support vector machine (SVM), artificial neural network (ANN), random 
forest (RF), decision tree (DT), LightGBM, logistic regression (LR), k-nearest neighbor (KNN), 
naive Bayes (NB), extra-trees (ET)]. In the implementation, we train each model using the 
default parameters of the scikit-learn and LightGBM packages.

Fig. 4. (Color online) Overview of proposed method.
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Table 1
Feature list for short stick exercise recognition.

4. Evaluation Experiment

 To investigate the effectiveness of the proposed method, we conducted a data collection 
experiment with 21 young people in their 20s and 14 elderly people (ages 79–95 who require 
nursing care). In the experiment with elderly subjects, an instructor performed the short stick 
exercise in front of them and asked them to imitate him, as shown in Fig. 5.
 The subjects held the Smart Stick shown in Fig. 4 and performed three sets (10 times per set) 
for each of the eight targeted exercises (five exercises (Exercises B to F) for the elderly people 
due to their physical problems after consulting with caregivers), and the measurement data were 
collected. The data included linear acceleration and quaternion data obtained from the IMU 
sensor.
 Owing to the significant differences in athletic performance between young people and the 
elderly, the characteristics of the obtained sensor data can differ significantly. To clarify the 
difference between the two, we collected sensor data from both groups. From the viewpoint of 
improving the accuracy of the recognition model, we plan to train different exercise recognition 
models for young and elderly people and design a method to adaptively select the model to be 
used according to the user’s ability. Therefore, in this experiment, we also proceeded with a 
survey on the type of features that are effective for automatically classifying healthy and elderly 
people.
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4.1 Comparison of sensor waveforms between young and elderly people

 The sensor waveforms (linear acceleration and quaternion) of five types of exercises 
(Exercises B to F) performed by elderly subjects were compared with those of the same exercises 
performed by young people.
 Figure 6 shows the sensor waveforms of a young person and an elderly person performing 
Exercise B. The composite acceleration of elderly people is generally smaller than that of young 
people. This is thought to be due to the slower movements of elderly people. The quaternion of 
the young person also shows a decrease in both the w- and y-components, but only the 
y-component shows a decrease for the elderly people. This may be due to the fact that the arms 
of the elderly people were raised less than those of the young people.
 Figure 7 shows the sensor waveforms of a young person and an elderly person performing 
Exercise C. The sensor waveforms show that the acceleration of elderly people is smaller. This 
indicates that the movement is slow. Next, the quaternions are compared. The young person’s 
quaternion has an inverse S-shaped z-component, while the elderly person’s quaternion has an 
inverse S-shaped z-component and other components. This is thought to be due to the inability to 
keep the bar horizontal.
 Figure 8 shows the sensor waveforms of a young person and an elderly person performing 
Exercise D. The sensor waveforms show that the acceleration of the elderly person is lower. The 
quaternion waveforms are similar.
 Figure 9 shows the sensor waveforms of a young person and an elderly person performing 
Exercise E. The sensor waveforms show that the acceleration is small for both people but is large 
in some areas. This is thought to be due to the stick hitting the knee during the exercise. The 
quaternion shows that the y-component increases during the exercise for both the young and 
elderly people. This is thought to be due to the correct lowering of the stick.

Fig. 5. (Color online) Scene from data collection experiment.
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 Figure 10 shows the sensor waveforms of a young person and an elderly person performing 
Exercise F. The sensor waveforms show that acceleration is generally small for both people. 
However, the acceleration of the elderly person is higher in some areas. This is thought to be 
caused by the stick hitting the knee during the exercise. The quaternions have S-shaped w- and 
x-components for both the young and elderly people, but the waveform of the elderly person is 
less smooth than that of the young person. This may be because the movements of elderly people 
are less smooth than those of young people.

4.2	 Significantly	different	features	for	young	and	elderly	people

 In this study, we examined features that are useful in automatically determining which age 
group people exercised. The results revealed that the data for the young and elderly people did 
not correspond and did not follow a normal distribution. Therefore, a Mann–Whitney test was 
performed, which examines whether there is a difference between the two groups of uncorrelated 
data. The results showed that the composite acceleration mean (acc_t-Mean-mag) in the time 
domain was particularly significantly different between the two groups. The details are 
described below.

Fig. 7. (Color online) Comparison of waveforms in Exercise C.

Fig. 6. (Color online) Comparison of waveforms in Exercise B.
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Fig. 9. (Color online) Comparison of waveforms in Exercise E.

Fig. 10. (Color online) Comparison of waveforms in Exercise F.

Fig. 8. (Color online) Comparison of waveforms in Exercise D.
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 Figure 11 shows a histogram and boxplots comparing the composite acceleration averages in 
the time domain of the measurements of the five exercises performed by elderly people and the 
corresponding measurements for the young people. A (blue) represents elderly people and B 
(red) represents young people. First, for Exercise B, the P-value is less than 0.001 and, as can be 
seen in the two figures, the acceleration of the young person is significantly larger than that of 
the elderly person. For Exercise C, the P-value less is than 0.001, and the overall difference in the 
acceleration for the young person is significantly greater than that for the elderly person, as can 
be seen in the two figures. For Exercise D, the P-value is less than 0.001, and the acceleration of 

Fig. 11. (Color online) Comparison of the composite acceleration mean (acc_t-Mean-mag) in the time domain for 
the data of young and elderly people.
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the young person is significantly larger than that of the elderly person. For Exercise E, the 
P-value is less than 0.001 and, similarly to Exercises B to D, the overall difference in acceleration 
for the young person is significantly larger. Finally, Exercise F has a P-value of less than 0.001, 
and the acceleration of the young person is also significantly greater than that of the elderly 
person.
 Therefore, the composite acceleration averages in the time domain were confirmed to be 
effective in determining whether the exercises were performed by young or elderly people.

4.3 Performance evaluation

 The performance of the proposed system was evaluated by leave-one-person-out cross-
validation using the nine machine learning algorithms described in Sect. 3. Figure 12 shows a 
bar graph of the F values calculated when all machine learning algorithms were run on the 
sensor data of the 21 young people. The highest recognition accuracy was achieved using 
LightGBM, with an F value of 90.0%. In contrast, the lowest recognition accuracy was achieved 
using NB, with an F value of 52.4%. Figure 13 shows a bar graph of the F values calculated from 
runs using sensor data from the 14 elderly persons. The highest recognition accuracy was 
achieved using LightGBM, with an F value of 86.6%. In contrast, the lowest recognition 
accuracy was achieved using NB, with an F value of 45.2%.
 The reason why LightGBM was the most accurate may be that this machine learning 
algorithm is a combination of the DT algorithm and gradient boosting. Therefore, the proposed 
method confirms the effectiveness of LightGBM as a machine learning algorithm. Figures 14 
and 15 show the confusion matrices resulting from the evaluation using LightGBM, which was 
the most accurate of the machine learning algorithms, for the data for young and elderly people, 
respectively.

Fig. 12. (Color online) F value results for each machine learning algorithm when using data for young people.
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 As can be seen in Fig. 14, for the young people, the overall accuracy of the data is highest 
when using LightGBM. The accuracy of Exercises A to E was about 86%, which is lower than 
that of the other exercises. The results were slightly lower than those of a previous study.

Fig. 13. (Color online) F value results for each machine learning algorithm when using data for elderly people.

Fig. 14. Performance evaluation of using LightGBM from data for young people.
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 As can be seen in Fig. 15, the results for the elderly people using LightGBM are slightly less 
accurate than those for the young people: Exercises B to D achieved about 80% accuracy and 
Exercises E and F achieved about 70% accuracy.
 In conclusion, the types of short stick exercises performed by both young and elderly people 
were recognized with high accuracy using the data. However, some of the exercise events were 
not correctly identified. This may be due to the fact that many subjects performed the exercises, 
which created individual differences in movements during exercises. In the future, we would 
like to improve the proposed method to recognize movements during exercises more accurately.

5. Conclusions

 In this paper, we proposed an IMU-based short stick exercise tracking method that can 
automatically record the type of exercise and the number performed by doing exercises using a 
short stick equipped with an IMU sensor. The proposed method extracts time-domain and 
frequency-domain features from the linear acceleration and quaternion time-series data obtained 
from the IMU and classifies the type of exercise using an inference model based on machine 
learning algorithms. In our experiment, we evaluated the performance of the proposed method 
using sensor data that were collected from 21 young people (in their 20s) and 14 elderly people 
(79–95 years old) for eight basic types of exercise (five types for elderly people). As a result, we 

Fig. 15. Performance evaluation of using LightGBM from data for elderly people.
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confirmed that when LightGBM was used as the learning algorithm in the leave-one-person-out 
scenario, it achieved high accuracy with F values of 90.0 and 86.6% for recognizing the type of 
exercise for young and elderly people, respectively. The results indicate that our proposed 
method works well in a variety of short stick exercises for young and elderly people. In the 
future, we intend to integrate this method into a smartphone application to implement a system 
that allows users to easily record short stick exercises at home. We also plan to increase the 
number of types of exercises covered by the proposed method and to study feedback methods to 
support correct exercising.
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